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SOME INEQUALITIES FOR CONVEX AND 3-CONVEX
FUNCTIONS WITH APPLICATIONS

DAN ŞTEFAN MARINESCU1 AND MIHAI MONEA2

Abstract. In this paper we prove some new inequalities involving the n-convex
functions, where n ∈ {2, 3}.

1. Introduction

In [1], G. Bennett presented some consequences of an inequality describing the
behavior of convex functions with respect to a mass distribution. Later, C. P. Niculescu
proved an abstract version of this result([9]), which is shown in the next theorem.

Theorem 1.1. Suppose that I is an interval carrying a positive Borel measure µ and
A,B,C are three nonoverlapping compact subintervals of I of positive measure. Then

µ(B) = µ(A) + µ(C)

and ∫
B

tdµ(t) =

∫
A

tdµ(t) +

∫
C

tdµ(t),

provide a set of necessary and sufficient conditions under which every convex function
f : I → R verifies the inequality∫

B

f(t)dµ(t) ≤
∫
A

f(t)dµ(t) +

∫
C

f(t)dµ(t).

The aim of this paper is to present similar results for the Riemann integral. We
establish some conditions for the validity of some integral inequality involving the
convex functions. The main results are described in the Theorem 2.1 and Theorem
2.2 from the next section. Like consequences, we obtain new characterizations of
the convex functions (see Theorem 2.3). In the third section, we prove some results
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of same type for 3-convex functions, including the Theorem 2 from G. Bennett’s
paper([1]).

2. Some inequalities involving convex functions

We start this section with some considerations about the convex functions. We
denote I, a real interval and denote K2 (I), the set of the convex functions f : I → R.
It is knowing that every f ∈ K2 (I) is Riemann integrable on any compact interval
[a, b] ⊂ I (see Proposition 1.3.4, [8]). Furthermore, for every x0 ∈ I, the function

s : I \ {x0} → R, s(x) =
f(x)− f(x0)

x− x0
is non-decreasing (see Proposition 1.3.1, [8]).

To avoid the repetitions, we establish some conditions and notations which we will
use it in all of this paper. Let be a1, a2, b1, b2, c1, c2 ∈ I such that

a1 < a2 ≤ b1 < b2 ≤ c1 < c2.

Denote a = a1 + a2, b = b1 + b2 and c = c1 + c2.

Theorem 2.1. Let p, q, r be real positive numbers. The next inequality

(2.1) q · f(b2) + f(b1)

2
≤ p ·

∫ a2
a1
f(x)dx

a2 − a1
+ r ·

∫ c2
c1
f(x)dx

c2 − c1
,

holds for every function f ∈ K2(I) if and only if q = p+ r and q · b = p · a+ r · c.

Proof. For the ’if’ part, we choose the functions f1, f2, f3, f4 : I → R, defined by
f1(x) = 1, f2(x) = −1, f3(x) = x and f4(x) = −x, for every x ∈ I. Then f1, f2, f3, f4 ∈
K2(I). We apply the inequality (2.1) for f1 and we obtain q ≤ p+ r. The function f2
and the inequality (2.1) goes to −q ≤ −p− r and we find q = p+ r.

In same mode, the inequality (2.1) and the function f3 give us the inequality
q · b ≤ p · a+ r · c. We apply inequality (2.1) for f4 and we obtain −q · b ≤ −p · a− r · c.
Now, the conclusion follows.

For the ’only if’ part, we note that the equalities q = p+ r and q · b = p · a+ r · c
are equivalent with

p

c− b
=

q

c− a
=

r

b− a
.

Further, the inequality (2.1) is equivalent to

(2.2) (c− a) · f(b2) + f(b1)

2
≤ (c− b) ·

∫ a2
a1
f(x)dx

a2 − a1
+ (b− a) ·

∫ c2
c1
f(x)dx

c2 − c1
.

Since f ∈ K2(I), the function s : I \ {b1} → R, s(x) = f(x)−f(b1)
x−b1 is non-decreasing.

