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DERIVED GRAPHS OF SOME GRAPHS

SUDHIR R. JOG 1, SATISH P. HANDE 2, IVAN GUTMAN 3, AND Ş. BURCU BOZKURT 4

Abstract. The derived graph of a simple graph G, denoted by G†, is the graph
having the same vertex set as G, in which two vertices are adjacent if and only
if their distance in G is two. Continuing the studies communicated in Kragujevac
J. Math. 34 (2010), 139–146, we examined derived graphs of some graphs and
determine their spectra.

1. Introduction

In two recent papers [1, 2], the so-called derived graphs were considered, with em-
phasis on their spectral properties. In the present paper we obtain a few more results
along the same lines.

In this paper, we consider simple graphs, that is, graphs without directed, multiple,
or weighted edges, and without self loops. Let G be such a graph and let its vertex
set be V (G) = {v1, v2, . . . , vn}. The distance between the vertices vi and vj is equal
to length of a shortest path between vi and vj.

Definition 1.1. Let G be a simple graph with vertex set V (G). The derived graph
of G, denoted by G† is the graph with vertex set V (G), in which two vertices are
adjacent if and only if their distance in G is two.

Definition 1.2. The spectrum of the derived graph of the graph G (that is, the
multiset of the eigenvalues of the adjacency matrix of G) is said to be the second-
stage spectrum of G.

It is needless to say that the second–stage spectrum of the graph G is just the
ordinary spectrum of its derived graph G†.
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Definition 1.3. The energy of a graph G is the sum of the absolute values of the
eigenvalues of G. The energy of the derived graph of a graph G is referred to as the
second–stage energy of G.

In [2] graphs whose derived graphs are connected are characterized and upper
bounds for the eigenvalues of G† are established. In [1], results for spectra and energy
of derived graphs, in particular for graphs of diameter 2, are communicated.

In order to state our main results, we need some preparations.

2. Auxiliary results

Let G be a simple graph with vertex set V = {v1, v2, . . . , vn} and edge set E =
{e1, e2, . . . , em}. Then the vertex-edge incidence matrix of G is the n × m matrix
J = J(G) whose (i, j) entry is equal to unity if the vertex vi is incident to the edge
ej, and is zero otherwise.

Let R(G) be the graph obtained from G by adding a new vertex corresponding
to each edge of G and by joining each new vertex to the endpoints of the edge
corresponding to it. It will be called semi total point graph. The construction of
R(G) is illustrated by the following example:

G R G( )

Figure 1. A graph and its semi total point graph.

The adjacency matrix of R(G) has the form

R(G) =

[
0m Jt

J A

]

where A and J are, respectively, the adjacency and incidence matrices of G.

Theorem 2.1. [4] If G is a regular graph of degree r with n vertices and m = nr/2
edges, then the characteristic polynomial of R(G) is given by

φ(R(G), λ) = λm−n (λ + 1)n φ
(
G,

λ2 − r

λ + 1

)
.

Lemma 2.1. [5] If M is a nonsingular square matrix then,
∣∣∣∣∣

M N
P Q

∣∣∣∣∣ = |M |
∣∣∣∣Q− P M−1 N

∣∣∣∣.
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3. Main results

We now generalize the concept of semi total point graph as follows.

Definition 3.1. Let G be a simple graph of order n possessing m edges. The k-th
semi total point graph of G, denoted by Rk(G), is the graph obtained by adding k
vertices to each edge of G and joining them to the endpoints of the respective edge.
Obviously, this is equivalent to adding k triangles to each edge of G.

The graph Rk(G) is of order n + mk and has (1 + 2k)m edges. Of course, the semi
total point graph discussed in the preceding section is just the special case of Rk(G)
for k = 1. The construction of Rk(G) is illustrated by the following example:

G R G( )3

Figure 2. A graph and its k-th semi total point graph for k = 3.

Claim 3.1. Let G be a simple graph with m edges, ∆ triangles, and degree sequence[
d1, d2, . . . , dn

]
.

1. The number of triangles of Rk(G) is equal to ∆ + mk.
2. The degree sequences of Rk(G) is

[
(k + 1)d1, (k + 1)d2, . . . , (k + 1)dn, 2, 2, . . . , 2 (mk times)

]
.

We now generalize Theorem 2.1:

Theorem 3.1. If G is a regular graph of order n and degree r, then for any k ≥ 1,
the characteristic polynomial of its k-th semi total point graph Rk(G) is given by

(3.1) φ(Rk(G), λ) = λmk−n (λ + k)n φ
(
G,

λ2 − kr

λ + k

)

where m = nr/2 is the number of edges of G.

