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ON ZERO SETS AND EMBEDDINGS OF SOME NEW ANALYTIC
FUNCTION SPACES IN THE UNIT DISK

ROMI F. SHAMOYAN1 AND OLIVERA R. MIHIĆ2

Abstract. We introduce and study certain new scales of analytic functions of area
Nevanlinna type in the unit disk and solve various problems connected with zero
sets and embeddings in these scales of spaces.

1. Introduction

Assuming that D = {z ∈ C| : |z| < 1} is the unit disk of the finite complex plane
C, T is the boundary of D, T = {z ∈ C : |z| = 1} and H(D) is the space of all
functions holomorphic in D we introduce the classes of functions

N∞α (D) = {f ∈ H(D) : T (r, f) ≤ Cf (1− r)−α, 0 ≤ r < 1, α ≥ 0}
where T (r, f) = T1(r, f) is the classical and well-known Nevanlinna characteristic
defined by T pp (r, f) = 1

2π

∫
T

(
log+ |f(rξ)|

)p
dξ, where a+ = max{0, a}, a ∈ R, (see

for example [4], [7]). We remark
(
log+ |f |

)p
is subharmonic for any p ≥ 1 and for

any analytic function in the unit disk and this fact is crucial for various embeddings
between analytic area Navenlinna type spaces which we noted in this paper.

It is obvious that if α = 0 then N∞0 = N, where N is a classical Nevanlinna class.
The following statement holds by Nevanlinnas classical result on the parametric rep-
resentation of N [4], [7]. The N class coincides with the set of functions representable
in the form

f(z) = Cλz
λB(z, {zk}) exp

(∫ π

−π

dµ(θ)

1− ze−iθ

)
, z ∈ D,

where Cλ is any complex number, λ is any nonnegative integer, B(z, {zk}) is the
classical Blaschke product with zeros {zk}∞k=1 ⊂ D enumerated according to their
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multiplicities and satisfying the Blaschke density condition
∑∞

k=1(1− |zk|) <∞, and
µ(θ) is any function of bounded variation on [−π, π]. Descriptions of zero sets and
complete parametric representations of N∞α spaces can be seen in [1] and [21].

Also, by m2(ξ) we denote standard normalized Lebesgue area measure.
Everywhere below by nf (t) = n(t) we denote the number of zeros of an analytic

function f in the disk |z| ≤ t < 1 and by Z(X) the zero set of an analytic class
X, X ⊂ H(D), i. e.

Z(X) =
{

Λ ⊂ D : ∃f ∈ X \ {0}, f|Λ = 0
}

Also, by nk we denote n(1− 2−k), i. e. nk = n(1− 2−k), k = 1, 2, . . ..
Let

(NA)p,q,γ,δ(D) = {f ∈ H(D) :

∫ 1

0

[
sup

0<τ<R
Tq(τ, f)(1− τ)γ

]p
(1−R)δdR <∞},

where γ ≥ 0, δ > −1, 0 < p <∞, 0 < q <∞.
When q = 1 then we use (NA)p,γ,δ(D).
The classes we study in the first part of this paper are closely connected with

classical weighted analytic Nevanlinna spaces in the unit disk (case δ = −1, p =
q = 1). Zero sets and parametric representation of these last classes were obtained
recently in [18]. On the other hand putting formally δ = −1, p = q = 1 and replacing
sup by integration we get well-studied Nevanlinna-Djrbashian spaces (see [4], [14] and
references there). This motivates the study of scales of spaces we defined above in
this paper.

It is not difficult to see taking t parameter big enough that our spaces are contained
in weighted analytic Nevanlinna Np

t (D) spaces. On the other hand it is well known
that this Np

t (D) classes are larger that any Hardy Hs and Bergman Asτ , where s ∈
(0,∞), τ > −1, where weighted Nevanlinna spaces are defined as follows

Np
t (D) = {f ∈ H(D) : sup

r∈(0,1)
Tp(f, r)(1− r)t <∞}.

We start the investigation of (NA)p,γ,δ(D) in [1] and one of the intention of this
note is to provide some results from there on zero sets in more general form for
(NA)p,q,γ,δ(D) spaces. Let also

L(Ap,qγ )(D) =

= {f ∈ H(D) : ‖f‖L(Ap,qγ ) =

∫ 1

0

(∫ π

−π

(
ln+ |f(reiϕ)|

)p
dϕ

)q/p
(1− r)γdr <∞},

where 0 < p <∞, 0 < q <∞ and

L(F p,q
γ )(D) =

= {f ∈ H(D) : ‖f‖L(F p,qγ ) =

∫ π

−π

(∫ 1

0

(
ln+ |f(reiϕ)|

)q
(1− r)γdr

)p/q
dϕ <∞},

where 0 < p <∞, 0 < q <∞, γ > −1.
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Using direct methods or various embeddings, in this paper we will study zero sets
of this (NA)p,q,γ,δ(D), L(Ap,qγ )(D) and L(F p,q

γ )(D) spaces and as well as other zero
sets of similar analytic Nevanlinna type spaces in the unit disk and some bounded
domains.

