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GEOMETRY OF SUBMANIFOLDS

I. THE FIRST CASORATI CURVATURE INDICATRICES

LEOPOLD VERSTRAELEN

Dedicated to the Distinguished MSU Professor Bang–Yen Chen, in gratitude for his guidance and
friendship for almost 40 years now, at the occasion of his 70th anniversary

1. From the Introduction to Vincensini’s history of differential geometry [1] comes
the following quote: “... Quant à la notion même de l’intérêt que peut offrir un thème
scientifique, lorsqu’on n’en perçoit pas les rapports, immédiats ou lointains, avec les
réalités inhérents au monde concret dans lequel nous vivons, elle est elle aussi, dans
une large mesure, affaire de foi, et souvent de convention. Il en est ainsi parti-
culièrement en géométrie, òu, plus peut–être que dans les autres branches de la
Science, l’intérêt d’un sujet déterminé est susceptible d’affecter des formes trés di-
verses. Indépendamment des qualités intrinsiques du sujet, considéré dans ses rela-
tions avec l’ensemble de l’édifice mathématique, des facteurs tenant plus specialement
à la nature de l’esprit humain ou à la sensibilité même de l’âme humaine, peuvent
intervenir dans son appréciation. Et il n’est pas jusqú à la simple mode, qui ne puisse
influencer la marche de la pensée géométrique, et le jugement que l’on peut être amené
à porter sur la valeur de son évolution. Cette évolution est d’ailleurs intimement liée
au courant de conscience qui, depuis le fond des âges, anime l’humanité.
Depuis les temps les plus reculés en effet, par instinct de conservation d’abord, puis
pour améliorer progressivement leurs conditions de vie, les hommes se sont trouvés
dans la nécessité d’inventer et de construire des instruments de plus en plus per-
fectionnés, de procéder à des comparaisons quantitatives ou qualitatives mettant en
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jeu les notions de nombre ou d’étendue, de s’organiser en groupes ayant certaines
préoccupations communes, bref, de se livrer aux différentes opérations qui constituent
l’essense même de la science mathématique. La part prise par les différents aspects
de la pensée mathématique dans l’évolution du courant de conscience auquel il vient
d’être fait allusion a naturellement varié, non seulement avec le temps, mais aussi
avec les influences que chaque époque, avec ses besoins propres et les exigeances
particulières, spirituelles et matérielles, naturelles ou fortuites, a exercées sur cette
même pensée. Mais il semble bien qu’ aucune doctrine mathématique n’ait été plus
intimement liée que la géométrie à cette évolution.
La géométrie représente incontestablement l’une des expressions les plus parfaites
de ce besoin de spéculation qui est le propre et la raison d’être de l’esprit humain,
et c’est à cette forme particulière de la pensée mathématique, et plus spécialement
à la géométrie différentielle qui en est à la fois la quintescence et le remarquable
aboutissement, qu’est consacrée l’étude qui va suivre.”.

The above may well be juxtaposed to some parts of the contents of the Foreword to
Bang–Yen Chen’s newest book on the geometry of submanifolds [2], in which the author
a.o. states that: “..., at least in my opinion, for specimens of the human kind, ‘nature’
essentially stands for their organised thoughts about their sensations and perceptions
of ‘their worlds outside and inside’ and ‘doing mathematics’ basically stands for their
thoughtful living in ‘the universe’ of their idealisations and abstractions of these
sensations and perceptions. “The history of mathematics is the kernel of the history
of the human culture, the skeleton of which supports and keeps together all the rest
of the sciences”, (Georges Sarton).”.

And by his concrete and subtle psychology as experimentator, Claude Bernard came
to the conclusion which was so compactly formulated by Bergson as follows: “(Real
-added by L.V.-) scientific research is a dialogue between nature and our mind”, cfr.
[3].

In this series of papers, we will present some geometrical properties and formula’s
concerning what we propose to be called the Trenčevski frame on submanifolds with
arbitrary dimensions and of arbitrary co–dimensions in (semi–) Riemannian ambient
spaces, cfr. [4, 5, 6, 7]. In the present part, attention will be confined to nD subman-
ifolds Mn of co–dimension m in Euclidean spaces En+m, (only for reasons of simplic-
ity of the statements at this stage concerning some of the notions involved). The
Trečevski frames may well be the adapted frames on general submanifolds of which
the geometrical characterisations of the tangent and normal orthonormal vectors are
as natural as possible, being essentially involved with our kind’s most intuitive no-
tions of curvature. Hereafter, as such, only the tangent and the first principal normal
vector fields will be discussed, the hereby involved curvatures being the tangential
and the first normal Casorati curvatures, which, in case of surfaces M2 in E3 are
nothing but the squares of the Euler normal or principal curvatures and Casorati’s
“most common sense” curvature, respectively. Thus the present paper could be seen
as a kind of explicitation of the last statement of Section 10 of ARIGATEN [8].
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Here is one more citation of Bergson, taken from the Introduction to Tome 1 of
the Encyclopédie française [3]: “ L’humanité ne comprend bien le nouveau que s’il
prend la place de l’ancien.”. And, in this sense, the interested readers may find much
further interest when reading further a. o. in some of the references which are listed,
in a sometimes more or less liberal way, in Section 10, like e.g. in [ω].

