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NEW NORM INEQUALITIES OF CEBYSEV TYPE FOR POWER
SERIES IN BANACH ALGEBRAS

S. S. DRAGOMIR!2, M. V. BOLDEA?, AND M. MEGAN*

ABSTRACT. Let f(X\) = 377 A" be a function defined by powe
complex coefficients and convergent on the open disk D (0, R)
z,y € B, a Banach algebra, with xy = yz. In this paper we
upper bounds for the norm of the Cebysev type difference

FO)fQxy) = f(x) f (M),

resuls obtained by the authors. Applications fo functions such
as the exponential function and the resolvent f

for any a,b € B. The ,|I-|) is a Banach algebra if ||| is a complete
norm. We assume lgebra is unital, this means that B has an identity
1 and that ||1||

then ab €l ab) " =0b"lal.
For a unita, ach algebra we also have

(i) If a € B and lim,_,o ||a”||"/™ < 1, then 1 — a €InvB;
(i) {a € B: ||[1 = || < 1} ClnvB;

(iii) InvB is an open subset of B;
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(iv) The map InvB 5 a — a~' €InvB is continuous.

For simplicity, we denote A1, where A € C and 1 is the identity of B, by A. The
resolvent set of a € B is defined by

pla):={AeC: X\—aecInvB};

the spectrum of a is o (a) , the complement of p (a) in C, and the resolvent function of
ais R, : p(a) =InvB, R, ()\) := (A —a)~". For each \,7 € p(a) we have the identity

Ra (7) - Ra ()‘> = ()‘ - 7) Ra (A) Ra (7) :

We also have that o (a) C {A € C: |\ < ||la]|}. The spectral radius ojf@ ned as
v(a) =sup{|A|: A € o (a)}. If a,b are commuting elements in B, i en

v(ab) <v(a)v(b) and v(a+b) <v(a)+ y):

Let f be an analytic functions on the open disk D (0, R)gg1 Jower series
f) =320V (|A < R) . If v (a) < R, then the serj < b cgfiverges in the
Banach algebra B because > | [|a’|| < oo, and
Clearly f (a) is well defined and there are many e tant functions on a
Banach algebra B that can be constructed in t : in®tance, the exponential
map on B denoted exp and defined as

with the additional hypotd tativity for a and b from B

= exp (a) exp (b) .
In a general Ban difficult to determine the elements in the range of
the exponential i.e., the element which have a “logarithm”. However, it

ement in B such that |1 — a|| < 1, then a is in exp (B).
that if we set

[e.o]

=3 (1-a),

n=1

is easy to s
That fol

then the series converges absolutely and, as in the scalar case, substituting this series
into the series expansion for exp (b) yields exp (b) = a.

It is known that if x and y are commuting, i.e., xy = yx, then the exponential
function satisfies the property exp (x) exp (y) = exp (y) exp (z) = exp (z + y). Also, if
x is invertible and a,b € R with a < b then

/ exp (tz)dt = x7* [exp (bzx) — exp (az)] .
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Moreover, if z and y are commuting and y — x is invertible, then

/0 exp (1 —s)x +sy)ds = /0 exp (s (y — x)) exp (z) ds

:<A¥muﬂy_@yu>wp@)

= (y—x) " [exp(y — x) — []exp (x)
= (y — )" [exp (y) — exp (x)].

Inequalities for functions of operators in Hilbert spaces may be foung e papers

[3], 2] and in the recent monographs [4], [5], [7] and the references
In order to state some earlier results [6] that motivate

our ¢
some preparation as follows.
Let «, be nonzero complex numbers and let
R=—-——4//+
lim sup ]an| n

Clearly 0 < R < 0o, but we consider only the cgfe 0'< R <
i

e need

Denote by

D(O,R):{ fcfec

consider the functions

R—oo,

=10y =) o\
n=0
and
AN} R) —C, fa(A Z | | ™
Let B be a lgebra and 1 its unity. Denote by

{reB:|z|]| <R}, if R< oo,
B, if R = oo.

We associate
z f(z): B(O,R) —» B, f(z Zozn

Obviously, fis correctly defined because the series >~ a, 2™ is absolutely convergent,
since Y% ™| < Y235 la lo]]"

In addition, we assume that sy := Y - n?|a,| < 0o. Let 5o := > o7 |an| < o0
and s; 1= Zzozﬂn |, | < 0.

With the above assumptions we have the following [6].
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Theorem 1.1. Let A € C such that max{|\|,|A\]>} < R < oo and let z,y € B with
], lyll <1 and a2y = yz. Then

(i) We have
A1) [T DT Oay) = F ) T Ow)|| < V2omin{lle =11,y = 11} fa (0F).
where
(1.2) ? = 5089 — 5°.

