KRAGUJEVAC JOURNAL OF MATHEMATICS VOLUME 38(2) (2014), PAGES 245–248.

A NOTE ON GENERALIZED QUASI-BAER RINGS

M. ANZANI¹ AND H. HAJ SEYYED JAVADI¹

ABSTRACT. A ring with identity is generalized quasi-Baer if for any ideal I of R, the right annihilator of I^n is generated by an idempotent for some positive integer n, depending on I. We study the generalized quasi-Baerness of $R[x;\sigma;\delta]$ over a generalized quasi-Baer ring R where σ is an automorphism of R.

1. INTRODUCTION

Throughout this paper R denotes an associative ring with identity. Recall that R is (quasi-) Baer if the right annihilator of every (right ideal) nonempty subset of R is generated as a right ideal by an idempotent. It is easy to see that the Baer and quasi-Baer properties are left-right symmetric for any ring. In [8] Kaplansky introduced Baer rings to abstract various properties of AW^* -algebras and von Neumann algebras. Clark defined quasi-Baer rings in [4] and used them to characterize when a finite dimensional algebra with unity over an algebraically closed field is isomorphic to a twisted matrix units semigroup algebra.

As a generalization of Baer rings, R is called a right (left) p.p.- ring if every principal right (left) ideal is projective. Equivalently, if the right (left) annihilator of any element of R is generated by an idempotent of R. R is called a p.p.-ring (also called a Ricart ring [10, p. 18]), if it is both right and left p.p.-ring. In [6] Huh et al. defined a ring R to be called generalized right p.p.-ring if for any $x \in R$ the right annihilator of x^n is generated by an idempotent for some positive integer n. von Neumann regular rings are p.p.-rings by Goodearl [5, Theorem 1.1], and π -regular rings are generalized p.p.-rings.

In [2] Birkenmeier et al. introduced the concept of principally quasi-Baer rings. A ring R is right (left) principally quasi-Baer if the right (left) annihilator of a principal right (left) ideal of R is generated by an idempotent. In [9] Moussavi et al. initiated

Key words and phrases. Generalized quasi-Baer rings, Ore extensions, Annihilator.

²⁰¹⁰ Mathematics Subject Classification. 16S36, 16D25.

Received: December 9, 2012

Accepted: November 17, 2014.

M. ANZANI AND H. HAJ SEYYED JAVADI

the study of generalized right (principally) quasi-Baer rings. A ring R is generalized right (principally) quasi-Baer if for any (principal) right ideal I of R, the right annihilator of I^n is generated by an idempotent for some positive integer n, depending on I.

In [3, Theorem 1.2] Birkenmeier et al. showed that if a ring R is quasi-Baer then $R[x;\sigma]$ is a quasi-Baer ring when σ is an automorphism of R. To study quasi-Baerness (right principally quasi-Baerness) of Ore extensions of a quasi-Baer (right principally quasi-Baer) ring, in [7] Hong et al. proved that $R[x;\sigma;\delta]$ over a quasi-Baer ring R is a quasi-Baer ring when σ is an automorphism of R. In this paper we prove that $R[x;\sigma;\delta]$ over a generalized quasi-Baer ring is a generalized quasi-Baer ring.

2. Main Results

Given a ring R, right annihilator of I in R is $r_R(I) = \{a \in R \mid Ia = 0\}$. Left annihilator is defined analogously. The Ore extension $R[x;\sigma;\delta]$ is the polynomial ring over R, subject to $xr = \sigma(r)x + \delta(r)$ for any $r \in R$. Note that $R[x;\sigma;\delta]$ is written by $R[x;\sigma]$ and $R[x;\delta]$ when $\delta = 0$ and σ is the identity map, respectively. Following [7], if R is a semiprime ring with $\sigma(I) \subseteq I$ for any ideal I of R then R is a quasi-Baer ring if and only if $R[x;\sigma;\delta]$ is a quasi-Baer ring. By same method we prove following theorems.

Theorem 2.1. If R is a generalized quasi-Baer ring, then $R[x;\sigma;\delta]$ is a generalized quasi-Baer ring.