2. For curves Γ = M1 in a Euclidean plane E2, basing on the geometrical idea’s of
Kepler and Descartes concerning osculating circles and of Huygens on focal points, in
full generality, Newton analytically determined their curvature κ. Later, Euler gave
the interpretation of κ as the rate of change of the tangent directions of Euclidean pla-
nar curves Γ with respect to an arclength parameter s, κ = dθ/ds = lim∆s→0(∆θ/∆s);
(cfr. Figure 1). Essentially this corresponds to the Frenet formula’s T ′ = κN and
N ′ = −κT of Γ = M1 in E2, whereby {T,N} is the Frenet frame along Γ in E2,
i. e. T is the unit tangent vector field which heads in the direction of increasing
arclength and N is the unit normal vector field such that the orientation of {T,N}
is the standard “counter–clockwise” positive orientation in the plane; (cfr. Figure 2).
The sign “plus” or “minus” of the curvature κ indicates the direction of the curving
of the curve Γ, or, equivalently, of the turning of its tangent T, towards (= “plus”)
or away from (=“minus”) its normal N. Hence, κ2 = (dθ/ds)2 may be considered
as the quantity which, in accordance with our intuition, most readily measures the
amount of curvature as such of a Euclidean planar curve Γ, rather than the more
sophisticated measure κ which, besides giving an equally accurate measure of the
amount of curvature itself of Γ in E2, by its absolute value, in addition, gives the
supplementary information of the direction of turning in which the curve actually
realises this curving, by its sign.

3. For curves Γ = M1 in a 3D Euclidean space E3, the Frenet frame {T,N,B} along Γ
in E3 consists of the unit tangent vector field T and the (first) principal normal vector
field N and the binormal vector field or the second principal normal vector field B,
and the corresponding Frenet formula’s are given by T ′ = κN, N ′ = −κT + τ B and
B′ = −τ N ; these notions and formula’s first came up in the works of Pagani, Bartels–
Senff, Frenet and Serret (cfr. [9][10]). Space curves originally were called “curves with
two curvatures” since, formulated more or less as follows by Clairaut, “in the way that
such curves are considered, they in some sense always result from the curvatures of
two curves”. In this context, following the works of Dürer which were at the origin of
Monge’s descriptive geometry, in particular, one might think of a pair of such curves
that Clairaut alluded to as being the projections of a space curve Γ, say, when working
“in” a rectangular Cartesian (x, y, z) co–ordinate system, onto the perpendicular xy–
and xz–planes, yielding there two Euclidean planar curves, say, Γxy and Γxz; (cfr.
Figure 3). And, along this line of thought, when focussing on the behaviour of a
space curve Γ around one of its points p, one might more specifically consider such
two curves as the planar curves Γ1 and Γ2 which are the projections of Γ onto two
arbitrary mutually orthogonal planes π1 = [T ∧ ξ1](p) and π2 = [T ∧ ξ2](p) through
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its tangent line at p, say, determined by an arbitrary orthonormal normal frame field
{ξ1, ξ2} on Γ in E3, or, in particular, as the projections ΓTN and ΓTB of Γ onto its
osculating and rectifying planes [T ∧ N ](p) and [T ∧ B](p) at p, respectively; (cfr.
Figures 4 and 5).

In Lancret’s mémoires on curves of double curvature, the meaning of “double curva-
ture” was turned into the current one at present, that is, he considered the curvature
κ (the first curvature) and the torsion τ (the second curvature) of space curves in
terms of the infinitesimal angles between “nearby” normal planes (or, tangent lines,
for that matter) and between “nearby” osculating planes, in accordance with which,
afterwards, Cauchy found the scalar valued expressions for κ and τ .

The formula of Gauss of the general theory of submanifolds when written out for the
special situation of curves Γ = M1 in E3 becomes ∇̃TT = T ′ = ∇TT+h(T, T ) = κN ,
whereby ∇̃ is the standard connection on E3, (that is the directional differentiation
on R3), ∇TT is the tangential component of T ′, (which vanishes since T has constant
lenght 1 and Γ is 1D), and h is the second fundamental form of Γ in E3, i.e. h(T, T )
is the normal component of T ′. So, in particular, the squared norm of the second
fundamental form is nothing but the squared curvature, κ2 = ‖h‖2; (this fact, of
course, also applies to the planar curves Γ in E2, i.e. for the curves Γ in E3 with
identically vanishing torsion). With respect to an arbitrary adapted orthonormal
moving frame {T, ξ1, ξ2} along Γ in E3, the generalised Frenet formula’s are given
by T ′ = ∇̃TT = a1ξ1 + a2ξ2, ξ

