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BAZILEVIČ P -VALENT FUNCTIONS ASSOCIATED WITH
GENERALIZED HYPERGEOMETRIC FUNCTIONS

E. EL-YAGUBI1 AND M. DARUS2

Abstract. The aim of this paper is to introduce and study a new class of Bazilevič
p-valent function of order β by using the subordination concept between this function
and a generalized derivative operator. Some interesting properties are also obtained.

1. Introduction

Let Ap the class of functions f(z) normalized by

f(z) = zp +
∞∑
n=1

ap+nz
p+n, (z ∈ U, p ∈ N),

which are analytic and p-valent in the unit disk U = {z : z ∈ C, |z| < 1}. For f(z) and
g(z) are analytic in U, we say that f is subordinate to g if there exists an analytic
function ω in U, with ω(0) = 0 and |ω(z)| < 1 such that f(z) = g(ω(z)), z ∈ U.
We denote this subordination by f(z) ≺ g(z). If g(z) is univalent in U, then the
subordination is equivalent to f(0) = g(0) and f(U) ⊂ g(U).

Now, we define new generalized differential operator Dm,b
λ1,λ2,p

(ai, bq) of analytic p-
valent functions as follows.

Definition 1.1. Let f be in the class Ap, then we have

Dm,b
λ1,λ2,p

(ai, bq)f(z) = zp +
∞∑
n=1

[
p+ (λ1 + λ2)n+ b

p+ λ2n+ b

]m
(a1)n · · · (ar)n
(b1)n · · · (bs)n

ap+nz
p+n

n!
,

where p ∈ N,m, b ∈ N0 = N ∪ {0}, λ2 ≥ λ1 ≥ 0, ai ∈ C, bq ∈ C\{0,−1,−2, . . .}
(i = 1, . . . , r, q = 1, . . . , s) and r ≤ s + 1; r, s ∈ N0, and (x)n is the Pochhammer
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symbol defined by

(x)n =
Γ(x+ n)

Γ(x)
=

{
1, n = 0,
x(x+ 1) · · · (x+ n− 1), n = {1, 2, 3, . . .}.

It follows from the above definition that

(p+ λ2n+ b)Dm+1,b
λ1,λ2,p

(ai, bq)f(z) = (p+ λ2n− pλ1 + b)Dm,b
λ1,λ2,p

(ai, bq)f(z)

+ pλ1z
(
Dm,b
λ1,λ2,p

(ai, bq)f(z)
)′
.(1.1)

Remark 1.1. It should be remarked that the linear operator Dm,b
λ1,λ2,p

(ai, bq)f(z) is a
generalization of many operators considered earlier. Let us see some of the examples:

• For λ2 = b = 0, the operator Dm,b
λ1,λ2,p

(ai, bq)f reduces to the operator was given
by Selvaraj and Karthikeyan [18].
• For m = 0, the operator Dm,b

λ1,λ2,p
(ai, bq)f reduces to the operator was given by

El-Ashwah [9].
• For m = 0 and p = 1, the operator Dm,b

λ1,λ2,p
(ai, bq)f reduces to the well-known

operator introduced by Dziok and Srivastava [8].
• For m = 0, r = 2, s = 1 and p = 1, we obtain the operator which was given by
Hohlov [12].
• For r = 1, s = 0, a1 = 1, λ1 = 1, λ2 = b = 0 and p = 1, we get the operator
introduced by Sălăgean [17].
• For r = 1, s = 0, a1 = 1, λ2 = b = 0 and p = 1, we get the generalized Sălăgean
derivative operator introduced by Al-Oboudi [1].
• For m = 0, r = 1, s = 0, a1 = δ + 1 and p = 1, we obtain the operator
introduced by Ruscheweyh [16].
• For r = 1, s = 0, a1 = δ + 1 and p = 1, we obtain the operator studied by
El-Yagubi and Darus [10], [11].
• For m = 0, r = 2 and s = 1, a2 = 1 and p = 1, we obtain the operator studied
by Carlson and Shaffer [4].
• For r = 1, s = 0, a1 = 1, λ2 = 0 and p = 1, we get the operator introduced by
Cátás [5].

