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ERROR BOUND OF CERTAIN GAUSSIAN QUADRATURE RULES
FOR TRIGONOMETRIC POLYNOMIALS

MARIJA P. STANIĆ 1, ALEKSANDAR S. CVETKOVIĆ 2, AND TATJANA V. TOMOVIĆ 3

Abstract. In this paper we give error bound for quadrature rules of Gaussian type
for trigonometric polynomials with respect to the weight function w(x) = 1+cosx,
x ∈ (−π, π), for 2π-periodic integrand, analytic in a circular domain. Obtained
theoretical bound is checked and illustrated on some numerical examples.

1. Introduction

The famous Gaussian quadrature rules which have maximal algebraic degree of
exactness have been subject of study already almost two centuries. Also, during
this period different ways of generalizations and extensions have been developed.
A quite natural way of extension is construction of quadrature rules with maximal
degree of exactness in some linear space instead of the space of algebraic polynomi-
als. Quadrature rules with maximal trigonometric degree of exactness are examples
of those extensions. There are several different approaches in construction of such
quadrature rules (see [10] and references therein), but approach presented in [19]
is a simulation of the development of Gaussian quadrature rules for the algebraic
polynomials. We denote the system of trigonometric polynomials, i.e., the system
{cos kx, sin kx : k = 0, 1, . . . , n}, by Tn, and by w(x) a nonnegative and integrable
weight function on the interval [−π, π), vanishing there only on a set of a measure
zero.

Definition 1.1. A quadrature rule of the following form∫ π

−π
f(x)w(x) dx =

n∑
ν=0

wνf(xν) +Rn(f),
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where −π ≤ x0 < x1 < · · · < xn < π, has trigonometric degree of exactness equal to
d if Rn(f) = 0 for all f ∈ Td and there exists g ∈ Td+1 such that Rn(g) 6= 0.

Remark 1.1. Turetzkii [19] considered interval [0, 2π) instead of [−π, π), but, as it was
proved in [10], dealing with a translation of the interval [0, 2π), mentioned quadrature
rule can be considered on any interval whose length is equal to 2π, i.e., on any interval
of the form [L, 2π+L), L ∈ R. Thus, in what follows we always use L = −π, i.e., we
considered quadrature rules on interval [−π, π).

An interpolatory quadrature rule for trigonometric polynomials has the following
form

(1.1)

∫ π

−π
f(x)w(x) dx =

2n∑
ν=0

wνf(xν) +Rn(f),

where −π ≤ x0 < x1 < · · · < x2n < π and

(1.2) wk =

∫ π

−π
`k(x)w(x) dx, k = 0, 1, . . . , 2n,

where

`k(x) =
2n∏
j=0
j 6=k

sin
(x−xj

2

)
sin
(xk−xj

2

) .
The maximal trigonometric degree of exactness of quadrature rule (1.1) is equal to

2n. It is known (see [19, 10]) that (1.1) is Gaussian quadrature rule for trigonometric
polynomials, i.e., exact for every trigonometric polynomial of degree 2n, if and only if
the nodes xν (∈ [−π, π)), ν = 0, 1, . . . , 2n, are zeros of a trigonometric polynomial of
semi-integer degree n+1/2 which is orthogonal on [−π, π) with respect to the weight
function w to every trigonometric polynomial of a semi-integer degree less than or
equal to n − 1/2. Notice that for any nonnegative integer n the linear space of all
trigonometric polynomials of semi-integer degree less than or equal to n+ 1/2 is the
linear span of {cos(k+ 1/2)x, sin(k+ 1/2)x : k = 0, 1, . . . , n}. Detailed study of such
orthogonal systems, as well as of the corresponding Gaussian quadrature rules for
trigonometric polynomials, can be found in [10, 11, 1, 12, 13]. However, the error
estimates for such quadrature rules have not been considered so far as it was done
for standard Gaussian quadrature rule (see e.g., [18, 3, 4, 5, 6, 16, 7, 14, 17, 15]). In
this paper we estimate the reminder term Rn(f) of Gaussian quadrature rule (1.1)
for trigonometric polynomials with respect to even weight function w(x) = 1+ cosx,
x ∈ (−π, π), when f is 2π−periodic function, analytic in the domain D = {z ∈ C :
|z| ≤ ρ}, where ρ > 1. Our approach is based on method of Stenger [18]. Section 2
is devoted to error bound and in Section 3 we give some numerical examples.



ERROR BOUND OF CERTAIN GAUSSIAN QUADRATURE RULES... 65

2. Error bound

In this section we consider the case of weight function w(x) = 1+cosx, x ∈ (−π, π).
Then the quadrature rule (1.1) has the following form (see [10])

(2.1)

∫ π

−π
f(x)(1 + cosx) dx =

2n∑
ν=0

wνf(τν) +Rn(f),

where Rn(f) = 0, f ∈ T2n.
Since the weight function w(x) = 1 + cosx is an even function on (−π, π), we use

the following result [10, Lemma 5.3].

