A PAIR OF NON-SELF MAPPINGS IN CONE METRIC SPACES

STOJAN RADENOVIĆ

Abstract. In this paper we extend from metric to cone metric spaces a fixed point theorem for a pair of non-self maps proved by M. S. Khan et al. [M. S. Khan, K. Pathak and M. D. Khan, Some fixed point theorems in metrically convex spaces, Gregorian Mathematical Journal, Volume 7 (3) (2000), 523-530].

1. Introduction and preliminaries

Cone metric spaces were introduced in [3], where the authors described convergence in cone metric spaces, introduced completeness and proved some fixed point theorems of contractive mappings on these spaces. Recently, in [1], [4] and [13], some common fixed point theorems are proved for maps on cone metric spaces. The following definitions and results will be needed in the rest of this paper.

Let E be a real Banach space. A subset P of E is called a cone if and only if:

(i) P is closed, nonempty and $P \neq \{\theta\}$;
(ii) $a, b \in \mathbb{R}$, $a, b \geq 0$, and $x, y \in P$ imply $ax + by \in P$;
(iii) $P \cap (-P) = \{\theta\}$.

Given a cone $P \subset E$, a partial ordering \preceq with respect to P is defined by $x \preceq y$ if $y - x \in P$. We write $x < y$ to indicate that $x \preceq y$ but $x \neq y$, while $x \ll y$ stands for $y - x \in \text{int}P$ (interior of P). A cone $P \subset E$ is normal if there is a number $k > 0$ such that for all $x, y \in P : \theta \preceq x \preceq y$ implies $\|x\| \leq k \|y\|$. The least positive number satisfying the previous condition is called the normal constant of P.

Definition 1.1. [3] Let X be a nonempty set. Suppose that the mapping $d : X \times X \to E$ satisfies:

Key words and phrases. Cone metric spaces; normal and non-normal cone; metrically convex; non-self maps; fixed point.

2010 Mathematics Subject Classification. Primary: 54H25, Secondary: 47H10.

Received: January 20, 2012.

Revised: October 25, 2012.
Let \(\{x_n\}\) be a sequence in \(X\), and \(x \in X\). If, for every \(c\) in \(E\) with \(\theta \ll c\), there exists an \(n_0 \in \mathbb{N}\) such that, for all \(n > n_0\), \(d(x_n, x) \ll c\), then it is said that \(x_n\) converges to \(x\), denoted by \(\lim_{n \to \infty} x_n = x\), or \(x_n \to x\), \(n \to \infty\). If, for every \(c\) in \(E\), such that \(\theta \ll c\), there is an \(n_0 \in \mathbb{N}\) such that for all \(m > n_0\), \(d(x_n, x_m) \ll c\), then \(\{x_n\}\) is a Cauchy sequence in \(X\). If every Cauchy sequence is convergent in \(X\), then \(X\) is a complete cone metric space.

Let \((X, d)\) be a cone metric space. Then the following properties are often useful, particularly when dealing with cone metric spaces in which the cone need not to be normal (for details see \([7]\)):

\[(p_1)\] If \(u \preceq v\) and \(v \ll w\), then \(u \ll w\).

\[(p_2)\] If \(\theta \preceq u \ll c\), for each \(c \in \text{int}P\), then \(u = \theta\).

\[(p_3)\] If \(a \preceq b + c\), for each \(c \in \text{int}P\), then \(a \preceq b\).

\[(p_4)\] If \(E\) is a real Banach space with a cone \(P\), and if \(a \preceq \lambda a\), where \(a \in P\) and \(0 \leq \lambda < 1\), then \(a = \theta\).

\[(p_5)\] If \(c \in \text{int}P\), \(a_n \in E\), and \(a_n \to \theta\), then there exists an \(n_0\) such that, for all \(n > n_0\), we have \(a_n \ll c\). For details on cone metric spaces see three recent very important papers: \([8]\), \([9]\), \([12]\).

In the following we suppose only that \(E\) is a Banach space, that \(P\) is a cone in \(E\) with \(\text{int}P \neq \emptyset\), and that “\(\preceq\)” is a partial ordering with respect to \(P\).

