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ON SOME SEQUENCE SPACES OF NON-ABSOLUTE TYPE

SINAN ERCAN1 AND CIĞDEM A. BEKTAŞ2

Abstract. In this paper, we introduce the notion of λv-convergent and bounded
sequences. Further, we introduce the spaces `λ∞ (4v), cλ0 (4v) and cλ (4v), which
are BK-spaces of non-absolute type and we prove that these spaces are linearly
isomorphic to the spaces `∞, c0 and c, respectively. Moreover, we establish some
inclusion relations between these spaces.

1. Introduction

A sequence space is defined to be a linear space of real or complex sequences. Let w
denote the spaces of all complex sequences. If x ∈ w, then we simply write x = (xk)
instead of x = (xk)

∞
n=0.

Let X be a sequence space. If X is a Banach space and

τk : X → C , τk (x) = xk (k = 1, 2, ...)

is a continuous for all k, X is called a BK-space.
We shall write `∞, c and c0 for the sequence spaces of all bounded, convergent and

null sequences, respectively, which are BK-spaces with the same norm given by

‖x‖∞ = sup
k
|xk|

for all k ∈ N .
M. Mursaleen and A. K. Noman [10] introduced the sequence spaces `λ∞, cλ and cλ0

as the sets of all λ-bounded, λ-convergent and λ-null sequences, respectively, that is

`λ∞ =

{
x ∈ w : sup

n
|Λn (x)| <∞

}
,
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cλ =
{
x ∈ w : lim

n→∞
Λn (x) exists

}
,

cλ0 =
{
x ∈ w : lim

n→∞
Λn (x) = 0

}
,

where Λn (x) = 1
λn

n∑
k=0

(λk − λk−1)xk, k ∈ N.

H. Ganie and N. A. Sheikh [7] introduced the spaces c0

(
4λ
u

)
and c

(
4λ
u

)
as follows:

c
(
∆λ
u

)
=
{
x ∈ w : lim

n→∞
Λ̂n (x) exists

}
,

c0 (∆u
u) =

{
x ∈ w : lim

n→∞
Λ̂n (x) = 0

}
,

where Λ̂n (x) = 1
λn

n∑
k=0

(λk − λk−1)uk (xk − xk−1) , k ∈ N.

Let v = (vk) be any fixed sequence of non-zero complex numbers. Colak [6] defined
the sequence spaces `∞ (∆v), c (∆v) and c0 (∆v) as follows:

`∞ (∆v) = {x ∈ w : ∆vxk ∈ `∞ } ,
c (4v) = {x ∈ w : ∆vxk ∈ c } ,
c0 (4v) = {x ∈ w : ∆vxk ∈ c0 } ,

where ∆vxk = vkxk − vk−1xk−1.
Several authors have recently introduced new sequence spaces, see for instance

[1,2,11].

2. Notion of λv-convergent and bounded sequences

Throughout this paper, let λ = (λk) be a strictly increasing sequence of positive
reals tending to infinity, 0 < λ0 < λ1 < ... and λk →∞ as k →∞. We take

(2.1) ∧̃n (x) =
1

λn

n∑
k=0

(λk − λk−1)4v xk,

where ∆vxk = vkxk − vk−1xk−1.
A sequence x = (xk) ∈ w is λv-convergent to the number ` ∈ C, called as the λv-

limit of x, if ∧̃n (x)→ ` as n→∞. In particular, we say that x is a λv-null sequence
if ∧̃n (x) → 0 as n → ∞. Further we say that x is λv-bounded if sup

n
|∧̃n (x)| < ∞.

Negative subscript is equal to naught. For instance, λ−1 = 0 and x−1 = 0. We have

(2.2) lim
n→∞

|∧̃n (x)− a| = lim
n→∞

∣∣∣∣∣ 1

λn

n∑
k=0

(λk − λk−1) (∆vxk − a)

∣∣∣∣∣ = 0.

So we can say by (2.2) lim
n→∞
∧̃n (x) = a. Hence x is λv-convergent to a.

Lemma 2.1. Every convergent sequence is λv-convergent to the same ordinary limit.
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The following result is immediate by Lemma 2.1.

Lemma 2.2. If a λv−convergent sequence converges in the ordinary sense, then it
must converge to the same λv−limit.

