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SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR
FUNCTIONS WHOSE HIGHER ORDER PARTIAL DERIVATIVES

ARE CO-ORDINATED s-CONVEX

MUHAMMAD AMER LATIF

Abstract. In this paper we point out some inequalities of Hermite-Hadamard
type for double integrals of functions whose partial derivatives of higher order are
co-ordinated s-convex in the second sense. Our established results generalize the
Hermite-Hadamard type inequalities established for co-ordinated s-convex functions
and refine those results established for differentiable functions whose partial deriva-
tives of higher order are co-ordinated convex proved in recent literature.

1. Introduction

A function f : I → R, ∅ 6= I ⊆ R, is said to be convex on I if the inequality

(1.1) f (λx+ (1− λ) y) ≤ λf (x) + (1− λ) f (y) ,

holds for all x, y ∈ I and λ ∈ [0, 1]. The inequality (1.1) holds in reverse direction if
f is concave.

The most famous inequality concerning the class of convex functions, is the Hermite-
Hadamard’s inequality.

This double inequality is stated as

(1.2) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)

2

where f : I → R, ∅ 6= I ⊆ R a convex function, a, b ∈ I with a < b. The inequalities
in (1.2) are in reversed order if f a concave function.

The inequalities (1.2) have become an important cornerstone in mathematical anal-
ysis and optimization and many uses of these inequalities have been discovered in a
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variety of settings. Moreover, many inequalities of special means can be obtained for a
particular choice of the function f. Due to the rich geometrical significance of Hermite-
Hadamard’s inequality (1.2), there is growing literature providing its new proofs, ex-
tensions, refinements and generalizations, see for example [8, 14, 19, 29, 32, 33] and
the references therein.

In the paper [15], Hudzik and Maligranda considered, among others, the class of
functions which are s-convex in the second sense. This class is defined follows.

A function f : [0,∞)→ R is said to be s-convex in the second sense if

f (λx+ (1− λ) y) ≤ λsf (x) + (1− λ)s f (y)

holds for all x, y ∈ [0,∞) , λ ∈ [0, 1] and for some fixed s ∈ (0, 1].
It can be easily seen that for s = 1, s-convexity reduces to ordinary convexity of

functions defined on [0,∞).
In [9], Dragomir and Fitzpatrick proved a variant of Hadamard’s inequality which

holds for s-convex functions in the second sense.

Theorem 1.1. [9] Suppose that f : [0,∞) → [0,∞) is an s-convex function in the
second sense, where s ∈ (0, 1) and a, b ∈ [0,∞), a < b. If f ∈ L1 [a, b], then the
following inequalities hold

(1.3) 2s−1f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)

s+ 1
.

The constant k = 1
s+1

is the best possible in the second inequality in (1.3).

For more about properties and Hermite-Hadamard type inequalities of s-convex
functions in the second sense we refer the interested readers to [7, 9, 12, 15, 20].

Let us consider now a bidimensional interval ∆ =: [a, b] × [c, d] in R2 with a < b
and c < d. A mapping f : ∆→ R is said to be convex on ∆ if the inequality

f(λx+ (1− λ)z, λy + (1− λ)w) ≤ λf(x, y) + (1− λ)f(z, w)

holds for all (x, y), (z, w) ∈ ∆ and λ ∈ [0, 1].
A modification for convex functions on ∆, known as co-ordinated convex functions,

was introduced by S. S. Dragomir [10] as follows.
A function f : ∆→ R is said to be convex on the co-ordinates on ∆ if the partial

mappings fy : [a, b] → R, fy(u) = f(u, y) and fx : [c, d] → R, fx(v) = f(x, v) are
convex where defined for all x ∈ [a, b], y ∈ [c, d].

A formal definition for co-ordinated convex functions may be stated as follow.

Definition 1.1. [21] A function f : ∆→ R is said to be convex on the co-ordinates
on ∆ if the following inequality holds for all t, r ∈ [0, 1] and (x, u), (y, w) ∈ ∆

f(tx+ (1− t)y, ru+ (1− r)w) ≤ trf(x, u) + t(1− r)f(x,w) + r(1− t)f(y, u)

+ (1− t)(1− r)f(y, w).
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Clearly, every convex mapping f : ∆ → R is convex on the co-ordinates but
converse may not be true [10].

The following Hermite-Hadamard type inequalities for co-ordinated convex func-
tions on the rectangle from the plane R2 were established in [10].

Theorem 1.2. [10] Suppose that f : ∆→ R is co-ordinated convex on ∆, then

f

(
a+ b

2
,
c+ d

2

)
≤ 1

2

[
1

b− a

∫ b

a

f

(
x,
c+ d

2

)
dx+

1

d− c

∫ d

c

f

(
a+ b

2
, y

)
dy

]
≤ 1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx

≤ 1

4

[
1

b− a

∫ b

a

[f (x, c) + f (x, d)] dx(1.4)

+
1

d− c

∫ d

c

[f (a, y) + f (b, y)] dy

]
≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
.

The above inequalities are sharp.

The concept of s-convex functions on the co-ordinates in the second sense was
introduced by Alomari and Darus in [3] as a generalization of the usual co-ordinated
convexity.

Definition 1.2. [3] Consider the bidimensional interval ∆ = [a, b]× [c, d] in [0,∞)2

with a < b and c < d. The mapping f : ∆ → R is s-convex in the second sense
on ∆ if f(λx+ (1− λ) z, λy + (1− λ)w) ≤ λsf(x, y) + (1− λ)s f(z, w), holds for all
(x, y), (z, w) ∈ ∆, λ ∈ [0, 1] with some fixed s ∈ (0, 1].

A function f : ∆ ⊆ [0,∞)2 → R is called s-convex in the second sense on the
co-ordinates on ∆ if the partial mappings fy : [a, b] → R, fy(u) = f(u, y) and fx :
[c, d]→ R, fx(v) = f(x, v), are s-convex in the second sense for all y ∈ [c, d], x ∈ [a, b]
and s ∈ (0, 1], i.e., the partial mappings fy and fx are s-convex in the second sense
with some fixed s ∈ (0, 1].

A formal definition of co-ordinated s-convex function in second sense may be stated
as follows.

Definition 1.3. A function f : ∆ ⊆ [0,∞)2 → R is called s-convex in the second
sense on the co-ordinates on ∆ if

f(tx+ (1− t)y, ru+ (1− r)w) ≤ tsrsf(x, u) + ts(1− r)sf(x,w)

+ rs(1− t)sf(y, u) + (1− t)s(1− r)sf(y, w)
(1.5)

holds for all t, r ∈ [0, 1] and (x, u), (y, u), (x,w) , (y, w) ∈ ∆, for some fixed s ∈ (0, 1].
The mapping f is concave on the co-ordinates on ∆ if the inequality (1.5) holds in
reversed direction for all t, r ∈ [0, 1] and (x, y), (u,w) ∈ ∆ with some fixed s ∈ (0, 1].
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Furthermore, Alomari and Darus [5] introduced a new class of s-convex functions
on the co-ordinates on the rectangle from the plane as follows.

Definition 1.4. [5] Consider the bidimensional interval ∆ =: [a, b]× [c, d] in [0,∞)2

with a < b and c < d. The mapping f : ∆→ R is s-convex in the second sense on ∆
if there exist s1, s2 ∈ (0, 1] with s = s1+s2

2
such that

f(λx+ (1− λ) z, λy + (1− λ)w) ≤ λs1f(x, y) + (1− λ)s2 f(z, w)

holds for all (x, y), (z, w) ∈ ∆, λ ∈ [0, 1]. This class of functions is denoted by
MWO2

s1,s2
.