There exist a lot of fixed-point theorems for self-mappings defined on closed subsets on Banach spaces. However, for applications (numerical analysis, optimization, etc.) it is important to consider functions that are not self-mappings, and it is natural to search for sufficient conditions which would guarantee the existence of fixed points for such mappings—for details see: \([5]\), \([7]\) and \([11]\). In this paper we continue to study the non-self mappings in the frame of the cone metric spaces, started in \([7]\) and \([11]\).

Generalizing a theorem of \([2]\), Khan et al., \([10]\) proved the following result, valid in a complete metrically convex space.

Theorem 1.1. Let \(X\) be a complete metrically convex space, and \(K\) a closed nonempty subset of \(X\). Let \(T : K \to X\) be the mapping satisfying the inequality

\[(1.1)\quad d(Tx, Ty) \leq C \cdot \max\{d(x, Tx), d(y, Ty)\} + C' \cdot (d(x, Ty) + d(y, Tx)),\]
for all x, y in K, where C and C' are nonnegative reals such that:

$$\max\left\{\frac{C+1}{1-C}, \frac{C'}{1-C-C'}\right\} = h > 0,$$

and

$$\max\left\{\frac{1+1}{1-C-C'}h, \frac{1+1}{1-C-C'}h\right\} = h'$$

Further, $Tx \in K$, for every $x \in \partial K$. Then T has a unique fixed point in K.

2. Main result

The purpose of this paper is to prove the analogue of Theorem 1.1, for a pair of non-self maps in the frame of cone metric spaces, using the concept of metric convexity. We use only the definition of convergence in terms of the relation “\ll”. The only assumption is that the interior of the cone P is nonempty - hence we use neither continuity of the vector metric d, nor Sandwich Theorem. We begin with the following definition.

Definition 2.1. Let (X, d) be a cone metric space, let K be a nonempty closed subset of X, and let $f, g : K \to X$. If f and g satisfy the condition

(2.1) \[d(fx, fy) \leq C \cdot u(x, y) + C' \cdot (d(fx, gy) + d(fy, gx)), \]

where $u(x, y) \in \{d(fx, gx), d(fy, gy)\}$, for all x, y in K, and where C, C' are nonnegative reals as in Theorem 1.1, then f is a generalized g-contractive mapping of K into X.

A pair of nonself-mappings (f, g), defined on a nonempty subset K of a cone metric space (X, d), is said to be coincidentally commuting if, for $fx, gx \in K$, $fx = gx$ implies that $fgx = gfx$. Note that, for $K = X$, this notion is reduced to the corresponding notion of Jungck and Rhoades for self-mappings.

We state and prove our main result as follows.

Theorem 2.1. Let (X, d) be a complete cone metric space, let K be a nonempty closed subset of X such that, for each $x \in K$ and $y \notin K$, there exists a point $z \in \partial K$ such that

(2.2) \[d(x, z) + d(z, y) = d(x, y). \]

Suppose that $f, g : K \to X$ are such that f is a generalized g-contractive mapping of K into X, and

(i) $\partial K \subseteq gK$, $fK \cap K \subseteq gK$;
(ii) $gx \in \partial K \Rightarrow fx \in K$;
(iii) gK is closed in X.

Then there exists a point of coincidence p in K. Moreover, if (f, g) are coincidentally commuting, then p is the unique common fixed point of f and g.

Proof. First, we construct two sequences: $\{x_n\}$ in K and the sequence $\{y_n\}$ in $fK \subset X$ in the following way.
Let $x \in \partial K$ be arbitrary. There exists a point $x_0 \in K$ such that $x = gx_0$ as $\partial K \subset gK$. Since $gx_0 \in \partial K \Rightarrow fx_0 \in K$, we conclude that $fx_0 \in K \cap fK \subset gK$. Let $x_1 \in K$ be such that $y_1 = gx_1 = fx_0 \in K$. Let $y_2 = fx_1$. Suppose $y_2 \in K$. Then $y_2 \in K \cap fK \subset gK$, which implies that there exists a point $x_2 \in K$ such that $y_2 = gx_2$. Suppose $y_2 \notin K$. Then there exists a point $p \in \partial K$ such that $d(gx_1, p) + d(p, y_2) = d(gx_1, y_2)$. Since $p \in \partial K \subset gK$, there exists a point $x_2 \in K$ such that $p = gx_2$, so that the equation above takes the form $d(gx_1, gx_2) + d(gx_2, y_2) = d(gx_1, y_2)$. Put $y_3 = fx_2$. In this way, repeating the foregoing arguments, one obtains two sequences:

\[
\{x_n\} \subset K \text{ and } \{y_n\} \subset fK \subset X \text{ such that:}
\]