Lemma 2.1. Let w be an even weight function on (−π, π). Let xν , w̃ν, ν = 1, 2, . . . , n,
be nodes and weights of the n-point Gaussian quadrature rule with respect to the weight
function w(arccosx)

√
(1− x)/(1 + x), x ∈ (−1, 1), constructed for the algebraic poly-

nomials. Then, the weights wν, ν = 0, 1, . . . , 2n, and the nodes τν, ν = 0, 1, . . . , 2n,
of quadrature rule with maximal trigonometric degree of exactness with respect to the
weight function w on (−π, π) are given as follows:

w2n−ν = wν =
w̃ν+1

1− xν+1

, ν = 0, 1, . . . , n− 1,

wn =

∫ π

−π
w(x) dx−

2n∑
ν=0
ν 6=n

wν ,

τ2n−ν = −τν = arccosxν+1, ν = 0, 1, . . . , n− 1, τn = 0.

Now, we are ready to prove the following error bound.

Theorem 2.1. Let f be 2π−periodic function, analytic in the domain D = {z ∈ C :
|z| ≤ ρ}, where ρ > 1, and C = {z ∈ C : |z| = ρ}. For the remainder term Rn(f) in
(2.1), the following estimate

(2.2) |Rn(f)| ≤
π(ρ+ 1)2

ρ(ρ2n+2 − 1)
max
ξ∈C

|f(ξ)|

holds.

Proof. We start with application of the residue theorem on the contour integral

1

2πi

p(s)

sn

∮
C

f(ξ)ξn

(ξ − s)p(ξ)
dξ,

where s = eix, sk = eiτk , k = 0, 1, . . . , 2n, and p(s) =
∏2n

k=0(s− sk). Thus, we get

1

2πi

p(s)

sn

∮
C

f(ξ)ξn

(ξ − s)p(ξ)
dξ =

p(s)

sn

(
f(s)sn

p(s)
+

2n∑
k=0

f(sk)s
n
k

(sk − s)p′(sk)

)

= f(s) +
p(s)

sn

2n∑
k=0

f(sk)s
n
k

(sk − s)p′(sk)
,
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i.e.,

(2.3) f(s) =
2n∑
k=0

f(sk)
(sk
s

)n p(s)

(s− sk)p′(sk)
+

1

2πi

p(s)

sn

∮
C

f(ξ)ξn

(ξ − s)p(ξ)
dξ.

Substituting s = eix and sk = eiτk , k = 0, 1, . . . , 2n, in

t(s) =
2n∑
k=0

f(sk)
(sk
s

)n p(s)

(s− sk)p′(sk)
,

we obtain

t(x) =
2n∑
k=0

f(τk)e
in(τk−x)

2n∏
j=0
j 6=k

eix − eiτj

eiτk − eiτj

=
2n∑
k=0

f(τk)e
in(τk−x)ei2n(x−τk)/2

2n∏
j=0
j 6=k

2 sin
(x−τj

2

)
2 sin

( τk−τj
2

) .
Therefore,

t(x) =
2n∑
k=0

f(τk)
2n∏
j=0
j 6=k

sin
(x−τj

2

)
sin
( τk−τj

2

) ,
i.e., t(x) is the trigonometric interpolation polynomial for the function f(x) (see
[2, 8]). Since s = eix and x ∈ (−π, π), then s ∈ C1, where C1 is the unit circle with
center at origin, dx = (is)−1 ds, and w(x) = 1 + (eix + e−ix)/2, i.e.,

w(s) = 1 +
s+ s−1

2
=

(s+ 1)2

2s
.

Multiplying the both hand sides of (2.3) by (is)−1w(s) and integrating over the unit
circle C1, we have∫

C1

f(s)w(s)

is
ds =

∫
C1

2n∑
k=0

f(sk)
(sk
s

)n p(s)

(s− sk)p′(sk)

w(s)

is
ds(2.4)

+
1

2πi

1

i

∫
C1

p(s)w(s)

sn+1

∫
C

f(ξ)ξn

(ξ − s)p(ξ)
dξ ds.

Since ∫
C1

2n∑
k=0

f(sk)
(sk
s

)n p(s)

(s− sk)p′(sk)

w(s)

is
ds

=
2n∑
k=0

f(τk)

∫ π

−π

2n∏
j=0
j 6=k

sin
(x−τj

2

)
sin
( τk−τj

2

)w(x) dx,
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due to (1.2), we get∫
C1

2n∑
k=0

f(sk)
(sk
s

)n p(s)

(s− sk)p′(sk)

w(s)

is
ds =

2n∑
k=0

ωkf(τk).

