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CHROMATIC NUMBER AND SOME MULTIPLICATIVE
VERTEX-DEGREE-BASED INDICES OF GRAPHS

KEXIANG XU 1, KECHAO TANG 1, KINKAR CH. DAS 2, AND HUANSONG YUE 1

Abstract. For a (molecular) graph, the first and second Zagreb indices (M1 and
M2) are two well-known topological indices in chemical graph theory introduced
in 1972 by Gutman and Trinajstić. Multiplicative versions of Zagreb indices, such
as Narumi-Katayama index, multiplicative Zagreb index and multiplicative sum
Zagreb index, have been much studied in the past. Let G(n, k) be the set of
connected graphs of order n and with chromatic number k. In this paper we show
that, in G(n, k), Turán graph Tn(k) has the maximal Narumi-Katayama index, the
maximal multiplicative Zagreb index and the maximal multiplicative sum Zagreb
index. And the extremal graphs from G(n, k) with k = 2 or 3 are determined with
minimal values of these above indices.

1. Introduction

We only consider finite, undirected and simple graphs throughout this paper. Let
G be a graph with vertex set V (G) and edge set E(G). The degree of v ∈ V (G),
denoted by dG(v), is the number of vertices in G adjacent to v. For a subset W of
V (G), let G −W be the subgraph of G obtained by deleting the vertices of W and
the edges incident with them. Similarly, for a subset E ′ of E(G), we denote by G−E ′

the subgraph of G obtained by deleting the edges of E ′. If W = {v} and E ′ = {xy},
the subgraphs G − W and G − E ′ will be written as G − v and G − xy for short,
respectively. For any two nonadjacent vertices x and y of graph G, we let G + xy be
the graph obtained from G by adding an edge xy. The chromatic number of a graph
G, denoted by χ(G), is the minimum number of colors such that G can be colored
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with these colors in order that no two adjacent vertices have the same color. Other
undefined notations and terminology on the graph theory can be found in [2].

A graphical invariant is a number related to a graph which is a structural invariant,
in other words, it is a fixed number under graph automorphisms. In chemical graph
theory, these invariants are also known as the topological indices. Two of the oldest
graph invariants are the well-known Zagreb indices first introduced in [11] where Gut-
man and Trinajstić examined the dependence of total π-electron energy on molecular
structure and elaborated in [12]. For a (molecular) graph G, the first Zagreb index
M1(G) and the second Zagreb index M2(G) are, respectively, defined as follows:

M1 = M1(G) =
∑

v∈V (G)

dG(v)2, M2 = M2(G) =
∑

uv∈E(G)

dG(u)dG(v).

These two classical topological indices reflect the extent of branching of the molec-
ular carbon-atom skeleton [1, 20]. The first Zagreb index M1 was also termed as
“Gutman index” by some scholars ([20]). The main properties of M1 and M2 were
summarized in [4, 5, 8, 15, 17]. In particular, Deng [5] gave a unified approach to
determine extremal values of Zagreb indices for trees, unicyclic, and bicyclic graphs,
respectively. Other recent results on Zagreb indices can be found in [24] and the
references cited therein.

Recently, Todeschini et al. [19, 21] have proposed the multiplicative variants of
ordinary Zagreb indices, which are defined as follows:

∏
1

=
∏

1
(G) =

∏

v∈V (G)

dG(v)2,
∏

2
=

∏
2
(G) =

∏

uv∈E(G)

dG(u)dG(v).

These two graph invariants are called “first and second multiplicative Zagreb in-
dices” by Gutman [7]. In the same paper, Gutman determined that among all trees
of order n ≥ 4, the extremal trees with respect to these multiplicative Zagreb indices
are path Pn (with maximal

∏
1 and with minimal

∏
2) and star Sn (with maximal

∏
2

and with minimal
∏

1). A molecular graph which models the skeleton of a molecule
([23]) is a connected graph of maximum degree at most 4. The bounds of a molecular
topological descriptor are important information of a (molecular) graph in the sense
that they establish the approximate range of the descriptor in terms of molecular
structural parameters.

In 1984, Narumi and Katayama [16] first introduced the following product index
which is named as Narumi-Katayama index ([13, 14, 22])

NK = NK(G) =
∏

v∈V (G)

dG(v).

