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ON SOME SEQUENCE SPACES OF NON-ABSOLUTE TYPE

SINAN ERCAN! AND CIGDEM A. BEKTAS?2

ABSTRACT. In this paper, we introduce the notion of A,-convergent and bounded
sequences. Further, we introduce the spaces €2, (A,), ¢} (A,) and ¢ (A,), which
are BK-spaces of non-absolute type and we prove that these spaces are linearly
isomorphic to the spaces {,, ¢y and c, respectively. Moreover, we establish some
inclusion relations between these spaces.

1. INTRODUCTION

A sequence space is defined to be a linear space of real or complex sequences. Let w
denote the spaces of all complex sequences. If x € w, then we simply write z = (x)
instead of x = (zy),—,.

Let X be a sequence space. If X is a Banach space and

X —=C, n(x)=a, (k=1,2,..)

is a continuous for all k£, X is called a BK-space.
We shall write ¢, ¢ and ¢, for the sequence spaces of all bounded, convergent and
null sequences, respectively, which are BK-spaces with the same norm given by

el = sup o

for all k € N.
M. Mursaleen and A. K. Noman [10] introduced the sequence spaces 2, ¢* and ¢}
as the sets of all A-bounded, A-convergent and A-null sequences, respectively, that is

Eg‘oz{$6w:sup|An($)|<oo},
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A= {x €w: lim A, () exists} :

n—o0

CS:{JZEUJ: lim A, () =0 },

n—o0

where A, (z) = ﬁ > (A — Ag—1) g, k€ N.
k=0

H. Ganie and N. A. Sheikh [7] introduced the spaces ¢y (A}) and ¢ (A}) as follows:
c(A]) = {x cw: lim A, (z) exists} :

n—oo

CO(Ag):{wa: lim[\n(x)zo},

n—oo

where A, (x) = ﬁ (A — M) ug (g — xp—1), k€N
k=0
Let v = (vg) be any fixed sequence of non-zero complex numbers. Colak [6] defined

the sequence spaces (o, (A,), ¢(A,) and ¢q (A,) as follows:
lo (Ay) ={z€cw: Az, €l },
c(Ay)={rew: Ayxpec},
co (D) ={zr€ew: Ayzy €y },
where A2, = VpTp — Vi 1Xp—1-

Several authors have recently introduced new sequence spaces, see for instance
[1,2,11].

2. NOTION OF A,~-CONVERGENT AND BOUNDED SEQUENCES

Throughout this paper, let A = (A;) be a strictly increasing sequence of positive
reals tending to infinity, 0 < A\g < A; < ... and Ay — o0 as k — oco. We take

(2.1) A () = Ain S (= Aet) Ao,

n

where A, Ty = VpZp — Vp_1Tk—_1-

A sequence x = (x) € w is \,~convergent to the number ¢ € C, called as the \,-
limit of x, if A, (x) — £ as n — co. In particular, we say that x is a \,-null sequence
if A, (z) = 0 as n — oo. Further we say that z is A,-bounded if sup |A,, (z)| < oc.

n

Negative subscript is equal to naught. For instance, A_; =0 and x_; = 0. We have

n

. ~ . 1
(2.2) Jim [A, () —af = lim | = D> (= A1) (Ayay — a)| = 0.

" k=0

So we can say by (2.2) lim A, () = a. Hence x is \,-convergent to a.
n— o0

Lemma 2.1. Fvery convergent sequence is \,-convergent to the same ordinary limit.
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The following result is immediate by Lemma 2.1.

Lemma 2.2. If a \,—convergent sequence converges in the ordinary sense, then it
must converge to the same \,—limit.

Let © = (x) € w and n > 1. Then by using (2.1) we derive that

_ 1 <
Ay, — Ay () = Ay, — /\—n ; (A — Ak—1) Ayxg

3
—

n

1

= (Ak — Ae—1) Z (Apz; — Ayziq)
™ k=0 i=k+1
1 n 1—1

= (Azi = Ayziig) > (A — Aiet)
"oi=1 k=0

A1 (Av$z‘ - Avxi—1>

Il
F -
7

i=1

Therefore we have for every z = (x;) € w that
(2.3) Az, — Ay () = S, (x)  (n€N)

where the sequence S(z) = (S, (z)),—, is defined by
1 n
(2.4) So(x) =0 and  S,(z) =+ > Ao (Apxi — Ayaig),  (n>1).