Throughout the paper C sometimes with indices stands for various positive con-
stants which can be different even in a chain of inequalities and are independent of
the discussed functions or variables.

In his celebrated solution of the corona problem in the disk, Carleson [2] introduced
an important class of measures to study the structure of the Hardy spaces of the unit
disk D ⊂ C. Let H(A) be a Banach space of holomorphic functions on a domain
A ⊂ C, and assume that H(A) is contained in Lp(A) for some p > 0. A finite positive
Borel measure µ on A is a Carleson measure of H(A) if there exists a constant C > 0
such that for all f ∈ H(A) ∫

A

|f |pdµ ≤ C‖f‖pH(A).

Carleson studied Carleson measures of the Hardy spaces Hp(D) showing that a finite
positive Borel measure µ is a Carleson measure of Hp(D) if and only if there exists a
constant C > 0 such that µ(Sθ0,h) ≤ Ch for all sets

Sθ0,h = {reiθ ∈ D : 1− h ≤ r < 1, |θ − θ0| ≤ h},
(see [2]). In particular the set of Carleson measures of Hp(D) does not depend on
p. In 1975, Hastings [6], [11], [12] proved a similar characterization for the Carleson
measures of the Bergman spaces Ap(D) : a finite positive Borel measure µ is a Carleson
measure of Ap(D) if and only if there exists a constant C > 0 such that µ(Sθ0,h) ≤ Ch2

for all θ ∈ [0, 2π] and h ∈ (0, 1). As a consequence, again, the set of Carleson measures
of Ap(D) does not depend on p.

Let dm2 denote the Lebesgue measure on unit disk D normalized such thatm2(D) =
1. Given α > −1, let να be the weighted measure defined by dνα(z) = (α + 1)(1 −
|z|2)αdm2(z). For 0 < p <∞ and α > −1, we let Np

α denote the space of all functions
f ∈ H(D) such that

(1.1)

∫
D

(
log+ |f |

)p
dνα <∞.

We will refer to the spaces Np
α as (weighted) area Nevanlinna spaces. Obviously, each

area Nevanlinna space is a subalgebra of H(D). The area Nevanlinna spaces are large
in the sense that each Np

α contains all the well-known Bergman spaces. This follows
from standard growth estimates for Bergman functions (see [8], Lemma 3.2).

Let again µ be a positive finite Borel measure on D. We introduce the spaces
Np(µ), 1 ≤ p < ∞, which we call area Nevanlinna- Lebesgue spaces. We define
Np(µ) to be the space of all measurable functions h on D such that

‖h‖pNp(µ) =

∫
D

(log(1 + |h|))p dµ <∞.
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Evidently, Np
α(D) is a closed subspace of Np(να). We also recall the well-known

(weighted) Bergman spaces Apα(D) = Lp(να)∩H(D), where α > −1 and 1 ≤ p <∞.
Note that while the area Nevanlinna(-Lebesgue) spaces are not Banach spaces, the
restriction 1 ≤ p <∞ means that the spaces Apα are.

Let I denote the integration operator defined by If(z) =
∫ z
0
f(ζ)dζ, z ∈ D for

f ∈ H(D). Also, let D = ∂
∂z

denote the differentiation operator.

Theorem 1.1. [3] Let 1 ≤ p < ∞ and α > −1. Given ν ≥ 0 be positive Borel
measure on D, the following conditions are equivalent:

(i) Apα(D) ⊂ Lp(ν);
(ii) Np

α(D) ⊂ Np(ν);
(iii) The embedding Np

α(D) ⊂ Np(ν) is metrically bounded;
(iv) INp

α(D) ⊂ Np(ν);
(v) I : Np

α → Np(ν) is metrically bounded;
(vi) D (Np

α(D)) ⊂ Np(ν).

Below we provide embeddings of this type for various new analytic area Nevanlinna
type spaces in the unit disk.

2. Zero sets and embeddings of some analytic area Nevanlinna type
spaces in the unit disk

In this section we, in particular, collect various assertions and facts that will be
used by us in main section of the paper. First we introduce a Weierstrass type infinite
product (see [7, Chapter 1]) and we give an estimate for it which is crucial for our
main results.

