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NOTE ON STRONG PRODUCT OF GRAPHS
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Dedicated to the memory of the late professor Ante Graovac

Abstract. Let G and H be graphs. The strong product G⊠H of graphs G and
H is the graph with vertex set V (G) × V (H) and u = (u1, v1) is adjacent with
v = (u2, v2) whenever (v1 = v2 and u1 is adjacent with u2) or (u1 = u2 and v1 is
adjacent with v2) or (u1 is adjacent with u2 and v1 is adjacent with v2). In this
paper, we study some properties of this operation. Also, we obtain lower and upper
bounds for Wiener and hyper-Wiener indices of Strong product of graphs.

1. Introduction

Throughout this paper graphs means simple connected graphs. Suppose G is a
graph with vertex set V (G). The distance between the vertices u and v of V (G) is
defined as the length of a minimal path connecting them, denoted by d(u, v). The
Wiener index, W (G), is equal to the count of all shortest distances in a graph [20].
In other words, W (G) = 1

2

∑

u∈V (G)

∑

v∈V (G) d(u, v). We encourage to the interested

reader to consult [6][7][9][10][16] for more information on this topic.
The hyper-Wiener index of acyclic graphs was introduced by Milan Randić in

1993. Then Klein et al. [17], generalized Randić’s definition for all connected graphs,
as a generalization of the Wiener index. It is defined as WW (G) = 1

2
W (G) +

1
2

∑

{u,v}⊆V (G) d
2(u, v). The mathematical properties and chemical meaning of this

topological index are reported in [4][5][11][15][24].
The degree of a vertex v in a graph G, degG(v), is the number of edges of G

incident with v. The eccentricity εG(u) is defined as the largest distance between u

and other vertices of G. The eccentric connectivity index of a graph G is defined as
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ξc(G) =
∑

u∈V (G) deg(u)ε(u) [19]. The investigation of the mathematical properties of

ξc(G) started only recently, and has so far resulted in determining the extremal values
of the invariant and the extremal graphs where those values are achieved [13][22][23],
and also in a number of explicit formulae for the eccentric connectivity index of several
classes of graphs [1].

The Strong product G ⊠ H of graphs G and H has the vertex set V (G ⊠ H) =
V (G)×V (H) and (a, x)(b, y) is an edge ofG⊠H if a = b and xy ∈ E(H), or ab ∈ E(G)
and x = y, or ab ∈ E(G) and xy ∈ E(H). Occasionally one also encounters the
names strong direct product or symmetric composition for the strong product [12].
It is worthy to mention here that [8] and [21] are the first two papers that considered
the problem of distribution of a topological index over a graph operation.

Throughout this paper our notation is standard and taken mainly from [2] and [3].

2. Main results

For a connected graph G, the radius r(G) and diameter D(G) are, respectively, the
minimum and maximum eccentricity among vertices of G.

Lemma 2.1. Let G and H be graphs. Then for every vertex (a, x) of G⊠H, we have

εG⊠H((a, x)) = max{εG(a), εH(x)}.

Proof. Let (a, x) ∈ V (G⊠H). By definition of the eccentricity,

εG⊠H((a, x)) = max{dG⊠H((a, x), (b, y)) | (b, y) ∈ V (G⊠H)}.

On the other hand, it is well-known that dG⊠H((a, x), (b, y)) = max{dG(a, b), dH(x, y)}
[12], and so

εG⊠H((a, x)) = max{max{dG(a, b)}, max{dH(x, y)} | b ∈ V (G), y ∈ V (H)}

= max{εG(a), εH(x)},

which completes the proof. �

A vertex is called odd vertex if it has odd degree.

Theorem 2.1. Let G and H be a nontrivial connected graphs. Then G⊠H is eulerian

if and only if G and H are eulerian.

Proof. Let G and H are eulerian then clearly G ⊠ H is eulerian. Conversely, we
assume that G ⊠ H is eulerian. Suppose first that one of graphs G and H is not
eulerian. Without loss of generality, we may assume that G is not eulerian. Thus,
G has an odd vertex u. Let x is a vertex of H . Then, degG⊠H((u, x)) is odd. We
conclude that G⊠H is not eulerian if one of graphs G and H is not eulerian.

Assume next that G and H are not eulerian. Then G and H have odd vertices u

and x, respectively. Therefore, the vertex (u, x) of G⊠H has odd degree and hence
G⊠H is not eulerian in this case, which completes the argument. �



NOTE ON STRONG PRODUCT OF GRAPHS 189

The complement or inverse of a graph G is a graph Ḡ on the same vertices such
that two vertices of Ḡ are adjacent if and only if they are not adjacent in G. We
denote the complete graph of order n by Kn.