′
1 = ∇̃T ξ1 = −a1T + bξ2 and ξ′2 = ∇̃T ξ2 = −a2T − bξ1,

for some real valued functions a1, a2 and b. Consequently: κ2 = ‖h‖2 = ‖∇̃TT‖2 =
a2

1 + a2
2, which geometrically means that, at every point p of a curve Γ in E3, the

square of the curvature κ is given by the sum of the squares of the curvatures a1 and
a2 at this same point of the two Euclidean planar curves which are the projections of
Γ onto any pair of mutually orthogonal planes passing through the tangent line of Γ
at p; (in the particular case that ξ1 = N and ξ2 = B, of course, κ(p) = |a1(p)| and
a2(p) = 0).

4. The Frenet theory of curves Γ = M1 in arbitrary dimensional Euclidean spaces
E1+m, i.e. of Euclidean curves with arbitrary co–dimensions m ≥ 1, was established
by C. Jordan [11]. For the Frenet frame {T, η1, η2, . . . , ηm} whereby T is the (unit)
tangent vector field T = Γ′ = dΓ/ds, η1 is the (unit) first principal normal vector field,
η2 is the (unit) second principal normal vector field, or still the first binormal vector
field, η3 is the (unit) third principal normal vector field, etc., the Frenet formula’s are
given by T ′ = κ1η1, η

′
1 = −κ1T +κ2η2, η

′
2 = −κ2η2 +κ3η3, . . . , η

′
m−1 = −κm−1ηm−2 +

κmηm, η
′
m = −κmηm−1, whereby κ1, κ2, . . . , κm are the m curvatures of the curve Γ

in E1+m.

5. According to the Euler theory of surfaces M2 in E3, amongst all adapted orthonor-
mal frame fields {E1, E2, η} defined along M2 in E3, i.e. frames for which E1 and
E2 are tangent to M2 and, or, equivalently, for which η is normal to M2 in E3, likely,
those which are most adapted to such a surface in view of their geometrical specificity



GEOMETRY OF SUBMANIFOLDS 9

are the orthonormal frames {F1, F2, η} for which F1 and F2 at each point of M2 de-
termine the principal tangential directions of M2 in E3, i.e. the directions in which the
curvatures of the normal sections σ (that is, the curvatures of the Euclidean planar
curves σ in which locally M2 is cut by the various planes through its normal line at
the points under consideration) attain their extremal values, being the principal cur-
vatures k1 ≥ k2, or, still, the eigenvalues of their shape operator A, A(F1) = k1 F1 and
A(F2) = k2 F2; (the principal directions, determined by F1 and F2, remain unaltered
when changing the orientation of η, but under such a change the principal curvatures
switch their signs). Let p be any point on a surface M2 in E3, and put f1 = F1(p)
and f2 = F2(p), and let k1(p) ≥ k2(p) be the principal curvatures with respect to a
unit normal vector field η. Then, the formula of Euler expresses the normal curva-
ture k(u) of M2 in E3 at p in the tangent direction u = f1. cos θ + f2. sin θ, i.e. the
curvature of the Euclidean planar curve σ(u) in which M2 locally around p is cut by
the plane u ∧ η(p), that is, of the normal section of M2 in E3 at p in the direction
u, as k(u) = k(θ) = k1(p). cos2 θ + k2(p). sin2 θ, whereby θ = ](f1, u). The quadratic
Taylor–Maclaurin approximation of the surface M2 in E3 in the neighbourhood of a
point p is given by z(x, y) = (1/2).{k1(p).x2 + k2(p).y2}, whereby reference is made
to a Cartesian (x, y, z)–co–ordinate system which has its origin O at p, of which the
xy–plane is the tangent plane of M2 at p, the x–axis and the y–axis are choosen in the
principal directions f1 and f2, respectively, and the z–axis is pointing as determined
by η(p). The conic sections with equation k1(p).x2 + k2(p).y2 = ± 1 constitute the
indicatix of Dupin, on which in particular may be read off the normal curvatures k(u)
in all tangent directions u at p, (cfr. [12]).

Alternatively, as Euler curvature indicatrix of a surface M2 in E3 at any one of its
points, one could consider the intersection of the “vertical unit cylinder” x2 + y2 = 1
with the quadratic approximation of M2 in E3 at p, since in any tangential direction
u, or, still, in any tangent direction determined by an angle θ, the z–co–ordinate
or “positive, zero or negative height” of this curve, according to Euler’s formula,
equals (1/2).k(u); (cfr. Figure 6, which illustrates the case of an elliptic point p:
k1(p) > k2(p) > 0).