(a) $y_{n+1} = fx_n$, for $n = 0, 1, 2, \ldots$;

(b) if $y_n \in K$, then $y_n = gx_n = fx_{n-1}$;

(c) if $y_n \notin K$, then $gx_n \in \partial K$ and $d(gx_{n-1}, gx_n) + d(gx_n, y_n) = d(gx_{n-1}, y_n)$.

Put

\[
S = \{gx_i \in \{gx_n\} : gx_i = y_i\} \text{ and } Q = \{gx_i \in \{gx_n\} : gx_i \neq y_i\}.
\]

Two consecutive terms cannot lie in Q. We have to estimate $d(gx_n, gx_{n+1})$. If $d(gx_n, gx_{n+1}) = \theta$ for some n, then it is easy to show that $d(gx_n, gx_{n+k}) = \theta$ for all $k \geq 1$.

Suppose that $d(gx_n, gx_{n+1}) \succ \theta$ for all n. From the presented construction we distinguish three cases:

Case 1. If $gx_n \in S$ and $gx_{n+1} \in S$, then according to (a), (b) and (2.1) we have:

\[
d(gx_n, gx_{n+1}) = d(y_n, y_{n+1}) = d(fx_{n-1}, fx_n) \\
\leq C \cdot u_1(x_{n-1}, x_n) + C' \cdot (d(gx_n, gx_n) + d(gx_{n+1}, gx_{n-1})) \\
= C \cdot u_1(x_{n-1}, x_n) + C' \cdot (d(gx_n, gx_{n+1}) + d(gx_{n+1}, gx_{n-1})) \\
= C \cdot u_1(x_{n-1}, x_n) + C' \cdot d(gx_n, gx_{n+1}) + C' \cdot d(gx_n, gx_{n-1}),
\]

where

\[
u_1(x_{n-1}, x_n) \in \{d(fx_{n-1}, gx_n), d(fx_n, gx_n)\} = \{d(gx_n, gx_{n-1}), d(gx_{n+1}, gx_n)\}.
\]

Clearly, there are infinitely many n such that at least one of the following two possibilities holds:

I: $d(gx_n, gx_{n+1}) \leq C \cdot d(gx_n, gx_{n-1}) + C' \cdot d(gx_{n+1}, gx_n) + C' \cdot d(gx_n, gx_{n-1})$, that is,

\[
d(gx_n, gx_{n+1}) \leq \frac{C + C'}{1 - C'} \cdot d(gx_{n-1}, gx_n).
\]

II: $d(gx_n, gx_{n+1}) \leq C \cdot d(gx_{n+1}, gx_n) + C' \cdot d(gx_{n+1}, gx_n) + C' \cdot d(gx_n, gx_{n-1})$, that is,

\[
d(gx_n, gx_{n+1}) \leq \frac{C'}{1 - C - C'} \cdot d(gx_{n-1}, gx_n).
\]
Case 2. Let $gx_n \in S$, $gx_{n+1} \in Q$. Then $y_n = gx_n$, $y_{n+1} \notin K$, $gx_{n+1} \in \partial K$ such that $d(y_{n+1}, gx_{n+1}) + d(gx_{n+1}, gx_n) = d(y_{n+1}, gx_n)$. We have

$$d(gx_n, gx_{n+1}) \leq d(gx_n, gx_{n+1}) + d(gx_{n+1}, y_{n+1})$$

$$= d(gx_n, y_{n+1}) = d(fx_n, gx_n) = d(fx_{n-1}, fx_n)$$

$$\leq C \cdot u_2(x_{n-1}, x_n) + C' \cdot (d(gx_n, gx_{n+1}) + d(fx_n, gx_{n-1}))$$

$$= C \cdot u_2(x_{n-1}, x_n) + C' \cdot (\theta + d(fx_n, gx_{n-1}))$$

$$\leq C \cdot u_2(x_{n-1}, x_n) + C' \cdot d(fx_n, gx_{n-1}), \quad (2.3)$$

where

$$u_2(x_{n-1}, x_n) \in \{d(fx_{n-1}, gx_{n-1}), d(fx_n, gx_n)\} = \{d(gx_n, gx_{n-1}), d(fx_n, gx_n)\}.$$