Note that, for any graph G, we have
∏

1(G) = NK(G)2. Thus the first multiplica-
tive Zagreb index (

∏
1) can not be viewed as new topological index of graph, and in
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this paper we only need to deal with the case of NK(G) rather than
∏

1(G). Very

recently, Eliasi, Iranmanesh and Gutman [6] first introduced another multiplicative
version of first Zagreb index, which is called as multiplicative sum Zagreb index [25]
to distinguish from first multiplicative Zagreb index (

∏
1), as follows:

∏∗
1
(G) =

∏

uv∈E(G)

(dG(u) + dG(v)).

Some new results can be found in [9, 25, 26] on Narumi-Katayama index, second
multiplicative Zagreb index and multiplicative sum Zagreb index.

Let G(n, k) be the set of connected graphs of order n and with chromatic number k.
In this paper we show that, in G(n, k), Turán graph Tn(k) has the maximal Narumi-
Katayama index (NK), the maximal second multiplicative Zagreb index (

∏
2) and the

maximal multiplicative sum Zagreb index (
∏∗

1). Moreover the extremal graphs from
G(n, k) with minimal values of these above three indices are determined for k = 2, 3.

2. Some lemmas

In this section we will list or prove some lemmas as preliminaries, which will play
an important role in the next proofs.

By the definitions of Narumi-Katayama index, second multiplicative Zagreb index
and multiplicative sum Zagreb index, these two lemmas below can be easily obtained.

Lemma 2.1. Let G be a graph with two nonadjacent vertices u, v ∈ V (G). Then we
have

(1) NK(G + uv) > NK(G);
(2)

∏
2(G + uv) >

∏
2(G);

(3)
∏∗

1(G + uv) >
∏∗

1(G).

Lemma 2.2. Let G be a graph with e ∈ E(G). Then we have

(1) NK(G− e) < NK(G);
(2)

∏
2(G− e) <

∏
2(G);

(3)
∏∗

1(G− e) <
∏∗

1(G).

Lemma 2.3. [7] For any graph G, we have
∏

2(G) =
∏

x∈V (G)
dG(x)dG(x).

Recalling that
∏

1(G) = NK(G)2 for any graph G, the following remark is obvious.

Remark 2.1. Let G1 and G2 be two connected graphs. Then we have
∏

1(G1) >
∏

1(G2)
if and only if NK(G1) > NK(G2).

Remark 2.2. [25, 26] Any tree T of size t attached to a graph G can be changed into
a path Pt+1. During this process, the first multiplicative Zagreb index

∏
1 increases,

while the second multiplicative Zagreb index
∏

2 and multiplicative sum Zagreb index∏∗
1 all decrease.
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Combining Remarks 2.1 and 2.2, we can easily obtain the following remark.

Remark 2.3. Any tree T of size t attached to a graph G can be changed into a path
Pt+1. During this process, Narumi-Katayama index NK increases, while the second
multiplicative Zagreb index

∏
2 and multiplicative sum Zagreb index

∏∗
1 all decrease.

Now we consider a graph transformation, which will make different effects on
Narumi-Katayama index, second multiplicative Zagreb index and multiplicative sum
Zagreb index.

Transformation A. Assume that a pendent path P = v1v2 · · · vt−1vt is attached
at v1 in graph G and there are two neighbors x and y of v1 different from v2. Let
G′ = G− xv1 + xvt, see Figure 1.

Lemma 2.4. [25, 26] Let G and G′ be two graphs as shown in Figure 1. Then we
have

(1)
∏

1(G) <
∏

1(G
′
);

(2)
∏

2(G) >
∏

2(G
′
);

(3)
∏∗

1(G) >
∏∗

1(G
′
).

Figure 1. Transformation A

Based on Remark 2.1 and Lemma 2.4, the following lemma follows immediately.

Lemma 2.5. Let G and G′ be two graphs as shown in Figure 1. Then we have

(1) NK(G) < NK(G
′
);

(2)
∏

2(G) >
∏

2(G
′
);

(3)
∏∗

1(G) >
∏∗

1(G
′
).