Let x = (xk) ∈ w and n ≥ 1. Then by using (2.1) we derive that

∆vxn − ∧̃n (x) = ∆vxn −
1

λn

n∑
k=0

(λk − λk−1) ∆vxk

=
1

λn

n−1∑
k=0

(λk − λk−1)
n∑

i=k+1

(∆vxi −∆vxi−1)

=
1

λn

n∑
i=1

(∆vxi −∆vxi−1)
i−1∑
k=0

(λk − λk−1)

=
1

λn

n∑
i=1

λi−1 (∆vxi −∆vxi−1)

Therefore we have for every x = (xk) ∈ w that

(2.3) ∆vxn − ∧̃n (x) = Sn (x) (n ∈ N)

where the sequence S(x) = (Sn (x))∞n=0 is defined by

(2.4) S0(x) = 0 and Sn(x) =
1

λn

n∑
i=1

λi−1 (∆vxi −∆vxi−1) , (n ≥ 1) .

Lemma 2.3. A λv-convergent sequence x converges in the ordinary sense if and only
if S(x) ∈ c0.

Proof. Let x = (xn) be λv-convergent sequence in the ordinary sense. Then, from
Lemma 2.2 we have x = (xn) converges to the same λv-limit. We obtain S(x) ∈ c0

by (2.3). Conversely, let S(x) ∈ c0. We have

lim
n→∞

∆vxn = lim
n→∞
∧̃n (x) .

From the above equation, we deduce that λv-convergent sequence x converges in
the ordinary sense. �

Lemma 2.4. Every bounded sequence is λv-bounded.

Lemma 2.5. A λv-bounded sequence x is bounded in the ordinary sense if and only
if S(x) ∈ `∞.

Proof. We can obtain it directly from Lemma 2.4 and (2.4). �
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3. The spaces of λv-convergent and bounded sequences

In this section, we introduce the sequence space `λ∞ (∆v), c
λ (∆v) and cλ0 (∆v) as

the sets of all λv-bounded, λv-convergent and λv-null sequences;

`λ∞ (∆v) =
{
x ∈ w : sup

∣∣∣Λ̃n (x)
∣∣∣ <∞} ,

cλ (∆v) =
{
x ∈ w : lim

n→∞
Λ̃n (x) exists

}
cλ0 (∆v) =

{
x ∈ w : lim

n→∞
Λ̃n (x) = 0

}
where Λ̃n (x) like (2.1).

Theorem 3.1. The sequence spaces `λ∞ (∆v) , c
λ (∆v) and cλ0 (∆v) are BK-spaces

with the same norm given by

‖x‖`λ∞(∆v) =
∥∥∥Λ̃n (x)

∥∥∥
`∞

= sup
n

∣∣∣Λ̃n (x)
∣∣∣ .

Proof. The proof is seen eaisly. So it is omitted. �

Remark 3.1. We can see that the absolute property does not hold on the spaces
`λ∞ (∆v) , c

λ (∆v) and cλ0 (∆v). For at least one sequence x in each of these spaces
have that ‖x‖`λ∞(∆v) 6= ‖|x|‖`λ∞(∆v), where |x| = (|xk|) . So these spaces are BK-spaces
of non-absolute type.

Theorem 3.2. The sequence spaces `λ∞ (∆v) , c
λ (∆v) and cλ0 (∆v) are linearly iso-

morphic to the spaces `∞, c and c0.

Proof. We only consider the case cλ0 (∆v) ∼= c0. The cases cλ (∆v) ∼= c and `λ∞ (∆v) ∼=
`∞ can be shown similarly. To prove the theorem, we must show the existence of
linear bijection between cλ0 (∆v) and c0. Consider the transformation T defined,
Tx = Λ̃ (x) ∈ c0 for every x ∈ cλ0 (∆v). The linearity of T is obvious. It is trivial that
x = 0 whenever Tx = 0 and hence T is injective.

To show surjective we define the sequence x = {xk (λ)} by

xk (λ) = v−1
k

k∑
j=0

j∑
i=j−1

(−1)j−i
λi

(λj − λj−1)
yi for k ∈ N.

