KRAGUJEVAC JOURNAL OF MATHEMATICS
VOLUME 38(2) (2014), PAGEs 283-301.

NEW RESULTS FOR A SYSTEM OF TWO FRACTIONAL
DIFFERENTIAL EQUATIONS INVOLVING n CAPUTO
DERIVATIVES

MOHAMED HOUAS! AND ZOUBIR DAHMANTI?

ABSTRACT. This paper studies a coupled system of two differential equations of
arbitrary orders using Caputo approach with n derivatives, n € N*,n # 1. New
existence and uniqueness results are established using Banach contraction principle.
Other existence results are obtained using Schaefer and Krasnoselskii fixed point
theorems. Some illustrative examples are also presented.

1. INTRODUCTION

In recent years, the subject of fractional differential equations has gained a consid-
erable attention and it has emerged as an interesting and popular field of research. For
some recent development on this theory, we refer the reader to [1, 2, 3, 4, 5, 6, 9, 19, 20]
and references therein. On the other hand, the study of coupled systems involving
fractional differential equations is also important as such systems occur in various
problems of applied nature, for instance, see [7, 11, 13, 21, 27]. Some recent results
on coupled systems of fractional differential equations on a finite interval can be found
in [8, 12, 16, 17, 18, 25, 26, 27]. In [8, 10, 22, 23, 24|, the existence and uniqueness
of solutions were investigated for a coupled system nonlinear fractional differential
equations by using Banach and/or Schauder fixed point theorems.

This paper deals with the existence of solutions for the following problem

(1.1)

Doy (t) = fi(t,y(t), Dy (t), Dy (t),..., D1y (t)),t €0,1],
DPoy (t) = fo (t,z (t), DPa (t), D2z (t),..., D1z (t)) ,t € [0,1],
x(0)=a*2'(0)=2"(0)="---= x(m=2) (0) =0,DPx (1) = \yDPz (1),
y(0) =y*y (0)=y"(0)=--- =y 2 (0) =0,D% (1) = A D% (&),
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where D% D% i=0,1,2,...,n—1, D? and D? denote the Caputo fractional deriva-
tives, with n — 1 < a1 < -~ <oy <agy<nandn—-—1< f,_1 < - < 1 <
Bo < n,p < ag,q < Po,n € N n # 1,J = [0,1], A1, A2 # 0 are real constants,
€ R,0 < n,& < 1 are real numbers and fi, fo are two functions which will be
specified later.

The rest of this paper is organized as follows: in section 2, we present some prelim-
inaries and lemmas. Section 3 is devoted to existence of solution of the system (1.1).
To illustrate our main results, in section 4, three examples are treated.

2. PRELIMINARIES

Let us begin this section with some basic concepts of fractional calculus that will
be used throughout this paper.

Definition 2.1. The Riemann-Liouville fractional integral operator of order av > 0,
for a continuous function f on [0, 00| is defined as

JOF (1) = ﬁ/o (t— )V f(r)dra > 0,
JOf(t)=[f(t),
where I' (« fo e “u*1du.

Definition 2.2. The fractional derivative of f € C™ ([0, cc[) in the Caputo’s sense is
defined as

Def(t) = ! )/Ot(t—T)”_a_lf(")(T)dT,n—1<a,n€N*.

I'n—«

For more details, we refer the reader to [18, 20].
Let us now introduce the following Banach space

X ={z:2€C(0,1],R); D%z, D**x,..., D'z € C([0,1],R)},

endowed with the norm ||z||, = |z| + [|[D*z| + | D*z| + --- + [|[D*'z|];

[zl = sup [« ()], | D ]| = sup [D*ra ()], || D*22|| = sup [D*z (t)] ..., [[ D ]| =
teg teJ teJ

sup | D1z (t)|. Similarly, we can define the space

te]

with the norm |y, = |yl + HDmyH + |DPy|| + -+ + HDﬁnfly

lyll = suply O [| Dy = sup [Dy (O], || D%y = sup [ Dy (B)] ... |07y =

€

sup‘Dﬂ" 1y ()]
ted

For (z,y) € X x Y, let ||(z,9)| xxy = l|lzllx + llylly- It is clear that the product
space (X X Y, ||(z,y)| xxy) is a Banach space.
We give the following lemmas [14, 15].
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Lemma 2.1. Letr,s >0, f € Li([a,b]). Then I"I°f(t) = I""5f(t), D*I°f(t) = f(¢t),
t € [a,b].

Lemma 2.2. Let s >r >0, f € Li([a,b]). Then D"I*f(t) = I*"f(t), t € [a,].
Also, we present the following two lemmas [14].

Lemma 2.3. For a > 0, the general solution of the fractional differential equation
Dz (t) = 0 is given by z () = co + et + ot + -+ + ¢, 1 t"7 L, where ¢; € R,i =
0,1,2,....,n—1,n=[o] + 1.

Lemma 2.4. Let o > 0. Then J*D%x (t) = z (t) + co + c1t + cot? + -+ - + g™,
for some ¢; e R;i=0,1,2,....,n—1,n=[a] + 1.