Theorem 2.2. Let G and H be nontrivial connected graphs. Then

W (G⊠H) > (|V (G)|+ 2|E(G)|)W (H) + (|V (H)|+ 2|E(H)|)W (G)

+ |V (G)||V (H)|(|V (G)||V (H)| − |V (G)| − |V (H)|+ 1)

− 2|E(G)||V (H)|(|V (H)| − 1)− 2|E(H)|(|V (G)|2 − |V (G)| − |E(G)|)

with equality if and only if max{D(G), D(H)} 6 2, or G ∼= Kn, or H ∼= Kn.

Proof. Let G and H are nontrivial connected graphs. Suppose A is the set of vertex-
pairs (a, x), (a, y) that a ∈ V (G), x 6= y and x, y ∈ V (H). Then,

(2.1)
∑

(u,v)∈A

dG⊠H(u, v) = |V (G)|W (H).

Similarly, for vertex-pairs (a, x), (b, x) that x ∈ V (H), a 6= b and a, b ∈ V (G), we
have

(2.2)
∑

{(a,x),(b,x)}

dG⊠H((a, x), (b, x)) = |V (H)|W (G).

On the other hand, the sum of all distances between vertex-pairs (a, x), (b, y) that
(a 6= b ∈ V (G) and xy ∈ E(H)) or (x 6= y ∈ V (H) and ab ∈ E(G)), is equal to

(2.3) 2|E(G)|W (H) + 2|E(H)|W (G)− 2|E(G)||E(H)|

By this fact that for every vertex-pair (a, x), (b, y) of G⊠H such that ab ∈ E(Ḡ)
and xy ∈ E(H̄), we have dG⊠H((a, x), (b, y)) > 2, Equations (2.1), (2.2) and (2.3),
the result is proved. �

Using similar arguments as Theorem 2.2 one can prove the following result.

Theorem 2.3. Let G and H be nontrivial connected graphs. Then

W (G⊠H) 6 (|V (G)|+ 2|E(G)|)W (H) + (|V (H)|+ 2|E(H)|)W (G)

+D
[ |V (G)||V (H)|

2
(|V (G)||V (H)| − |V (G)| − |V (H)|+ 1)

− 2|E(H)|

(

|V (G)|

2

)

− 2|E(G)|

(

|V (H)|

2

)

]

+ 2|E(G)||E(H)|(D− 1).

where D = max{D(G), D(H)}. Moreover, the upper bound is attained if and only if

D 6 2, or G ∼= Kn, or H ∼= Kn.
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Theorem 2.4. Let G and H be a nontrivial connected graphs. Then

WW (G⊠H) > (|V (G)|+ 2|E(G)|)WW (H) + (|V (H)|+ 2|E(H)|)WW (G)

+
3

2
|V (G)||V (H)|(|V (G)||V (H)| − |V (G)| − |V (H)|+ 1)

− 3|E(G)||V (H)|(|V (H)| − 1)− 3|E(H)|(|V (G)|2 − |V (G)|

−
4

3
|E(G)|).

with equality if and only if max{D(G), D(H)} 6 2, or G ∼= Kn, or H ∼= Kn.

Proof. We split the vertex-pair set of G⊠H into subsets

A = {{(a, x), (b, y)} | a = b ∈ V (G) and x 6= y, x, y ∈ V (H)},

B = {{(a, x), (b, y)} | a 6= b, a, b ∈ V (G) and x = y ∈ V (H)},

C = {{(a, x), (b, y)} | x 6= y, x, y ∈ V (H) and ab ∈ E(G)},

D = {{(a, x), (b, y)} | a 6= b, a, b ∈ V (G) and xy ∈ E(H)},

E = {{(a, x), (b, y)} | ab ∈ E(Ḡ) and xy ∈ E(H̄)}.

It follows from the edge structure of G⊠H that, if {(a, x), (b, y)} ∈ A ∪ C then

dG⊠H((a, x), (b, y)) + d2G⊠H((a, x), (b, y)) = dH(x, y) + d2H(x, y),

if {(a, x), (b, y)} ∈ B ∪D then

dG⊠H((a, x), (b, y)) + d2G⊠H((a, x), (b, y)) = dG(a, b) + d2G(a, b),

and if {(a, x), (b, y)} ∈ E then

dG⊠H((a, x), (b, y)) + d2G⊠H((a, x), (b, y)) > 6.

