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EXTREMELY IRREGULAR GRAPHS

M. TAVAKOLI1, F. RAHBARNIA1, M. MIRZAVAZIRI1, A. R. ASHRAFI2, AND I. GUTMAN3

Abstract. The irregularity of a graph G is defined as irr(G) =
∑

|d(x) − d(y)|
where d(x) is the degree of vertex x and the summation embraces all pairs of adjacent
vertices of G. We characterize the graphs minimum and maximum values of irr.

1. Introduction

In this paper we are concerned with simple graphs, namely graphs without directed,
multiple, or weighted edges, and without loops. Let G be such a graph with vertex
set V (G) and edge set E(G). An edge of G, connecting the vertices u and v will be
denoted by uv. The degree of a vertex v of the graph G will be denoted by d(v) or,
when misunderstanding is possible, by d(v|G).

As well known, a graph whose all vertices have mutually equal degrees is said to be
regular. Then, a graph in which not all vertices have equal degrees can be viewed as
somehow deviating from regularity. In the mathematical literature several measures
of such irregularity were proposed [3] [9] [8] [4] [5] [6]. One of these was put forward
by Albertson [2], who considered the quantity

(1.1) irr(G) =
∑

uv∈E(G)

|d(u)− d(v)| .

The graph invariant irr(G) was sometimes referred to as the Albertson index [9]
or the third Zagreb index [7]. In this work, we use the terminology accepted by the
majority of contemporary researchers [8] [10] [1] [11], according to which irr(G) is
the irregularity of the graph G.
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2. Graphs with smallest irregularity

From the definition (1.1) it is evident that the irregularity of a (simple) graph is a
positive integer or zero. It can be easily shown [2] that irr must be an even integer.

Evidently, irr(G) = 0 if every component of the graph G is regular. Thus G itself
needs not be regular. If G is connected, then irr(G) = 0 holds if and only if G is a
regular graph.

The next-smallest possible value of irregularity is 2. If irr(G) = 2, then the irregu-
larity of one component of G must be equal to 2, and all other components of G must
be regular graphs. Therefore, in the following examples we may restrict the consid-
erations to connected graphs. All graphs mentioned in these examples are assumed
to have disjoint vertex sets.

Example 2.1. For n ≥ 3, the path graph Pn is the only tree of order n with irregularity
2 [8].

Example 2.2. Let R3 be a regular graph of degree 3, and let e be its arbitrary edge.
Insert a vertex x of degree two on e. The graph thus obtained has irregularity 2.

Example 2.3. In fact, arbitrarily many vertices of degree two may be inserted on the
edge e of R3 .

Example 2.4. Connect the vertex x, specified in Example 2.2, with a vertex of the
cycle Ck , k ≥ 3. The graph thus obtained has irregularity 2.

Example 2.5. Let R4 be a regular graph of degree 4, and let f be its arbitrary edge.
Insert a vertex y of degree two on f . Let R3 be a regular graph of degree 3, and let
e be its arbitrary edge. Insert a vertex x of degree two on e. Connect the vertices x
and y by a new edge. The graph thus obtained has irregularity 2.

Example 2.6. Example 2.5 can be generalized. Let Rk be a regular graph of degree
k , k ≥ 5, and let f be its arbitrary edge. Insert a vertex y of degree two on f . For
i = 1, 2, . . . , k − 3, let R3,i be regular graphs of degree 3. Let ei be an arbitrary edge
of R3,i . Insert a vertex xi of degree two on ei. Connect the vertex y with the vertices
x1, x2, . . . , xk−3 by k − 3 new edges. The graph thus obtained has irregularity 2.

It would be interesting to see if other examples of graphs with irregularity 2 could
be constructed.

3. Graphs with greatest irregularity

The problem of characterizing graphs with greatest irregularity was studied already
by Albertson [2]. He was able to demonstrate that for graphs of order n vertices, 4

27
n3

is an asymptotically tight upper bound for irr. Recently [1] this bound was improved.
In what follows we arrive at an equivalent result, using a reasoning different from that
in [1].
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Denote by Υn,m the set of all graphs with n vertices and m edges. Let Hn,m ∈ Υn,m

be a graph containing at least one vertex of degree n − 1, but Hn,m 6∼= Kn . In
addition, if S ⊂ V (Hn,m) denotes the set of vertices of degree n− 1, then Hn,m−S is
either trivial or is a forest with at most one component that is a star, with all other
components being trivial.