First, we have the following two cases:

I:

$$d(fx_n, gx_n) \leq C \cdot d(gx_n, gx_{n-1}) + C' \cdot d(fx_n, gx_{n-1})$$

$$\leq C \cdot d(gx_n, gx_{n-1}) + C' \cdot d(fx_n, gx_n) + C' \cdot d(gx_n, gx_{n-1}).$$

It follows that

$$d(fx_n, gx_n) \leq \frac{C + C'}{1 - C'} \cdot d(gx_n, gx_{n-1})$$

i.e.,

$$d(gx_n, gx_{n+1}) \leq \frac{C + C'}{1 - C'} \cdot d(gx_n, gx_{n-1}). \quad (2.4)$$

II: In the similar manner we obtain

$$d(fx_n, gx_n) \leq C \cdot d(fx_n, gx_n) + C' \cdot d(fx_n, gx_n) + C' \cdot d(gx_n, gx_{n-1}),$$

that is,

$$d(fx_n, gx_n) \leq \frac{C'}{1 - C - C'} \cdot d(gx_n, gx_{n-1}). \quad (2.5)$$

From (2.4) and (2.5) we get

$$d(fx_n, gx_n) \leq h \cdot d(gx_n, gx_{n-1}), \quad (2.6)$$

where $h = \max \left\{ \frac{C + C'}{1 - C'}, \frac{C'}{1 - C - C'} \right\}$. Now, according to (2.3) we obtain

$$d(gx_n, gx_{n+1}) \leq h \cdot d(gx_n, gx_{n-1}). \quad (2.7)$$

Case 3. Let $gx_n \in Q$, $gx_{n+1} \in S$. Then $y_{n+1} = fx_n$, $y_n \notin K$ and $gx_n \in \partial K$, such that $d(y_n, gx_n) + d(gx_n, y_{n+1}) = d(y_n, y_{n+1})$, where $y_{n+1} = fx_{n-1} =$
Now, in view of Case 2, we have
\[
d(g_{n+1}, g_{n+2}) \leq d(g_{n+1}, y_n) + d(y_n, g_{n+1}) \\
\leq d(g_{n+1}, g) + d(g, y_n) + d(y_n, g_{n+1}) \\
= d(g_{n+1}, y_n) + d(y_n, g_{n+1})
\]
(2.8)
\[
\leq h'd(g_{n-2}, g_{n-1}) + d(f_{n-1}, f_n) \\
\leq h'd(g_{n-2}, g_{n-1}) + Cu_3(x_{n-1}, x_n) + C' (d(f_{n-1}, g_{n-1}) + d(f_n, g_{n-1})),
\]
where \(u_3(x_{n-1}, x_n) \in \{d(f_{n-1}, g_{n-1}), d(f_n, g_{n-1}) = d(g_n, g_{n+1})\}\). Further, it follows that
\[
d(f_{n-1}, g_{n+1}) + d(f_n, g_{n-1}) = d(f_{n-1}, g_{n+1}) + d(g_{n+1}, g_{n-1}) \\
\leq d(g_{n+1}, g) + d(g, g_{n-1}) + d(f_{n-1}, g_{n-1}) \\
= d(g_{n+1}, g) + d(g_{n-1}, f_{n-1}) \\
\leq d(g_n, g_{n+1}) + h \cdot d(g_{n-2}, g_{n-1}).
\]

Now, from (2.9) we obtain:

\begin{align*}
\text{I} : & \quad d(g_n, g_{n+1}) \leq h \cdot d(g_{n-2}, g_{n-1}) + C \cdot h'd(g_{n-2}, g_{n-1}) \\
& \quad + C' \cdot (d(g_n, g_{n+1}) + h \cdot d(g_{n-2}, g_{n-1})),
\end{align*}

that is,
\[
d(g_n, g_{n+1}) \leq \frac{1 + C + C'}{1 - C'} \cdot h \cdot d(g_{n-2}, g_{n-1}).
\]