Proposition 2.1. [4] Let {zk}∞k=1 be a sequence in the unit disk, {zk}∞k=1 ⊂ D,
satisfying condition

∑∞
k=1(1 − |zk|)t+2 < ∞, t > −1. Then for such t and z ∈ D

the infinite product

(2.1) Πt(z, {zk}) =
∞∏
k=1

(
1− z

zk

)
exp

−(t+ 1)

π

∫
D

(1− |ξ|2)t ln
∣∣∣1− ξ

zk

∣∣∣
(1− ξz)t+2

dm2(ξ)

 ,

converges absolutely and uniformly inside D where it presents an analytic function
with zeros {zk}∞k=1.

Proposition 2.2. [4] If {zk}∞k=1 ⊂ D, and
∑∞

k=1(1− |zk|)t+2 <∞, t > −1, then the
following estimate holds for Πt(z, {zk}) product

ln+ |Πt(z, {zk})| ≤ Ct

∞∑
k=1

(1− |zk|2)t+2

|1− zzk|t+2
, z ∈ D

where Ct > 0 is a constant depending solely on t.

We remind that when q = 1 we remove it from list of indexes and use the following
notation (NA)p,γ,δ(D) instead of (NA)p,1,γ,δ(D).
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Theorem 2.1. Let 0 < p <∞, γ ≥ 0, δ ≥ 0. If {zk} is in a zero set of (NA)p,q,γ,δ(D)
and nk = nf (1− 2−k), k = 1, 2, . . . , f ∈ (NA)p,q,γ,δ(D), then

(2.2)
∞∑
k=1

npk
2k((γ+1)p+δ+1)

<∞

holds for q ≥ 1 and if (2.2) holds, then {zk} is in a zero set of (NA)p,q,γ,δ(D), q ≤ 1.
If (2.2) is true then Πt(z, {zk}) ∈ (NA)p,q,γ,δ(D), q ≤ 1, for p ≤ 1, t > δ+1

p
+γ−1,

and for p > 1, t > δ
p

+ γ.

Proof of Theorem 2.1. We assume that f(0) = 1. By the classical Jensen inequality∫ 1

0

[
sup

0<τ<R

(∫ τ

0

n(u)

u
du

)
(1− τ)γ

]p
(1−R)δdR ≤ C‖f‖p(NA)p,q,γ,δ(D), q ≥ 1.

Therefore, the following inequalities are true for any R, R̃ ∈ (1
3
, 1) such that

R̃ = 3R−1
2

< R :

sup
0<τ<R

∫ τ

0

n(u)

u
du(1− τ)γ ≥ C sup

1
3
<τ<R

∫ τ

τ− 1−τ
2

n(u)

u
du(1− τ)γ

≥ C sup
1
3
<τ<R

n

(
3τ − 1

2

)
(1− τ)(1− τ)γ

≥ C sup
ρ∈(0,R̃)

n(ρ)(1− ρ)γ+1

≥ C sup
ρ∈(C,R̃)

n(ρ)(1− ρ)γ+1.

Besides, one can see that for
˜̃
R = R̃− 1−R̃

2
, τ0 < 1

‖f‖p(NA)p,q,γ,δ(D) ≥ C

∫ 1

τ0

(1−R)δ sup
ρ∈( ˜̃R,R̃)

n(ρ)p(1− ρ)(γ+1)pdR

and

‖f‖p(NA)p,q,γ,δ(D) ≥ C

∫ 1

τ0

(1− R̃)(γ+1)p+δn(R̃)pdR

≥ C

∫ 1

τ0

n(R̃)p(1− R̃)(γ+1)p+δdR̃

≥ C

∞∑
k=1

npk
2k((γ+1)p+δ+1)

.

For providing the converse statement, we fix a number t assuming that Proposition
2.1 and Proposition 2.2 can be used. Then, we observe that

‖f‖p(NA)p,q,γ,δ(D) =

∫ 1

0

[
sup

0<τ<R
Tq(τ, f)(1− τ)γ

]p
(1−R)δdR, q ∈ (0,∞)
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and ∫ π

−π
|ln |Πt(z, {zk})|| dϕ ≤ C

∞∑
k=1

(1− |zk|)t+2

∫ π

−π

dϕ

|1− ττkeiϕ|t+2
, z = τeiϕ,

where it is denoted |zk| = τk and zk = τkξk, τk = 1− 1
2k+1 . Hence for p ≤ 1, q ≤ 1

‖Πt‖p(NA)p,q,γ,δ(D) ≤ C

∫ 1

0

[
∞∑
k=1

(1− |zk|)t+2

(1−R|zk|)t+1−γ

]p
(1−R)δdR

≤ C

∫ 1

0

(1−R)δ
[∫ 1

0

(1− s)t+1n(s)ds

(1−Rs)t+1−γ

]p
dR

≤ C

∫ 1

0

(1−R)δ
∞∑
k=1

npk2
−k[(t+1)p+p]