Then
f(x)− f(b1)

x− b1
≤ f(b2)− f(b1)

b2 − b1
,



SOME INEQUALITIES FOR CONVEX FUNCTIONS 85

for any x ∈ [a1, a2] and

f(x)− f(b1)
x− b1

≥ f(b2)− f(b1)
b2 − b1

,

for any x ∈ [c1, c2].
The conclusion is

f(x) ≥ f(b1) +
f(b2)− f(b1)

b2 − b1
(x− b1),

for any x ∈ [a1, a2] ∪ [c1, c2]. By integrating the last inequality on [a1, a2] and also on
[c1, c2] and adding up the resulted inequalities, we obtain

(c− b) ·
∫ a2
a1
f(x)dx

a2 − a1
+ (b− a) ·

∫ c2
c1
f(x)dx

c2 − c1

≥ f(b1)(c− a) +
1

2
· f(b2)− f(b1)

b2 − b1
[(a− 2b1)(c− b) + (c− 2b1)(b− a)]

= f(b1)(c− a) +
1

2
· f(b2)− f(b1)

b2 − b1
(c− a)(b2 − b1) = (c− a) · f(b2) + f(b1)

2
,

which shows that the inequality (2.2) is true. �

In the particular case, when q = b2 − b1, p = a2 − a1 and r = c2 − c1, the
equality b2 − b1 = a2 − a1 + c2 − c1 becomes q = p + r. Moreover, the equality
b22 − b21 = a22 − a21 + c22 − c21 is equivalent with q · b = p · a+ r · c. Then, we obtain the
next consequence.

Corollary 2.1. The inequality

(b2 − b1) ·
f(b2) + f(b1)

2
≤
∫ a2

a1

f(x)dx+

∫ c2

c1

f(x)dx,

is true for any f ∈ K2(I) if and only if b2 − b1 = a2 − a1 + c2 − c1 and b22 − b21 =
a22 − a21 + c22 − c21.

A very useful result about convex functions is presented by Hadamard-Hermite
inequality(for example, see Corollary 3.7.2, [3]). It says that for any function f ∈
K2 (I) and for any a, b ∈ I such that a < b, we have

(2.3) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)

2
.

We use this tool to prove the following theorem.

Theorem 2.2. Let p, q, r be real positive numbers. The inequality

q ·
∫ b2
b1
f(x)dx

b2 − b1
≤ p ·

∫ a2
a1
f(x)dx

a2 − a1
+ r ·

∫ c2
c1
f(x)dx

c2 − c1
,

is true for any f ∈ K2(I) if and only if q = p+ r and q · b = p · a+ r · c.
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Proof. The proof of the ’if’ part is similar with the proof of same part of Theorem
2.1. For ’only if’ part, we are using Theorem 2.1 and we have

(c− a) · f(b2) + f(b1)

2
≤ (c− b) ·

∫ a2
a1
f(x)dx

a2 − a1
+ (b− a) ·

∫ c2
c1
f(x)dx

c2 − c1
.

By applying (2.3), we obtain∫ b2
b1
f(x)dx

b2 − b1
≤ f(b2) + f(b1)

2
.

Then

(c− a) ·
∫ b2
b1
f(x)dx

b2 − b1
≤ (c− b) ·

∫ a2
a1
f(x)dx

a2 − a1
+ (b− a) ·

∫ c2
c1
f(x)dx

c2 − c1
.

Now, we find the conclusion in same mode like the proof of the Theorem 2.1 by using
the equality

p

c− b
=

q

c− a
=

r

b− a
.

�

In same particular case like to Corollary 2.1, we recover a result due to Niculescu
([9]).

Corollary 2.2. The inequality∫ b2

b1

f(x)dx ≤
∫ a2

a1

f(x)dx+

∫ c2

c1

f(x)dx

holds for any f ∈ K2(I) if and only if b2 − b1 = a2 − a1 + c2 − c1 and b22 − b21 =
a22 − a21 + c22 − c21.

With some algebraic manipulation, Marinescu obtained a similar result ([6]) . It is
following now.