(2.10)

\begin{align*}
\text{II} : & \quad d(g_n, g_{n+1}) \leq h \cdot d(g_{n-2}, g_{n-1}) + C \cdot d(g_n, g_{n+1}) \\
& \quad + C' \cdot (d(g_n, g_{n+1}) + h \cdot d(g_{n-2}, g_{n-1})),
\end{align*}

that is
\[
d(g_n, g_{n+1}) \leq \frac{1 + C'}{1 - C} \cdot h \cdot d(g_{n-2}, g_{n-1}).
\]

(2.11)

Taking \(h' = \max \{\frac{1+C+C'}{1-C'}, \frac{1+C'}{1-C} \cdot h\}\), we get from (2.10) and (2.11)
\[
d(g_n, g_{n+1}) \leq h' \cdot d(g_{n-2}, g_{n-1}).
\]

(2.12)

Now, from (2.7) and (2.12) we have in all Cases 1–3
\[
d(g_n, g_{n+1}) \leq h'' \cdot w_n,
\]
where \(h'' = \max \{h, h'\}\) and \(w_n \in \{d(g_{n-2}, g_{n-1}), d(g_{n-1}, g_n)\}\).

From (2.13), following the procedure of Assad and Kirk [2] (see also [5], [7], [11]), we shall show, by induction, that for all \(n > 1\),
\[
d(g_n, g_{n+1}) \leq h''^{n-1} \cdot w_2,
\]
where \(w_2 \in \{d(g_0, g_1), d(g_1, g_2)\}\).
For \(n = 2 \), according to (2.13) we have, \(d(gx_1, gx_3) \leq h'' \cdot w_2 \), where
\[
 w_2 \in \{ d(gx_2, gx_2-1), d(gx_2-1, gx_2) \} = \{ d(gx_0, gx_1), d(gx_1, gx_2) \},
\]
that is \(d(gx_2, gx_3) \leq h''^{\frac{n-1}{2}} \cdot w_2 \), since \(h'' < h''^{\frac{n}{2}} \). Hence (2.14) holds.

Similarly, again according to (2.13), for \(n = 3 \) we have \(d(gx_3, gx_4) \leq h'' \cdot w_3 \), where
\[
 w_3 \in \{ d(gx_3, gx_3-1), d(gx_3-1, gx_3) \} = \{ d(gx_1, gx_2), d(gx_2, gx_3) \}.
\]
If \(w_3 = d(gx_1, gx_2) \), it follows that
\[
d(gx_3, gx_4) \leq h''d(gx_1, gx_2) = h''^{\frac{n-1}{2}}w_2,
\]
so (2.14) holds. If \(w_3 = d(gx_2, gx_3) \) we have
\[
d(gx_3, gx_4) \leq h'' \cdot d(gx_2, gx_3) \leq h''^2w_2 < h''^{\frac{n-1}{2}}w_2
\]
(because \(h'' \in (0, 1) \)), and (2.14) also holds.

Therefore, (2.14) holds for \(n = 2 \) and \(n = 3 \). Suppose now that (2.14) holds for some \(n \) and \(n + 1 \). Then again from (2.13) it follows that \(d(gx_{n+2}, gx_{n+3}) \leq h'' \cdot w_{n+2} \), where \(w_{n+2} \in \{ d(gx_n, gx_{n+1}), d(gx_{n+1}, gx_{n+2}) \} \), that is, we get the following two cases:
\[
d(gx_{n+2}, gx_{n+3}) \leq h'' \cdot d(gx_n, gx_{n+1}) \quad \text{and} \quad d(gx_{n+2}, gx_{n+3}) \leq h'' \cdot d(gx_{n+1}, gx_{n+2}).
\]
Since (2.14) holds for \(n \) and \(n + 1 \), we obtain in the first case
\[
d(gx_{n+2}, gx_{n+3}) \leq h'' \cdot d(gx_n, gx_{n+1}) \leq h'' \cdot h''^{\frac{n-1}{2}} \cdot w_2 = h''^{\frac{n+1}{2}}w_2,
\]
and in the second case
\[
d(gx_{n+2}, gx_{n+3}) \leq h'' \cdot d(gx_{n+1}, gx_{n+2}) \leq h'' \cdot h''^{\frac{n}{2}} \cdot w_2 \leq h''^{\frac{n+1}{2}}w_2,
\]
where \(w_2 \in \{ d(gx_0, gx_1), d(gx_1, gx_2) \} \).