The following auxiliary result is crucial to prove our main results.
Lemma 2.5. Let g € C([0,1]). The solution of the equation

(2.1) D*z(t)=g(t),teJn—-1<ay<n,n>0,
subject to the conditions z(0) = 2* 2’ (0) = 2”(0) = --- = 22 (0) = 0 and
DrPx (1) = \yDPx (n), is given by
1 t
z(t) = t—5)""g(s)ds + z*
0= 50y [ =90
['(n—p)t"? /1 o1
- 1 — )20 d
A A Ty —p) Jy 77 90®
1

AL (n = p) ! 2P (o) ds
+(1—)\177np1)r(n)r(a0_p>/0 (77 ) g( )d .

Proof. We use Lemma 2.3 and Lemma 2.4 to generate the general solution of (2.1).
We have

1 t
2.2 )= | (t—8) " g(s)ds—co—cit —cat® — -+ — co1t" .
22 2= s [ =9 e ds — = at—af ==
By #(0) = 2*, and o' (0) = --- = 22 (0) = 0, we can obtain ¢y = —2* and
01262:"':Cn_220.
Thanks to Lemma 2.2, we get
1 ¢ e T (n)
DPx (t :—/ t— )P g (s)ds — ¢ ——2—¢" P71,
) I'(ao —p) 0( ) (¢) 'T'(n—p)
Using the condition DPz (1) = Ay DPz (n), we get
I'(n —p) /1 —p-1
ON— 1—s)*7P s)ds
1 (1_)\177n—p—1)r‘(n)r(a0_p) 0 ( ) g( )
)\1F (TL — p) /77 apg—p—1
— —S s)ds.
T )W —p) Jy 7% 90
Substituting the values of ¢y, ¢, ¢a, . .., 2, ¢, in (2.2), we obtain the desired quan-

tity in Lemma 2.5. 0
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3. MAIN RESULTS

In this section, we present the main results of the paper. For the sake of conve-
nience, let us take.

Noie 1y T (re)
07 T(ao+l) " [I=xn» P~ IT(n)T(ag—p+1)’

1 T(n—p)(1+[M1|n°0~7)

Ne = taan T T Tite—ant@pry F = L on =1,
1 T(n—q)(1+|xz|gP0 1)
Mo =t + T 0w G a7
,_ 1 T(n—q) (1+|X2|¢P0~7)
My =t T e et G g =L on— L
W:i=wo+wp+ -+ Wpo1,
W =W+ W+ + Wp-1,
. L(n— )(1+\>\1|na0 ?) T(n—p)(1+|\[n*0~7)
0 = i e D) +Z X" P 1| (n—a)T(ao—p+1)’

r T(n— q)(1+\>\2|n60 @) (n—q)(14|x2]¢P0—7)
0 = [1-X2&n 4= 1D (n)I'(Bo—gq+1) +Z [1— )\25" 9= (n—Bp)T (Bo—q+1) "

(H1) : We also suppose that the functions fi, fo : [0,1] x R® — R are continuous.
(H2) : There exist non negative continuous functions a;, b; € C' ([0,1]),i=0,...,n—1,
such that for all t € [0, 1] and (xq, 21, T2, - -, Tn_1), (Yo, Y1, Y2, - - -, Yn—1) € R™ we have

’fl (t,l’o, L1, T2y axn—l) - fl (t,yo, Y1,Y2, - - ayn—1>’

< ag (t) |zo — ol + a1 (8) [x1 — vn| + a2 (¢) w2 — yol + - -+ + ana (t) [2n-1 = Y],
and

|f2 (t,ﬂ?o,l’l, Ly 7'1"71—1) - f2 (t7y07y1a Y2, - 7yn—1)|

< bo (t) [0 — yol + b1 (£) |21 — 9| + 02 () |22 — o + - 4 bt (B) [2n—1 = Yna

where,
wo =supag () ,w; =supay (t),ws =supas (t),...,w,—1 =supa,_1 (),
teJ teJ ted ted
wo =supby (t), w1 =supby (t),ws =supby (t),..., w1 =supb,_1(t).
teJ teJ ted teJ

(H3) : There exists non negative functions /; (¢) and Iy (¢) such that
|f1 (o, 21, T2y )| <D (1),
|fo (w0, 21, 2y )| < o (F)

for each t € J and all x,y € R, with Ly = sup,c;{; (t), Lo = sup,e;l2 (t) .
Our first result is based on Banach contraction principle. It is the following.
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Theorem 3.1. Suppose n" P! ;é -, §m T L4 1 %, ond assume that the hypothests
(H2) holds. If

n—1 n—1
(3.1) <N0+2Nk> W+ <M0+2Mh> w <1,
k=1 h=1
then the fractional system (1.1) has a unique solution on J.
Proof. Let us define the operator ¢ : X x Y — X xY by
¢ (z,y) (t) = (¢1(y) (), 2 () (1)) ,

where, for each ¢ € [0, 1],

o (0= gy [ (=97 i (50(5) DMy (). D () ds a0

T'(n n—l e 1 Iy O
_(17A1nn(pf’tn N p)/o (1—=9)"""" fi(s,y(s), D"y (s),..., D 'y (s))ds

MI(n n—1 « « Qp—
+(1—A1n’llpfslp)tn N p)/0 _8 Oplfl(sy() Dly(s)a"'>D ly(s))dsa

and

o (t) == % /0 (t —s)"7 f (s,2(s), D%z (s),...,D"'x(s))ds +y"

1
T'(n—q)t" ! —q— _
— T TG / (1= )2 fo (5,2 (s), DM (s),..., D™ (s)) ds
0

n
XoT'(n—q)t" 1 —q—1 _
U (uznf—q(—l)qr)fn)rwoq>/o (1= )" fo (5,2 (s) . DM (s) ..., D (s)) ds.