By making use of the differential operator Dm,b
λ1,λ2,p

(ai, bq) and the principle of sub-
ordination between Bazilevič p-valent functions, we introduce and investigate the
following subclass of Ap.

Definition 1.2. Let f ∈ Ap is said to be in the class Sm,bλ1,λ2,p
(ai, bq, γ, β, A,B) if it

satisfies the following subordination condition

(1− γ)

(
Dm,b
λ1,λ2,p

(ai, bq)f(z)

zp

)β

+ γ

(
Dm+1,b
λ1,λ2,p

(ai, bq)f(z)

Dm,b
λ1,λ2,p

(ai, bq)f(z)

)(
Dm,b
λ1,λ2,p

(ai, bq)f(z)

zp

)β

≺ 1 + Az

1 +Bz
(p ∈ N, z ∈ U),
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where γ ∈ C, <(β) > 0, m, b ∈ N0 = N ∪ {0}, λ2 ≥ λ1 ≥ 0, ai ∈ C, bq ∈
C\{0,−1,−2, . . .} (i = 1, . . . , r, q = 1, . . . , s), r ≤ s + 1; r, s ∈ N0, −1 ≤ B ≤ 1
and A 6= B ∈ N0.

Clearly, if we put p = 1,m = b = 0, λ1 = λ2 = 1, r = 1, s = 0 and a1 = 1 in the
class Sm,bλ1,λ2,p

(ai, bq, γ, β, A,B), then we obtain the class of Bazilevič functions studied
by Liu and Noor [14].

To prove our main result, the following lemmas are required.

Lemma 1.1. [1] Let h(z) be analytic and convex univalent in U with h(0) = 1.
Assume also the function ℘(z) given by

(1.2) ℘(z) = 1 + cnz
n + cn+1z

n+1 + · · ·

be analytic in U. If

℘(z) +
z℘′(z)

δ
≺ h(z) {<(δ) ≥ 0; δ 6= 0, z ∈ U},

then

(1.3) ℘(z) ≺ ψ(z) =
δ

n
z−(

δ
n
)

∫ z

0

t(
δ
n
)−1h(t)dt ≺ h(z) (z ∈ U),

and ψ is the best dominant.

Lemma 1.2. [19] Let q(z) be a convex univalent function in U and let σ, η ∈ C with

<
(

1 +
zq′′(z)

q′(z)

)
> max

{
0,−<

(
σ

η

)}
.

If the function p is analytic in U and

σp(z) + ηzp′(z) ≺ σq(z) + ηzq′(z),

then p(z) ≺ q(z) and q(z) is the best dominant.

Lemma 1.3. [15] Let q be convex univalent in U and k ∈ C. Further assume that
<(k) > 0. If p(z) ∈ H[q(0), 1] ∩Q and p(z) + kzp′(z) is univalent in U, then

q(z) + kzq′(z) ≺ p(z) + kzp′(z)

implies q(z) ≺ p(z) and q(z) is the best subdominant.

2. Main Results

In what follows we aim to study some interesting properties of the class
Sm,bλ1,λ2,p

(ai, bq, γ, β, A,B).
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Theorem 2.1. Let f(z) ∈ Sm,bλ1,λ2,p
(ai, bq, γ, β, A,B), then(

Dm,b
λ1,λ2,p

(ai, bq)f(z)

zp

)β

≺ (p+ λ2n+ b)β

pλ1nγ

∫ 1

0

1 + Azu

1 +Bzu
u

(p+λ2n+b)β
pλ1nγ

−1
du

≺ 1 + Az

1 +Bz
(z ∈ U),

where γ ∈ C, <(β) > 0, p ∈ N, m, b ∈ N0 = N ∪ {0}, λ2 ≥ λ1 ≥ 0, ai ∈ C,
bq ∈ C\{0,−1,−2, . . .} (i = 1, . . . , r, q = 1, . . . , s), r ≤ s + 1; r, s ∈ N0, −1 ≤ B ≤ 1
and A 6= B ∈ N0.