[1− (1− 1
2k+1 )R](t+1−γ)pdR

≤ C
∞∑
k=1

npk
2−k(t+1)p2−kp

2−k[(t+1−γ)p−δ−1]

≤ C
∞∑
k=1

npk
2k((γ+1)p+δ+1)

,

for t > δ+1
p

+ γ − 1, since one can easily verify that

∞∑
k=1

(1− |zk|)t+2

(1−R|zk|)t+1−γ =

∫ 1

0

(1− s)t+2dn(s)

(1−Rs)t+1−γ

=
(1− s)t+2n(s)

(1−Rs)t+1−γ |
1
0 −

∫ 1

0

n(s)

(
(1− s)t+2

(1−Rs)t+1−γ

)′
ds

= −
∫ 1

0

n(s)

[
−(t+ 2)(1− s)t+1

(1−Rs)t+1−γ +
(1− s)t+2(−(t+ 1− γ))

(1−Rs)t+2−γ (−R)

]
ds

=

∫ 1

0

n(s)(t+ 2)(1− s)t+1ds

(1−Rs)t+1−γ −
∫ 1

0

n(s)(1− s)t+2

(1−Rs)t+2−γ (t+ 1− γ)Rds

≤ C

∫ 1

0

n(s)(1− s)t+1

(1−Rs)t+1−γ (t+ 2)ds,

that [∫ 1

0

n(s)(1− s)t+1

(1−Rs)t+1−γ ds

]p
≤ C

[
∞∑
k=1

n(1− 2−k−1)2−k(t+1)2−k

(1− ρkR)t+1−γ

]p

≤ C
∞∑
k=1

npk2
−k(t+1)p2−kp

(1− ρkR)(t+1−γ)p

and that for any τ = (t+ 1− γ)p− (δ + 1) > 0 and δ > −1
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∫ 1

0

(1−R)δ

(1− ρkR)(t+1−γ)pdR ≤ C

(
1

2−k

)τ
, ρk = 1− 1

2k
(k = 0, 1, 2, . . .).

Now, let p > 1. Then for the conjugate index q > 1 deduced by 1
p

+ 1
q

= 1 and any
t > γ − 1

‖Πt‖p(NA)p,q,γ,δ(D) ≤ C

∫ 1

0

[∫ 1

0

n(s)(1− s)t+1ds

(1−Rs)t+1−γ

]p
(1−R)δdR

= C [I1 + I2]

= C

∫ 1

0

(1−R)
δ
pψ(R)

(∫ 1

0

n(s)(1− s)t+1ds

(1−Rs)t+1−γ

)
dR,

where is ψ a nonnegative function such that ‖ψ‖Lq = 1,

I1 =

∫ 1

0

n(s)(1− s)t+1

(1−Rs)t+1−γ

(∫ s

0

ψ(R)(1−R)
δ
pdR

)
ds

I2 =

∫ 1

0

n(s)(1− s)t+1

(1−Rs)t+1−γ

(∫ 1

s

ψ(R)(1−R)
δ
pdR

)
ds

and

I1 ≤ C

∫ 1

0

n(s)(1− s)t+1

∫ s

0

ψ(R)(1−R)
δ
p

(1−R)t+1−γ dRds.

Further, by Hardy and Hölder inequalities

I1 ≤ C

∫ 1

0

n(s)(1− s)t+1

(1− s)t−γ−
δ
p

∫ s

0

ψ(R)

(1−R)
dRds

≤ C

(∫ 1

0

[n(s)]p(1− s)γp+p+δds
) 1

p

�

(
∞∑
k=1

npk
2k((γ+1)p+δ+1)

) 1
p

,

for t > γ + δ
p
, nk = nf (1− 2−k), k = 1, 2, . . ., f ∈ (NA)p,q,γ,δ(D).
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Besides, again by Hölder and Hardy inequalities, for t > γ − 1

I2 =

∫ 1

0

n(s)(1− s)t+1ds

∫ 1

s

(1−R)
δ
pψ(R)

(1−Rs)t+1−γ dR

≤ C

∫ 1

0

n(s)
(1− s)t+1

(1− s)t+1

(∫ 1

s

(1−R)
δ
pψ(R)

(1−Rs)−γ
dR

)
ds

=

∫ 1

0

n(s)

(∫ 1

s

(1−R)
δ
pψ(R)

(1− s)−γ
dR

)
ds

≤ C

∫ 1

0

n(s)(1− s)
δ
p
+γ

∫ 1−s

0

ψ(1− u)duds

≤ C

[∫ 1

0

(n(s))p(1− s)δ+γp+pds
] 1
p
[∫ 1

0

(
1

1− s

∫ 1−s

0

ψ(1− u)du

)q
ds

] 1
q

≤ C‖ψ‖Lq
[∫ 1

0

(n(s))p(1− s)δ+γp+pds
] 1
p

� C‖ψ‖Lq
(
∞∑
k=1

npk
2k((γ+1)p+δ+1)

) 1
p

.