6. Almost in complete analogy with this study of the extremal values of the curvatures
of the Euclidean planar normal sections σ of surfaces M2 in E3 yielding the principal
curvatures k1 ≥ k2, and the directions in which these values are reached yielding
the principal tangential directions F1 and F2 of such surfaces, the critical values of
the curvatures of the Euclidean planar normal sections σ of hypersurfaces Mn of any
dimensions n ≥ 2 in a Euclidean space En+1 yield the principal curvatures k1 ≥ · · · ≥
kn and the mutually orthogonal directions in which these values are reached yield the
principal tangent directions F1, . . . , Fn of such hypersurfaces Mn in En+1, and the
above recalled classical results of Euler and Dupin for surfaces M2 in E3 essentially
remain the same for hypersurfaces Mn in En+1 with arbitrary dimensions n. Now, the
Euler curvature indicatrix at some point p of Mn is the intersection of the “vertical
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unit hypercylinder” x2
1 + · · · + x2

n = 1 with the hypersurface z = (1/2).{k1(p).x2
1 +

· · · + kn(p).x2
n} which is the quadratic Taylor–Maclaurin approximation of Mn in

En+1 at p, whereby reference is made to a rectangular Cartesion co–ordinate system
(x1, . . . , xn, z) which has its origin O at p, of which the nD hyperplane perpendicular
to the z–axis is the tangent hyperplane TpM

n in which the x1–axis, . . . , xn–axis are
choosen in the principal directions f1 = F1(p), . . . , fn = Fn(p) of Mn in En+1 at p.

7. In the modern approach to submanifold theory, say for submanifolds Mn in ambi-
ent Euclidean spaces En+m, (and, basically, likewise for submanifolds Mn in arbitrary
Riemannian manifolds M̃n+m as ambient spaces), one proceeds as follows [2, 13]. Tan-
gent vector fields being denoted by X, Y, . . . and normal vector fields being denoted
by ξ, η, . . . , the formula’s of Gauss and of Weingarten, ∇̃XY = ∇XY + h(X, Y ) and
∇̃Xξ = −Aξ(X) + ∇⊥Xξ, give the canonical decomposition of the Euclidean vector

fields ∇̃XY and ∇̃Xξ along Mn in En+m, whereby ∇̃ is the directional derivative
in the ambient space, into their tangential and normal components, hereby ∇ being
the Riemannian connection of the submanifold Mn, h being the normal vector val-
ued second fundamental form, Aξ being the shape operator or the Weingarten map of
the submanifold with respect to the normal vector field ξ and ∇⊥ being the normal
connection of Mn in En+m.

In case of hypersurfaces Mn in En+1, the principal curvatures k1, . . . , kn and the
tangential principal directions F1, . . . , Fn are the eigenvalues and eigendirections of
the only shape operator A = Aξ (working with unit normal vector fields ξ) that one ba-
sically (up to sign) has to deal with in this case, such that A(F1) = k1F1, . . . , A(Fn) =
knFn. However, in 1869, when Kronecker generalised the Euler–Dupin–Meusnier the-
ory from surfaces M2 in E3 to hypersurfaces Mn in En+1 of arbitrary dimensions
n ≥ 2 [14], this “step” from n = 2 to any dimension > 2 was pretty much more
involved. And, even much more so, was the extension of this theory to submanifolds
Mn in En+m with arbitrary dimensions n ≥ 2 and of arbitrary co–dimensions m ≥ 1.
Yet, no later than in 1874, C. Jordan did this “job” [15]. To begin with, in order to
develop his general Frenet theory for curves, Jordan already had defined a suitable
notion of the angle between two arbitrary dimensional affine subspaces of arbitrary
dimensional Euclidean spaces. Then, he considered for any submanifold Mn in En+m

the intuitively most natural curvature of such submanifold Mn at any of its points p in
any tangent direction u ∈ TpMn, ‖u‖ = 1, that is (dϕu/ds)

2(0), whereby ϕu ∈ [0, π/2]
is the angle between the tangential nD spaces at the point p and at a nearby point of the
submanifold, say p+dp, in the tangent direction u of Mn at p, s being an arclength pa-
rameter of a curve γ on Mn from p = γ(0) going in the direction u = γ′(0) to p+dp =
γ(s+ds), being determined by cos2 ϕu(ds) = (detM)2 whereby M is the n×n matrix
with general element Mij = vi1.w

j
1 + vi2.w

j
2 + · · · + vin.w

j
n, the vectors (vi1, v

i
2, . . . , v

i
n)

and (wj1, w
j
2, . . . , w

j
n) forming arbitrary orthonormal bases of TpM

n and of Tp+dpM
n,

respectively, (i, j ∈ {1, 2, . . . , n}), (by which definition, in particular, all eventually
possible confusions related to various choices of orientations are avoided; for further
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references in this respect, see e.g. [16]); cfr. Figure 7. And, he defined the critical val-
ues of the function Sn−1

p (1) = {u ∈ TpM | ‖u‖ = 1} → R : u 7→ c(u) = (dϕu/ds)
2(0)

as the principal curvatures c1(p) ≥ · · · ≥ cn(p) ≥ 0 of Mn in En+m at p, and the
tangential directions of Mn in En+m at p in which these values are reached as the
principal tangential directions of Mn in En+m at p, say determined by unit vectors
f1, . . . , fn ∈ TpM .