Thus by induction we conclude that (2.14) holds for all \(n > 1 \).

From (2.14) and by the triangle inequality, for \(n > m \) we have:
\[
d(gx_n, gx_m) \leq d(gx_n, gx_{n-1}) + d(gx_{n-1}, gx_{n-2}) + \cdots + d(gx_{m+1}, gx_m) \leq \left(h''^\frac{n-2}{2} + h''^\frac{n-3}{2} + \cdots + h''^\frac{n-1}{2} \right) \cdot w_2 \leq \frac{\sqrt{h''^{n-1}}}{1 - \sqrt{h''}} : w_2 \to \theta, \text{ as } m \to \infty.
\]

According to (p5) and (p1) it follows that, for \(\theta < c \) and large \(m \), \(d(gx_n, gx_m) < c \), i.e., \(\{gx_n\} \) is a Cauchy sequence. Since \(gx_n \in K \cap gK \) and \(K \cap gK \) is complete, there exists a point \(p \in K \cap gK \) such that \(gx_n \to p \). Let \(q \) in \(K \) be such that \(gq = p \). By the construction of \(\{gx_n\} \), there exists a subsequence \(\{g_{n(k)}\} \) such that
$g x_{n(k)} = y_{n(k)} = f x_{n(k)-1}$ and hence $f x_{n(k)-1} \to p$. We now prove that $f g = p$. We have
\[d(f g, p) \leq d(f, f x_{n(k)-1}) + d(f x_{n(k)-1}, p) \]
\[\leq C \cdot u_{n(k)} + C' (d(f g x_{n(k)-1}), d(f x_{n(k)-1}, g g) + d(f x_{n(k)-1}, p), \]
where $u_{n(k)} \in \{d(f g, g g), d(f x_{n(k)-1}, g x_{n(k)-1})\}$. Since $y_{n(k)} = f x_{n(k)-1} \to p$, as $k \to \infty$, we obtain the following two cases:

1) $u_{n(k)} = d(f g, g g)$. Then
\[d(f g, p) \leq C \cdot d(f q, g g) + C' d(f g x_{n(k)-1}) + C' d(f x_{n(k)-1}, g g) + d(f x_{n(k)-1}, p) \]
\[\leq C \cdot d(f q, p) + C \cdot d(p, g g) + C' d(f q, p) + C' d(p, g x_{n(k)-1}) \]
\[+ C' d(f x_{n(k)-1}, p) + d(f x_{n(k)-1}, p), \]
that is,
\[d(f q, p) \leq \frac{C' d(p, g x_{n(k)-1})}{1 - C - C'} + \frac{(1 + C') d(f x_{n(k)-1}, p)}{1 - C - C'}. \]

Put $a = \frac{C'}{1 - C - C'}$ and $b = \frac{1}{1 - C - C'}$. Let $\theta \ll c$ be given. Since $g x_{n(k)-1} \to p$ and $f x_{n(k)-1} \to p$, we can choose a positive integer k_0 such that, for all $k \geq k_0$, we have
\[d(f x_{n(k)-1}, p) \leq \frac{c}{2 a} \quad \text{and} \quad d(p, g x_{n(k)-1}) \leq \frac{c}{2 (a + b)}. \]
Thus, we get
\[d(f q, p) \leq a \frac{c}{2 a} + (a + b) \frac{c}{2 (a + b)} = c, \]
in the case 1).