Theorem 3.1. If G ∈ Υn,m , then irr(G) ≤ irr(Hn,m) .

Proof. We first prove that if G is a graph with maximum irregularity among connected
graphs with n vertices, then it has at least one vertex of degree n − 1. To do this,
assume that G has no vertex of degree n− 1. Suppose that u is the vertex of G with
the maximum degree and that the vertex v is not adjacent to it. It is clear that if H
is obtained from G by adding the edge uv, then irr(H) ≥ irr(G), as desired.

Next, suppose that S is the set of vertices of degree n− 1 in G and |S| = ξ. Then

(3.1) irr(G) = (n− ξ − 1)(n− ξ)ξ − 2 |E(G− S)|+ irr(G− S) .

So, if the irregularity of G− S is maximum, then the irregularity of G is maximum.
We notice that for a given degree sequence d1, d2, . . . , dn, the irregularity is maximum
if each vertex with greater degree is adjacent to a vertex with smaller degree.

Suppose that y1, . . . , yt are vertices of G − S such that 0 < d(y1|G − S) ≤ . . . ≤
d(yt|G− S). Thus y1, . . . , ydt are adjacent to yt so that dt = d(yt|G− S). Let yk be
not adjacent to yt , but be is adjacent to yi , 1 ≤ i ≤ dt and dt < k < t. So, if H is
obtained from G− S by adding an edge ykyt and deleting the edge yiyk, then

irr(H) ≥ irr(G− S) + 2
[

d(yt|G− S)− d(yk|G− S)
]

+ 1 > irr(G− S) .

Suppose that the vertex yk , dt < k < t, is not in the same component as yt and it
has the maximum degree in its component. In addition, suppose that yi and yj are
vertices such that yiyj ∈ E(G − S) and 1 ≤ i < j ≤ dt . So, if H is obtained from
G− S by adding an edge ykyt and deleting the edge yiyj, then

(3.2) irr(H) ≥ irr(G− S) + 2
[

d(yt|G− S)− d(yj|G− S)
]

+ 1 > irr(G− S) .

Finally, suppose that the vertex yk , dt < k < t, is not in the same component as
yt and it has the maximum degree in its component, and that yi and yj are vertices in
the same component as yk such that yiyj ∈ E(G− S) , dt < i < j < t and i 6= k 6= j.
Then if H is obtained from G−S by adding an edge ykyt and deleting the edge yiyj,
then relations (3.2) also hold.

In order to complete the proof, it is enough to notice that irr(Sp) + irr(Sq) ≤
irr(Sp+q) , where Sn denotes the star of order n. �

Let G1 and G2 be graphs with disjoint vertex sets. By G1+G2 we denote the graph
obtained from G1 and G2 by connecting all vertices of G1 with all vertices of G2 .

The complement of a graph G is denoted by G.
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Define Tp,q = Kp +Kq . It is not difficult to see that:

irr(T⌊n/3⌋,n−⌊n/3⌋) =
⌊n

3

⌋ (

n−
⌊n

3

⌋)(

n−
⌊n

3

⌋

− 1
)

.

We claim that T⌊n/3⌋,n−⌊n/3⌋ is the graph with maximal irregularity among the
connected graphs with n vertices, a result that independently was obtained by Abdo,
Cohen and Dimitrov [1].

Theorem 3.2. Let G be a graph with n vertices. Then

irr(G) ≤
⌊n

3

⌋(

n−
⌊n

3

⌋)(

n−
⌊n

3

⌋

− 1
)

.

Proof. As before, let ξ be the number of vertices of degree n− 1. Then by Eq. (3.1)
in Theorem 3.1, the maximum value of the function f(ξ) = (n − ξ − 1)(n − ξ)ξ is
equal to the maximum of the irregularity, implying the result. �

Corollary 3.1. [2] Let G be a graph with n vertices. Then for sufficiently large n,

irr(G) ≤
4

27
n3

i. e.,

lim
n→∞

max
{

irr(G)
}

=
4

27
n3 .
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