Since ∫
C1

f(s)w(s)

is
ds =

∫ π

−π
f(x)w(x) dx,

from (2.4), we get

Rn(f) =
1

2πi

1

i

∫
C1

p(s)w(s)

sn+1

∫
C

f(ξ)ξn

(ξ − s)p(ξ)
dξ ds.

Changing the order of integrations we obtain

(2.5) Rn(f) =
1

2πi

1

i

∫
C

f(ξ)ξn

p(ξ)

∫
C1

p(s)w(s)

sn+1(ξ − s)
ds dξ.

Thus, we have to estimate the right hand side of (2.5). We first consider the integral∫
C1

p(s)w(s)

sn+1(ξ − s)
ds.

For |s/ξ| < 1, i.e., |ξ| > |s| = 1, one has∫
C1

p(s)w(s)

sn+1(ξ − s)
ds =

∫
C1

p(s)w(s)

sn+1ξ
(
1− s

ξ

) ds

=

∫
C1

p(s)w(s)

sn+1ξ

∞∑
k=0

sk

ξk
ds

=

∫
C1

p(s)w(s)
∞∑
k=0

sk−n−1

ξk+1
ds

=
∞∑
k=0

1

ξk+1

∫
C1

p(s)w(s)sk−n−1 ds.

Since w(arccosx)
√

(1− x)/(1 + x) =
√
1− x2 is Chebyshev weight function of the

second kind, we know that nodes of the n-point Gaussian quadrature rule for this
weight function, constructed for algebraic polynomials, are given by (see [9])

xk = cos
kπ

n+ 1
, k = 1, 2, . . . , n.

According to Lemma 2.1, the nodes of the quadrature rule of Gaussian type (2.1)
with respect of the even weight function w(x) = 1 + cosx, x ∈ (−π, π), are given as
follows:

τ2n−ν = −τν = arccosxν+1, ν = 0, 1, . . . , n− 1; τn = 0.
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It is easy to see that in this case polynomial p(s) is given by

p(s) = −1 + s− s2 + · · · − s2n + s2n+1,

i.e.,

p(s) =
s2n+2 − 1

s+ 1
, s 6= −1.

Indeed, from p(s) = 0 we obtain sk = ei
2kπ
2n+2 = ei

kπ
n+1 , k = 0, 1 . . . , 2n + 1, k 6= n + 1

(notice that k 6= n+1 because s 6= −1). By using elementary transformations we get

s2n+1−ν = ei
2n+1−ν

n+1
π = e2iπe−i ν+1

n+1
π = eiτν , ν = 0, 1, . . . , n− 1,

s0 = e0 = eiτn and sν+1 = eiτ2n−ν , ν = 0, 1, . . . , n − 1, where τ2n−ν = −τν = ν+1
n+1

π,
ν = 0, 1, . . . , n− 1, and τn = 0.

Further, we have∫
C1

p(s)w(s)

sn+1(ξ − s)
ds =

∞∑
k=0

1

ξk+1

∫
C1

s2n+2 − 1

s+ 1

(s+ 1)2

2s
sk−n−1 ds

=
1

2

∞∑
k=0

1

ξk+1

(∫
C1

ds

s−n−1−k +

∫
C1

ds

s−n−k

)

− 1

2

∞∑
k=0
k 6=n

1

ξk+1

∫
C1

ds

sn+1−k − 1

2

1

ξn+1

∫
C1

ds

s

− 1

2

∞∑
k=0

k 6=n+1

1

ξk+1

∫
C1

ds

sn+2−k − 1

2

1

ξn+2

∫
C1

ds

s
.

Since
∫
C1
s−1 ds = 2πi, and all other integrals in the sums on the right hand side of

the previous equality are equal to zero, we get∫
C1

p(s)w(s)

sn+1(ξ − s)
ds =

1

2

(
− 2πi

ξn+1
− 2πi

ξn+2

)
= −πiξ + 1

ξn+2
,

which, together with (2.5), gives

Rn(f) =
1

2πi

1

i

∫
C

f(ξ)ξn

p(ξ)
(−πi)ξ + 1

ξn+2
dξ

= − 1

2i

∫
C

f(ξ)(ξ + 1)
ξ2n+2−1
ξ+1

ξ2
dξ

= − 1

2i

∫
C

f(ξ)(ξ + 1)2

(ξ2n+2 − 1)ξ2
dξ.