(ii) We also have
13)  [[FO- 0 F ey - FOw) F )| < vVEmin{llz - 111,y

s L (D [N ) + A2 25 QAN = (AL (g

For other similar results, see [6].
In this paper we establish some new upper bounds forglie normy Cebysev type
difference

(14) FO-D) fay) — f
provide that the complex number A and the ve
in (1.4) are convergent. Applications for som

AY)

rs x, y @B are such that the series

inequality
— 1]

< Wt ol — e A ]

(2. Tl

for any
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( S;nce b -y = f:_jl (v =) = Zf:_; y' (y — 1), then by taking the norm in
2.2) we get

m

(2:3) 1AL < > lagl AP [l

7=0,j#k

k—1
> vy—1)
=

k—1
> e AP el Yyl ly = 1]
I=j

=0,k

IN

m

=lly-1 >

J=0,57#k

By noticing that

we have

m—1 m
(2.4) B<ly—=11)_ " >

Jj=0

lyll (Z [ A [l ]l” =l 1A]" Hka>

for any m >
Since the ser

doimg Nl and 37T a; (Awy)’ are convergent in B and, because
Iyl < 1, then S22, |ly||' = 171‘@”, then by letting m — oo in (2.5), we get the desired
result (2.1). .

If k =0, then >N - dotgoN (zy) =3 ayNad (1 —y7) =: C. Since
l—y=0-y)(1+y+..+3"), j>1, then

7—1 m—1
L=o < ly =Dl <y =11yl
=0 =0
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and then

m—1 m
(2.6) Il < Ty =11 D1yl lagl AP [l
=0 j=1

m—1 m
! . .
=y =11 llvl (Z o AP [z ]” = \%I) -
=0 J

=0
Letting m — oo in (2.6), we also obtain the inequality (2.1) for & = 0. This proves
the lemma. m

Corollary 2.1. Let f(A) = > 02 a, A" be a function defined by padf
complez coefficients and convergent on the open disk D(0, R) C C,*h
If |lz|| < 1, A € C with || ||z]| < R, then we have the inequalit

|7t = 7)< T [ (M o) G NI

forany k € N, k > 0.

We can state the following result.
Theorem 2.1. Let f(\) = Y " o, A" be o flllaction d@fined by power series with
complex coefficients and convergent on the_open 0 CC,R>0andx,ye B
with xy = yx. If A\, p € C are such that x and ||ly|| <1 then

(2.7) |7 0w) F ) -

ly=1]
-]

where faz (A) :=> 07
Proof. Utilising Le

Y)

pl) = Faz (A2 IDT

5 o | F ) 5% = F )|

p

ly — 1]

< kz T [fA (M Nzl = [ew] [A]F IIwII‘“] i |
=0

ly — 1] - -
=1 | (A1) D level Ll =D Ll (A"l fl]*
k=0 k=0
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for any p > 0.
Since all the series that are involved in the inequality from above are convergent,
then by letting p — 0o we get the desired result (2.7). O

Corollary 2.2. Let f(A) = Y 2 a,A" be a function defined by power series with
complex coefficients and convergent on the open disk D(0,R) C C, R >0 and x € B.
If A\, u € C are such that |p|, || ||z]] < R and ||z|| <1 then

[Fa (ATl fa (ul) = Faz (ATl 2]D],

(2.8) |7 Ow) F) = F - 1) F (2a?)
o 11
= 1= kel

Remark 2.1. If ;= ), then we get the inequality for the Ceby3

~ ~ ~ ~ y—1
70w Fow) = Fov-1) Fovan)| < b 4 (A e Fllel)]
provided that xz,y € B with zy = yx, A € C are gfc |z|]| < R and

lly]| < 1. From (2.8) we have

|[Fow] = Foxn 7o)
o~ 1

< T La (AL ||

< T Tl /a2 (ALl [|=[)] -

We can state now the second

Theorem 2.2. Let f(\) =
open disk D(0, R), with

have the inequalities

ey

power series that is convergent on the
B with xy = yx and |ly|], ||y|| < 1, then we

7 FOw)|

N[

[y = L £a (IA]) [fa (IAD) ga (A1) = B2 (IAD]?

where
la| A", ga (N) == Zn4 || A", ha (A) = Zn2 |, | A"
n=0 n=0

and X € D(0, R).
Moreover, if the series s := Y oo ||, s2:= > oo yn?lay| and sy =Y oo n* ||
are convergent, then we have the inequalities

|7 v 70w = FO- 1 F x| < Y2 i = Uy = 11 £ () [soss — 53

for any X\ € C with |\, |\ < R.