Lemma 2.6. [7, 9, 25] Let T be a tree of order n ≥ 5 different from Sn and Pn. Then

(1) NK(Sn) < NK(T );
(2)

∏
2(Pn) <

∏
2(T );

(3)
∏∗

1(Pn) <
∏∗

1(T ).

Let Ck
n be a graph obtained by attaching n − k pendent edges to a vertex of

Ck. The extremal unicyclic graphs with minimal values of Narumi-Katayama index,
second multiplicative Zagreb index and multiplicative sum Zagreb index have been
completely determined in the following lemma.
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Lemma 2.7. [7, 25, 26] Let G be a connected unicyclic graph of order n ≥ 4 different
from C3

n and Cn. Then

(1) NK(C3
n) < NK(G);

(2)
∏

2(Cn) <
∏

2(G);
(3)

∏∗
1(Cn) <

∏∗
1(G).

Hereafter we always assume that n1 ≤ n2 ≤ · · · ≤ nk are positive integers with
k∑

i=1
= n. Denote by Kn1,n2,··· ,nk

a complete k-partite graph of order n whose partition

sets are of size n1, n2, · · · , nk, respectively. The lemma below presents the values of
Narumi-Katayama index, second multiplicative Zagreb index and multiplicative sum
Zagreb index of Kn1,n2,··· ,nk

, respectively.

Lemma 2.8. Assume that Kn1,n2,··· ,nk
is the graph defined as above. Then we have

(1) NK(Kn1,n2,··· ,nk
) =

k∏
i=1

(n− ni)
ni;

(2)
∏

2(Kn1,n2,··· ,nk
) =

k∏
i=1

(n− ni)
(n−ni)ni;

(3)
∏∗

1(Kn1,n2,··· ,nk
) =

∏
1≤i<j≤k

(2n− ni − nj)
ninj .

Proof. For j ∈ {1, 2, · · · , k}, in partition set of size nj in Kn1,n2,··· ,nk
, each vertex is

of degree n− nj. By the definition of Narumi-Katayama index and Lemma 2.3, it is
easy to see that

NK(Kn1,n2,··· ,nk
) =

k∏

i=1

(n− ni)
ni and

∏
2
(Kn1,n2,··· ,nk

) =
k∏

i=1

(n− ni)
(n−ni)ni .

Between two partition sets of sizes ni, nj with 1 ≤ i < j ≤ k, respectively, in
Kn1,n2,··· ,nk

, there exist ninj edges linking these two sets. Moreover, the two vertices
incident with each of these edges are of degrees n−ni and n−nj, respectively. From
the definition of multiplicative sum Zagreb index,

∏∗
1
(Kn1,n2,··· ,nk

) =
∏

1≤i<j≤k

(2n− ni − nj)
ninj ,

ending the proof of this lemma. ¤

3. Main results

In this section we will determine the extremal graphs from G(n, k) with respect to
Narumi-Katayama index, second multiplicative Zagreb index and multiplicative sum
Zagreb index, respectively. To do it, we first prove a related lemma below.

Lemma 3.1. Let Kn1,n2,··· ,nk
be a graph defined as above with nj − ni ≥ 2 for i < j.

Then

(1) NK(Kn1,n2,··· ,ni,··· ,nj ,··· ,nk
) < NK(Kn1,n2,··· ,ni+1,··· ,nj−1,··· ,nk

);
(2)

∏
2(Kn1,n2,··· ,ni,··· ,nj ,··· ,nk

) <
∏

2(Kn1,n2,··· ,ni+1,··· ,nj−1,··· ,nk
);



328 KEXIANG XU, KECHAO TANG, KINKAR CH. DAS, AND HUANSONG YUE

(3)
∏∗

1(Kn1,n2,··· ,ni,··· ,nj ,··· ,nk
) <

∏∗
1(Kn1,n2,··· ,ni+1,··· ,nj−1,··· ,nk

).