Therefore,

|Rn(f)| =
∣∣∣∣− 1

2i

∫
C

f(ξ)(ξ + 1)2

(ξ2n+2 − 1)ξ2
dξ

∣∣∣∣ ,
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and hence

|Rn(f)| ≤
`(C)

2
max
ξ∈C

|f(ξ)|max
ξ∈C

|ξ + 1|2

|ξ2n+2 − 1||ξ|2
,

where `(C) = 2ρπ is the length of the circle C of radius ρ > 1. It is easy to see that
|ξ+1|2 attains its maximum on C at ξ = ρ. Since ξ = ρ is one of the points at which
|ξ2n+2 − 1| attains its minimum on C, we conclude that |ξ + 1|/|ξ2n+2 − 1| attains its
maximum on C at ξ = ρ, i.e., that

|Rn(f)| ≤
2ρπ

2

|ρ+ 1|2

|ρ2n+2 − 1||ρ|2
max
ξ∈C

|f(ξ)| = π(ρ+ 1)2

ρ(ρ2n+2 − 1)
max
ξ∈C

|f(ξ)|.

�

3. Numerical examples

In this section we check our theoretical error bound on some numerical examples.
Let us notice that for given function f it is interesting to consider the error bound

as follows

(3.1) |Rn(f)| ≤ inf
1<r<ρ

(
π(r + 1)2

r(r2n+2 − 1)

(
max
ψ∈Cr

|f(ψ)|
))

,

where Cr = {ψ : |ψ| = r}, and ρ is the maximal possible value such that f is analytic
in Cρ.

Example 3.1. We are going to consider integration of the function f(x) = 1/(eix+4/3),
over the interval (−π, π) with the weight function w(x) = 1 + cosx. One can easily
calculate that ∫ π

−π

1 + cosx

eix + 4/3
dx =

15

16
π.

Here f(z) = 1/(z + 4/3), and according to conditions of Theorem 2.1, we can choose
ρ ≈ 4/3, for the maximum possible allowed value of ρ. Obtained theoretical error
bound indicates that the error term, as function of n, should behave like |Rn| ≈
c/1.332n+1, where c is independent on n and dependent on ρ. In Table 1 the absolute
actual errors (the numbers in parentheses denote decimal exponents) are given. Since
we check asymptotic behaviour of |Rn(f)| the quotients of successive error terms
are represented, too. According to theoretical result we must have |Rn/Rn−10| ≈
(3/4)20 ≈ 3.2(−3), which is exactly demonstrated in Table 1.

n 10 20 30 40

|Rn| 0.35(−3) 0.11(−5) 0.35(−8) 0.11(−10)

|Rn/Rn−10| 3.2(−3) 3.2(−3) 3.2(−3)

Table 1. Actual error and the quotients of successive error terms in
integration of f(x) = 1/(eix+4/3) on (−π, π) with the weight function
w(x) = 1 + cosx.
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Now we are going to consider error bound (3.1). It is easy to see that in our case

max
ψ∈Cr

|f(ψ)| = 1

4/3− r
,

and hence

|Rn(f)| ≤ inf
1<r<ρ

(
π(r + 1)2

r(r2n+2 − 1)(4/3− r)

)
.

Thus, we obtain the error bounds given in Table 2.

n 20 30 40

|Rn| 6.28(−3) 2.94(−5) 1.25(−7)

r 1.30 1.31 1.32

Table 2. Error bound (3.1) for f(x) = 1/(eix + 4/3) on (−π, π) with
the weight function w(x) = 1 + cosx and corresponding approximate
value r for which infimum is attained.

Example 3.2. Let now consider the following integral∫ π

−π

eix

eix + 5/4i
(1 + cosx) dx = −4π

5
i.

Here we have that w(x) = 1 + cosx and f(z) = z/(z + 5/4 i). According to Theorem
2.1 function f must be analytic in domain D, hence all values 1 < ρ < 5/4 are
admissible, i.e., the maximum allowed value of ρ is ρ ≈ 5/4. In this case the error
term, as function of n, should behave like |Rn| ≈ c/1.252n+1 and for the quotients of
successive error terms must hold |Rn/Rn−10| ≈ (4/5)20 ≈ 1.1(−2), which is exactly
shown in the Table 3 (the numbers in parentheses denote decimal exponents).

n 5 15 25 35

|Rn| 0.48 0.51(−2) 0.59(−4) 0.68(−6)

|Rn/Rn−10| 1.1(−2) 1.1(−2) 1.1(−2)

Table 3. Actual error and the quotients of successive error terms in
integration of f(x) = eix/(eix+5/4i) on (−π, π) with the weight function
w(x) = 1 + cosx.

Now we consider error bound (3.1). Since

max
ψ∈Cr

|f(ψ)| = r

5/4− r
,

one has

|Rn(f)| ≤ inf
1<r<ρ

(
π(r + 1)2

(r2n+2 − 1)(5/4− r)

)
.

Thus, we obtain the error bounds given in Table 4.
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n 15 25 35

|Rn| 8.62(−1) 1.62(−2) 2.60(−4)

r 1.211 1.226 1.233

Table 4. Error bound (3.1) for f(x) = eix/(eix+5/4i) on (−π, π) with
the weight function w(x) = 1 + cosx and corresponding approximate
value r for which infimum is attained.
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