The last equivalence relation follows from dyadic decomposition of (0, 1) to dyadic
intervals like [1− 2−k, 1− 2−(k+1)], k ∈ N. As at the end of proof of Theorem 2.1, it
remains to show that the infinite product Πt converges for the considered values of t.
Namely that if (2.2) holds then

∑∞
k=1(1− |zk|)t+2 <∞. This can be done easily and

we omit the details. �

Remark 2.1. As we see, using obvious connection between two Nevanlinna character-
istics T1(r, f) and Tq(r, f) we can extend both assertions of Theorem from [1] partially
to all (NA)p,q,γ,δ(D).

Remark 2.2. It will be interesting to know if conditions on zero sets for general
(NA)p,q,γ,δ(D) we put above are sharp or not.

Corollary 2.1. [1] Let 0 < p <∞, γ ≥ 0, δ ≥ 0. Then the following two statements
are equivalent:

(i) {zk} ∈ Z((NA)p,γ,δ(D));

(ii)
∑∞

k=1

npk
2k((γ+1)p+δ+1) <∞.

We add more assertions on zero sets of analytic area Nevanlinna spaces. Using
classical Jensen equality we have∫ r

0

n(t)

t
dt =

1

2π

(∫ π

−π
ln |f(reiϕ)| dϕ

)
.

(We put f(0) = 1 which is possible.)
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Then from equality above we have∫ r

0

n(t)

t
dt ≤ 1

2π

∫ π

−π
ln+ |f(reiϕ)| dϕ.

Hence for α > −1 using the assumption that g =
(
log+ |f(z)|

)p
is subharmonic for

p ≤ 1 we have [5], [19](∫
D

|g(z)|(1− |z|)αdm2(z)

)p
≤ C

∫
D

|g(z)|p(1− |z|)αp+2p−2dm2(z),

where p ≤ 1, (α + 2)p > 1.
So we have

J =

∫ 1

0

(1− r)α
∫ r

0

n(t)

t
rdrdt(2.3)

≤ C

∫ 1

0

(∫ π

−π
(1− r)αp+2p−2 (ln+ |f(reiϕ)|)prdrdϕ

)1/p)
= Mp.(2.4)

It is known [1] that

(2.5) J ≥
∞∑
k=1

(1− |zk|)α+2.

But [19]

M1 ≤ C

∫ 1

0

∫ π

−π

(
ln+ |f(reiϕ)|dϕ

)q
(1− r)γdr = C‖f‖L(A1,q

γ )(D), q ≤ 1,

for γ = q (α + 1)− 1, and

M1 ≤ C

∫ π

−π

(∫ 1

0

ln+ |f(reiϕ)|(1− r)γdr
)p

dϕ = C‖f‖L(F p,1γ )(D), p ≤ 1,

for γ = α + 1− 1
p
.

Thus we generalized a classical result to mixed norm analytic classes L(Ap,qα )(D)
and L(F p,q

α )(D) of area Nevanlinna type for some γ depending on p, q and α.

Theorem 2.2. If f ∈ L(A1,q
γ )(D) and if (log+ |f |)q is subharmonic, γ = q (α + 1)−1,

γ > −1, q ≤ 1, α > −1, then if the {zk}∞k=1 is a zero set of f then we have∑∞
k=1(1− |zk|)α+2 < +∞.
Similarly, if f ∈ L(F p,1

γ )(D) and if (log+ |f |)p is subharmonic, γ = α − 1
p

+ 1,

γ > −1, p ≤ 1, α > −1, then if the {zk}∞k=1 is a zero set of f then we also have∑∞
k=1(1− |zk|)α+2 < +∞.

Remark 2.3. For p = q = 1 this result is a classical [4].

Let M(r, f) = max|z|≤r<1 |f(z)|, r ∈ (0, 1], ln+ x = maxx>0(lnx, 0) and

Bα,ψ(D) =

{
f ∈ H(D) :

∫ 1

0

(lnM(r, f))(1− r)α(ψ(1− r))dr < +∞
}
,
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where α > −1, ψ(t) = exp
{
−
∫ 1

t
ε(u)
u

du
}

and ε(t) bounded measurable function on

(0, 1).