As the first step in his original general study of the theory of submanifolds of
arbitrary dimensions and co–dimensions, Kostadin Trenčevski re–obtained this same
result in the 19nineties, (cfr. [4][5][6][7]), and, in [16], basically yet again this same
result was re–obtained, now following the 1890 Casorati views on the most intuitive
scalar valued curvature of surfaces M2 in E3, i.e. now rather measuring (dψu/ds)

2(0)
whereby ψu is the angle between the normal mD spaces of the submanifold Mn in
En+m at p and at a nearby point p + dp on Mn in a direction u; cfr. Figure 8, (and
by the way, Jordan had also already proved that -in the above notations- ψu = ϕu).

Actually, as first shown by Trenčevski, these extrinsic principal tangential directions
f1, . . . , fn at a point p of a submanifold Mn in En+m and their corresponding principal
curvatures c1(p) ≥ · · · ≥ cn(p) essentially turn out to be the mutually orthogonal
eigendirections and the corresponding eigenvalues of the symmetric linear Casorati
operator AC =

∑
αA

2
α at p, (where we have put Aα = Aξα , {ξ1, . . . , ξm} being any

orthonormal normal local frame field on Mn in En+m, α ∈ {1, . . . , m}): AC(Fi) =
ci Fi, fi = Fi(p). In the particular case of hypersurfaces Mn in En+1, then having
AC = A2, it follows that the tangential Casorati principal curvatures ci and the
Euler principal curvatures ki are related by c1 = k2

1, . . . , cn = k2
n (possibly up to the

ordering of these curvatures, which could eventually change depending on the signs
of the Euler curvatures) and that the tangential Casorati principal directions and the
Euler principal directions are the same.

For submanifolds Mn of arbitrary dimensions n and co–dimensions m in En+m,
the tangential Casorati curvature c(u) = (dϕu/ds)

2(0) = (dψu/ds)
2(0) at any point

p of Mn and in any arbitrary direction u = f1. cos θ1 + · · · + fn. cos θn, θi = ](fi, u),
is given by a formula similar to Euler’s one in the case of the normal curvatures of
hypersurfaces, namely, c(u) = c1(p). cos2 θ1 + · · · + cn(p). cos2 θn. And, in analogy
with the above Euler indicatrix of (hyper)surfaces, the tangential Casorati indicatrix
CT of a submanifold Mn in En+m at a point p is defined as the intersection of the
quadratic hypersurface with equation z = c1(p).x2

1 + · · · + cn(p).x2
n, (an elliptical

paraboloid -when cn(p) > 0 - or a hypercylinder based on an elliptical paraboloid in
some Ek+1 in En+1 - 1 ≤ k < n being the number of strictly positive Casorati
curvatures ci(p)- or the hyperplane z = 0 -when all ci(p)’s are zero, i. e. when p
is a totally geodesic point on Mn in En+m-) with the “vertical unit hypercylinder”
with equation x2

1 + · · · + x2
n = 1, whereby reference is made to a rectangular co–

ordinate system (x1, . . . , xn, z) which has its origin O at p, of which the nD hyperplane
perpendicular to the z–axis is the nD tangent plane TpM

n in which the x1–axis,
. . . ,xn–axis are choosen in the tangential Casorati principal directions of Mn in En+m
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at p; in any tangential direction u =
∑

i fi. cos θi, the z–co–ordinate or height of this
intersection, according to the above formula, equals c(u), thus indicating “how much
or how little” the submanifold Mn in En+m is curved at p in the tangential direction
u in accordance with our common sense, (cfr. Figure 9).

The tangential Casorati principal directions of a submanifold Mn in En+m, or in
any ambient Riemannian space M̃n+m for that matter, from the extrinsic point of
view, likely are its most distinguished tangential directions, whereas, from the in-
trinsic point of view, i.e. when focusing on the Riemannian geometry of such a
submanifold, the Ricci principal directions, i.e. the eigendirections of its Ricci cur-
vature operator, likely are its most distinguished tangential directions. So, it cer-
tainly is of natural interest to consider which submanifolds Mn do assume the kind
of special shapes in their ambient spaces M̃n+m such that their corresponding ex-
trinsic Casorati principal directions actually do coincide with their intrinsically fixed
Ricci principal directions. Since by contraction of the Gauss equation for subman-
ifolds Mn in real space forms M̃n+m(c) of constant sectional curvature c it follows
that Ric(X, Y ) = (n − 1)c.g(X, Y ) + g(An ~H(X), Y ) − g(AC(X), Y ), obviously this

in particular is the case for all submanifolds Mn in M̃n+m(c) which are minimal or
pseudo–umbilical or have flat normal connection, and, for the non–minimal subman-
ifolds Mn in M̃n+m(c) for which this is the case, these common Casorati and Ricci
principal directions automatically also are the principal directions of the mean cur-
vature normal vector field ~H = (1/n).tr h = (1/n)