Proof. Set

∆1 =
NK(Kn1,n2,··· ,ni+1,··· ,nj−1,··· ,nk

)

NK(Kn1,n2,··· ,ni,··· ,nj ,··· ,nk
)

, ∆2 =

∏
2(Kn1,n2,··· ,ni+1,··· ,nj−1,··· ,nk

)
∏

2(Kn1,n2,··· ,ni,··· ,nj ,··· ,nk
)

and

∆3 =

∏∗
1(Kn1,n2,··· ,ni+1,··· ,nj−1,··· ,nk

)
∏∗

1(Kn1,n2,··· ,ni,··· ,nj ,··· ,nk
)

.

Since the values of Narumi-Katayama index, second multiplicative Zagreb index
and multiplicative sum Zagreb index of Kn1,n2,··· ,ni,··· ,nj ,··· ,nk

are all positive, it suffices
to prove that ∆i > 1 for i = 1, 2, 3.

From Lemma 2.8 (1), we obtain

∆1 =
(n− ni − 1)ni+1(n− nj + 1)nj−1

(n− ni)ni(n− nj)nj

=
(
1− 1

n− ni

)ni

× n− ni − 1

n− nj

×
(
1 +

1

n− nj

)nj−1

>
[(

1− 1

n− ni

)(
1 +

1

n− nj

)]ni

> 1.

Note that the last inequality holds since (1− 1
n−ni

)(1+ 1
n−nj

) > 1 when nj−ni ≥ 2.

So we complete the proof of result in (1).
In view of Lemma 2.8 (2), we get

∆2 =
(n− ni − 1)(n−ni−1)(ni+1)(n− nj + 1)(n−nj+1)(nj−1)

(n− ni)(n−ni)ni(n− nj)(n−nj)nj

=
(n− ni − 1)(n−ni)ni(n− ni − 1)n−2ni+1

(n− ni)(n−ni)ni
· (n− nj + 1)(n−nj)nj(n− nj + 1)2nj−n−1

(n− nj)(n−nj)nj

=
[(

1− 1

n− ni

)(
1 +

1

n− nj

)](n−ni)ni (n− ni − 1)n−2ni−1

(n− nj + 1)n−2nj+1

as (n− nj)nj > (n− ni)ni when nj − ni ≥ 2

>
(

n− ni − 1

n− nj + 1

)n−2nj+1

as
(
1− 1

n− ni

)(
1 +

1

n− nj

)
> 1

and n− 2ni − 1 > n− 2nj + 1 when nj − ni ≥ 2

≥ 1.

And the last inequality holds since n−ni−1
n−nj+1

≥ 1 when nj − ni ≥ 2. Thus the proof

of the result in (2) is over.
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By Lemma 2.8 (3), we have

∆3 =
(2n− ni − nj)

(ni+1)(nj−1))

(2n− ni − nj)ninj

∏

1≤p≤k,p 6=i,j

(2n− np − ni − 1)np(ni+1)

(2n− np − ni)npni

× ∏

1≤p≤k,p6=i,j

(2n− np − nj + 1)np(nj−1)

(2n− np − nj)npnj

>
∏

1≤p≤k,p 6=i,j

(2n− np − ni − 1)np(ni+1)

(2n− np − ni)npni

∏

1≤p≤k,p 6=i,j

(2n− np − nj + 1)np(nj−1)

(2n− np − nj)npnj

=
∏

1≤p≤k,p 6=i,j

(
1− 1

2n− np − ni

)npni

(2n− np − ni)
np

× ∏

1≤p≤k,p6=i,j

(
1 +

1

2n− np − nj

)npnj

(2n− np − nj)
−np

=
∏

1≤p≤k,p 6=i,j

[(
1− 1

2n− np − ni

)ni
(
1 +

1

2n− np − nj

)nj
]np

× ∏

1≤p≤k,p6=i,j

(
2n− ni − np

2n− nj − np

)np

>
∏

1≤p≤k,p 6=i,j

[(
1− 1

2n− np − ni

)ni
(
1 +

1

2n− np − nj

)nj
]np

as
2n− ni − np

2n− nj − np

> 1 when nj − ni ≥ 2

>
∏

1≤p≤k,p 6=i,j

[(
1− 1

2n− np − ni

)(
1 +

1

2n− np − nj

)]ninp

> 1.

Moreover, the last inequality holds since
(
1− 1

2n− np − ni

)(
1 +

1

2n− np − nj

)
> 1 when nj − ni ≥ 2.