Theorem 2.3. [17] Let {zk}∞1 be any sequence from Stolz angle Sδ. Let

sup06u<δ
|ε(u)|
α + 1

≤ q < 1 for all 0 < δ < δ0, for some δ0 > 0. Then there is an f

function f ∈ Bα,ψ(D), f(zn) = 0, f(z) 6= 0 for z 6= zn, n = 1, . . . , if only

∞∑
n=1

(1− |zn|)α+1(ψ(1− |zn|)) = Mα,ψ <∞.

We replace space and get similar assertion below. Proof of the theorem that follows
is similar to the proof of Theorem 2.3.

Theorem 2.4. Let α, β ≥ 0. Let sup06u<δ
|ε(u)|
α + 1

≤ q < 1 for all 0 < δ < δ0, for some

δ0 > 0. Let

B1
α,ψ,β(D) =

{
f ∈ H(D) :

∫ 1

0

( sup
0<r<R

(lnM(r, f))(1− r)αψ(1− r)(1−R)βdR <∞
}
.

Let

B2
α,ψ,β(D) =

{
f ∈ H(D) :

∫ 1

0

(∫ R

0

(lnM(r, f))(1− r)αψ(1− r)dr
)

(1−R)βdR <∞
}
.

Let {zk}∞1 be any sequence from Stolz angle Sδ. Then there is a function f ∈
B1
α,ψ,β(D) (f ∈ B2

α,ψ,β(D)), f(zn) = 0, f(z) 6= 0 for z 6= zn, n = 1, . . . , if only

∞∑
n=1

(1− |zn|)α+β+2(ψ(1− |zn|)) = Mα+β+1,ψ <∞,

( ∞∑
n=1

(1− |zn|)α+β+3(ψ(1− |zn|)) = Mα+β+2,ψ <∞
)
.

Proof. We sketch the proof of theorem following [17]. Let

Πp(z, {zn}) =
∞∏
n=1

(
1− 1− |zn|2

1− znz

)
exp

(
2p−1∑
j=1

1

j

(
1− |zn|2

1− znz

)j)
.

Note Πp(z, {zn}) = 0 only on zn, n = 1, 2, . . . and converges uniformly if and only
if
∑∞

k=1(1− |zn|)2p <∞. Then [17]

lnM(r,Πp)) ≤ C̃

(
∞∑
n=1

(1− rn)2p

(1− rnr)2p

)
, r ∈ (0, 1).
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From here we get after some calculations for certain values of p depending on α
and β following [17]

‖Πp‖B1
α,β,ψ
≤ C(1)Mα+β+1,ψ,

‖Πp‖B2
α,β,ψ
≤ C(2)Mα+β+2,ψ,

where α ≥ 0, β ≥ 0.
We omit easy details refereing the reader to [17]. �

Finally, we will present some remarks on spaces which we studied before in [20],

for β̃ > 0, α > −1, β > −1, 0 < p <∞.
Let

Ñp
α,β(D) =

{
f ∈ H(D) :

∫ 1

0

(∫
|z|≤r

log+ |f(z)|(1− |z|)αdm2(z)

)p
(1− r)βdr <∞

}
andN1,∞

α,β̃
(D) =

{
f ∈ H(D) : supR<1

∫
|z|≤R log+ |f(z)|(1− |z|)αdm2(z)(1−R)β̃ <∞

}
.

Let S be a class of all positive measurable functions on [0, 1], so that for some mw,

Mw, qw, mw, qw ∈ (0, 1] and mw ≤
w(λx)

w(x)
≤Mw for all x ∈ (0, 1), λ ∈ [qw, 1].

Let A1
w(D) =

{
f ∈ H(D) :

∫
D

log+ |f(ξ)|w(1− |ξ|)dm2(ξ) <∞
}
, w ∈ S.

A1
w(D) class is well-studied (zero sets, parametric representation), see [17] and

various references there. The norm of this space is given by integral in definition of
this space.

To have more information about N1,∞
α,β (D), Ñp

α,β(D) we connect them with A1
w(D).

We define Np,∞
α,β (D) replacing T (r, f) by Tp(r, f) in definition above of N1,∞

α,β (D) space.

Let αw =

(
ln 1
M

ln 1
q

)
, βw =

ln 1
m

ln 1
q

.

Theorem 2.5. (i) A1
w(D) ⊂ Np,∞

α,β (D), w ∈ S, 0 < p <∞.
(ii) A1

w(D) ⊂ Ñp
α,β(D), w ∈ S, 0 < p <∞.

For following indexes

(i)

{
if α + (α− αw) > 1, β > −1, 0 < p <∞ or

if β + (α− αw − 1)p > −1, 0 < p <∞.

(ii)

{
if α̃− p(2 + αw) > −1, β̃ ≥ 0, 0 < p <∞ or

if β̃ − p(2 + αw) + α̃ > −1, α̃− p(2 + αw) < −1.