∑
α(tr Aα)ξα. Further, referring

to [17][18], and, in some sense not so surprisingly, Wintgen ideal submanifolds and
the first Chen ideal submanifolds, i. e. the δ(2)–ideal submanifolds, turn out to enjoy
this basic property of submanifolds to have coinciding Casorati and Ricci principal
directions.

8. Now follows a reminder of the contribution to the geometry of surfaces M2 in E3

that was made by Casorati around 1890, of which one basic ingredient was already
discussed in the previous section, but of which the main point, i. e. the geometrical
meaning itself of “the Casorati curvature as such of surfaces M2 in E3”, has uptill
now remained pretty much ignored, although this curvature already for quite some
time has been known to be of great importance in the geometry of submanifolds (cfr.
e.g. and a.o. [13][19]) and although this curvature more recently has been shown to
be of importance as well in the applications of geometry in the natural sciences and
in technology (cfr. e.g. [8][20][21]). Actually, the historical article of Vincensini is, as
far as I know, one of the rare texts which at least does mention this curvature, let it
be as follows: (after having motivated that meaningful single scalar valued curvature
quantities on a surface M2 in E3 basically should be expressions of the two principal
curvatures k1 and k2, Vincensini continues like this), “C’est ainsi qu’ont été succes-
sivement proposées les expressions: k1.k2, k1 + k2, k

2
1 + k2

2, la première desquelles,
due à Gauss et désignée sous le nom de courbure totale (...), s’est révélée comme
l’une des notions les plus importantes (...) de la géométrie différentielle. La deuxième
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expression a été introduite par Sophie Germain sous le nom de courbure moyenne.
(...), la courbure moyenne n’en est pas moins présidé au développements de théories
importantes. Telle par exemple la théorie des surfaces à courbure moyenne partout
nulle (ou surfaces minima). La troisième expression, k2

1 + k2
2, proposée par Casorati,

bien que susceptible d’intervenir ultimement dans l’étude de certains problèmes parti-
culiers, n’a pas réussi à prendre place dans la littérature mathématique.”. The cause
for the serious significance of this curvature in the geometry of submanifolds and in
the applications of this geometry, of course, at least in my opinion, completely lies in
the geometrical meaning of, in the words of Casorati, “la mesure de la courbure des
surfaces suivant l’idée commune”, which will next be recalled basing on [16] and [22].

To determine the Casorati curvature (as such) C(p) of a surface M2 in E3 at one
of its points p, first of all, consider a small geodesic circle γ∆ρ on M2 centered at
p with radius ∆ρ; (cfr. Figure 10). Let q be any point on γ∆ρ and consider the
geodesic δ, parametrised by arclength, such that p = δ(0) and q = δ(∆ρ) and which
at p points in the tangent direction u = δ′(0) to M2 at p. Let η(p) and η(q) be the
unit normals on the surface M2 in E3 at p and q, respectively, corresponding to a
choice of local unit normal vector field η on M2 in E3 around p. Then, according to
our intuition, the angle ∆ψu between η(p) and η(q) measures how much the surface
M2 at p curves in the direction u: the more the surface thus curves, the larger this
angle. Let r be the point on the geodesic δ at a distance ∆ψu from p in the direction
u, i. e. let r be the point r = δ(∆ψu). Joining all such points r for all points q
on γ∆ρ, “around p” (actually passing through p whenever in some direction u the
surface M2 is not curved at all in E3 at p) there results a curve Γ∆ρ. And, clearly,
the larger the area enclosed by this curve Γ∆ρ the more the surface M2 is curved
in E3 around p, and, accordingly and following the idea’s within the definitions of
Gauss and Germain of their curvatures via the ratio of the area’s of a region around
p, in Casorati’s case the geodesic disc on M2 centered at p and of radius ∆ρ, and
a corresponding region on some surface, (in the case of the Gauss curvature K(p):
the spherical image, and in the case of the mean curvature H(p) of Germain: the
region on a cylinder perpendicular to a small circle around p in TpM

2 between TpM
2

and the surface itself -and, in this case, the ratio is taken with the area of the disc
around p in TpM

2 bounded by this small circle-), Casorati defined his curvature as
C(p) = lim∆ρ→0{A(Γ∆ρ)/A(γ∆ρ)} whereby A(Γ∆ρ) and A(γ∆ρ) stand for the area
of the regions on M2 which are enclosed by the curves Γ∆ρ and γ∆ρ, respectively,
and he proved that C = (1/2).(k2