2) $u_{n(k)} = d(f x_{n(k)-1}, g x_{n(k)-1})$. Then
\[d(f q, p) \leq C \cdot d(f x_{n(k)-1}, g x_{n(k)-1}) + C' d(f q, g x_{n(k)-1}) \]
\[+ C' d(f x_{n(k)-1}, g g) + d(f x_{n(k)-1}, p) \]
\[\leq C \cdot d(f x_{n(k)-1}, g x_{n(k)-1}) + C' d(f q, p) + C' d(p, g x_{n(k)-1}) \]
\[+ C' d(f x_{n(k)-1}, p) + d(f x_{n(k)-1}, p), \]
i.e.,
\[d(f q, p) \leq \frac{C d(f x_{n(k)-1}, g x_{n(k)-1})}{1 - C'} + \frac{C' d(p, g x_{n(k)-1})}{1 - C'} \]
\[+ \frac{C' d(f x_{n(k)-1}, p)}{1 - C'} + \frac{d(f x_{n(k)-1}, p)}{1 - C'} \]
\[\leq \frac{1 + C + C'}{1 - C'} d(f x_{n(k)-1}, p) + \frac{C + C'}{1 - C'} d(p, g x_{n(k)-1}). \]
Take now $A = \frac{1}{1-C}$ and $B = \frac{C+C'}{1-C}$. Let $\theta \ll c$ be given. There exists a positive integer k_1 such that, for all $k \geq k_1$, we have
\[
d\left(fx_{n(k)-1}, p\right) \ll \frac{c}{2(A+B)} \quad \text{and} \quad d\left(p, gx_{n(k)-1}\right) \ll \frac{c}{2B}.
\]
Thus, we get
\[
d(fq, p) \ll (A+B) \frac{c}{2(A+B)} + B \frac{c}{2B} = c,
\]
in the case 2).

In both cases we obtain $d(fq, p) \ll c$, for each $c \in \text{int} P$. Using (p2) it follows that $d(fq, p) = \theta$, i.e. $fq = p$.

Suppose now that f and g are coincidentally commuting. Then $p = fq = gq \Rightarrow fp = fgq = gfq = gp$. Then, from (2.1),
\[
d(fp, p) = d(fp, fq) \leq C \cdot u(p, q) + C' \cdot (d(fp, gq) + d(fq, gp))
\]
where
\[
u(p, q) \in \{d(fp, gp), d(fq, gq)\} = \{
\theta, \theta \} = \{\theta\}.
\]
Hence, we get the following:
\[
d(fp, fq) \leq C \cdot \theta + C' \cdot (d(fp, gq) + d(fq, gp))
\]
\[
= 2C' \cdot d(fp, fq).
\]
Since $2C' < 1$, it follows that $fp = fq$. Hence, p is a common fixed point of f and g. Uniqueness of the common fixed point follows easily from (2.1).

Setting $g = I_X$, the identity mapping of X in Theorem 2.1, we obtain the following:

Theorem 2.2. Let (X, d) be a complete cone metric space, and let K be a nonempty closed subset of X such that, for each $x \in K$ and $y \notin K$, there exists a point $z \in \partial K$ such that $d(x, z) + d(z, y) = d(x, y)$. Suppose that $f : K \rightarrow X$ satisfies the condition
\[
d(fx, fy) \leq C \cdot u(x, y) + C' \cdot (d(fx, y) + d(x, fy)),
\]
where $u(x, y) \in \{d(x, fx), d(y, fy)\}$, for all $x, y \in K$. Here C, C' are nonnegative reals as in the Theorem 1.1, and f has the additional property that for each $x \in \partial K$, the boundary of K, $fx \in K$. Then f has a unique fixed point.

Remark 2.1. Setting $E = \mathbb{R}$, $P = [0, +\infty)$, $\|\cdot\| = |\cdot|$ in Theorem 2.2 we obtain the main result from [10], i.e., Theorem 1.1 above. This shows that Theorem 2.1 is more general, since the main theorem from [10] can be obtained as its special case. We believe that the results of our paper can be extended to obtain a common fixed point theorem for a family of non-self mappings in the frame of the cone metric spaces, analogous to [6] for metrically convex spaces.

Acknowledgement: Author is thankful to the Ministry of Education, Science and Technological Development of Serbia.
References

Faculty of Mechanical Engineering,
University of Belgrade,
Serbia
E-mail address: radens@beotel.rs