Proof. Let I be an ideal of $R[x;\sigma;\delta]$ and $J = \{a \in R \mid ax^n + \text{ terms of lower degree} \in I \text{ for some } 0 \leq n \in \mathbb{Z}\}$. Then J is an ideal of R. Note that $\sigma(J) \subseteq J$, and so $J \subseteq \sigma^{-1}(J)$. Let $\hat{J} = \sum_{k \geq 1} \sigma^{-k}(J)$. Then \hat{J} is also an ideal of R and $J \subseteq \hat{J}$. Moreover, $\sigma(\hat{J}) = \hat{J} = \sigma^{-1}(\hat{J})$. If $d \in \hat{J}, d = \sigma^{-k_1}(d_1) + \cdots + \sigma^{-k_i}(d_i)$, where $d_k \in J$ for $k \in \{1, \ldots, i\}$. Since $\sigma(J) \subseteq J, \sigma(d) = \sigma(\sigma^{-k_1}(d_1)) + \cdots + \sigma(\sigma^{-k_i}(d_i)) = \sigma^{-k_1}(\sigma(d_1)) + \cdots + \sigma^{-k_i}(\sigma(d_i)) \in \hat{J}$. Thus $\sigma(\hat{J}) \subseteq \hat{J}$ and $\hat{J} \subseteq \sigma^{-1}(\hat{J})$, obtaining from the difinition of $\hat{J}, \sigma^{-1}(\hat{J}) \subseteq \hat{J}$. Hence, $\sigma^{-1}(\hat{J}) = \hat{J}$ and so $\sigma(\hat{J}) = \hat{J}$, obtaining $\sigma^u(\hat{J}) = \hat{J}$ for any integer u. By assumption, $r_R(\hat{J}^n) = eR$ for some $e^2 = e \in R$ and so $\hat{J}^n e = 0$. We will show that $r_{R[x;\sigma;\delta]}(I^n) = eR[x;\sigma;\delta]$. Let $g(x) = b_0 + b_1x + \cdots + b_nx^n \in R[x;\sigma;\delta]$ and f(x)g(x) = 0 for any $f(x) = a_0 + a_1x + \cdots + a_mx^m \in I^n$. Note that for any $r \in R$,

$$rx^{i} = x^{i}\sigma^{-i}(r) - \left(\sum_{s+t=i-1}\sigma^{s}\delta\sigma^{t}(\sigma^{-i}(r))\right)x^{i-1}$$
$$-\dots - \left(\sum_{s+t=i-1}\delta^{s}\sigma\delta^{t}(\sigma^{-i}(r))\right) - \delta^{i}(\sigma^{-i}(r))$$

We can rewrite $f(x) = c_0 + xc_1 + \dots + x^m c_m$, where $c_m = \prod_{i=1}^n \sigma^{\sum_{k=i}^n (-m_k)}(a_{m_i}) \in \hat{J}^n$. Thus we have the following

(2.1)
$$(c_0 + xc_1 + \dots + x^m c_m)(b_0 + b_1 x + \dots + b_n x^n) = 0.$$

246

Claim 2.1. $\hat{J}^n b_n = 0$ and $b_n = eb_n$.

From equation (2.1), we have $c_m b_n = 0$. Since

$$c_{m} = \prod_{i=1}^{n} \sigma^{\sum_{k=i}^{n} (-m_{k})}(a_{m_{i}}) \in \hat{J}^{n},$$
$$\prod_{i=1}^{n} \sigma^{\sum_{k=i}^{n} (-m_{k})}(a_{m_{i}})(b_{n}) \in \hat{J}^{n}b_{n},$$

we have $a_{m_1}\sigma^{m_1}(a_{m_2})\sigma^{m_1+m_2}\cdots(a_{m_{m-1}})\sigma^{m_1+m_2+\cdots+m_{m-1}}(a_{m_m})\sigma^{m_1+m_2+\cdots+m_m}(b_n) = 0.$ Then for any integer $k \ge 0$, $\sigma^{-k}(a_{m_1})\sigma^{-k+m_1}(a_{m_2}) + \cdots + \sigma^{-k+m_1+\cdots+m_m}(b_n) = 0.$ Thus $\hat{J}^n \sigma^{-k+m_1+c+m_m}(b_n) = 0.$ Since $\sigma^{k-m_1-\cdots-m_m}(\hat{J}^n) = \hat{J}^n$ then $\hat{J}^n b_n = 0.$ Hence $b_n \in r_R(\hat{J}^n) = eR$, and therefore $b_n = eb_n.$

Claim 2.2. $c_i e = 0$ for any $0 \le i \le m$.