N[
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Proof. We observe that

(2.9) B, = Z AN (2" — 27 (y" — 1)

n,j=0

= Z anaj)\”)\j (x”y” — Yy — "+ xj)

n,j=0
= Xm: aj N Em: an A" (zy)" — fj a; Nl Em: anA"y"
j=0 n=>0 Jj=0 n=0
— 2’”: a;N f: ap\'z" + f: a; N ! Em: anA”
j=0 n=0 j
= iaj)\jian)\"( )=
j=0 n=0

(2.10) 1Brall < >~ lewl lag] " AP [|2]

n,j=0
Since y" —1=(y—1)(y" '+ ...+ 1) w

If n > 7, then for ||z|| <1
lo" = 27| = [|27 (14

Similarly, if 7 > n we h

we have

Utilising this f

(2.11) o] o[ A [AF n | — | [l = 1]}y — 1]

= [lz =1 lly = 11 D lewnl e[ A" [AF 7 = j]

n,7=0
Further, observe that

D ol oyl A" A mfn = j| = 5 D ol lag [ A" AP [n = j] (n + )

n,j=0 n,j=0

1 < A1 )
=5 2 laal lag A" [AP [n® = 52

n,j=0

Y
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therefore

o =11y = 1113~ landlagl A" AV [n2 = 52| := Din.

n,7=0

(2.12) Cp <

N =

Using Cauchy-Bunyakovsky-Schwarz inequality we have

= n J n g )
S lewllegl [AIE IAEATE A% [n” = 7]

n,j=0

" /o ;
< (Z anl o] WW) (z ol gl AT AP (02 — 4

n,j=0 n,j=0

m . i
- (Zm A ) (En)? .

n=0

where

(2.13)

Jun

m m m 2 2
IS Jand ISl A" — (z oo wn) |

for any m € N.
Since all the series involved in (2.14) are convergent, then by letting m — oo in
(2.14) we deduce the desired result

[F- D F Oy = F ) FOw)|

< 2 e 10y = 0 £ (D [ 0 0 (D — 5 (D]



50 S. S. DRAGOMIR, M. V. BOLDEA, AND M. MEGAN

Using Cauchy-Bunyakovsky-Schwarz inequality we also have

Y laal g A" AP [n? — 57|

n,j=0
1

1
s (Z |l ] M\Q"IMQ”) (Z [ | [n? —j2!2>

n,j=0 n,j=0

1
2

= <Z|Oén||kl2"> 21D ol Y iyl = (Zn2lan|
n=0 n=0 7=0 n=0 <

Making use of this inequality we then obtain in a similar w, e S8 art of
the theorem. The details are omitted. 0J
3. SOME EXAMPLES

Consider the function f : D (0,1) — C defing f (A — )T =30 R

Then

faz () :

and by (2.7), we have for z,y € B wit
|l s ATzl < 1 that

(3.1) [(1=Xz)™" (1 -

We also have |, ||z|| <1 that
(3.3) H(1 ) o (=N (1= )
[l — 1]

— (1 —|A A=)t == AP .
< T L P @ =D = (= A )]

If we consider the function f (A\) = (1+ )" =372, (=1)" Ak, then the inequalities
(3.1)-(3.3) also hold with “+” instead of “—" in the left hand side expressions such as
(1—Xz)"" ete.
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We consider the modified Bessel function functions of the first kind

_ (1 (12"
L ()= (2> “ kKT (v+k+1) AeC

where I' is the Gamma function and v is a real number. An integral formula is

1 4 1 0o
I, ()\) = _/ e)\cose COS (V@) _ M/ e—)\cosht—utdt’
0 0

s s
which simplifies for v an integer n to [1]

1 ™
I,(\) == /0 e cos (nf) db.

™

k

—

For n = 0 we have Iy (\) = %foﬂ ereosfh = > heo ?;:\—1)2)

Now, if we consider the exponential function f (\)
p > 0 we have

70 kl, ¥, then for

(o) =3 —0 B (2

Making use of the inequality (2.7),
A, i € C that

In particular, we h
) —exp (A(zy + 1))

< 9 exp (1 Iz + 1) = fo (211 VIRT)]

We also have | <1

Jex (20) = exp (3 (a7 + 1)) < Vot oo (A1 Gl + 1) = fo (2131 VI

for any A € C. If we take A = 1, then we get

Jex (20) — exp (2 + 1) < P fexw (el + 1) 1o (23T

for [|z]| < 1.
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