A function f : ∆ ⊆ [0,∞)2 → R is called s-convex in the second sense on the
co-ordinates on ∆ if the partial mappings fy : [a, b] → R, fy(u) = f(u, y) and fx :
[c, d] → R, fx(v) = f(x, v), are s1-convex and s2-convex in the second sense for all
y ∈ [c, d], x ∈ [a, b] and s1, s2 ∈ (0, 1] with s = s1+s2

2
, respectively, i.e., the partial

mappings fy and fx are s1-convex and s2-convex in the second sense, s1, s2 ∈ (0, 1]
with s = s1+s2

2
.

The definition 1.3 can be generalized as follows.

Definition 1.5. A function f : ∆ =: [a, b] × [c, d] ⊆ [0,∞)2 → R is called s-convex
in the second sense on the co-ordinates on ∆ if

f(tx+ (1− t)y, ru+ (1− r)w) ≤ ts1rs2f(x, u) + ts1(1− r)s2f(x,w)

+ rs2(1− t)s1f(y, u) + (1− t)s1(1− r)s2f(y, w)(1.6)

holds for all t, r ∈ [0, 1] and (x, u), (y, u), (x,w) , (y, w) ∈ ∆, s1, s2 ∈ (0, 1] with
s = s1+s2

2
. The mapping f is concave on the co-ordinates on ∆ if the inequality (1.6)

holds in reversed direction for all t, r ∈ [0, 1] and (x, y), (u,w) ∈ ∆, s1, s2 ∈ (0, 1] with
s = s1+s2

2
.

In [5], Alomari et al. also proved a variant of inequalities given above by (1.4) for
s-convex functions in the second sense on the co-ordinates on a rectangle from the
plane R2.

Theorem 1.3. [5] Suppose f : ∆ ⊆ [0,∞)2 → [0,∞) is s-convex function in the
second sense on the co-ordinates on ∆. Then one has the inequalities

4s1−1 + 4s2−1

2
f

(
a+ b

2
,
c+ d

2

)
≤ 2s1−2

b− a

∫ b

a

f

(
x,
c+ d

2

)
dx(1.7)

+
2s2−2

d− c

∫ d

c

f

(
a+ b

2
, y

)
dy

≤ 1

(b− a)(d− c)

∫ b

a

∫ d

c

f(x, y)dydx



INEQUALITIES OF HERMITE-HADAMARD TYPE FOR DOUBLE INTEGRALS 129

≤ 1

2 (s1 + 1)

(
1

b− a

∫ b

a

[f (x, c) + f (x, d)] dx+
1

d− c

∫ d

c

[f (a, y) + f (b, y)] dy

)
≤ 1

2

(
1

(s1 + 1)2
+

1

(s2 + 1)2

)
[f(a, c) + f(b, c) + f(a, d) + f(b, d)] .

In recent years, many authors have proved several inequalities for co-ordinated
convex functions. These studies include, among others, the works in [1, 3, 4, 5, 6],
[10], [13], [21]-[24], [25]-[28] and [31]. Alomari et al. [1, 3, 4, 5, 6], proved sev-
eral Hermite-Hadamard type inequalities for co-ordinated s-convex functions and co-
ordinated log-convex functions. Dragomir [10], proved the Hermite-Hadamard type
inequalities for co-ordinated convex functions. Hwang et. al [13], also proved some
Hermite-Hadamard type inequalities for co-ordinated convex function of two variables
by considering some mappings directly associated to the Hermite-Hadamard type in-
equality for co-ordinated convex mappings of two variables. Latif et. al [12]-[14],
proved some inequalities of Hermite-Hadamard type for differentiable co-ordinated
convex functions, differentiable functions whose higher order partial derivatives are co-
ordinated convex, product of two co-ordinated convex mappings and for co-ordinated
h-convex mappings. Özdemir et. al [25]-[28], proved Hadamard’s type inequalities
for co-ordinated convex functions, co-ordinated s-convex functions and co-ordinated
m-convex and (α,m)-convex functions.

The main aim of this paper is to establish some new Hermite-Hadamard type
inequalities for differentiable functions whose partial derivatives of higher order are
co-ordinated s-convex in the second sense on the rectangle from the plane R2 which
generalize the Hermite-Hadamard type inequalities proved for co-ordinated s-convex
functions in the second sense and refine those results established for differentiable
functions whose partial derivatives of higher order are co-ordinated convex on the
rectangle from the plane R2 (see [24]).

2. Main Results

In this section we establish new Hermite-Hadamard type inequalities for double
integrals of functions whose partial derivatives of higher order are co-ordinated s-
convex in the second sense.

To make the presentation easier and compact to understand, we make some sym-
bolic representations as follows

A
′
=

1

2

[
1

b− a

∫ b

a

[f (x, c) + f (x, d)] dx+
1

d− c

∫ d

c

[f (a, y) + f (b, y)] dy

]
+

1

2

m−1∑
l=2

(l − 1) (d− c)l

2 (l + 1)!

[
∂lf (a, c)

∂yl
+
∂lf (b, c)

∂yl

]

+
1

2

n−1∑
k=2

(k − 1) (b− a)k

2 (k + 1)!

[
∂kf (a, c)

∂xk
+
∂kf (a, d)

∂xk

]
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− 1

b− a

m−1∑
l=2

(l − 1) (d− c)l

2 (l + 1)!

∫ b

a

∂lf (x, c)

∂yl
dx

− 1

d− c

n−1∑
k=2

(k − 1) (b− a)k

2 (k + 1)!

∫ d

c

∂kf (a, y)

∂xk
dy

−
n−1∑
k=2

m−1∑
l=2

(k − 1) (l − 1) (b− a)k (d− c)l

4 (k + 1)! (l + 1)!

∂k+lf (a, c)

∂xkyl
,

and

B(n,m) =
∣∣∣∂n+mf(a,c)

∂tn∂rm

∣∣∣ , C(n,m) =
∣∣∣∂n+mf(a,d)

∂tn∂rm

∣∣∣ , D(n,m) =
∣∣∣∂n+mf(b,c)

∂tn∂rm

∣∣∣ ,
E(n,m) =

∣∣∣∂n+mf(b,d)
∂tn∂rm

∣∣∣ , F(n,m) =

∣∣∣∣∂n+mf(a+b
2

, c+d
2 )

∂tn∂rm

∣∣∣∣ , G(n,m) =

∣∣∣∣∂n+mf(a, c+d
2 )

∂tn∂rm

∣∣∣∣ ,
H(n,m) =

∣∣∣∣∂n+mf(a+b
2

,c)
∂tn∂rm

∣∣∣∣ , J(n,m) =

∣∣∣∣∂n+mf(a+b
2

,d)
∂tn∂rm

∣∣∣∣ , I(n,m) =

∣∣∣∣∂n+mf(b, c+d
2 )

∂tn∂rm

∣∣∣∣ ,
where the sums above take 0, when m = n = 1 and m = n = 2 and hence

A
′
= A =

1

2

[
1

b− a

∫ b

a

[f (x, c) + f (x, d)] dx+
1

d− c

∫ d

c

[f (a, y) + f (b, y)] dy

]
.

In what follows ∆◦ is the interior of ∆ = [a, b] × [c, d] and L (∆) is the space of
integrable functions over ∆.