Proof of Theorem 2.5. Let f ∈ A1
w(D). From subharmonicity of log+ |f(z)| we have

the following estimate [17]

log+ |f(z)| ≤ C(w)
‖f‖w,1

(1− |z|)2+αw
, z ∈ D.
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This follows similarly as in standard Bergman class. Hence we have integrating by
polar coordinates∫ 1

0

(∫
|z|≤R

log+ |f(z)|(1− |z|)αdm2(z)

)p
(1−R)βdR ≤ Cw‖f‖w,1 · I

= C‖f‖w,1
∫ 1

0

(∫
|z|≤R

(1− |z|)−(2+αw)+αdm2(z)

)p
× (1−R)βdR

and

sup
R<1

∫ R

0

(∫
T

log+ |f(z)|dξ
)p

(1− |z|)α̃d|z|(1−R)β̃ ≤ Cw‖f‖w,1 · J.

Then we have the following estimates which are easy to check

I ≤ Cw

{
if α− αw > 1, β > −1, 0 < p <∞ or

if β + (α− αw − 1)p > −1, α− αw < −1, 0 < p <∞.

J ≤ sup
R<1

∫ R

0

(1− |z|)p−2+αw(1− |z|)α̃d|z|(1−R)β̃

≤ Cw

{
if α̃− p(2 + αw) > −1, β̃ ≥ 0, 0 < p <∞ or

if β̃ − p(2 + αw) + α̃ > −1, α̃− p(2 + αw) < −1.

Theorem 2.5 is proved. �

Remark 2.4. Previous assertion has as corollary various assertions on Ñp
α,β(D), Np,∞

α,β (D)

based on known results about A1
w(D), see [20].

Remark 2.5. Similarly we can find conditions for embedding A1
w(D) ⊂ Np,q,γ,α(D)

and we leave this to readers.

Proofs of Proposition 2.3 and Proposition 2.4 as it follows from [10] and [19] are
based on arguments from [10] and [19] and their are valid for subharmonic function(
log+ |f(z)|

)s
for any s ≥ 1.

Proposition 2.3. Let p ≥ 1, q ∈ (0,∞), τ = β + q
p
(α + 1) then∫ 1

0

(∫
|z|<R

(
log+ |f(z)|

)p
(1− r)αdm2(z)

)q/p
(1−R)βdr <∞

if and only if
∫ 1

0

(∫
T

(
log+ |f(rξ)|

)p
dξ
)q/p

(1− r)τdr <∞.

Proposition 2.4. Let 1 ≤ min(p, q) ≤ s, s ≥ 1 and γ > −1. Then we have(∫
D

(
log+ |f(w)|

)s
(1− |w|)s(γ+1)/q+s/p−2dm2(w)

)1/s

≤ C‖f‖L(Ap,qγ ), f ∈ L(Ap,qγ )(D),
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and(∫
D

(
log+ |f(w)|

)s
(1− |w|)s(γ+1)/q+s/p−2dm2(w)

)1/s

≤ C‖f‖L(F p,qγ ), f ∈ L(F p,q
γ )(D).

Proposition 2.5. Let q ≥ 1 and p ≤ s. Then(∫ 1

0

T sq (r, f)(1− |z|)αd|z|
)p/s

≤
∫ 1

0

(1− |z|)τ
(

sup
0<ρ<|z|

Tq(ρ, f)(1− |z|)γ
)p

d|z|,

for the following values of indexes α > −1, p, q, s ∈ (0,∞), γ ≥ 0, τ = (α+ 1)(p/s)−
γp− 1.

The easy proof follows from dyadic decomposition of unit interval and growing
properties of Tq(r, f) function immediately.

Embeddings from Propositions 2.3–2.5 open a direct way for investigation of prop-
erties of less studied analytic area Nevanlinna type spaces via standard and well
studied similar type spaces in the unit disk contained for example in [4].

Note Propositions 2.3–2.5 provide valuable information on zero sets of less stud-
ied analytic area Nevalinna type spaces based on their connections with standard
classes of area Nevanlinna type and the base of proofs of these assertions is again the
subharmonicity of

(
log+ |f |

)s
for s ≥ 1.

A careful analysis of proofs of emebddings of Ortega and Fabrega, (see [15], [16]),
shows us that the following lemma is valid (even in unit ball). The proof is based on
subharmonicity of

(
log+ |f |

)s
, s ≥ 1.