Proof. By a pertinent labeling of the vertices of Rk(G), its characteristic polynomial
assumes the form

φ(Rk(G), λ) =

∣∣∣∣∣
λ Imk −Γt

−Γ λ In −A(G)

∣∣∣∣∣
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where Ip stands for the unit matrix of order p, A(G) is the adjacency matrix of G,
and Γ = (J(G), J(G), . . . , J(G)). Then by applying Lemma 2.1,

φ(Rk(G), λ) = λmk

∣∣∣∣∣λ In −A(G)− ΓΓt

λ Imk

∣∣∣∣∣ .

Since G is regular,
ΓΓt = k A(G) + kr In

from which

φ(Rk(G), λ) = λmk

∣∣∣∣∣
(λ2 − kr)In − (λ + k)A(G)

λ

∣∣∣∣∣

= λmk−n (λ + k)n

∣∣∣∣∣
λ2 − kr

λ + k
In −A(G)

∣∣∣∣∣
and equation (3.1) follows straightforwardly. ¤

In what follows we consider a class of graphs constructed by attaching k new
pendent vertices to each vertex of the underlying graph. These graphs are often
referred to as thorny graphs or thorn graphs and have been much studied in the
mathematical literature (see, for instance [3, 7–9]). The thorny graph pertaining to
the graph G will be denoted by G+k. The spectrum of G+k was determined in [6]

We now establish a few elementary properties of the derived graphs of thorny
graphs.

Lemma 3.1. Let Cn be the cycle on n vertices. Then

(C+1
3 )† ∼= C6,

(C+2
3 )† is biregular of degrees 4 and 3,

(C+3
3 )† is biregular of degrees 6 and 4,

(C+k
2p+1)

† ∼= Rk(C2p+1), p ≥ 2,

(C+k
2p )† ∼= Rk(Cp) ∪Rk(Cp), p ≥ 2.

Proof. Follows by construction. ¤
The below results can be obtained by simple, yet lengthy calculation, which we

skip.

Claim 3.2. Let Kn be the complete graph on n vertices. Then for k ≥ 1, the second–
stage spectrum of K+k

n consists of:

−1 nk − 1 times,

k n− 1 times,

1
2

[
k − 1 +

√
(k − 1)2 + 4k(n− 1)2

]
once,

1
2

[
k − 1−

√
(k − 1)2 + 4k(n− 1)2

]
once.
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Consequently, the second–stage energy of K+k
n , that is the energy of (K+k

n )†, is equal

to 2nk − k − 1 +
√

(k − 1)2 + 4k(n− 1)2.

In the special case k = n the second–stage energy of K+k
n is equal to 2n2 − n −

1 + (n − 1)
√

1 + 4n. Therefore, for n = 2, 6, 12, 20, . . . i.e., for n = p(p + 1), the
second–stage energy of K+k

n is integer.

Claim 3.3. Let Ka,b be the complete bipartite graph on a+b vertices. Then for k ≥ 1,
the second–stage spectrum of K+k

a,b consists of:

−1 (a + b)k − 2 times,

k − 1 a + b− 2 times,

1
2

[
k + a− 2 +

√
(k − a)2 + 4kab

]
once,

1
2

[
k + a− 2−

√
(k − a)2 + 4kab

]
once,

1
2

[
k + b− 2 +

√
(k − b)2 + 4kab

]
once,

1
2

[
k + b− 2−

√
(k − b)2 + 4kab

]
once.

Consequently, the second–stage energy of K+k
a,b , that is, the energy of (K+k

a,b )†, is

equal to (a + b)(2k − 1)− 2k +
√

(k − a)2 + 4kab +
√

(k − b)2 + 4kab.

For the special case a = b we have:

Claim 3.4. Let Ka,a be the complete bipartite graph on 2a vertices. Then for k ≥ 1,
the second–stage spectrum of K+k

a,a consists of:

−1 2(ak − 1) times

k − 1 2(a− 1) times

1
2

[
k + a− 2 +

√
(k − a)2 + 4ka2

]
2 times

1
2

[
k + a− 2−

√
(k − a)2 + 4ka2

]
2 times

Consequently, the second–stage energy of K+k
a,a , that is, the energy of (K+k

a,a)†, is

equal to 2a(2k − 1)− 2k + 2
√

(k − a)2 + 4ka2.

In the special case a = b = k the second–stage energy of K+k
a,b is equal to 4a2−4a+

4a
√

a . Therefore, for a = p2, the second–stage energy of K+k
a,b is an integer divisible

by 4.
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