The following two results will be very useful in the sequel of the paper

Theorem 2.1. [18] Let f : ∆ → R be a continuous mapping such that the partial

derivatives ∂k+lf(.,.)
∂xk∂yl

, k = 0, 1, . . . , n − 1, l = 0, 1, . . . ,m − 1 exist on ∆◦ and are

continuous on ∆, then∫ b

a

∫ d

c

f (t, r) drdt = (−1)m+n

∫ b

a

∫ d

c

Kn (x, t)Sm (y, r)
∂n+mf (t, r)

∂tn∂rm
drdt

+
n−1∑
k=0

m−1∑
l=0

Xk (x)Yl (y)
∂k+lf (x, y)

∂xk∂yl
+ (−1)m

n−1∑
k=0

Xk (x)

∫ d

c

Sm (y, r)
∂k+mf (x, r)

∂xk∂rm
dr

+ (−1)n
m−1∑
l=0

Yl (y)

∫ b

a

Kn (x, t)
∂n+lf (t, y)

∂tn∂yl
dt,

where, for (x, y) ∈ ∆, we have
Kn (x, t) :=

{
(t−a)n

n!
, t ∈ [a, x]

(t−b)n

n!
, t ∈ (x, b]

Sm (y, r) :=

{
(r−c)m

m!
, r ∈ [c, y]

(r−d)m

m!
, r ∈ (y, d]

and


Xk (x) := (b−x)k+1+(−1)k(x−a)k+1

(k+1)!

Yl (y) := (d−y)l+1+(−1)l(y−c)l+1

(l+1)!

.
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Lemma 2.1. [24] Let f : ∆ → R, be a continuous mapping such that ∂m+nf
∂xn∂ym

exists

on ∆◦ and ∂m+nf
∂xn∂ym

∈ L (∆) for m,n ≥ 1, then

(b− a)n (d− c)m

4n!m!

∫ 1

0

∫ 1

0

tn−1rm−1 (n− 2t) (m− 2r)(2.1)

× ∂n+mf (ta+ (1− t) b, cr + (1− r) d)

∂tn∂rm
dtdr + A

′

=
f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
+

1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx.

Now we prove our main results.

Theorem 2.2. Let f : ∆ ⊆ [0,∞)2 → [0,∞), a < b, c < d, be a continuous mapping

such that ∂m+nf
∂tn∂rm

exists on ∆◦ and ∂m+nf
∂tn∂rm

∈ L (∆). If
∣∣∣ ∂n+mf
∂tn∂rm

∣∣∣ is s-convex on the

co-ordinates on ∆ in the second sense, for m, n ∈ N, m, n ≥ 2, then we have the
following inequality∣∣∣∣f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
+

1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx− A′
∣∣∣∣

≤ (b− a)n (d− c)m

4n!m!

[
LB(n,m) +MC(n,m) +ND(n,m) +RE(n,m)

]
,(2.2)

where s1, s2 ∈ (0, 1] with s = s1+s2
2

,

L =

[
n (n− 1) + s1 (n− 2)

(n+ s1) (n+ s1 + 1)

] [
m (m− 1) + s2 (m− 2)

(m+ s2) (m+ s2 + 1)

]
,

M =

[
n (n− 1) + s1 (n− 2)

(n+ s1) (n+ s1 + 1)

]
[mB (m, s2 + 1)− 2B (m+ 1, s2 + 1)] ,

N =

[
m (m− 1) + s2 (m− 2)

(m+ s2) (m+ s2 + 1)

]
[nB (n, s1 + 1)− 2B (n+ 1, s1 + 1)] ,

R = [nB (n, s1 + 1)− 2B (n+ 1, s1 + 1)] [mB (m, s2 + 1)− 2B (m+ 1, s2 + 1)] ,

and B(x, y) =
∫ 1

0
tx−1 (1− t)y−1 dt is the Euler Beta function.

Proof. Suppose m,n ≥ 2. By Lemma 2.1, we have∣∣∣∣f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
+

1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx− A′
∣∣∣∣

≤ (b− a)n (d− c)m

4n!m!

∫ 1

0

∫ 1

0

tn−1rm−1 (n− 2t) (m− 2r)

(2.3)

×
∣∣∣∣∂n+mf (ta+ (1− t) b, cr + (1− r) d)

∂tn∂rm

∣∣∣∣ dtdr.
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By s-convexity of
∣∣∣ ∂m+nf
∂tn∂sm

∣∣∣ on the co-ordinates on ∆, we get that∫ 1

0

∫ 1

0

tn−1rm−1 (n− 2t) (m− 2r)×
∣∣∣∣∂n+mf (ta+ (1− t) b, cr + (1− r) d)

∂tn∂rm

∣∣∣∣ dtdr
≤ B(n,m)

∫ 1

0

∫ 1

0

tn+s1−1rm+s2−1 (n− 2t) (m− 2r) drdt

(2.4)

+ C(n,m)

∫ 1

0

∫ 1

0

tn+s1−1rm−1 (1− r)s2 (n− 2t) (m− 2r) drdt

+ E(n,m)

∫ 1

0

∫ 1

0

tn−1 (1− t)s1 (n− 2t) rm−1 (1− r)s2 (m− 2r) drdt

+D(n,m)

∫ 1

0

∫ 1

0

tn−1rm+s2−1 (1− t)s1 (n− 2t) (m− 2r) drdt.

Since ∫ 1

0

∫ 1

0

tn+s1−1rm+s2−1 (n− 2t) (m− 2r) drdt(2.5)

=

∫ 1

0

tn+s1−1 (n− 2t) dt

∫ 1

0

rm+s2−1 (m− 2r) dr

=

[
n (n− 1) + s1 (n− 2)

(n+ s1) (n+ s1 + 1)

] [
m (m− 1) + s2 (m− 2)

(m+ s2) (m+ s2 + 1)

]
.

Analogously,∫ 1

0

∫ 1

0

tn+s1−1rm−1 (1− r)s2 (n− 2t) (m− 2r) drdt(2.6)

=

[
n (n− 1) + s1 (n− 2)

(n+ s1) (n+ s1 + 1)

]
[mB (m, s2 + 1)− 2B (m+ 1, s2 + 1)] ,

∫ 1

0

∫ 1

0

tn−1rm+s2−1 (1− t)s1 (n− 2t) (m− 2r) drdt(2.7)

=

[
m (m− 1) + s2 (m− 2)

(m+ s2) (m+ s2 + 1)

]
[nB (n, s1 + 1)− 2B (n+ 1, s1 + 1)]

and ∫ 1

0

∫ 1

0

tn−1 (1− t)s1 (n− 2t) rm−1 (1− r)s2 (m− 2r) drdt

= [nB (n, s1 + 1)− 2B (n+ 1, s1 + 1)] [mB (m, s2 + 1)− 2B (m+ 1, s2 + 1)] .(2.8)

From (2.4)-(2.8) in (2.3), we get the required inequality. This completes the proof of
the theorem. �
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Theorem 2.3. Let f : ∆ ⊂ [0,∞)× [0,∞) → [0,∞), a < b, c < d, be a continuous

mapping such that ∂m+nf
∂tn∂rm

exists on ∆◦ and ∂m+nf
∂tn∂rm

∈ L (∆) . If
∣∣∣ ∂n+mf
∂tn∂rm

∣∣∣q , q ≥ 1, is

s-convex on the co-ordinates on ∆, m,n ∈ N, m,n ≥ 2, then∣∣∣∣f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
+

1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx− A′
∣∣∣∣

≤ (b− a)n (d− c)m

4n!m!

(
(n− 1) (m− 1)

(n+ 1) (m+ 1)

)1−1/q

(2.9)

× q

√
LBq

(n,m) +MDq
(n,m) +NCq

(n,m) +REq
(n,m),

where s1, s2 ∈ (0, 1] with s = s1+s2
2

and L, M , N , R and B(x, y) are as defined in
Theorem 2.2.