Since $c_m \in \hat{J}^n$, $f(x)e = (c_0 + xc_1 + \dots + x^m c_m)e = c_0e + xc_1e + \dots + x^{m-1}c_{m-1}e \in I^n$. Then $\sigma^{m-1}(c_{m-1}e) \in J^n \subseteq \hat{J}^n$, and so $c_{m-1}e \in \sigma^{-(m-1)}(\hat{J}^n) \subseteq \hat{J}^n$. Hence, $c_{m-1}e = (c_{m-1}e)e \in \hat{J}^n e = 0$. Continuing this process, We have $c_i e = 0$ for any $0 \le i \le m$.

Claim 2.3. $g(x) \in eR[x;\sigma;\delta]$.

From Claims 2.1 and 2.2, we have

$$0 = f(x)g(x)$$

= $x^{m}c_{m}b_{n}x^{n} + (x^{m}c_{m}b_{n-1}x^{n-1} + x^{m-1}c_{m-1}b_{n}x^{n}) + \dots + c_{0}b_{0}$
= $(x^{m}c_{m}b_{n-1}x^{n-1} + x^{m-1}c_{m-1}eb_{n}x^{n}) + \dots + c_{0}b_{0}$
(2.2) = $x^{m}c_{m}b_{n-1}x^{n-1} + \dots + c_{0}b_{0}$.

So, $\sigma^m(c_m b_{m-1}) = 0$ and we have that $c_m b_{n-1} = 0$. Then by Claim 2.1, $J^n b_{n-1} = 0$, and it follows that $b_{n-1} = eb_{n-1}$. Then equation (2.2) becomes

$$0 = (x^{m}c_{m}b_{n-2}x^{n-2} + x^{m-1}c_{m-1}b_{n-1}x^{n-1} + x^{m-2}c_{m-2}b_{n}x^{n}) + \dots + c_{0}b_{0}$$

= $(x^{m}c_{m}b_{n-2}x^{n-2} + x^{m-1}c_{m-1}e_{n-1}x^{n-1} + x^{m-2}c_{m-2}e_{n}b_{n}x^{n}) + \dots + c_{0}b_{0}$
= $x^{m}c_{m}b_{n-2}x^{n-2} + \dots + c_{0}b_{0}.$

Thus $c_m b_{n-2} = 0$, and so $\hat{J}^n b_{n-2} = 0$. Hence, we also have $b_{n-2} = eb_{n-2}$. Continuing this process, we have $b_j = eb_j$ for any $0 \le j \le n$. Consequently, we have $g(x) = b_0 + b_1 x + \cdots + b_n x^n = eb_0 + eb_1 x + \cdots + eb_n x^n \in eR[x;\sigma;\delta]$.

Conversely, let $f(x) = c_0 + xc_1 + \cdots + x^m c_m \in I^n$. Then by Claim 2.2, f(x)e = 0. Thus $I^n e = 0$, and so $eR[x;\sigma;\delta] \subseteq r_{R[x;\sigma;\delta]}(I^n)$. Consequently, $R[x;\sigma;\delta]$ is a generalized quasi-Baer ring.

In the following proposition we see that the converse of Theorem 2.1 is correct when R be a semiprime ring. **Proposition 2.1.** Let R be a semiprime ring with $\sigma(I) \subseteq I$ for any ideal I of R. If $R[x;\sigma;\delta]$ is a generalized quasi-Baer ring, then R is a generalized quasi-Baer ring.