This completes the proof of the lemma. ¤

For k = 1, the set G(n, k) contains a single connected graph K1. When k = n, the
only graph in G(n, k) is Kn. So, in the following, we always assume that 1 < k < n
and n = kq + r where 0 ≤ r < k, i.e., q = bn

k
c. The following theorem presents

the extremal graph from G(n, k) having maximal Narumi-Katayama index, maximal
second multiplicative Zagreb indices and maximal multiplicative sum Zagreb index,
respectively.

Theorem 3.1. For any graph G ∈ G(n, k), we have

(1) NK(G) ≤ NK(Tn(k)) = (n − bn
k
c)bn

k
c(k−r)(n − dn

k
e)dn

k
er with equality holding if

and only if G ∼= Tn(k);
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(2)
∏

2(G) ≤ ∏
2(Tn(k)) =

(
n− bn

k
c
)(n−bn

k
c)bn

k
c(k−r) (

n− dn
k
e
)(n−dn

k
e)dn

k
er

with equality

holding if and only if G ∼= Tn(k);

(3)
∏∗

1(G) ≤ ∏∗
1(Tn(k)) =

(
2n− 2bn

k
c
)bn

k
c2 (k−r

2 ) ×
(
2n− 2dn

k
e
)dn

k
e2 (r

2)

×
(
2n− bn

k
c − dn

k
e
)bn

k
cdn

k
er(k−r)

with equality holding if and only if G ∼= Tn(k).

Proof. From the definition of chromatic number, any graph G from G(n, k) has k color
classes each of which is an independent set. Suppose that the k classes have order
n1, n2, · · · , nk, respectively. By Lemma 2.1, we find that extremal graph from G(n, k)
with maximal Narumi-Katayama index, maximal second multiplicative Zagreb index
and maximal multiplicative sum Zagreb index must be a complete k-partite graph
Kn1,n2,··· ,nk

.

By Lemma 3.1, we claim that the maximal values of NK(G),
∏

2(G) and
∏∗

1(G),
respectively, are attained for G ∼= Tn(k).

Conversely, one can see easily that the first equality holds in (1) or (2), or (3)
when G ∼= Tn(k). Recalling that n = kbn

k
c + r = (k − r)bn

k
c + rdn

k
e, the values of

NK(Tn(k)),
∏

2(Tn(k)) and
∏∗

1(Tn(k)) can be easily obtained by Lemma 2.8.
This finishes the proof of this lemma. ¤
Next we turn to determine the minimal values of Narumi-Katayama index,

second multiplicative Zagreb index and multiplicative sum Zagreb index of graphs
from G(n, k).

Theorem 3.2. Let G be a graph in G(n, 2) with n ≥ 5. Then we have

(1) NK(G) ≥ NK(Sn) with equality holding if and only if G ∼= Sn;
(2)

∏
2(G) ≥ ∏

2(Pn) with equality holding if and only if G ∼= Pn;
(3)

∏∗
1(G) ≥ ∏∗

1(Pn) with equality holding if and only if G ∼= Pn.

Proof. From Lemma 2.2, we find that the graph from G(n, 2) with minimal Narumi-
Katayama index, minimal second multiplicative Zagreb index and minimal multi-
plicative sum Zagreb index, respectively, must be a tree. Therefore the three above
results in this theorem follow immediately from Lemma 2.6. ¤

Before characterizing the extremal graphs from G(n, 3) with minimal Narumi-
Katayama index, minimal second multiplicative Zagreb index and minimal multi-
plicative sum Zagreb index, we first prove the following lemma.

Lemma 3.2. Let n ≥ 4 and G be a graph from G(n, 3) with minimal Narumi-
Katayama index, or minimal second multiplicative Zagreb index or minimal multi-
plicative sum Zagreb index. Then G must be a unicyclic graph with its girth being
odd.

Proof. From the definition of set G(n, 3), we have χ(G) = 3 for any graph G ∈
G(n, 3). So there is at least one cycle in any G ∈ G(n, 3). From Lemma 2.2, we
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conclude that extremal graph G ∈ G(n, 3) with minimal Narumi-Katayama index,
or minimal second multiplicative Zagreb index or minimal multiplicative sum Zagreb
index must be a unicyclic graph. Thus this lemma follows immediately by the fact
that a uncyclic graph with its girth being even is a bipartite graph. ¤

Theorem 3.3. Let G be a graph in G(n, 3) with n ≥ 5. Then we have NK(C3
n) ≤

NK(G) with equality holding if and only if G ∼= C3
n.