1 + k2
2) = (1/2).tr A2 = (1/2). ‖h‖2; cfr. Figure

10. The following are two quotes from Casorati’s paper [22]: (i) “Cette espèce de
prééminence que je donne par là à C, comme mesure de courbure, me parait justifiée
par plusieurs motifs dont les suivants se présentent immédiatement à l’esprit. C
est, (...), une traduction de l’idée commune de courbure d’une surface plus fidéle que
K et H. C caractérise par sa valeur zéro le manque total de courbure, de même que
la première des deux courbures des lignes (-i.e. of curves in E3-; L. V.), que l’on a
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déjà l’habitude de nommer tout simplement courbure. Avec cette signifaction du mot
courbure on peut dire:
Si la courbure est nulle en tout point, la surface est plane (la ligne est droite).
Il n’y a que la surface plane (resp. la ligne droite) dont la courbure soit nulle
en tout point.”, and, (ii) “Je ne crois pas inutile, (...), de recommander aux jeunes
mathématiciens les recherches que suscite tout naturellement la considération de la
nouvelle mesure C, et d’exhorter les auteurs de traités, particulièrement d’Analyse et
de Géométrie infinitésimale, à lui accorder une place dans leurs livres.”, which points
could hardly be phrased better today.

The above considerations made by Casorati for surfaces M2 in E3 straightfor-
wardly can be taken over to general submanifolds Mn in En+m, (and also to gen-
eral submanifolds Mn in arbitrary ambient Riemannian spaces M̃n+m, in the latter
situation making use of the Riemannian connection ∇̃ of M̃n+m to compare the po-
sitions of T⊥q M

n and T⊥p M
n, i.e. by then measuring the angles at q between the

mD normal space T⊥q M
n at q and the mD subspace (T⊥p M

n)∗ of TqM̃
n+m which

is obtained by ∇̃–parallely transporting T⊥p M
n from p to q along δ), as was done

in [16]. In particular, from [16], it may be well to recall that the Casorati curva-
ture (as such) C equals the arithmetic mean of the tangential Casorati curvatures
c1, . . . , cn; C = (1/n).‖h‖2 = (1/n).tr AC = (1/n).

∑
α tr A

2
α = (1/n).

∑
i ci. At

this stage it could further be observed that Cα(p) = (1/n). tr A2
α(p) is the Casorati

curvature (as such) at p of the projection Mn
α of the submanifold Mn of En+m onto

the (n + 1)–dimensional subspace En+1 of the ambient space which is spanned by
TpM

n = Rn together with the normal line [ξα(p)] determined by the unit normal vec-
tor ξα(p), and, hence, that Cα(p) = (1/n).

∑
i cαi(p), i.e. that Cα(p) is the arithmetic

mean of the tangential Casorati curvatures of this hypersurface Mn
α in En+1 at p. In

this context, these positive real functions Cα on a submanifold Mn in En+m will be
called normal Casorati curvatures of Mn in En+m; more precisely: the normal Caso-
rati curvature of Mn in En+m in the normal direction determined by a unit normal
vector field η is defined as Cη = (1/n). tr A2

η.

9. LetN1 be the first normal space ofMn in En+m, i.e. N1 = imh = {h(X, Y ) |X, Y ∈
TMn}, or, still, N1 is the orthogonal complement in the normal space T⊥M of Mn

in En+m of the subspace of all normals with vanishing shape operators, or, still, with
vanishing corresponding normal Casorati curvatures: N1 = {ξ ∈ T⊥M |Aξ = 0}⊥ =
{ξ ∈ T⊥M |Cξ = 0}⊥, such that TMn⊕N1 is the first osculating space ofMn in En+m;
(cfr. Figure 11). Recently, Trenčevski made an original general study of the osculating
spaces of all orders for general submanifolds Mn in En+m, and, in particular obtained
the values of their maximal dimensions; moreover, in each of the successive normal
spaces of all possible orders he determined appropriate orthonormal frames of prin-
cipal normal vector fields and corresponding principal normal curvatures [4][5][6][7].
In subsequent papers we will return to what next follows for N1 then also thus car-
rying on for the second, third, etc. normal spaces N2, N3, etc., hereby specifying
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the relationships of the successive principal normal vector fields and normal principal
curvatures with the classical curvature varieties that have been studied in the geom-
etry of submanifolds, going back in particular to Kommerell’s 1897 study of surfaces
M2 in E4 [23], (herefore, especially, cfr. B. Rouxel’s mémoire of the Académie royale
belge [24] for its mathematical contents as well as for its “indications historiques”).