Proof. Let J be an ideal of R. Since $R[x;\sigma;\delta]$ is a generalized quasi-Baer ring, then $r_{R[x;\sigma;\delta]}((JR[x;\sigma;\delta])^n) = e(x)R[x;\sigma;\delta]$ for $e(x)^2 = e(x) = e_0 + e_1x + \cdots + e_tx^t \in R[x;\sigma;\delta]$ and a positive integer n. Since $e(x)R[x;\sigma;\delta]$ is an ideal, $(e(x) - 1)R[x;\sigma;\delta]e(x) = 0$. Hence we have $e_tR\sigma^t(e_t) = 0$. Since R is semiprime, $\sigma^t(e_t)Re_t = 0$. Then $\sigma^t(e_t)R\sigma^t(e_t) \subseteq \sigma^t(e_t)R\sigma^t(Re_tR) \subseteq \sigma^t(e_t)Re_tR = 0$ and so $\sigma^t(e_t)R\sigma^t(e_t) = 0$. Since σ is an automorphism of R and R is semiprime, $e_t = 0$. Continuing this process, we have $e(x) = e_0$, where $e_0^2 = e_0 \in R$. Thus $r_{R[x;\sigma;\delta]}((JR[x;\sigma;\delta])^n) = e_0R[x;\sigma;\delta]$. We claim that $r_R(J^n) = e_0R$. Obviously $e_0R \subseteq r_R(J^n)$. If $b \in r_R(J^n)$ then $J^nb = 0$. Since $\sigma^s(b) \in RbR$, $J^n\sigma^s(b) \subseteq J^nbR = 0$ and so $J^n\sigma^s(b) = 0$ for any integers $m_v, n_v \ge 0$. Thus $J^nR[x;\sigma;\delta]b = 0$ and so $b \in r_{R[x;\sigma;\delta]}((JR[x;\sigma;\delta])^n) = e_0R$. Hence, $r_R(J^n) \subseteq e_0R$.

Corollary 2.1. Let R be a semiprime ring with $\sigma(I) \subseteq I$ for any ideal I of R. Then $R[x;\sigma;\delta]$ is a generalized quasi Baer ring if and only if $R[x;\sigma;\delta]$ is a quasi-Baer ring.

Proof. If $R[x; \sigma; \delta]$ is a generalized quasi Baer ring then R is a generalized quasi-Baer ring. Since R is a semiprime ring by [9, Proposition 2.2], R is a quasi-Baer ring. Then by [7, theorem 1], $R[x; \sigma; \delta]$ is a quasi-Baer ring. The converse is clear.

Acknowledgment: The authors wish to express their gratitude to the referee for his/her helpful suggestions and comments for the improvement of the paper.

References

- [1] S. K. Berberian, Baer * rings, Grundlehren Math. Wiss. Band 195; Springer: Berlin, 1972.
- [2] G. F. Birkenmeier, J. Y. Kim, J. K. Park, Principally quasi-Baer rings, Communication in Algebra 29(2) (2001) 639–660.
- G. F. Birkenmeier, J. Y. Kim, J. K. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra 159 (2001) 25–42.
- [4] W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 34 (1967) 417–424.
- [5] K. R. Goodearl, von Neumann regular rings, Krieger: Malabar, 1991.
- [6] C. Huh, H. K. Kim, Y. Lee, p.p.-rings and generalized p.p.-rings, J. Pure Appl. Algebra 167 (2002a) 37–52.
- [7] C. Y. Hong, N. K. Kim, Y. Lee, Ore extensions of quasi-Baer rings, Communication in Algebra 37 (2009) 2030–2039.
- [8] I. Kaplansky, Rings of Operators, Benjamin, New York, 1965.
- [9] A. Moussavi, H. Haj Seyyed Javadi, E. Hashemi, *Generalized quasi-Baer rings*, Communication in Algebra 33 (2005) 2115–2129.
- [10] C. E. Ricart, Banach algebras with an adjoint operation, Ann. of Math. 47 (1946) 528–550.

¹SHAHED UNIVESITY, TEHRAN, IRAN *E-mail address*: anzani@shahed.ac.ir *E-mail address*: h.s.javadi@shahed.ac.ir