We shall prove that ¢ is a contraction mapping.

fi(s,y(s), DMy (s),..., D™y (s))
If denote F'(s) =
wo denote FUs) = | 7100 (), Doy (5], Doty (s
t € J and for (x,y), (z1,y1) € X x Y we have

) ', then for each

b1y (1) — a1 ()] < 1 / (t— 5)%" F(s)ds

1
I'(n— ag—p—1

lr(n—p) " (= )™ F(s)ds.
0

T T 1) (a0 )

J
J



288 M. HOUAS AND Z. DAHMANI

Thus,
(wotwi+-4wn—D)[lly=y1 [+ D*1y=D*1 y1 ||+ 4[| D¥n—Ly—Dn—1y, ||]
|1y (t) — 1o ()] < T(ao+1)
+ L(n—p)(wotwi++wn—1)[ly=y1 [+ D*1y—D*1 g1 [[+--+|| D=1y —Dn—1y ]
[1=Xinn=P~ LT (n)T (a0 —p+1)
+ [A1 T (n—p)n®*0 P (wo+wi+-+wn—1) [[[y=y1 |+ D1 y—D*1 yy ||+ 4[| D¥n—1y—D*n— Yyall]
[1=A1pn=P=L|T(n)T (o —p+1)

Consequently, we have
61y (1) — dryn (D] < Now ([ly — wil| + |[D*y — DM [ + -+ + [ D'y — D yn]),
which implies that

(3.2) &1 (y) — &1 (n)]| < Now (|ly — || + | DMy — D™y ||
4 [ Dy — Dy

Similarly,
(33) 62 (@) — 62 (@)l < Mo (e = 1| + | DPr — DY |
+oo+ || Dt — DPrray|)
_ | Nsy(s), DMy (s), .., D™y (s))
On the other hand, for F(s) = ‘ —F (5,51 (8), D™y () ..., Doy (5)) | for all

k=1,...,n—1 and for each t € [0, 1] we have

t
D 0uy (1) = D 0wy 1)) < gy [ (6= ™" Fs)ds
0

1
T'(n—p)t" =%k ~1 ao—p—1
+ X T an a0 7] /0 (1 =)™ F(s)ds

n
A T(n— n—ap—1 an—p—1
+ \1—)\17|7”1*‘P(*1\FZ)()J—akI;F(ao—p) /() (77 o 8) o F<8)d8

By (H2), we obtain

ag, Dok (wotwi+-Awn—1)[ly=p1 |+ D*1y—D*1y1 [|[+---+|| D —1y—Dn—1y |||
| D@1y (t) — Dy (t)] < T(ao—artl)
+ L(n—p)(wotwi+-+wn—1)[[ly=y1 |+ D*1 y—D*1 y1 ||+ +|| D" —1y—D* 1y |]
[1=Ainn—P=L|D(n—a)T (o —p+1)
4+ alC=p)n0 P (wotwi - Fwn—1)(ly—pn |+ DLy =Dy ||+ D=1y —Dn -1y, ]}
[1=A1n" =P~ |D(n—a)T (o —p+1)

Hence we have

|DY ¢y (t) — D™ ¢ry1 (1) < Nyw ([ly — wa|| + (| DMy — D'y |
- [ DYty — DY)

D1 (y) — D ¢1 (y1)|| < Npw (ly — wnl| + [ D™y — D 1|
(3.4) 4+ || Dty — Dy )
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With the same arguments as before, for each h =1,...,n — 1, we get

HDﬁhgbg (z) — DPrpy (xl)” < Myw (||lz — a1 + HDﬂlx — Dﬁlxlﬂ
(3.5) + || DO — D))

Thanks to (3.2) and (3.4), we obtain

1 (y) — 1 (n)llx < (No+sz) (ly = wll + [[D*'y — D"y ]

(36) 4+ HDan 1y_Dan 191”)'

Using (3.3) and (3.5) we can write

n—1
62 (2) = 6 ()l < (Mo + ZM) @ (o =l + D% — DY
h=1
(3.7) _I_..._f_HDﬁnfll._D,anlle).

Combining (3.6) and (3.7), we deduce that

|’¢(Jf,y) - ¢(x17y1)||X><Y <

Xl =21,y =yl x oy -

Consequently by (3.1) we conclude that ¢ is a contraction mapping. As a consequence
of Banach contraction principle, we deduce that ¢ has a unique fixed point which is
the solution of (1.1). O

The second main result is given in the following theorem.