Proof. Let

(2.1) p(z) =

(
Dm,b
λ1,λ2,p

(ai, bq)f(z)

zp

)β

(z ∈ U).

Then p(z) is analytic in U with p(0) = 1. By taking the derivative in the both sides
in equality (2.1) and using (1.1), we get

(1− γ)

(
Dm,b
λ1,λ2,p

(ai, bq)f(z)

zp

)β

+ γ

(
Dm+1,b
λ1,λ2,p

(ai, bq)f(z)

Dm,b
λ1,λ2,p

(ai, bq)f(z)

)(
Dm,b
λ1,λ2,p

(ai, bq)f(z)

zp

)β

= p(z) +
pλ1γ

β(p+ λ2n+ b)
zp′(z) ≺ 1 + Az

1 +Bz
(z ∈ U).(2.2)

By applying Lemma1.1 in the last equation, we get(
Dm,b
λ1,λ2,p

(ai, bq)f(z)

zp

)β

≺ (p+ λ2n+ b)β

pλ1nγ
z
− (p+λ2n+b)β

pλ1nγ

∫ z

0

t
(p+λ2n+b)β

pλ1nγ
−1 1 + At

1 +Bt
dt

=
ζ

n

∫ 1

0

u
ζ
n
−1 1 + Azu

1 +Bzu
du ≺ 1 + Az

1 +Bz
(z ∈ U),(2.3)

where ζ = (p+λ2n+b)β
pλ1γ

. �

Theorem 2.2. Let q(z) be univalent in U. Suppose also that q(z) satisfies

<
(

1 +
zq′′(z)

q′(z)

)
> max

{
0,−<

(
(p+ λ2n+ b)β

pλ1γ

)}
.(2.4)

If f(z) ∈ Ap is satisfying the following subordination

(1− γ)

(
Dm,b
λ1,λ2,p

(ai, bq)f(z)

zp

)β

+ γ

(
Dm+1,b
λ1,λ2,p

(ai, bq)f(z)

Dm,b
λ1,λ2,p

(ai, bq)f(z)

)(
Dm,b
λ1,λ2,p

(ai, bq)f(z)

zp

)β

≺ q(z) +
pγλ1

(p+ λ2n+ b)β
zq′(z),(2.5)
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then
(
Dm,bλ1,λ2,p

(ai,bq)f(z)

zp

)β
≺ q(z), and q(z) is the best dominant.

Proof. Let p(z) be defined by (2.1). We know that (2.2) is true. Combining (2.2) and
(2.5), we see that

(2.6) p(z) +
pλ1γ

β(p+ λ2n+ b)
zp′(z) ≺ q(z) +

pλ1γ

β(p+ λ2n+ b)
zq′(z).

By using Lemma 1.2 and (2.6), we get the assertion of Theorem 2.2. �

Taking q(z) = 1+Az
1+Bz

in Theorem 2.2, we get the following result.

Corollary 2.1. Let γ ∈ C and −1 ≤ B < A ≤ 1. Suppose also that 1+Az
1+Bz

satisfies
the condition (2.4). If f(z) ∈ Ap satisfies the following subordination

(1− γ)

(
Dm,b
λ1,λ2,p

(ai, bq)f(z)

zp

)β

+ γ

(
Dm+1,b
λ1,λ2,p

(ai, bq)f(z)

Dm,b
λ1,λ2,p

(ai, bq)f(z)

)(
Dm,b
λ1,λ2,p

f(z)

zp

)β

≺ 1 + Az

1 +Bz
+

pλ1γ(A−B)z

(p+ λ2n+ b)β(1 +Bz)2
,

then
(
Dm,bλ1,λ2,p

(ai,bq)f(z)

zp

)β
≺ 1+Az

1+Bz
and 1+Az

1+Bz
is the best dominant.