Proof. The case q = 1 is the Theorem 2.2. Suppose q > 1, then by Lemma 2.1 and
the power mean inequality, we have∣∣∣∣f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
+

1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx− A′
∣∣∣∣

≤ (b− a)n (d− c)m

4n!m!

{∫ 1

0

∫ 1

0

tn−1rm−1 (n− 2t) (m− 2r) drdt

}1−1/q

(2.10)

×
{∫ 1

0

∫ 1

0

tn−1rm−1 (n− 2t) (m− 2r)

×
∣∣∣∣∂n+mf (ta+ (1− t) b, cr + (1− r) d)

∂tn∂rm

∣∣∣∣q dtdr}1/q

.

By the similar arguments used to obtain (2.2) and the fact

∫ 1

0

∫ 1

0

tn−1rm−1 (n− 2t) (m− 2r) drdt =
(n− 1) (m− 1)

(n+ 1) (m+ 1)
,

we get (2.9). This completes the proof of the theorem. �

Theorem 2.4. Let f : ∆ ⊂ [0,∞)× [0,∞) → [0,∞), a < b, c < d, be a continuous

mapping such that ∂m+nf
∂tn∂rm

exist on ∆◦ and ∂m+nf
∂tn∂rm

∈ L (∆). If
∣∣∣ ∂n+mf
∂tn∂sm

∣∣∣q , q ≥ 1, is

s-convex on the co-ordinates on ∆, s1, s2 ∈ (0, 1] with s = s1+s2
2

, m, n ∈ N, m,n ≥ 1.
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Then∣∣∣∣∣∣−
n−1∑
k=0

m−1∑
l=0

[
1 + (−1)k

] [
1 + (−1)l

]
2k+l+2

(b− a)k (d− c)l

(k + 1)! (l + 1)!

∂k+lf
(
a+b
2
, c+d

2

)
∂xk∂yl

+
1

(b− a) (d− c)

∫ b

a

∫ d

c

f (t, r) drdt

+
(−1)m+1

(d− c)m!

n−1∑
k=0

[
1 + (−1)k

]
(b− a)k

2k+1 (k + 1)!

∫ d

c

Q(r)
∂k+mf

(
a+b
2
, r
)

∂xk∂rm
dr

+
(−1)n+1

(b− a)n!

m−1∑
l=0

[
1 + (−1)l

]
(d− c)l

2l+1 (l + 1)!

∫ b

a

P (t)
∂n+lf

(
t, c+d

2

)
∂tn∂yl

dt

∣∣∣∣∣∣
≤ 1

4n!m!

(
4

(n+ 1) (m+ 1)

)1− 1
q
(
b− a

2

)n(
d− c

2

)m

(2.11)

×
[(
Bq

(n,m) + Cq
(n,m) +Dq

(n,m) + Eq
(n,m)

)
B (n+ 1, s1 + 1)B (m+ 1, s2 + 1)

+
2
(
Gq

(n,m) + Iq(n,m)

)
B (n+ 1, s1 + 1)

m+ s2 + 1
+

2
(
Hq

(n,m) + Jq
(n,m)

)
B (m+ 1, s2 + 1)

n+ s1 + 1

+
4F q

(n,m)

(n+ s1 + 1) (m+ s2 + 1)

] 1
q

,

where

P (t) :=

{
(t− a)n , t ∈

[
a, a+b

2

]
(t− b)n , t ∈

(
a+b
2
, b
] and Q(r) :=

{
(r − c)m , r ∈

[
c, c+d

2

]
(r − d)m , r ∈

(
c+d
2
, d
] .

Proof. By letting x 7→ a+b
2

and y 7→ c+d
2

in Theorem 2.1 and using the properties of
the absolute value, we obtain∣∣∣∣∣∣−

n−1∑
k=0

m−1∑
l=0

[
1 + (−1)k

] [
1 + (−1)l

]
2k+l+2

(b− a)k (d− c)l

(k + 1)! (l + 1)!

∂k+lf
(
a+b
2
, c+d

2

)
∂xk∂yl

(2.12)

+
1

(b− a) (d− c)

∫ b

a

∫ d

c

f (t, r) drdt

+
(−1)m+1

(d− c)m!

n−1∑
k=0

[
1 + (−1)k

]
(b− a)k

2k+1 (k + 1)!

∫ d

c

Q(r)
∂k+mf

(
a+b
2
, r
)

∂xk∂rm
dr
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+
(−1)n+1

(b− a)n!

m−1∑
l=0

[
1 + (−1)l

]
(d− c)l

2l+1 (l + 1)!

∫ b

a

P (t)
∂n+lf

(
t, c+d

2

)
∂tn∂yl

dt

∣∣∣∣∣∣
≤ 1

(b− a) (d− c)m!n!

∫ b

a

∫ d

c

|P (t)| |Q(r)|
∣∣∣∣∂n+mf (t, r)

∂tn∂rm

∣∣∣∣ drdt.
By the power mean inequality for double integrals, we have∫ b

a

∫ d

c

|P (t)| |Q(r)|
∣∣∣∣∂n+mf (t, r)

∂tn∂rm

∣∣∣∣ drdt
≤
(∫ b

a

∫ d

c

|P (t)| |Q(r)| drdt
)1− 1

q
(∫ b

a

∫ d

c

|P (t)| |Q(r)|
∣∣∣∣∂n+mf (t, r)

∂tn∂rm

∣∣∣∣q drdt)
1
q

(2.13)

=

(∫ b

a

∫ d

c

|P (t)| |Q(r)| drdt
)1− 1

q

[∫ a+b
2

a

∫ c+d
2

c

(t− a)n(r − c)m
∣∣∣∣∂n+mf (t, r)

∂tn∂rm

∣∣∣∣q drdt
+

∫ b

a+b
2

∫ c+d
2

c

(b− t)n(r − c)m
∣∣∣∣∂n+mf (t, r)

∂tn∂rm

∣∣∣∣q drdt
+

∫ a+b
2

a

∫ d

c+d
2

(t− a)n(d− r)m
∣∣∣∣∂n+mf (t, r)

∂tn∂rm

∣∣∣∣q drdt
+

∫ b

a+b
2

∫ d

c+d
2

(b− t)n(d− r)m
∣∣∣∣∂n+mf (t, r)

∂tn∂rm

∣∣∣∣q drdt
] 1

q

.

Now we calculate each integral in (2.13). Since t =
(

a+b
2

−t
a+b
2

−a

)
a +

(
t−a

a+b
2

−a

)
a+b
2

and

r =
(

c+d
2

−r
c+d
2

−c

)
c+

(
r−c

c+d
2

−c

)
c+d
2

. By the co-ordinated s-convexity of
∣∣∣ ∂n+mf
∂tn∂sm

∣∣∣q, we have∫ a+b
2

a

∫ c+d
2

c

(t− a)n(r − c)m
∣∣∣∣∂n+mf (t, r)

∂tn∂rm

∣∣∣∣q drdt ≤ ( 2

b− a

)s1 ( 2

d− c

)s2

(2.14)

×

[
Bq

(n,m)

∫ a+b
2

a

∫ c+d
2

c

(t− a)n(r − c)m
(
a+ b

2
− t
)s1 (c+ d

2
− r
)s2

drdt

+Gq
(n,m)

∫ a+b
2

a

∫ c+d
2

c

(t− a)n
(
a+ b

2
− t
)s1

(r − c)s2+m drdt

+Hq
(n,m)

∫ a+b
2

a

∫ c+d
2

c

(t− a)s1+n

(
c+ d

2
− r
)s2

(r − c)mdrdt

+F q
(n,m)

∫ a+b
2

a

∫ c+d
2

c

(t− a)s1+n (r − c)s2+m drdt

]
.