Theorem 3.2. Suppose that for all n" P~ # /\il,fn_q_l # )\—12 and assume that the
hypotheses (H1)and (H3) are satisfied. Then, the system (1.1) has at least a solution
on J.

Proof. We use Scheafer’s fixed point theorem to prove that ¢ has at least one fixed
point on X X Y.

Step 1: ¢ is continuous on X X Y : By (H1) we conclude that the operator ¢ is
continuous.

Step 2: The operator ¢ maps bounded sets into bounded sets in X x Y : For
o >0, we take (z,y) € B, = {(z,y) € X xY;|[(z,y)|lxxy < o}. For each t € J and
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A, — [(n—p)t"~!
L= [I=Xip» P~ 1T (n)T (ao—p

j we have:
o O] < iy [ (6= A 5y () Dy (s) oo Dy ()] ds +
1
+ Al/o (1-— s)ao*p*1 \f1(s,y(s), D%y (s),...,D 'y (s))|ds

n
+ [l A1/0 (=) fi (5,9 (s), DMy (s) ..., D™y (s))] ds.

Using (H3), we obtain

1 D (n—p) (14|20 ~7) ¥
1y (O] < supla (1) [mm) + T r e | 1T

Thus, |¢1y (t)| < Nosuply (t) + |2*|,t € J, and then
teJ

(3.8) [é1 ()| < LiNo + [z

Similarly, we can write

(3.9) 62 (2)[| < La2Mo + [y
n— n—ap—1
}(l)n the other hand, for all k = 1,2,...,n — 1 and Ay = |1—,\1nnli(z?flzfl)“t(n—;k)r(ao—p) we
ave

D01 ()] < iy [ (0= 97 U (509 (6) D7 (5) oo Dy ()]
1
=20 [0 R G 6 D7 () Dy () ds

n
+ A1 A?/O (=) fi(s,y(s), DMy (s),..., D'y (s))| ds.

By (H3), we obtain

o 1 F(n—p)(1+|/\1|n°‘0*”)
(3.10) ”D " (y)H =h {F(ao—azﬂrl) - [1=A1n" =P~ (n—ap)T(co—p+1) |’

and forall h=1,2,...,n—1,

3 1 I'(n—q)(1+[X2|¢P0~7)
(3.11) [D% 2 ()| < L [rwoﬁhm + T T (n 3T (Bo—a 1T | -

Combining (3.8) and (3.10), yields to

(3.12) [é1 (Wl x < L (No + i:M) + |z*].

k=1
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Similarly, it follows from (3.9) and (3.11) that

(3.13) [¢2 (@)[ly < Lo <M0 + ZMh> + |yl

h=1
Thanks to (3.12) and (3.13), we have

n—1 n—1
16 (z, )|l xxy < Ln (No + ZM) + L, (Mo + ZMh> + |2* + [y
k=1 h=1

Consequently || (2, y)|| .y < 00

Step 3: Now we show that ¢ is equi-continuous on J.
Let us take (x,y) € By, t1,t2 € J, such that t; < t5. Thanks to (H3), we can write:

sup (1 (t)

oy 1) = 6y (0] < Ty [ (02 =97 = 1= 9y s

suply(t) ft2 .
+ &7 / (to — 8)™ " ds
t1

I'(ao)

1 2

sup (O (n—p) (1~ ~1571) 1 ao—p-1
+ [1=X1n"— P~ (n)(ap—p) /(; (1 B S) ds

sup 1 ()| M |D(n—p) (15 =7 71) 0 o
4 ted / (n—s)""" " ds.
0

[1=X1n"=P=L T (n)T (a0 —p)

Thus,

(3.14) |1y (t2) — 1y (t1)| < ﬁ (870 —3°) + p(iﬁil) (toy — 7)™
+ It G~ 57
e e 7 (B )

Analogously, we can write

(3.15) B2 (t2) — P (11)] < i (tfo _ tgo) + 1y (t — 1) ™
LoI'(n—q) n—1 n—1

+ e NN (G atD) (B =157
La|A2|l'(n—g)nPo—1 n—1 _ -1

+ TR e )T (Go—a7D) (B =677

On the other hand, for all k =1,2...,n—1,

| D ¢y (ta) — D™y (t1)| < m (t?o_ak — t§°‘”"“) + ﬁ (ty —tg)™0

LiT'(n—p) n—op—1 n—oy—1
(316) + |1—>\17]"*P*1|1F(n—cxpk)F(a0—p+1) (tl - by * )
Lq|M\|T(n—p)n®0—P n—ap—1 n—aoy—1

+ |17)\117”—11’—11|F(nfozk)F(aofp+1) (t2 = tl * ) )
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and forall h=1,2...,n—1,

| Do (t2) — Doz ()] < s (tfo—ﬁh _ tgo—ﬁh> + ey (2 — )P0 b

Br+1)
LoT'(n—q) n—LBp—1 n—pBp—1
(3.17) t T Rg TN n—BuT(Bo—a 1) <t1 ~ >
La|Xa|T(n—q)nPo—1 n—Br—1 _ n—Bp—1
+ Txag 1 [T ()T (Bo—a+1) (t Gl )

By (3.14), (3.15) , (3.16) and (3.17), we can state that ||¢ (x,y) (t2) — ¢ (x,y) (t1)|| —
0 as to — t1. By Arzela-Ascoli theorem, we conclude that ¢ is completely continuous
operator.