Theorem 2.3. Let q(z) be convex univalent in U, γ ∈ C, with <(γ) > 0. Also let(
Dm,bλ1,λ2,p

(ai,bq)f(z)

zp

)β
∈ H[q(0), 1] ∩Q and

(1− γ)

(
Dm,b
λ1,λ2,p

(ai, bq)f(z)

zp

)β

+ γ

(
Dm+1,b
λ1,λ2,p

(ai, bq)f(z)

Dm,b
λ1,λ2,p

(ai, bq)f(z)

)(
Dm,b
λ1,λ2,p

(ai, bq)f(z)

zp

)β

be univalent in U. If

q(z) +
pλ1γ

β(p+ λ2n+ b)
zq′(z) ≺ (1− γ)

(
Dm,b
λ1,λ2,p

(ai, bq)f(z)

zp

)β

+ γ

(
Dm+1,b
λ1,λ2,p

(ai, bq)f(z)

Dm,b
λ1,λ2,p

(ai, bq)f(z)

)(
Dm,b
λ1,λ2,p

(ai, bq)f(z)

zp

)β

,

then q(z) ≺
(
Dm,bλ1,λ2,p

(ai,bq)f(z)

zp

)β
and q(z) is the best subdominant.
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Proof. Let p(z) be defined by (2.1). Then

q(z) +
pλ1γ

β(p+ λ2n+ b)
zq′(z) ≺ (1− γ)

(
Dm,b
λ1,λ2,p

(ai, bq)f(z)

zp

)β

+ γ

(
Dm+1,b
λ1,λ2,p

(ai, bq)f(z)

Dm,b
λ1,λ2,p

(ai, bq)f(z)

)(
Dm,b
λ1,λ2,p

(ai, bq)f(z)

zp

)β

= p(z) +
pλ1γ

β(p+ λ2n+ b)
zq′(z).

An application of Lemma 1.3 yields the assertion of Theorem 2.3. �

Corollary 2.2. Let q(z) be convex univalent in U and −1 ≤ B < A ≤ 1, γ ∈ C with

<(γ) > 0. Also let
(
Dm,bλ1,λ2,p

(ai,bq)f(z)

zp

)β
∈ H[q(0), 1] ∩Q and

(1− γ)

(
Dm,b
λ1,λ2,p

(ai, bq)f(z)

zp

)β

+ γ

(
Dm+1,b
λ1,λ2,p

(ai, bq)f(z)

Dm,b
λ1,λ2,p

(ai, bq)f(z)

)(
Dm,b
λ1,λ2,p

(ai, bq)f(z)

zp

)β

be univalent in U. If

1 + Az

1 +Bz
+

pλ1γ(A−B)z

(p+ λ2n+ b)β(1 +Bz)2
≺ (1− γ)

(
Dm,b
λ1,λ2,p

(ai, bq)f(z)

zp

)β

+γ

(
Dm+1,b
λ1,λ2,p

(ai, bq)f(z)

Dm,b
λ1,λ2,p

(ai, bq)f(z)

)(
Dm,b
λ1,λ2,p

(ai, bq)f(z)

zp

)β

,

then 1+Az
1+Bz

≺
(
Dm,bλ1,λ2,p

(ai,bq)f(z)

zp

)β
and 1+Az

1+Bz
is the best subdominant.