Lemma 2.3. A \,-convergent sequence x converges in the ordinary sense if and only

Zf S(I’) SHEB

Proof. Let x = (x,) be A,-convergent sequence in the ordinary sense. Then, from
Lemma 2.2 we have z = (z,) converges to the same \,-limit. We obtain S(z) € ¢
by (2.3). Conversely, let S(z) € ¢y. We have

lim Az, = lim A, (z).

n—0o0 n—o0

From the above equation, we deduce that \,-convergent sequence x converges in
the ordinary sense. O

Lemma 2.4. Fvery bounded sequence is \,-bounded.

Lemma 2.5. A \,-bounded sequence x is bounded in the ordinary sense if and only

if S(z) € U
Proof. We can obtain it directly from Lemma 2.4 and (2.4). O
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3. THE SPACES OF \,~-CONVERGENT AND BOUNDED SEQUENCES

In this section, we introduce the sequence space €2 (A,), ¢* (A,) and ¢} (A,) as
the sets of all A\,-bounded, \,-convergent and \,-null sequences;

2 (A,) = {wa:sup An(x)‘ <oo},

(A, = {:c c€w: lim A, (z) exists}

n—00

ey (A,) = {x cw: limA, (z) = O}

n—o0
where A, () like (2.1).

Theorem 3.1. The sequence spaces (5 (A,), ¢ (A,) and ¢y (A,) are BK-spaces
with the same norm given by

oo

lelley ) = | = sup &, (2)]

Lo
Proof. The proof is seen eaisly. So it is omitted. U

Remark 3.1. We can see that the absolute property does not hold on the spaces
2 (A), A(A,) and ¢ (A,). For at least one sequence x in each of these spaces
have that ||zl (a,) 7 [[|2]lle (a,), Where |z] = (|zx]) . So these spaces are BK-spaces
of non-absolute type.

Theorem 3.2. The sequence spaces (2, (A,), M (A,) and ¢y (A,) are linearly iso-

morphic to the spaces U, ¢ and cy.

Proof. We only consider the case ¢} (A,) = ¢g. The cases ¢* (A,) 2 c and /2 (A,) =
ls can be shown similarly. To prove the theorem, we must show the existence of
linear bijection between cj (A,) and ¢;. Consider the transformation T defined,
Tz = A (z) € ¢ for every = € ) (A,). The linearity of T is obvious. It is trivial that
x = 0 whenever Tx = 0 and hence T is injective.

To show surjective we define the sequence x = {z (\)} by

k J
o by
e (N) =0t (=1 ' —"——y; for keN.
We have that
N 1 I K .
(3.1) A, (7) = . <_1)k71)\iyi = Yn-
" k=0 i=k—1

We can say that A, (z) = y, from (3.1) and y € ¢, hence A, (z) € ¢g. We deduce
from that = € ) (A,) and Tx = y. Hence T is surjective.
We have for every x € ¢} (A,) that
ITall,, = 1Tzl = |A@)|, = lelyo.

oo
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which means that ¢} (A,) and ¢y are linearly isomorphic. Similarly we can obtain
that ¢ (A,) = ¢ and ) (A,) = l. O

4. SOME INCLUSION RELATIONS
Theorem 4.1. The inclusions cj (A,) C ¢ (A,) C A (A,) strictly hold.

Proof. Tt is obvious that the inclusions ¢y (A,) C ¢* (4A,) C £ (A,) hold. Further-
more, since the inclusion ¢y C ¢ is strict, it follows by Lemma 2.1 that the inclusion

cy (A,) C c*(A,) is also strict. Consider the sequence x = (z,) defined by

x, = v Z (=1 i+ A1) / (N = Ai)

for all £ € N. We obtain
Az = (=1)F (A + Nem1) / (e + A1)
for £ € N. Then we have for every n € N that

n

A ()= =) (=1)F (A +Nemr) = (-1

() /\n;( )" Ak + A1) = (=1)

We can say that A, (z) € {5 /c. Hence the sequence z is in £, (A,) but not in ¢ (A,).
So the inclusion ¢* (A,) C X (A,) strictly holds. This completes proof. O

Theorem 4.2. The inclusion (s, (A,) C €2 (A,) holds.
Proof. Let © € £« (A,). Then we deduce that

1 & 1 -
~ Z (A — Aim1) Az ] < )\—Slip | Ay Z (Al — Apm1) = sgp |Ayai| <oo.

k=0
Hence, z € €3, (A,). O

The following result is immediate by the regularity of the matrix A and by Lemma
2.3.

Lemma 4.1. The inclusions ¢y C cy (A,) and ¢ C ¢ (A,) hold. Furthermore, the
equalities hold if and only if S () € co for every sequence x in the spaces cy (A,) and
A (A,), respectively.