Step 4: Finally, we show that the set ) defined by
Q={(z,y) € X xY,(2,y) = po (2,y) ,0 < p < 1},

is bounded.
Let (x,y) € Q, then (z,y) = p¢ (x,y), for some 0 < p < 1. Thus, for each t € J,
we have z (t) = ud1y (), y (t) = pgoz (t). Then for A} = \17A1777F_(Z:17¥(n)f‘(a07p)
1

e (0] < / (t =)™ fi (5,9 (), Dy (s) ..., D™y (s)] ds + |a”]

N A1/0 (L= fi(s,y(s), DMy (s),..., D"y (s))| ds
+ |l A1/0 (=)™ fi (5,9 (s), DMy (s) ..., D"y (s))| ds.

Thanks to (H3), we can write
1 suph(t) supli (T (n—p) sup 1 (1) P 1°0 P T (n—p)
; [z (0)] < T(ao+1) + e + [1—- /\177" PP (n)I (2o —p+1) + [1=X1nm=P=LT(n)l (a0 —p+1)

Therefore,

1 T(n—p)(1+|A1|n*0~7) *
[# (O] < psup b (¢) [F(ao—l—l) + T et | 127

Hence, |z (t)| < pLiNo + |z*|,t € J, which implies that,

(3.18) ]| < pLyNo + |2*].
Analogously, we have
(3.19) [yl < Loy + |y7|.
On the other hand, for all k,=1,2,...,n — 1, we have
o 1 D(n—p) (141 n~0~7)
D%z (O] < psupl () | tarmarrn T TormrrTim—a =D | F € 7/

Thus,
(3.20) 1D ()| < pLy Ny,
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and for all h,=1,2,...,n—1,
(3.21) [DPy ()| < nLoMy.
From (3.18) and (3.20), we get

n—1
(3:22) 2]l < pla (No + ZNk) + [z
k=1
Analogously, by (3.19) and (3.21), yields
n—1
(3.23) lolly < uLs <M0+2Mh) .
h=1

It follows from (3.22) and (3.23), that

n—1 n—1
”(377?/)”Xxy < p [Ll (NO + ZNk> + Ly <Mo + ZMh>

k=1 h=1

+ 2t + -

Hence’ ||¢ ("Ea y)HXXY < 0.

This shows that 2 is bounded.

As consequence of Schaefer’s fixed point theorem, we deduce that ¢ at least a fixed
point, which is a solution of the fractional differential system (1.1). O

Our third result is based on Krasnoselskii theorem [14].

Theorem 3.3. Let n" P! £ %1,5”_‘1_1 # /\1—2 Suppose that (H1), (H2) and (H3) are
satisfied, such that

n—1 n—1
1 1 1 1
(3.24) (m + m) w+ (rwom + m) w<l

k=1 h=1
If there exist 6 € R such that

n—1 n—1
L, (No + ZM) + Ly (Mo + ZMh) +ly* [+ <6,
k=1 h=1

then the fractional system (1.1) has at least one solution on J.

Proof. We shall prove that ¢ has at least a fixed point on X x Y.
Suppose that L, (No + ZZ;% Nk) + Lo (MO + Zz;} Mh) + |y*| + |z*] < ¢ and let
us take

¢ (z,y) (1) =T (z,y) () + R (z,y) (1) = (Thy (1), Tox (1)) + (Ray (1), Row (1)),

where

t
Ty (1) == it / (t =) fi (5,5 (), Dy (s) ..., Dy (s)) ds + o]

t
T (1) 1= iy [ (=97 (50 DM (9), oo DP i (5) ds+ Iy,
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1
T'(n—p)tt—1! ap—p—1 o Ot
- (1,)\1,771—(39—110))13(”){*(&0,10) /0 (1 _5) or fl (Say(8)7D 1y(8)7"'7D 1y(s>>d‘9

n
M (n—p)tn—1 apg—p—1 a Uy
+ (1_A1n;£1)’;)fn)r(ao_p)/0 (=5 fi(s,y(s), D™y (s),..., D'y (s))ds,
RQQ? (t) =
1
n n—1 —g—1 _
- (1 )\2£n (q lq))t( ) (50 q) / (]. )BO 1 f2 (8, T (S) 9 DBII (S) PRI ’Dﬁn 1:1; (S)) dS

n n—1 1 n—1
+ Azgqulpt ﬁoq// )71 fy (s, 2 (s), D (s) ..., D=1 (s)) ds.