Therefore,

WW (G⊠H) =
1

2

∑

{u,v}∈A∪D

(dG⊠H(u, v) + d2G⊠H(u, v))

+
1

2

∑

{u,v}∈B∪C

(dG⊠H(u, v) + d2G⊠H(u, v))

+
1

2

∑

{u,v}∈E

(dG⊠H(u, v) + d2G⊠H(u, v))

= (|V (G)|+ 2|E(G)|)WW (H)

+ (|V (H)|+ 2|E(H)|)WW (G)− 2|E(G)||E(H)|

+
∑

ab∈E(Ḡ)

∑

xy∈E(H̄)

(dG⊠H((a, x), (b, y)) + d2G⊠H((a, x), (b, y))).
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On the other hand,
∑

ab∈E(Ḡ)

∑

xy∈E(H̄)

(dG⊠H((a, x), (b, y)) + d2G⊠H((a, x), (b, y)))

>
3

2
|V (G)||V (H)|(|V (G)||V (H)| − |V (G)| − |V (H)|+ 1)

− 3|E(G)||V (H)|(|V (H)| − 1)− 3|E(H)||V (G)|(|V (G)| − 1)

+ 6|E(G)||E(H)|,

which completes the proof. �

Theorem 2.5. Let G and H be nontrivial connected graphs. Then

WW (G⊠H) 6 (|V (G)|+ 2|E(G)|)WW (H) + (|V (H)|+ 2|E(H)|)WW (G)

+
1

2
D(D + 1)

[ |V (G)||V (H)|

2
(|V (G)||V (H)| − |V (G)| − |V (H)|+ 1)

− 2|E(H)|

(

|V (G)|

2

)

− 2|E(G)|

(

|V (H)|

2

)

]

+ |E(G)||E(H)|(D2 +D − 2),

where D = max{D(G), D(H)}. Moreover, the upper bound is attained if and only if

D 6 2, or G ∼= Kn, or H ∼= Kn.

Proof. Using a similar argument as in Theorem 2.4, and the fact that for every ab ∈
E(Ḡ) and xy ∈ E(H̄), dG⊠H((a, x), (b, y)) 6 D, we obtain the result. �

The first Zagreb index of a graph G is defined as M1(G) =
∑

v∈V (G) deg
2(v) and

the second Zagreb of G is given by M2(G) =
∑

uv∈E(G) deg(u)deg(v), see [18][14] for
details.

Theorem 2.6. For every graph G and H, we have

M1(G⊠H) = (|V (H)|+ 4|E(H)|)M1(G) + (|V (G)|+ 4|E(G)|)M1(H)

+M1(G)M1(H) + 8|E(G)||E(H)|.

Proof. It follows from the edge structure of G ⊠ H that, for each vertex (a, x) ∈
E(G⊠H), we have

degG⊠H((a, x)) = degG(a) + degH(x) + degG(a)degH(x),

as desired. �

Theorem 2.7. For every graph G and H, we have

M2(G⊠H) = 3|E(H)|M1(G) + 3|E(G)|M1(H)

+ 3M1(G)M1(H) + 2M2(G)M2(H)

+ (6|E(H)|+ 3M1(H) + |V (H)|)M2(G)

+ (6|E(G)|+ 3M1(G) + |V (G)|)M2(H).
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Proof. Consider the following partition of E(G⊠H)

A = {(a, x)(b, y) ∈ E(G⊠H) | ab ∈ E(G) and xy ∈ E(H)},

B = {(a, x)(b, y) ∈ E(G⊠H) | a = b ∈ V (G) and xy ∈ E(H)},

C = {(a, x)(b, y) ∈ E(G⊠H) | ab ∈ E(G) and x = y ∈ V (H)}.

The sum of degG⊠H(u)degG⊠H(v) over all edges of A, is equal to

(2.4) 2(|E(H)|+M1(H)+M2(H))M2(G)+2(|E(G)|+M1(G))M2(H)+M1(G)M1(H).

On the other hand, the summation of degG⊠H(u)degG⊠H(v) over all edges of B, is
equal to

(2.5) |E(H)|M1(G)+(2|E(G)|+M1(G))M1(H)+(|V (G)|+4|E(G)|+M1(G))M2(H),

and finally, summing degG⊠H(u)degG⊠H(v) over all edges of C we arrive at

|E(G)|M1(H) + (2|E(H)|+M1(H))M1(G) + (|V (H)|+ 4|E(H)|

+M1(H))M2(G).(2.6)

Now, by summation of (2.4), (2.5) and (2.6), the result can be proved. �

A connected graph is called a self-centered graph if all of its vertices have the same
eccentricity [3]. Then a connected graph G is self-centered if and only if r(G) = D(G).

Theorem 2.8. Let G and H be self-centered graphs that D(H) 6 D(G). Then

ξ(G⊠H) = 2r(G)(|E(G)||V (H)|+ |E(H)||V (G)|+ 2|E(G)||E(H)|).

Proof. The result follows from Lemma 2.1 and the fact that

|E(G⊠H)| = |E(G)||V (H)|+ |E(H)||V (G)|+ 2|E(G)||E(H)|.

�
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