136 M. A. LATIF

Now by the change of variables u = t − a, v = r − c and then by the change of
variables x = 2u

b−a
, y = 2v

d−c
, we get that

(
2

b− a

)s1 ( 2

d− c

)s2

×
∫ a+b

2

a

∫ c+d
2

c

(t− a)n(r − c)m
(
a+ b

2
− t
)s1 (c+ d

2
− r
)s2

drdt

(2.15)

=

(
2

b− a

)s1 ( 2

d− c

)s2 ∫ b−a
2

0

un
(
b− a

2
− u
)s1

du

∫ d−c
2

0

vm
(
d− c

2
− v
)s2

dv

=

∫ b−a
2

0

un
(

1− 2u

b− a

)s1

du

∫ d−c
2

0

vm
(

1− 2v

d− c

)s2

dv

=

(
b− a

2

)n+1(
d− c

2

)m+1 ∫ 1

0

xn (1− x)s1 dx

∫ 1

0

ym (1− y)s2 dy

=

(
b− a

2

)n+1(
d− c

2

)m+1

B (n+ 1, s1 + 1)B (m+ 1, s2 + 1) .

Similarly,(
2

b− a

)s1 ( 2

d− c

)s2 ∫ a+b
2

a

∫ c+d
2

c

(t− a)n
(
a+ b

2
− t
)s1

(r − c)s2+m drdt(2.16)

=

(
b−a
2

)n+1 (d−c
2

)m+1
B (n+ 1, s1 + 1)

m+ s2 + 1
,

(
2

b− a

)s1 ( 2

d− c

)s2 ∫ a+b
2

a

∫ c+d
2

c

(t− a)s1+n

(
c+ d

2
− r
)s2

(r − c)mdrdt(2.17)

=

(
b−a
2

)n+1 (d−c
2

)m+1
B (m+ 1, s2 + 1)

n+ s1 + 1

and (
2

b− a

)s1 ( 2

d− c

)s2 ∫ a+b
2

a

∫ c+d
2

c

(t− a)s1+n (r − c)s2+m drdt(2.18)

=

(
b−a
2

)n+1 (d−c
2

)m+1

(n+ s1 + 1) (m+ s2 + 1)
.

Using (2.15)-(2.18) in (2.14), we obtain∫ a+b
2

a

∫ c+d
2

c

(t− a)n(r − c)m
∣∣∣∣∂n+mf (t, r)

∂tn∂rm

∣∣∣∣q drdt ≤ (b− a2

)n+1(
d− c

2

)m+1

(2.19)

×

[
Bq

(n,m)B (n+ 1, s1 + 1)B (m+ 1, s2 + 1) +
Gq

(n,m)B (n+ 1, s1 + 1)

m+ s2 + 1
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+
Hq

(n,m)B (m+ 1, s2 + 1)

n+ s1 + 1
+

F q
(n,m)

(n+ s1 + 1) (m+ s2 + 1)

]
.

Analogously,∫ b

a+b
2

∫ c+d
2

c

(b− t)n(r − c)m
∣∣∣∣∂n+mf (t, r)

∂tn∂rm

∣∣∣∣q drdt ≤ (b− a2

)n+1(
d− c

2

)m+1

(2.20)

×

[
Hq

(n,m)B (m+ 1, s2 + 1)

n+ s1 + 1
+Dq

(n,m)B (n+ 1, s1 + 1)B (m+ 1, s2 + 1)

+
F q
(n,m)

(n+ s1 + 1) (m+ s2 + 1)
+
Iq(n,m)B (n+ 1, s1 + 1)

m+ s2 + 1

]
,

∫ a+b
2

a

∫ d

c+d
2

(t− a)n(d− r)m
∣∣∣∣∂n+mf (t, r)

∂tn∂rm

∣∣∣∣q drdt(2.21)

≤
(
b− a

2

)n+1(
d− c

2

)m+1
[
Gq

(n,m)B (n+ 1, s1 + 1)

m+ s2 + 1

+ Cq
(n,m)B (n+ 1, s1 + 1)B (m+ 1, s2 + 1)

+
Jq
(n,m)B (m+ 1, s2 + 1)

n+ s1 + 1
+

F q
(n,m)

(n+ s1 + 1) (m+ s2 + 1)

]
and∫ b

a+b
2

∫ d

c+d
2

(b− t)n(d− r)m
∣∣∣∣∂n+mf (t, r)

∂tn∂rm

∣∣∣∣q drdt
≤
(
b− a

2

)n+1(
d− c

2

)m+1
[

F q
(n,m)

(n+ s1 + 1) (m+ s2 + 1)
+
Iq(n,m)B (n+ 1, s1 + 1)

m+ s2 + 1

(2.22)

+
Jq
(n,m)B (m+ 1, s2 + 1)

n+ s1 + 1
+Eq

(n,m)B (n+ 1, s1 + 1)B (m+ 1, s2 + 1)
]
.

It is not difficult to observe that

(2.23)

∫ b

a

∫ d

c

|P (t)| |Q(r)| drdt =
4

(n+ 1) (m+ 1)

(
b− a

2

)n+1(
d− c

2

)m+1

.

From (2.12)-(2.23), we get the desired inequality. The proof of the Theorem for q = 1
is the same. This completes the proof. �

Some results can be deduced from the inequalities (2.9) and (2.12) as follows.
Letting s1 = s2 = 1 in Theorem 2.3 gives the following corollary.
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Corollary 2.1. Let f : ∆ ⊂ [0,∞)× [0,∞)→ [0,∞), a < b, c < d, be a continuous

mapping such that ∂m+nf
∂tn∂rm

exists on ∆◦ and ∂m+nf
∂tn∂rm

∈ L (∆) . If
∣∣∣ ∂n+mf
∂tn∂rm

∣∣∣q , q ≥ 1, is

convex on the co-ordinates on ∆, m,n ∈ N, m,n ≥ 2, then

∣∣∣∣f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
+

1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx− A′
∣∣∣∣

≤ (b− a)n (d− c)m (n− 1)1−1/q (m− 1)1−1/q

4 (n+ 1)! (m+ 1)! (n+ 2)1/q (m+ 2)1/q

[(
m2 − 2

) (
n2 − 2

)
Bq

(n,m)

(2.24)

+m
(
n2 − 2

)
Cq

(n,m) + n
(
m2 − 2

)
Dq

(n,m) + nmEq
(n,m)

] 1
q
.

Corollary 2.2. Under the assumptions of Corollary 2.1 with m = n = 2, we have

∣∣∣∣f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
+

1

(b− a) (d− c)

∫ b

a

∫ d

c

f (x, y) dydx− A′
∣∣∣∣

≤ (b− a)2 (d− c)2

9 · 2
2
q
+4

q

√∣∣∣∣∂4f (a, c)

∂t2∂r2

∣∣∣∣q +

∣∣∣∣∂4f (b, c)

∂t2∂r2

∣∣∣∣q +

∣∣∣∣∂4f (a, d)

∂t2∂r2

∣∣∣∣q +

∣∣∣∣∂4f (b, d)

∂t2∂r2

∣∣∣∣q.
The following corollary is a special case of Theorem 2.4 for s1 = s2 = 1.