The proof will be given in the following steps:

(1* :) We shall prove that for any (x,y), (z1,y1) € Bs, then T (x,y) (t)+R (x1,y1) (t) €
Bs, such that Bs = {(z,y) € X X Y5 |[(z,9)| x,y <} -

For any (x,y), (z1,y1) € Bs and for each ¢t € J, we have

t
T () + Run (0] < ey [ (=9 11 (50(5) D7y (5) o, Dy (5)) | ds + o
0

1
T'(n—p)t"—! apg—p—1 a p—
+ |1_Amn(pf?|);(n)p(a0_p)/ (I =8)""" | fi(s,y1(s), D%y (s),..., Dy (s))|ds
0

n
M (n—p)t"—1 ag—p—1 « Qi —
+ |1,)\1nn1—zg—1|§)(2)p(ao,p) /O (77 - 5) o |f1 (S7y1 (5) ) D 1y1 (S) ) 7D 1y1 (8>)| ds.
Using (H3), we obtain

1 L (n—p) (1+ M1 |n*0~7) *
Ty (8) + R (1)) < supla (¢) [r(am) * 1)\177”_p_1F(n)F(aop+1):| + 27

Consequently, |T1y (t) + Riyy (t)| < Nosuply (t) + |2*|,¢ € J. Thus,
ted

(3.25) 173 (y) + Ba (y2)l| < LilNo + [27].
On the other hand, for all k =1,2,...,n — 1, we have

a a 1 T (n—p) (14|20 ~7)
(D% Ty (t) + D™ Fay ()] < sup (¢) [mo_wn + |1-A1nn—p—1|r<n_ak>r<ao-p+1>] )

Hence,
(326) ||D0lkT1y (t) + Daleyl (t)” S LlNk
Combining (3.25) and (3.26), yields

(3.27) 1Ty (y) + By (1) llx < Ln (No +y Nk) + |2

k=1
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Analogously, for all h =1,2,...,n — 1, we have

(3.28) T2 () + R (21)[ly < Lo (Mo + iMh) +1yl-

h=1
Hence, it follows from (3.27) and (3.28) that

n—1 n—1
1T (2, y) + R(x1, 91l xuy < In (No + ZM) +Ls (Mo + ZMh> +ly ]z < 6.

k=1 h=1

Therefore, || T (x,y) + R (21, %1)| x«y € Bs-

(2* :) We shall prove that R is continuous and compact. Note that R is continuous
on X x Y in view of the continuity of f; and fy (hypothesis (H1)).
(a*) : Now, we prove that R maps bounded sets into bounded sets of X x Y.

For (z,y) € Bs, A = |1_A1n{£§jﬁ¥fn3}(ao_p) and for each t € J, we have

[Ray ()] < Al/o (1=8)* " fi(s,y (s), DMy () ..., Dy (s))] ds

n
+ |A1|A1/0 (=)™ fi (5,5 (s), DMy (s) ..., DOy (s))] ds.

Thanks to (H3), we obtain

sup 11 ()1 (n—p) (1+Aaln 07
1Bay ()] < T @i £ € 7

Therefore,

LiT (n—p) (14| Aa]y0—7)
(3.29) 122 W < = rm T -

On the other hand, for all k =1,2,...,n — 1, we have

LT (n—p) (14| A1 |n0—7)
[1=A1n =P~ T (n—o )T (0 —p+1) °

(3.30) D Ry (y)] <
Using (3.29) and (3.30), we have

I(n— p)(1+|A1mao ») ) (1[0 —)
(3.31) R ()llx < L <|1 M TT ()T (ao—pT1) +Z = )\m” = 1|Fn o) (a0 p+1)> :
Similarly, for all h=1,2,...,n—1,

n—1
(3.32) HR2 (:L')HY < L2 ( F(n—Q)(1+|>\2\7lﬂo CI) n F(n—q)(1+|)\2‘£/80 q) ) .

[1=A2gn a1 (n)I'(Bo—q+1) [1=X2€m =9~ (n—Pp)T(Bo—q+1)
h=1

It follows from (3.31) and (3.32) that | R (z,9)| x.y < L10 + Lof < oc.
(b*) : Now, we show that R is equi-continuous on J.
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Let t1,ts € J, such that ty < t; and (z,y) € Bs. Then by (H3), we obtain:

sup i ()0 (n—p) (5" =7 71) 1 o
|Riy (t1) — Ruy (t2)] < / (1—s)*"" " ds
0

[1=Xinm=P~L T (n)T (a0 —p)

suply (1) [\ [D(n—p) (8771 =1371) 1 o
4 e — / (n—s)*"" " ds.
0

[1=X1nn=P~L|T(n)T (a0 —p)

Thus,
LiT'(n n— n—
(333) ’Rly (tl) — Rly <t2)| T 11|§“( f)(ao_p+1) <t2 1_ tl 1)
Li|M|D(n—p)n*0—P n—1 __ n—1
+ o T et (1 — 1)

In the same way, we have

LoT n— n—
(3:34) Rz (1) = Row ()| < ittt (B — 1)
La|A2|D(n—g)éPo—1 n—1 n—1
+ et (1 — 1) -