Theorem 2.4. Let f(z) ∈ Sm,bλ1,λ2,p
(ai, bq, γ, β, A,B), then

inf
z∈U
<
{

(p+ λ2n+ b)β

pλ1nγ

∫ 1

0

1 + Azu

1 +Bzu
u

(p+λ2n+b)β
pλ1nγ

−1
du

}

< <


(
Dm,b
λ1,λ2,p

(ai, bq)f(z)

zp

)β


< sup
z∈U
<
{

(p+ λ2n+ b)β

pλ1nγ

∫ 1

0

1 + Azu

1 +Bzu
u

(p+λ2n+b)β
pλ1nγ

−1
du

}
.

where γ ∈ C, <(β) > 0, p ∈ N, m, b ∈ N0 = N ∪ {0}, λ2 ≥ λ1 ≥ 0, ai ∈ C,
bq ∈ C\{0,−1,−2, . . .}(i = 1, . . . , r, q = 1, . . . , s), r ≤ s + 1; r, s ∈ N0, −1 ≤ B ≤ 1
and A 6= B ∈ N0.



BAZILEVIČ P -VALENT FUNCTIONS 117

Proof. Suppose that f(z) ∈ Sm,bλ1,λ2,p
(ai, bq, γ, β, A,B), then from Theorem 2.1 we know

that (
Dm,b
λ1,λ2,p

(ai, bq)f(z)

zp

)β

≺ (p+ λ2n+ b)β

pλ1nγ

∫ 1

0

1 + Azu

1 +Bzu
u

(p+λ2n+b)β
pλ1nγ

−1
du.

Therefore, from the definition of the subordination, we have

<


(
Dm,b
λ1,λ2,p

(ai, bq)f(z)

zp

)β
 > inf

z∈U
<
{

(p+ λ2n+ b)β

pλ1nγ

∫ 1

0

1 + Azu

1 +Bzu
u

(p+λ2n+b)β
pλ1nγ

−1
du

}
and

<


(
Dm,b
λ1,λ2,p

(ai, bq)f(z)

zp

)β


< sup
z∈U
<
{

(p+ λ2n+ b)β

pλ1nγ

∫ 1

0

1 + Azu

1 +Bzu
u

(p+λ2n+b)β
pλ1nγ

−1
du

}
. �

Corollary 2.3. Let γ ∈ C, <(β) > 0, p ∈ N, m, b ∈ N0, λ2 ≥ λ1 ≥ 0, ai ∈
C, bq ∈ C\{0,−1,−2, . . .} (i = 1, . . . , r, q = 1, . . . , s), r ≤ s + 1; r, s ∈ N0 and
−1 ≤ B < A ≤ 1. If f(z) ∈ Sm,bλ1,λ2,p

(ai, bq, γ, β, A,B). then

(p+ λ2n+ b)β

pλ1nγ

∫ 1

0

1− Au
1−Bu

u
(p+λ2n+b)β

pλ1nγ
−1
du < <


(
Dm,b
λ1,λ2,p

(ai, bq)f(z)

zp

)β


<
(p+ λ2n+ b)β

pλ1nγ

∫ 1

0

1 + Au

1 +Bu
u

(p+λ2n+b)β
pλ1nγ

−1
du (z ∈ U).

(2.7)

Proof. Suppose that f(z) ∈ Sm,bλ1,λ2,p
(ai, bq, γ, β, A,B), then from Theorem 2.1 we know

that (
Dm,b
λ1,λ2,p

(ai, bq)f(z)

zp

)β

≺ (p+ λ2n+ b)β

pλ1nγ

∫ 1

0

1 + Azu

1 +Bzu
u

(p+λ2n+b)β
pλ1nγ

−1
du.