Corollary 2.3. Let f : ∆ ⊂ [0,∞)× [0,∞)→ [0,∞), a < b, c < d, be a continuous

mapping such that ∂m+nf
∂tn∂rm

exist on ∆◦ and ∂m+nf
∂tn∂rm

∈ L (∆). If
∣∣∣ ∂n+mf
∂tn∂sm

∣∣∣q , q ≥ 1, is

convex on the co-ordinates on ∆, m, n ∈ N, m,n ≥ 1. Then

∣∣∣∣∣∣−
n−1∑
k=0

m−1∑
l=0

[
1 + (−1)k

] [
1 + (−1)l

]
2k+l+2

(b− a)k (d− c)l

(k + 1)! (l + 1)!

∂k+lf
(
a+b
2
, c+d

2

)
∂xk∂yl

(2.25)

+
1

(b− a) (d− c)

∫ b

a

∫ d

c

f (t, r) drdt

+
(−1)m+1

(d− c)m!

n−1∑
k=0

[
1 + (−1)k

]
(b− a)k

2k+1 (k + 1)!

∫ d

c

Q(r)
∂k+mf

(
a+b
2
, r
)

∂xk∂rm
dr

+
(−1)n+1

(b− a)n!

m−1∑
l=0

[
1 + (−1)l

]
(d− c)l

2l+1 (l + 1)!

∫ b

a

P (t)
∂n+lf

(
t, c+d

2

)
∂tn∂yl

dt

∣∣∣∣∣∣
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≤ (b− a)n (d− c)m

2m+n+ 2
q (n+ 1)! (m+ 1)!

[
Bq

(n,m) + Cq
(n,m) +Dq

(n,m) + Eq
(n,m)

(n+ 2) (m+ 2)

+
2 (m+ 1)

(
Gq

(n,m) + Iq(n,m)

)
(n+ 2) (m+ 2)

+
2 (n+ 1)

(
Hq

(n,m) + Jq
(n,m)

)
(n+ 2) (m+ 2)

+
4 (n+ 1) (m+ 1)F q

(n,m)

(n+ 2) (m+ 2)

] 1
q

,

where P (t) and Q(r) are as defined in Theorem 2.4.

The following corollary is a special case of Theorem 2.4 for s1 = s2 = 1 and
m = n = 1, which gives tighter estimate than those from [23, Theorem 4, page 8].

Corollary 2.4. Under the assumptions of Corollary 2.3 with m = n = 1, we have∣∣∣∣ 1

(b− a) (d− c)

∫ b

a

∫ d

c

f (t, r) drdt+ f

(
a+ b

2
,
c+ d

2

)
− 1

2 (d− c)

∫ d

c

f

(
a+ b

2
, r

)
dr − 1

2 (b− a)

∫ b

a

f

(
t,
c+ d

2

)
dt

∣∣∣∣
≤ (b− a) (d− c)

24+ 2
q

[
Bq

(1,1) + Cq
(1,1) +Dq

(1,1) + Eq
(1,1)

9
(2.26)

+
4
(
Gq

(1,1) + Iq(1,1)

)
9

+
4
(
Hq

(1,1) + Jq
(1,1)

)
9

+
8F q

(1,1)

9


1
q

,

where P (t) and Q(r) are as defined in Theorem 2.4.

It is easy to see that, when
∣∣∣ ∂n+mf
∂tn∂sm

∣∣∣q , q ≥ 1, is convex on the co-ordinates on ∆,

m, n ∈ N, m,n ≥ 1, then

2
(
Gq

(n,m) + Iq(n,m)

)
≤ Bq

(n,m) + Cq
(n,m) +Dq

(n,m) + Eq
(n,m),

2
(
Hq

(n,m) + Jq
(n,m)

)
≤ Bq

(n,m) + Cq
(n,m) +Dq

(n,m) + Eq
(n,m)

and

4F q
(n,m) ≤ Bq

(n,m) + Cq
(n,m) +Dq

(n,m) + Eq
(n,m).

Substituting these inequalities in Corollary 2.3, we get the following corollary which
is [24, Theorem 2.3, page 12].

Corollary 2.5. Let f : ∆ ⊂ [0,∞)× [0,∞)→ [0,∞), a < b, c < d, be a continuous

mapping such that ∂m+nf
∂tn∂rm

exist on ∆◦ and ∂m+nf
∂tn∂rm

∈ L (∆). If
∣∣∣ ∂n+mf
∂tn∂sm

∣∣∣q , q ≥ 1, is
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convex on the co-ordinates on ∆, m, n ∈ N, m,n ≥ 1. Then∣∣∣∣∣∣ −
n−1∑
k=0

m−1∑
l=0

[
1 + (−1)k

] [
1 + (−1)l

]
2k+l+2

(b− a)k (d− c)l

(k + 1)! (l + 1)!

∂k+lf
(
a+b
2
, c+d

2

)
∂xk∂yl

(2.27)

+
1

(b− a) (d− c)

∫ b

a

∫ d

c

f (t, r) drdt

+
(−1)m+1

(d− c)m!

n−1∑
k=0

[
1 + (−1)k

]
(b− a)k

2k+1 (k + 1)!

∫ d

c

Q(r)
∂k+mf

(
a+b
2
, r
)

∂xk∂rm
dr

+
(−1)n+1

(b− a)n!

m−1∑
l=0

[
1 + (−1)l

]
(d− c)l

2l+1 (l + 1)!

∫ b

a

P (t)
∂n+lf

(
t, c+d

2

)
∂tn∂yl

dt

∣∣∣∣∣∣
≤ (b− a)n (d− c)m

2m+n+ 2
q (n+ 1)! (m+ 1)!

q

√
Bq

(n,m) + Cq
(n,m) +Dq

(n,m) + Eq
(n,m),

where P (t) and Q(r) are as defined in Theorem 2.4.

A different approach leads us to the following result.

Theorem 2.5. Let f : ∆ ⊂ [0,∞)× [0,∞) → [0,∞), a < b, c < d, be a continuous

mapping such that ∂m+nf
∂tn∂rm

exist on ∆◦ and ∂m+nf
∂tn∂rm

∈ L (∆). If
∣∣∣ ∂n+mf
∂tn∂sm

∣∣∣q , q ≥ 1, is

s-convex on the co-ordinates on ∆, s1, s2 ∈ (0, 1] with s = s1+s2
2

, m, n ∈ N, m,n ≥ 1.
Then ∣∣∣∣∣∣−

n−1∑
k=0

m−1∑
l=0

[
1 + (−1)k

] [
1 + (−1)l

]
2k+l+2

(b− a)k (d− c)l

(k + 1)! (l + 1)!

∂k+lf
(
a+b
2
, c+d

2

)
∂xk∂yl

+
1

(b− a) (d− c)

∫ b

a

∫ d

c

f (t, r) drdt

+
(−1)m+1

(d− c)m!

n−1∑
k=0

[
1 + (−1)k

]
(b− a)k

2k+1 (k + 1)!

∫ d

c

Q(r)
∂k+mf

(
a+b
2
, r
)

∂xk∂rm
dr

+
(−1)n+1

(b− a)n!

m−1∑
l=0

[
1 + (−1)l

]
(d− c)l

2l+1 (l + 1)!

∫ b

a

P (t)
∂n+lf

(
t, c+d

2

)
∂tn∂yl

dt

∣∣∣∣∣∣
≤ 1

4n!m!