On the other hand, for all k =1,2...,n—1

Y

o o L1T'(n—p) n—ag—1 n—og—1
| D Ry (1) — D* Ruy (L2)] < |17)\17]"*P*1|11"(n7c€k)1"(aofp+1) (5~ =)
LA\ |T'(n—p)n>0—P n—ai—1 n—ag—1
(3.35) + ll_)‘lnn_lp_llIF(n—pa:)F(ao—p-‘rl) (t L ) ,

and forall h=1,2...,n — 1,

LT n—pBp—1 n—pBp—1
|D6hR25E (tl) - DﬁhRQx (tQ)‘ ‘1 A2fn—4a— 1‘21"((71 q)) (ﬁo—q—f—l) <t2 Bn _tl o )

(3.36)

n Bo—a n— n—_pBp —
+ e I T =TT (t e 1) :
As ty — ty, the right-hand sides of the inequalities (3.33), (3.34), (3.35) and (3.36)
tend to zero. Then, as a consequence of the steps (a*) and (b*) and by Arzela-Ascoli
theorem, we conclude that R is completely continuous.
(3* ;) Finally, we prove that T is a contraction mapping: Let (z,y) (z1,y1) € X xY.
Then, for each t € J and by (H2), we have

(3.37) |Tyy () — Tygs (£)] < Lotentetwny)lly=y [ H|D™ y— D3y || D ty= D1y ]

[(ao+1)
On the other hand, for all k =1,2,...,n — 1, we have
(3.38)
a a UJ Wn— «@ (e} An—1 Ap—1
|D*Tyy (t) — D* Ty ()] < 0twittwn—1)[lly— y1||+||113(a10y oi—i—ll?jlll—i_ D=ty =Dn =ty ]

By (3.37) and (3.38), we obtain

|Tvy (t) — Tay (2)] < [ ol Y Y T D
(3.39) x (ly =il + [[1D"y = D*'yu|| + - - - + [[ D'y — Dy ])



NEW RESULTS FOR A SYSTEM OF TWO FRACTIONAL DIFFERENTIAL EQUATIONS 297

Analogously, for all h =1,2,...,n — 1, we can get

Tax (t) — Toaq ()] < [ rrD + % Lhet T ]

(3.40) x (||z — x| + [|[D"'& = DPray|| + -+ + || D'z — Dy |)
Combining (3.39) and (3.40) yields

1T (z,y) () = T (1, 91) )|l xny < (1@ = 21,9 = y1) [l xuy)
n—1
1 1 1 1
X [(F(a_oJrl) Y _F(Oéo_akJrl)) W+ (F(,@oTl) + Z 'F(,Bo—/sm)) w]
k=1 h=1

Using the condition (3.24), we deduce that 7" is a contraction mapping.
As a consequence of Krasnoselskii’s fixed point theorem we deduce that ¢ has a
fixed point which is a solution of the problem (1.1) . O

We give also the following two corollaries.

Corollary 3.1. Assume that n" P! # /\1—1,5”_‘1_1 =+ /\% and there exist non negative

real numbers 0;, A;;i = 0,1,...,n—1 such that for allt € [0,1] and (xg, 1, ..., Tpn 1),

(Yo, Y1, -+ - s Yn—1) € R™ we have |fi (t,x0,21,...,Tn-1) — f1 (&, Y0, Y1, Yn1)| <

0o |zo — yol+ - - +bn—1Tn-1 — Yn-1| and | fo (t, z0, 21, s Tn1) — f2 (6, Yo, Y15+ - - s Yn1)]
<Aoo —yol + -+ At |[Too1 — Yna|- If

n—1 n—1
(No—i-ZNk) (Op+ -+ +0p1) + <M0+2Mh> (Ao+---+Np) <1,
k=1 h=1

then the fractional system (1.1) has a unique solution on J.

Corollary 3.2. Assume that (H1) holds and " P~* # =, &£ L. If there euist
ki > 0 and ke > 0, such that fi < ki, fo < ko on J X R” then, the coupled system
(1.1) has at least a solution on J.

4. EXAMPLES

Ezample 4.1. Consider the following fractional differential system, where ¢ € [0, 1]

w1+ |DTy(o)]+|D3y(®]+|D2y(0)

D2x(t) = ( + cosh (2 + #2),
Q (12+32m) (et+y )+ [ D Ty()| +[DTy(o)|+| D2 y(1)) ( )
. . 5 . 6 . 4
(4.1) D% (t) = 81nw(t)+81anz(lt6>(+7rst1;+131;z(t)+sm05r<t> + arctan (1 + 1),

Y
z(0) = V2,4 (0) =a” (0) = 0, D¥x (1) = 4D¥x (}),
L 5(0) =V3,4/(0) =¢"(0) =0, D3y (1) = EDsy (2) .
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We have
1] + |zo| + 23] + |24
t,r1, %9, T3, Ty) =
fit, @1, @2, 25,34) (12 + 327) (' + |z1] + || + |2a| + |74])
+ cosh (2 + t2) ,
sin (x1) + sin (x2) + sin (x3) + sin (z4)
¢ =
fa (t, 21, 29, 23, 24) 16 (72 + 1)
+ arctan (1 +¢)
where t € [0, 1], z1, x9, 3,24 € R.
Let ¢t € [0,1] and (g, 21, T2, %3) , (Yo, Y1, Y2, y3) € RY. Then