Proof. ¢y C ¢y (A,) and ¢ C ¢*(A,) are obvious from Lemma 2.1. To prove second
part we suppose firstly equality ¢ = ¢ (A,) holds. Then, we have for every x € ¢ (A,)
that z € ¢y and hence S (z) € ¢y by Lemma 2.3. Conversely, let = € ¢) (A,). Then,
we have that S (x) € ¢p. Thus, it follows by Lemma 2.3 and then Lemma 2.2, that
z € ¢g. This shows that the inclusion c()\ (A,) C ¢o holds. Hence by combining the
inclusions ¢y (A,) C ¢ and ¢y C ¢ (A,), we get the equality ¢ (A,) = co.

We can similarly show the equality ¢ = ¢* (A,) holds if and only if S (z) € ¢y for
every & € c* (A,). O
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Lemma 4.2. The inclusion (o C ) (A,) holds. Furthermore, the equality (o, =
02 (A,) holds if and only if S (x) € Lo for every x € £ (A,).

It can be seen clearly from by Lemma 4.1 we can say that ¢y C ¢y (A,) Ne. Con-
versely, it follows by Lemma 2.2 that ¢} (A,) N¢ C ¢g. Hence the following result can
be derived.

Theorem 4.3. The equality c; (A,) Nc = cy holds.

Let © = (x;) € w and n > 1. Then, from (2.3) and (2.4), we derive that

1
Sn (l‘) = )\_ Z )\k—l (Avxk - Avxk—l)
" k=1

[ n n—1
1
= Z M1, T — Z MDAy,
" k=1 k=1

1 n—1
= )\_n )\n—lAvxn - kZ:O ()\k - )\k—l) Av$k
An_1 ~
=N [Avxn — A, (x)]
. >\n—1 X X
__M{&m+ugpm”@ﬂ

Hence, we have for every x € w that

(4.1) &mm:x%%t:M“@—Awﬂ@] (neN).

Theorem 4.4. The inclusion (s, C 03 (A,) strictly holds if and only if

)\n—l-l -1

lim inf
n—oo n

Proof. If we suppose that the inclusion ¢, C €2 (A,) is strict, then Lemma 4.2 im-
plies the existence of a sequence x € (3 (A,) such that S (x) = (S (x)),~, & l~. Since

z e X (A,), we have A (z) = (/~X (.’p))ooi € (s and hence (A () — Ay (:E))OO . €

(. Therefore, we deduce from (4.1) that ((A—1/An — An1))r—y ¢ foo and hence
(M/An = Anz1))oey & loo. This leads us with part (a) of Lemma 4.5 [see 10]

to the consequence that lim inf\,1/A, = 1. To prove the sufficiency, suppose
n—oo
that lim inf A\, 1/A, = 1. Then, we have by part (a) of Lemma 4.5 [see 10] that
n—oo

(M/An = A1)y ¢ e Let us now define the sequence z = (xy) by z;, =
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k .
v ! ; (=1)" N/ (N\; = \i—1) for all k. Then, we have for every n € N that
A (x)‘ _ 1 zn:(—n’u < izn:(x ) =1
n M |2 K= 2 k— Ak-1

which shows that A, (z) € {.. Thus, the sequence  is in the 22 (A,) but not in £y.
Therefore, by combining this with the fact that the inclusion £, C £ (A,) always
holds by Lemma 4.2, we obtain that this inclusion is strict. 0

Corollary 4.1. The equality €2 (A,) = ls holds if and only if lim inf X\,41/\, > 1.
n—o0

Proof. The necessity is immediate by Theorem 4.4. For, if the equalities hold then
the inclusions in Theorem 4.4, cannot be strict and hence lim inf A\, 1 /A, # 1 which
n—o0

implies that lim inf A,;1/\, > 1. Conversely, suppose that nh_)n;o inf A1 /A, > 1.

n—oo

Then, it follows by part (b) of Lemma 4.5 [see 7] that (\,/ (A, — A\1)),—, and
hence (A\n/ (A — A1)y € loo. Now, let z € €2 (A,) be given. Then we have

n=0

A(z) = ([\ (x))nzo € ly and hence ([Xn (z) — Ay (:r))

by (4.1) that (S, (z)),—, € ls. This shows that S (z) € %;O for every x € €2 (A,).
Consequently, we deduce by Lemma 4.2 that the equality £ (A,) = £ holds. 0

€ . Thus we obtain
0
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