(
1

(n+ 1) (m+ 1)

)1− 1
q
(
b− a

2

)n(
d− c

2

)m

×(2.28)
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×

{[
Bq

(n,m)B (n+ 1, s1 + 1)B (m+ 1, s2 + 1) +
Gq

(n,m)B (n+ 1, s1 + 1)

m+ s2 + 1

+
Hq

(n,m)B (m+ 1, s2 + 1)

n+ s1 + 1
+

F q
(n,m)

(n+ s1 + 1) (m+ s2 + 1)

] 1
q

+

[
Hq

(n,m)B (m+ 1, s2 + 1)

n+ s1 + 1
+Dq

(n,m)B (n+ 1, s1 + 1)B (m+ 1, s2 + 1)

+
F q
(n,m)

(n+ s1 + 1) (m+ s2 + 1)
+
Iq(n,m)B (n+ 1, s1 + 1)

m+ s2 + 1

] 1
q

+

[
Gq

(n,m)B (n+ 1, s1 + 1)

m+ s2 + 1
+ Cq

(n,m)B (n+ 1, s1 + 1)B (m+ 1, s2 + 1)

+
Jq
(n,m)B (m+ 1, s2 + 1)

n+ s1 + 1
+

F q
(n,m)

(n+ s1 + 1) (m+ s2 + 1)

] 1
q

+

[
F q
(n,m)

(n+ s1 + 1) (m+ s2 + 1)
+
Iq(n,m)B (n+ 1, s1 + 1)

m+ s2 + 1
+
Jq
(n,m)B (m+ 1, s2 + 1)

n+ s1 + 1

+Eq
(n,m)B (n+ 1, s1 + 1)B (m+ 1, s2 + 1)

] 1
q

}
,

where P (t) and Q(r) are as defined in Theorem 2.4.

Proof. By letting x 7→ a+b
2

and y 7→ c+d
2

in Theorem 2.1, using the properties of the
absolute value, we obtain∣∣∣∣∣∣−

n−1∑
k=0

m−1∑
l=0

[
1 + (−1)k

] [
1 + (−1)l

]
2k+l+2

(b− a)k (d− c)l

(k + 1)! (l + 1)!

∂k+lf
(
a+b
2
, c+d

2

)
∂xk∂yl

+
1

(b− a) (d− c)

∫ b

a

∫ d

c

f (t, r) drdt

+
(−1)m+1

(d− c)m!

n−1∑
k=0

[
1 + (−1)k

]
(b− a)k

2k+1 (k + 1)!

∫ d

c

Q(r)
∂k+mf

(
a+b
2
, r
)

∂xk∂rm
dr

+
(−1)n+1

(b− a)n!

m−1∑
l=0

[
1 + (−1)l

]
(d− c)l

2l+1 (l + 1)!

∫ b

a

P (t)
∂n+lf

(
t, c+d

2

)
∂tn∂yl

dt

∣∣∣∣∣∣
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≤ 1

(b− a) (d− c)m!n!

[∫ a+b
2

a

∫ c+d
2

c

(t− a)n (r − c)m
∣∣∣∣∂n+mf (t, r)

∂tn∂rm

∣∣∣∣ drdt(2.29)

+

∫ b

a+b
2

∫ c+d
2

c

(b− t)n (r − c)m
∣∣∣∣∂n+mf (t, r)

∂tn∂rm

∣∣∣∣ drdt
+

∫ a+b
2

a

∫ d

c+d
2

(t− a)n (d− r)m
∣∣∣∣∂n+mf (t, r)

∂tn∂rm

∣∣∣∣ drdt
+

∫ b

a+b
2

∫ d

c+d
2

(b− t)n (d− r)m
∣∣∣∣∂n+mf (t, r)

∂tn∂rm

∣∣∣∣ drdt
]
.

Using the power-mean inequality for each integral on the right-side of (2.29) and by
the similar arguments as in proving Theorem 2.4, we get (2.28). �

Corollary 2.6. If the conditions of Theorem 2.5 are satisfied and if m = n = 1 and
s1 = s2 = 1, then we have the inequality

∣∣∣∣ 1

(b− a) (d− c)

∫ b

a

∫ d

c

f (t, r) drdt+

(
a+ b

2
,
c+ d

2

)
− 1

2 (d− c)

∫ d

c

f

(
a+ b

2
, r

)
dr − 1

2 (b− a)

∫ b

a

f

(
t,
c+ d

2

)
dt

∣∣∣∣
≤
(

1

4

)2− 1
q
(
b− a

2

)(
d− c

2

){[
1

36
Bq

(1,1) +
1

18
Gq

(1,1) +
1

18
Hq

(1,1) +
1

9
F q
(1,1)

] 1
q

+

[
1

18
Hq

(1,1) +
1

36
Dq

(1,1) +
1

9
F q
(1,1) +

1

18
Iq(1,1)

] 1
q

+

[
1

18
Gq

(1,1) +
1

36
Cq

(1,1) +
1

18
Jq
(1,1) +

1

9
F q
(1,1)

] 1
q

+

[
1

9
F q
(1,1) +

1

18
Iq(1,1) +

1

18
Jq
(1,1) +

1

36
Eq

(1,1)

] 1
q

}
.

If we use the Hölder’s inequality instead of the power-mean inequality we get the
following result.

Theorem 2.6. Let f : ∆ ⊂ [0,∞)× [0,∞) → [0,∞), a < b, c < d, be a continuous

mapping such that ∂m+nf
∂tn∂rm

exist on ∆◦ and ∂m+nf
∂tn∂rm

∈ L (∆). If
∣∣∣ ∂n+mf
∂tn∂sm

∣∣∣p, p > 1, is

s-convex on the co-ordinates on ∆, s1, s2 ∈ (0, 1] with s = s1+s2
2

, m, n ∈ N, m,n ≥ 1.



INEQUALITIES OF HERMITE-HADAMARD TYPE FOR DOUBLE INTEGRALS 143

Then for P (t) and Q(r) defined as in Theorem 2.4 and 1
p

+ 1
q

= 1 we have

∣∣∣∣ 1

(b− a) (d− c)

∫ b

a

∫ d

c

f (t, r) drdt(2.30)

−
n−1∑
k=0

m−1∑
l=0

[
1 + (−1)k

] [
1 + (−1)l

]
2k+l+2

(b− a)k (d− c)l

(k + 1)! (l + 1)!

∂k+lf
(
a+b
2
, c+d

2

)
∂xk∂yl

+
(−1)m+1

(d− c)m!

n−1∑
k=0

[
1 + (−1)k

]
(b− a)k

2k+1 (k + 1)!

∫ d

c

Q(r)
∂k+mf

(
a+b
2
, r
)

∂xk∂rm
dr

+
(−1)n+1

(b− a)n!

m−1∑
l=0

[
1 + (−1)l

]
(d− c)l

2l+1 (l + 1)!

∫ b

a

P (t)
∂n+lf

(
t, c+d

2

)
∂tn∂yl

dt

∣∣∣∣∣∣
≤ (b− a)n (d− c)m

2n+mn!m! [(np+ 1) (mp+ 1)]
1
p

[
1

2

(
1

(s1 + 1)2
+

1

(s2 + 1)2

)] 1
q

×
[
Bq

(n,m) + Cq
(n,m) +Dq

(n,m) + Eq
(n,m)

] 1
q
.

Proof. The inequality (2.30) follows from the Hölder’s inequality and (1.7). �

Corollary 2.7. Under the assumptions of Theorem 2.6, if m = n = 1 and s1 = s2 =
1, then for 1

p
+ 1

q
= 1 we have the inequality

∣∣∣∣ 1

(b− a) (d− c)

∫ b

a

∫ d

c

f (t, r) drdt+ f

(
a+ b

2
,
c+ d

2

)
− 1

2 (d− c)

∫ d

c

f

(
a+ b

2
, r

)
dr − 1

2 (b− a)

∫ b

a

f

(
t,
c+ d

2

)
dt

∣∣∣∣
≤ (b− a) (d− c)

22+ 2
q (p+ 1)

2
p

q

√∣∣∣∣∂2f (a, c)

∂t∂r

∣∣∣∣q +

∣∣∣∣∂2f (b, c)

∂t∂r

∣∣∣∣q +

∣∣∣∣∂2f (a, d)

∂t∂r

∣∣∣∣q +

∣∣∣∣∂2f (b, d)

∂t∂r

∣∣∣∣q.
Our last result is for the s-concave functions can be stated as follows.