Proof. From Lemma 3.2, we claim that the graph from G(n, 3) with minimal Narumi-
Katayama index must be a unicyclic graph with an odd girth. It follows from Lemma
2.7 that the connected uncyclic graph of order n with minimal Narumi-Katayama
index is C3

n with girth 3, which finishes the proof of this theorem. ¤
To characterize the graph from G(n, 3) with minimal second multiplicative Zagreb

index or minimal multiplicative sum Zagreb index, we need to introduce some defini-
tions. We denote by Ck((n−k)1) the graph obtained by attaching to one vertex of Ck

a pendent path of length n− k. Let G0(n, 3) = {Ck((n− k)1) : k is odd}. Obviously,
G0(n, 3) is a subset of G(n, 3). A unicyclic graph G is said to be a sun graph ([18])
if cycle vertices have degrees at most three and remaining vertices have degrees at
most two.

Theorem 3.4. Let G be a graph in G(n, 3) with n ≥ 5 being odd. Then we have

(1)
∏

2(G) ≥ ∏
2(Cn) with equality holding if and only if G ∼= Cn;

(2)
∏∗

1(G) ≥ ∏∗
1(Cn) with equality holding if and only if G ∼= Cn.

Proof. By Lemma 3.2, we find that the graph from G(n, 3) with n ≥ 5 being odd
must be an uncyclic graph. Considering Lemma 2.7 (2) and (3), the uncyclic graph of
order n (n ≥ 5 is odd) with minimal second multiplicative Zagreb index or minimal
multiplicative sum Zagreb index is Cn, and χ(Cn) = 3 when n is odd. Thus this
theorem follows immediately. ¤

Theorem 3.5. Let G be a graph in G(n, 3) with n ≥ 4 being even. Then we have

(1)
∏

2(G) ≥ 9 × 4n−2 with equality holding if and only if G is isomorphic to any
graph from G0(n, 3);

(2)
∏∗

1(G) ≥ 3× 53× 4n−4 with equality holding if and only if G is isomorphic to any
graph from G0(n, 3) \ {Cn−1(1

1)}.
Proof. (1) Assume that G0 is the graph from G(n, 3), with n ≥ 4 being even, having
the minimal second multiplicative Zagreb index. By Lemmas 3.2 and 2.7, we claim
that G0 must be a unicyclic graph different from Cn.

In view of Remark 2.2, any unicyclic graph can be changed into a sun graph with
a smaller second multiplicative Zagreb index. So we deduce that G0 must be a sun
graph. By running Transformation A, considering Lemma 2.6, any sun graph can be
changed into a graph in G0(n, 3) with a smaller second multiplicative Zagreb index.
Thus we claim that G0 must be in the set G0(n, 3). From the definition of second
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multiplicative Zagreb index, we get
∏

2(H) = 9 × 4n−2 for any graph H ∈ G0(n, 3).
Therefore the result in (1) holds.

(2) Assume that G′
0 is the graph from G(n, 3), with n ≥ 4 being even, having the

minimal multiplicative sum Zagreb index. By a very similar reasoning as above, we
can find that G′

0 belongs to the set G0(n, 3). From the definition of multiplicative
sum Zagreb index, we have∏∗

1(Cn−1(1
1)) = 524n−2,∏∗

1(H) = 3× 534n−4 for any graph H from G0(n, 3) \ {Cn−1(1
1)}, and∏∗

1(Cn−1(1
1))−∏∗

1(H) = 524n−2 − 3× 534n−4 = 25× 4n−4 > 0.
Then the result in (2) follows immediately. ¤

Unfortunately, by now we do not know the extremal graph from G(n, k) with
3 < k < n having minimal Narumi-Katayama index, minimal second multiplicative
Zagreb index and minimal multiplicative sum Zagreb index, respectively. Maybe it
will be an interesting topic for the further research in the future.
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