1
m (|zo — ol + |21 — w1

+ |72 — yo| + |23 — u3]),

|f1 (t,l’(),.ﬁlfl,.fg,l'g) - fl (t7y07ylay27y3)| S (

<
=

| fa (t, 20, 21, 22, 23) — fo (t, Y0, Y1, Y2, Y3) (|zo — wo| + |21 —

1

P —

=76 (72 + 1)
+ |z2 = yol + |ws — ys]) -

We can take a; (t) = m, b; (t) = W i=0,1,2,3. Then w; = sup,¢(y 1 a; ()
— @ = supepy b () = &, i = 0,1,2,3 and Ny = 0.288269, Ny = 2.203434,
N, = 1413119, Ny = 0.615229, w = &=, M, = 0.085713, M; = 1.124108, M, =
0.322689, M3 = 0.203869, w = %. We also have

n—1 n—1
(No + Z Nk> W+ (Mo + Z Mh> = 0.179938 + 0.434094 = 0.614032 < 1.

Hence, by Theorem 3.1, the system (4.1) has a unique solution on [0, 1].

Ezxample 4.2. The second example is the following system:

( 9
cosy(t +sm(D A4 y(t )+D7y(t)>

D 3 X (t) ﬂ.et+15 ) [07 1] )
sin z(t)+cos( D2 x( )—I—DS:c(t)
(4.2) Ty(t) = £2+207r >, e [0, 1]4,
( )=3,2'(0) =2’ (0)—0 sz(l) D5z (3),
9
[ y(0) =5,y (0)=y"(0)=0,Dsy(1) = 3Dsy (3).
We have
cosx + sin (y + z) 5
fl(t,l’,y,Z): 7T€t+15 7t€[071]a(x7yaz)€R7
sinz + cos (y + 2) 5
fat,x,y, 2) = o T 12 € [0,1], (z,y,2) € R°.
Let 2,y,z € Rand t € [0,1]. Then [fi(t,2,y,2)| < Wtﬂg,, | f2(t, T, 2 2)| < wi- So,
we take [; (t) = et+15,l2( ) = t2++07r' Then, L; = +15, Ly = 7=. By Theorem 3.2,

the system (4.2) has at least one solution on [0, 1].
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Example 4.3. Our third example is the following:

. 2 15 1 2
e ()D& yie Mmy )| +[p3y)])

(et2+20w)(2wet2+\y(t |+‘D T y(t MDTy HDfﬂy( )))
|+‘D 5 x( ’+’D3J:(t)’+‘D2:c(t)‘

y (7ret+18)< —t 4 |a(t) |+‘D 3 )+’Dsl~ ] ‘DQm(t)D

z(0) = 2,2/ (0) = 2" (0) = 0, Dix (1) = gDz (2),

L y(0) Y (0) =y"(0) =0,D3y (1) = ID2y (3),

where t € [0, 1]. For this example, for t € [0,1], x1, 22, x3, 24 € R we have

D5z (t) = + cos (24 12),

e

(4.3) D" +In(2+1¢%),

~~
S+~
~—

e (1] + [wa| + 23] + |24])
(€t2 + 207T) (27T6t2 + ’.171| —+ ’5132‘ + ‘.Tg‘ + ‘iL‘4|)
+ cos (2 + t2) ,
21| + |@2| + |z3| + |24]
(met 4+ 18) (e=t + |z1| + |z2] + |z3] + |24])

fl (t7 T1,T2,T3, [L'4) —

f? (ty T1,T2,T3, $4) —

+1In (2 +¢?)
Taking xo, ¥1, T2, ¥3, Y0, Y1, Y2, ¥3 € R, t € [0, 1], we have
—¢2
(&
/ i <— % (- .
‘fl( ,$0,$1,$2,$3) fl( 7y07y17y27y3)’ = €t2 + 207 (‘xo y0| + |‘T1 yl’
+ |22 — ol + |73 — y3l),
1
t — f(t < (lzp— -
‘fQ( ,I07I1,Jf2,$3) f2( Jy07y17y27y3>| = et +18 <|'I0 y0| + ’1’1 y1|

+|z2 = yol + |zs — ysl) -
— 1 -
m b ()—m,l—(),...,?).
Then, w; = sup,¢o i (t) = @i = SuPyejoq bi (1) = 5, ¢ = 0,..,3 and for
k,h € {=1,2,3}, we have

Hence, a; (t) =

1
14207’

—_

n—

1 1 B
oD T 2_ Tas—agy — 1951303,
k=1
n—1
1 1 B
TBotD) FE—p T — 1-236325.

>
—_

We also have

n—1 n—1
1 1 —
( I'(ao+1) +ZFO¢O ag+1) >w+ (m+zm> @ = 0.3562179 < 1.
k=1 h=1

By Theorem 3.3, we can state that the problem (4.3) has at least one solution on
0,1].
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