Lemma 2.1. L(F p,q
s )(D) for all p ∈ (1,∞) is a growing function by parameter q ∈

(1,∞]. This means if f ∈ L(F p,q1
s )(D) then f ∈ L(F p,q2

s )(D) if only q1 < q2.
If f ∈ L(F p,q

sq−1)(D) then f ∈ L(F r,m
tm−1)(D), where m > 1, q > 1, m < p < r ≤ ∞,

s− 1/p = t− 1/r.
If f ∈ L(F p,q

sq−1)(D) then f ∈ L(Ar,ptr−1)(D), where p ≤ r, q > 1, p > 1, s − 1/p =
t− 1/r.

3. On zero sets of area Nevanlinna type spaces in bounded G domains

Let G be simply connected region on C, ∂G it is boundary. As usual, H(G) is the
space of all analytic functions on G, ln+ x = maxx>0 (lnx, 0) and also, as usual, ϕ is
conformal map of D on G, ψ is the reverse map and d(w, ∂G) is a distance from w
to ∂G.

Let G be bounded region, G ⊂ C and

Np
α(G) = {f ∈ H(G) :

∫
G

dα(w, ∂G)
(
ln+ |f(w)|

)p
dm2(w) <∞}.

Definition 3.1. Let Gβ be bounded simply connected region of complex plane. Gβ

is (Bn) region if ∂Gβ is equal to
⋃m
s=1 Γs,m ∈ N, where Γs is a smooth arc for which

the ”angle points” (if they exist) are equal to
(
π
βj

)
, j = 1, . . . ,m.
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We assume here and below βj = β for all j.

Theorem 3.1. [13] Let f ∈ N1
α(Gβ), 1

2
< β ≤ 1, f(wk) = 0, f(w) 6= 0, w 6= wk,

k = 1, . . . Then

(3.1)
∞∑
k=1

(1− |ψ(wk)|)
α+2
β < +∞.

And if {wk}∞k=1 ∈ Gβ so that (3.1) holds, then we can construct a function f ∈ N1
α(Gβ)

so that Z(f) = {wk}∞k=1.

Our assertion is the following. We extend partially theorem above to all 0 < p ≤ 1.

Theorem 3.2. Let f ∈ Np
α(Gβ), 0 < p ≤ 1, 1

2
< β ≤ 1. Let f(wk) = 0, f(w) 6= 0,

w 6= wk, k = 1, . . . Then we have

(3.2)
∞∑
k=1

(1− |ψ(wk)|)γ < +∞, γ =
α̃ + 2

p
, α̃ =

α + 2

β
− 2,

if
(
log+ |f(ψ(z))|

)p
is subharmonic for p ≤ 1 where ϕ is a conformal map from D on

Gβ and ϕ−1 = ψ.

Remark 3.1. Note also following [13] we can show there is τ > 0, so if
∑∞

k=1(1 −
|ψ(wk)|)τ < +∞ there is infinite product Πp(z, {ψ(wk)}) = Πp(z, {zk}), p = p(τ), so
that Πp(zk, {zk}) = 0 and

∫
Gβ
dα(w, ∂Gβ)(ln+ |Πp(w)|)p is finite.

Proof of Theorem 3.2. The proof is based on (2.3), (2.5) and arguments used in
proof of Theorem 3.1. Let f ∈ Np

α(Gβ). So we have

‖f‖p =

∫
Gβ

dα(w, ∂Gβ)(ln+ |f(w)|)pdm2(w) < +∞, 0 < p ≤ 1.

It is known [17] that |ϕ′(z)| ≈ d(ϕ(z), ∂G)

1− |z|
and

1

|ψ′(w)|
≈
(
d(w, ∂G)

1− |ψ(w)|

)
.

Using this we have (w = ϕ(z))

‖f‖pGβ =

∫
D

(dα(ϕ(z), ∂Gβ))
(
ln+ |f(ϕ(z))|

)p |ϕ′(z)|2dm2(z)

≈
∫
D

((1− |z|)α)
(
ln+ |f(ϕ(z))|

)p
(|ϕ′(z)|α+2)dm2(z)

= S

It is known for Gβ region [17] that |ϕ′(z)| � |i− z|1/β and |ϕ′(z)| � |i− z|1/β−1, hence

S �
∫
D

(1− |z|)α
(
ln+ |f(ϕ(z))|

)p |i− z|(1/β−1)(α+2)dm2(z),

but |i− z|1/β−1 ≥ (1− |z|)(1/β−1), β ∈ (0, 1]. So finally

‖f‖pGβ ≥ C

(∫
D

(1− |z|)
α+2
β
−2
)(

ln+ |f(ϕ(z))|)pdm2(z)
)
.
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Put F (z) = f(ϕ(z)), it remains to use (2.3), for 0 < p ≤ 1, F ∈ H(D) and estimate
(2.5).

Theorem 3.2 is proved. �

Remark 3.2. It will be interesting to know is the last assertion of this paper sharp.
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