Theorem 2.7. Let f : ∆ ⊂ [0,∞)× [0,∞) → [0,∞), a < b, c < d, be a continuous

mapping such that ∂m+nf
∂tn∂rm

exist on ∆◦ and ∂m+nf
∂tn∂rm

∈ L (∆). If
∣∣∣ ∂n+mf
∂tn∂sm

∣∣∣p, p > 1, is s-

concave on the co-ordinates on ∆, s1, s2 ∈ (0, 1] with s = s1+s2
2

, m, n ∈ N, m,n ≥ 1.

Then for P (t) and Q(r) defined as in Theorem 2.4 and 1
p

+ 1
q

= 1 we have
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∣∣∣∣ 1

(b− a) (d− c)

∫ b

a

∫ d

c

f (t, r) drdt

−
n−1∑
k=0

m−1∑
l=0

[
1 + (−1)k

] [
1 + (−1)l

]
2k+l+2

(b− a)k (d− c)l

(k + 1)! (l + 1)!

∂k+lf
(
a+b
2
, c+d

2

)
∂xk∂yl

+
(−1)m+1

(d− c)m!

n−1∑
k=0

[
1 + (−1)k

]
(b− a)k

2k+1 (k + 1)!

∫ d

c

Q(r)
∂k+mf

(
a+b
2
, r
)

∂xk∂rm
dr

+
(−1)n+1

(b− a)n!

m−1∑
l=0

[
1 + (−1)l

]
(d− c)l

2l+1 (l + 1)!

∫ b

a

P (t)
∂n+lf

(
t, c+d

2

)
∂tn∂yl

dt

∣∣∣∣∣∣
≤ (b− a)n (d− c)m

2n+mn!m! [(np+ 1) (mp+ 1)]
1
p

[
4s1+1 + 4s2+1

2

] 1
q

∣∣∣∣∣∂n+mf
(
a+b
2
, c+d

2

)
∂tn∂rm

∣∣∣∣∣ .(2.31)

Proof. The inequality (2.31) follows from the Hölder’s inequality and the inequality
(1.7) with inequalities in reversed direction. �

Corollary 2.8. If the conditions of Theorem 2.7 are satisfied and if m = n = 1 and
s1 = s2 = 1, then for 1

p
+ 1

q
= 1 we have the inequality∣∣∣∣ 1

(b− a) (d− c)

∫ b

a

∫ d

c

f (t, r) drdt+ f

(
a+ b

2
,
c+ d

2

)
− 1

2 (d− c)

∫ d

c

f

(
a+ b

2
, r

)
dr − 1

2 (b− a)

∫ b

a

f

(
t,
c+ d

2

)
dt

∣∣∣∣
≤ (b− a) (d− c)

22− 4
q (p+ 1)

2
p

∣∣∣∣∣∂2f
(
a+b
2
, c+d

2

)
∂t∂r

∣∣∣∣∣ .
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[7] M. Avci, H. Kavumaci and M. E. Özdemir, New Inequalities of Hermite–hadamard Type via
s-convex Functions In The Second Sense with Applications, Applied Mathematics and Compu-
tation, 217 (2011), 5171–5176.

[8] S. S. Dragomir and R. P. Agarwal, Two Inequalities For Differentiable Mappings and Applica-
tions to Special Means of Real Numbers And To Trapezoidal Formula, Appl. Math. Lett. 11(5)
(1998), 91–95.

[9] S. S. Dragomir, and S. Fitzpatrick, the Hadamard’s Inequality for s-convex Functions in the
Second Sense, Demonstratio Math., 32 (4) (1999), 687–696.

[10] S. S. Dragomir, on Hadamard’s Inequality for Convex Functions on the Co-ordinates in a Rec-
tangle from the Plane, Taiwanese Journal of Mathematics, 4 (2001), 775–788.

[11] S. S. Dragomir and C. E. M. Pearce, Selected Topics On Hermite-hadamard In-
equalities and Applications, Rgmia Monographs, Victoria University, 2000. Online:
[Http://www.Staff.Vu.Edu.Au/rgmia/monographs/hermite hadamard.Html].

[12] W.-D. Jiang, D.-E. Niu, Y. Hua and F. Qi, Generalizations of Hermite-Hadamard Inequality to
n-time Differentiable Functions Which Are s-convex in the Second Sense, Analysis (Munich)
32 (2012), 1001–1012; Available Online at http://dx.doi.org/10.1524/anly.2012.1161.

[13] D. Y. Hwang, K. L. Tseng and G. S. Yang, Some Hadamard’s Inequalities for Co-ordinated
Convex Functions in a Rectangle from the Plane, Taiwanese Journal of Mathematics, 11 (2007),
63–73.

[14] D. Y. Hwang, Some Inequalities for n-times Differentiable Mappings and Applications, Kyung-
pook, Math. J. 43 (2003), 335–343.

[15] H. Hudzik and L. Maligranda, Some Remarks on s-convex Functions, Aequationes Math., 48
(1994), 100–111.

[16] S.-hong, B.-y. Xi and F. Qi, Some New Inequalities Of Hermite-Hadamard Type for n-times
Differentiable Functions Which Are m-convex, Analysis (Munich) 32 (2012), No. 3, 247–262;
Available Online at Http://dx.doi.org/10.1524/anly.2012.1167.

[17] G. Hanna, Cubature Rule from a Generalized Taylor Perspective, Phd Thesis.
[18] G. Hanna, S. S. Dragomir and P. Cerone, a General Ostrowski Type Inequality for Double

Integrals, Tamkang J. Math. Volume 33, Issue 4, 2002.
[19] U. S. Kirmaci, Inequalities for Differentiable Mappings And Applications to Special Means of

Real Numbers to Midpoint Formula, Appl. Math. Comput. 147 (2004), 137–146.

[20] U. S. Kirmaci, M. K. Bakula, M. E. Özdemir and J. PečArić, Hadamard-type Inequalities for
s-convex Functions, Appl. Math. And Compt., 93 (2007), 26–35.

[21] M. A. Latif and M. Alomari, Hadamard-type Inequalities For Product Two Convex Functions
on the Co-ordinetes, Int. Math. Forum, 4(47) (2009), 2327–2338.

[22] M. A. Latifand and M. Alomari On the Hadamard-type Inequalities for h-convex Functions on
the Co-ordinetes, Int. J. Math. Analysis, 3 (33) (2009), 1645–1656.

[23] M. A. Latif and S. S. Dragomir, on Some New Inequalities For Differentiable Co-ordinated
Convex Functions, Journal of Inequalities And Applications 2012, 2012:28 Doi:10.1186/1029-
242x-2012-28.

[24] M. A. Latif and S. Hussain, Some New Hermite-hadamard Type Inequalities for Functions
Whose Higher Order Partial Derivatives Are Co-ordinated Convex. Facta Universitatis (Nǐs)
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[27] M. E. Özdemir, M. A. Latif and A. O. Akdemir, On Some Hadamard-type Inequalities for Prod-
uct of Two s-convex Functions on the Co-ordinates, Journal of Inequalities And Applications,
2012:21, doi:10.1186/1029-242x-2012-21.
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