We have that

(3.1) Λ̃n (x) =
1

λn

n∑
k=0

k∑
i=k−1

(−1)k−iλiyi = yn.

We can say that Λ̃n (x) = yn from (3.1) and y ∈ c0, hence Λ̃n (x) ∈ c0. We deduce
from that x ∈ cλ0 (4v) and Tx = y. Hence T is surjective.

We have for every x ∈ cλ0 (4v) that

‖Tx‖c0 = ‖Tx‖`∞ =
∥∥∥Λ̃ (x)

∥∥∥
`∞

= ‖x‖cλ0 (4v)
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which means that cλ0 (4v) and c0 are linearly isomorphic. Similarly we can obtain
that cλ (∆v) ∼= c and `λ∞ (∆v) ∼= `∞. �

4. Some Inclusion Relations

Theorem 4.1. The inclusions cλ0 (∆v) ⊂ cλ (∆v) ⊂ `λ∞ (∆v) strictly hold.

Proof. It is obvious that the inclusions cλ0 (∆v) ⊂ cλ (∆v) ⊂ `λ∞ (∆v) hold. Further-
more, since the inclusion c0 ⊂ c is strict, it follows by Lemma 2.1 that the inclusion
cλ0 (∆v) ⊂ cλ (∆v) is also strict. Consider the sequence x = (xk) defined by

xk = v−1
k

k∑
i=1

(−1)i (λi + λi−1) / (λi − λi−1)

for all k ∈ N. We obtain

∆vxk = (−1)k (λk + λk−1) / (λk + λk−1)

for k ∈ N. Then we have for every n ∈ N that

Λ̃n (x) =
1

λn

n∑
k=0

(−1)k (λk + λk−1) = (−1)n .

We can say that Λ̃n (x) ∈ `∞/c. Hence the sequence x is in `λ∞ (∆v) but not in cλ (∆v).
So the inclusion cλ (∆v) ⊂ `λ∞ (∆v) strictly holds. This completes proof. �

Theorem 4.2. The inclusion `∞ (∆v) ⊂ `λ∞ (∆v) holds.

Proof. Let x ∈ `∞ (∆v). Then we deduce that

1

λn

∞∑
k=0

(λk − λk−1) |∆vxk| ≤
1

λn
sup
k
|∆vxk|

n∑
k=0

(λk − λk−1) = sup
k
|∆vxk|<∞.

Hence, x ∈ `λ∞ (∆v). �

The following result is immediate by the regularity of the matrix Λ̃ and by Lemma
2.3.

Lemma 4.1. The inclusions c0 ⊂ cλ0 (∆v) and c ⊂ cλ (∆v) hold. Furthermore, the
equalities hold if and only if S (x) ∈ c0 for every sequence x in the spaces cλ0 (∆v) and
cλ (∆v), respectively.

Proof. c0 ⊂ cλ0 (∆v) and c ⊂ cλ (∆v) are obvious from Lemma 2.1. To prove second
part we suppose firstly equality c = cλ0 (∆v) holds. Then, we have for every x ∈ cλ0 (∆v)
that x ∈ c0 and hence S (x) ∈ c0 by Lemma 2.3. Conversely, let x ∈ cλ0 (∆v). Then,
we have that S (x) ∈ c0. Thus, it follows by Lemma 2.3 and then Lemma 2.2, that
x ∈ c0. This shows that the inclusion cλ0 (∆v) ⊂ c0 holds. Hence by combining the
inclusions cλ0 (∆v) ⊂ c0 and c0 ⊂ cλ0 (∆v), we get the equality cλ0 (∆v) = c0.

We can similarly show the equality c = cλ (∆v) holds if and only if S (x) ∈ c0 for
every x ∈ cλ (∆v). �
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Lemma 4.2. The inclusion `∞ ⊂ `λ∞ (∆v) holds. Furthermore, the equality `∞ =
`λ∞ (∆v) holds if and only if S (x) ∈ `∞ for every x ∈ `λ∞ (∆v).

It can be seen clearly from by Lemma 4.1 we can say that c0 ⊂ cλ0 (∆v) ∩ c. Con-
versely, it follows by Lemma 2.2 that cλ0 (∆v)∩ c ⊂ c0. Hence the following result can
be derived.