Therefore, from the definition of the subordination and A > B, we have

<


(
Dm,b
λ1,λ2,p

(ai, bq)f(z)

zp

)β
 > inf

z∈U
<
{

(p+ λ2n+ b)β

pλ1nγ

∫ 1

0

1 + Azu

1 +Bzu
u

(p+λ2n+b)β
pλ1nγ

−1
du

}

≥ (p+ λ2n+ b)β

pλ1nγ

∫ 1

0

inf
z∈U

{
1 + Azu

1 +Bzu

}
u

(p+λ2n+b)β
pλ1nγ

−1
du

>
(p+ λ2n+ b)β

pλ1nγ

∫ 1

0

1− Au
1−Bu

u
(p+λ2n+b)β

pλ1nγ
−1
du,
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and

<


(
Dm,b
λ1,λ2,p

(ai, bq)f(z)

zp

)β
 < sup

z∈U
<
{

(p+ λ2n+ b)β

pλ1nγ

∫ 1

0

1 + Azu

1 +Bzu
u

(p+λ2n+b)β
pλ1nγ

−1
du

}

≤ (p+ λ2n+ b)β

pλ1nγ

∫ 1

0

sup
z∈U

{
1 + Azu

1 +Bzu

}
u

(p+λ2n+b)β
pλ1nγ

−1
du

<
(p+ λ2n+ b)β

pλ1nγ

∫ 1

0

1 + Au

1 +Bu
u

(p+λ2n+b)β
pλ1nγ

−1
du,

which proves the result. �

Corollary 2.4. Let γ ∈ C, <(β) > 0, p ∈ N, m, b ∈ N0, λ2 ≥ λ1 ≥ 0, ai ∈
C, bq ∈ C\{0,−1,−2, . . .} (i = 1, . . . , r, q = 1, . . . , s), r ≤ s + 1; r, s ∈ N0 and
−1 ≤ B < A ≤ 1. If f(z) ∈ Sm,bλ1,λ2,p

(ai, bq, γ, β, A,B), then

(
(p+ λ2n+ b)β

pλ1nγ

∫ 1

0

1− Au
1−Bu

u
(p+λ2n+b)β

pλ1nγ
−1
du

) 1
2

< <


(Dm,b

λ1,λ2,p
(ai, bq)f(z)

zp

)β
 1

2


<

(
(p+ λ2n+ b)β

pλ1nγ

∫ 1

0

1 + Au

1 +Bu
u

(p+λ2n+b)β
pλ1nγ

−1
du

) 1
2

(z ∈ U).(2.8)

Proof. Suppose that f(z) ∈ Sm,bλ1,λ2,p
(ai, bq, γ, β, A,B), then from Theorem 2.1, we have(

Dm,b
λ1,λ2,p

(ai, bq)f(z)

zp

)β

≺ 1 + Az

1 +Bz
(z ∈ U).

Since −1 ≤ B < A ≤ 1, we have

0 ≤ 1− A
1−B

< <


(
Dm,b
λ1,λ2,p

(ai, bq)f(z)

zp

)β
 <

1 + A

1 +B
.

Thus, from the inequality (2.7), we can get the inequality (2.8). �

Corollary 2.5. Let γ ∈ C, <(β) > 0, p ∈ N, m, b ∈ N0, λ2 ≥ λ1 ≥ 0, ai ∈
C, bq ∈ C\{0,−1,−2, . . .} (i = 1, . . . , r, q = 1, . . . , s), r ≤ s + 1; r, s ∈ N0 and
−1 ≤ A < B ≤ 1. If f(z) ∈ Sm,bλ1,λ2,p

(ai, bq, γ, β, A,B), then

(
(p+ λ2n+ b)β

pλ1nγ

∫ 1

0

1 + Au

1 +Bu
u

(p+λ2n+b)β
pλ1nγ

−1
du

) 1
2

< <


(Dm,b

λ1,λ2,p
(ai, bq)f(z)

zp

)β
 1

2


<

(
(p+ λ2n+ b)β

pλ1nγ

∫ 1

0

1− Au
1−Bu

u
(p+λ2n+b)β

pλ1nγ
−1
du

) 1
2

(z ∈ U).

Proof. By applying similar method as in Corollary 2.4, we get the required result. �
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Note that other work related to classes of Bazilevič functions can be found in [2],
[3], [6], [7], [13].
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