The factual dimensions of the successive normal spaces N1, N2, N3, . . . of a sub-
manifold Mn in En+m will be denoted by m1,m2,m3, . . . and besides the general
normal indices α ∈ {1, . . . ,m} we will use normal indices α1 ∈ {1, . . . ,m1} for
vector fields ξα1 . . . in the first normal space N1, and similarly for the other nor-
mal spaces. In the “full” normal space T⊥Mn of an n–dimensional submanifold
Mn with co–dimension m in a Euclidean space En+m, consider the following oper-
ator a1 : T⊥M → T⊥M : ξ 7→ a1(ξ) = (1/n).

∑
α tr (AξAα).ξα which is a sym-

metric linear map; in [14], B.-Y. Chen defined the allied normal vector field of ξ by
a(ξ) = (1/n).

∑
γ tr (AξAγ).ξγ, whereby {ξγ}, (γ = 2, 3, . . . ,m), together with ξ forms

an orthogonal frame of T⊥M , and in particular initiated the study of the submani-
folds for which the allied mean curvature vector field a( ~H) vanishes identically, which
he called A–submanifolds and which later also were called Chen submanifolds, (cfr.
a.o. [24][25][26][27][28]). By the Principal Axes Theorem, there exists an orthonor-
mal normal frame field η1, . . . , ηm1, ξm1+1, . . . , ξm of eigenvector fields for a1 with
corresponding eigenvalues C1 = (1/n). trA2

1 ≥ · · · ≥ Cm1 = (1/n). trA2
m1 > Cm1+1 =

(1/n). trA2
m1+1 = ... = Cm = (1/n). trA2

m = 0. Clearly η1, . . . , ηm1 span the first nor-
mal space N1 = imh of Mn in En+m and following Trenčevski η1, . . . , ηm1 are called
the first principal normal vector fields and C1, . . . , Cm1 are called the first principal
normal curvatures of Mn in En+m; a1(ηα1) = Cα1.ηα1, whereby Cα1 = (1/n). tr A2

α1 is
the normal Casorati curvature of Mn in En+m in the normal direction ηα1, as defined
in the previous Section. Thus we have the following.
Theorem 1. The first principal normal vector fields of a submanifold Mn in En+m

determine the normal directions on Mn in En+m in which the normal Casorati cur-
vatures attain their m1 = dimN1 non–zero critical values. �
And, in this setting, a result of J. Weiner and P. Verheyen (cfr. [26(a)]) could now
be reformulated as follows.
Theorem 2. A non–minimal submanifold Mn in En+m is a Chen submanifold if and
only if its mean curvature vector field determines a first principal normal direction.

�
The intersection of the “vertical” unit hypercylinder z2

1+· · ·+z2
m1 = 1 with the elliptical

paraboloid z = C1(p).z2
1 + · · ·+Cm1(p).z2

m1 in the space Em1+1 = N1(p)⊕R, whereby
reference is made to a rectangular Cartesian co–ordinate system (z1, . . . , zm1, z)
which is choosen such that a point p of Mn is the origin O, the z1–axis, . . . , zm1–
axis are determined by the first principal normal directions in the first normal space
N1(p) of Mn in En+m at p and the z–axis is perpendicular to N1(p) at p, will
be called the first normal Casorati curvature indicatrix C⊥ of the submanifold Mn

in En+m at the point p. For any unit normal vector field η lying in N1, η =
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∑
α1 ηα1. cos θα1, θα1 = ](ηα1, η), the corresponding normal Casorati curvature Cη(p)

of Mn in En+m at p is given by the height of this indicatrix above the point η
on the unit hypersphere z2

1 + · · · + z2
m1 = 1 in Em1 = N1 which is centered at

O = p : Cη(p) =
∑

α1Cα1(p). cos2 θα1; (cfr. Figure 12). And, moreover, and sim-
ilar as in the situation of the squared curvature of curves Γ = M1 in E1+m as
mentioned explicitely in Section 3 for the case m = 2, but clearly goes through
for all m, now the (total) Casorati curvature (as such), C(p) = (1/n). ‖h‖2(p), of a
submanifold Mn in En+m at some point p of Mn is given by the sum of the nor-
mal Casorati curvatures at p of the m nD hypersurfaces Mn

α in En+1 which are
the projections of the original submanifold Mn in En+m onto the m Euclidean sub-
spaces En+1 of En+m which are spanned by TpM

n = En together with, respectively,
each of the normal lines R = [ξα(p)] through p which are generated by each of the
normals ξα(p), whereby {ξα} is any local orthonormal normal frame field on Mn

in En+m around p, since C = (1/n). ‖h‖2 = (1/n).
∑

α tr A
2
α. In particular, C(p)

is the sum of the normal Casorati curvatures at p of the m1 projections Mn
α1 of

Mn onto En+1 = TpM
n ⊕ [ηα1(p)], whereby [ηα1(p)] is the line in En+m through p

which is generated by the first principal normal vector ηα1(p) of Mn in En+m at p;
C =

∑
α1Cα1.
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