Theorem 4.3. The equality cλ0 (∆v) ∩ c = c0 holds.

Let x = (xk) ∈ w and n > 1. Then, from (2.3) and (2.4), we derive that

Sn (x) =
1

λn

n∑
k=1

λk−1 (∆vxk −∆vxk−1)

=
1

λn

[
n∑
k=1

λk−1∆vxk −
n−1∑
k=1

λk∆vxk

]

=
1

λn

[
λn−1∆vxn −

n−1∑
k=0

(λk − λk−1) ∆vxk

]

=
λn−1

λn

[
∆vxn − Λ̃n−1 (x)

]
=
λn−1

λn

[
Sn (x) + Λ̃n (x)− Λ̃n−1 (x)

]
Hence, we have for every x ∈ w that

(4.1) Sn (x) =
λn−1

λn − λn−1

[
Λ̃n (x)− Λ̃n−1 (x)

]
(n ∈ N) .

Theorem 4.4. The inclusion `∞ ⊂ `λ∞ (∆v) strictly holds if and only if

lim
n→∞

inf
λn+1

λn
= 1.

Proof. If we suppose that the inclusion `∞ ⊂ `λ∞ (∆v) is strict, then Lemma 4.2 im-
plies the existence of a sequence x ∈ `λ∞ (∆v) such that S (x) = (S (x))∞n=0 /∈ `∞. Since

x ∈ `λ∞ (∆v), we have Λ̃ (x) =
(

Λ̃ (x)
)∞
n=0
∈ `∞ and hence

(
Λ̃n (x)− Λ̃n−1 (x)

)∞
n=0
∈

`∞. Therefore, we deduce from (4.1) that ((λn−1/λn − λn−1))∞n=0 /∈ `∞ and hence
((λn/λn − λn−1))∞n=0 /∈ `∞. This leads us with part (a) of Lemma 4.5 [see 10]
to the consequence that lim

n→∞
inf λn+1/λn = 1. To prove the sufficiency, suppose

that lim
n→∞

inf λn+1/λn = 1. Then, we have by part (a) of Lemma 4.5 [see 10] that

((λn/λn − λn−1))∞n=0 /∈ `∞. Let us now define the sequence x = (xk) by xk =



ON SOME SEQUENCE SPACES OF NON-ABSOLUTE TYPE 201

v−1
k

k∑
i=1

(−1)i λi/ (λi − λi−1) for all k. Then, we have for every n ∈ N that

∣∣∣Λ̃n (x)
∣∣∣ =

1

λn

∣∣∣∣∣
n∑
k=0

(−1)k λk

∣∣∣∣∣ ≤ 1

λn

n∑
k=0

(λk − λk−1) = 1

which shows that Λ̃n (x) ∈ `∞. Thus, the sequence x is in the `λ∞ (∆v) but not in `∞.
Therefore, by combining this with the fact that the inclusion `∞ ⊂ `λ∞ (∆v) always
holds by Lemma 4.2, we obtain that this inclusion is strict. �

Corollary 4.1. The equality `λ∞ (∆v) = `∞ holds if and only if lim
n→∞

inf λn+1/λn > 1.

Proof. The necessity is immediate by Theorem 4.4. For, if the equalities hold then
the inclusions in Theorem 4.4, cannot be strict and hence lim

n→∞
inf λn+1/λn 6= 1 which

implies that lim
n→∞

inf λn+1/λn > 1. Conversely, suppose that lim
n→∞

inf λn+1/λn > 1.

Then, it follows by part (b) of Lemma 4.5 [see 7] that (λn/ (λn − λn−1))∞n=0 and
hence (λn/ (λn − λn−1))∞n=0 ∈ `∞. Now, let x ∈ `λ∞ (∆v) be given. Then we have

Λ̃ (x) =
(

Λ̃ (x)
)∞
n=0
∈ `∞ and hence

(
Λ̃n (x)− Λ̃n−1 (x)

)∞
n=0
∈ `∞. Thus we obtain

by (4.1) that (Sn (x))∞n=0 ∈ `∞. This shows that S (x) ∈ `∞ for every x ∈ `λ∞ (∆v).
Consequently, we deduce by Lemma 4.2 that the equality `λ∞ (∆v) = `∞ holds. �
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