Corollary 2.3. Let f ∈ K2(I) and let a1, a2, . . . , a2n, a2n+1 be real numbers from I in
arithmetic progression with a positive ratio. Then∫ an+2

an

f(x)dx ≤
∫ a2

a1

f(x)dx+

∫ a2n+1

a2n

f(x)dx.

Proof. With r we denote the ratio. It is clear that an+2 − an = a2 − a1 + a2n+1 − a2n.
Now

a22 − a21 + a22n+1 − a22n = (a2 − a1) (a2 + a1) + (a2n+1 − a2n) (a2n+1 + a2n)

= r (a2 + a1) + r (a2n+1 + a2n) = r (a2n+1 + a2n + a2 + a1)

= r ((a2n+1 + a1) + (a2n + a2)) = 4ran+1

= 2r (an+2 + an) = (an+2 − an) (an+2 + an)

= a2n+2 − a2n.
We obtain the conclusion by applying the Corollary 2.2. �
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As known, when continuity is present, the Hadamard-Hermite inequalities char-
acterizes the convexity (see Theorem 3.7.8. from [3]). Next we will establish some
results of the same nature.

Theorem 2.3. Let be f : I → R a continuous function. The next three statements
are equivalent:

(i) The function f is convex;
(ii) For any a1, a2, b1, b2, c1, c2 ∈ I such that a1 < a2 ≤ b1 < b2 ≤ c1 < c2, we have

(2.4) (c− a) · f(b2) + f(b1)

2
≤ (c− b) ·

∫ a2
a1
f(x)dx

a2 − a1
+ (b− a) ·

∫ c2
c1
f(x)dx

c2 − c1
,

where a = a1 + a2, b = b1 + b2, c = c1 + c2;
(iii) For any a1, a2, b1, b2, c1, c2 ∈ I such that a1 < a2 ≤ b1 < b2 ≤ c1 < c2, we have

(2.5) (c− a) ·
∫ b2
b1
f(x)dx

b2 − b1
≤ (c− b) ·

∫ a2
a1
f(x)dx

a2 − a1
+ (b− a) ·

∫ c2
c1
f(x)dx

c2 − c1
.

where a = a1 + a2, b = b1 + b2, c = c1 + c2.

Proof. First, we prove the equivalence (i)⇔ (ii). The ’if’ part is a particular case of
Theorem 2.1.

For the ’only if’ part, let x, y ∈ I and t ∈ (0, 1). Denote z = tx + (1 − t)y. We
admit that x < y. Then we have x < z < y. We consider ε > 0 so that

x < x+ ε < z − ε < z < y − ε < y.

We choose a1 = x, a2 = x+ ε, b1 = z − ε, b2 = z , c1 = y − ε and c2 = y. Then, we
have
(2.6)

(2y−2x−2ε) · f(z) + f(z − ε)
2

≤ (2y−2z) ·
∫ x+ε

x
f(t)dt

ε
+(2z−2x−2ε) ·

∫ y

y−ε f(t)dt

ε
.

Since the function f is continuous, then

lim
ε→0

∫ x+ε

x
f (t) dt

ε
= f (x) .

In (2.6), we put ε→ 0 and we obtain

(y − x) · f(z) ≤ (y − z) · f(x) + (z − x) · f(y),
also

f(z) ≤ t · f(x) + (1− t) · f(y).
This shows that the function f is convex.

Now, we proceed in same mode for the equivalence (i) ⇔ (iii). The ’if’ part is a
particular case of Theorem 2.2. The proof of the ’only if’ part is similar, but we have
the inequality

(2y − 2x− 2ε) ·
∫ z

z−ε f(t)dt

ε
≤ (2y − 2z) ·

∫ x+ε

x
f(t)dt

ε
+ (2z − 2x− 2ε) ·

∫ y

y−ε f(t)dt

ε
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instead of (2.6) . We put ε→ 0 and our proof is complete. �

The implication (iii) ⇒ (i) can be found in [7], but the Theorem 2.3 give us a
supplementary characterization for convexity due to the implication (ii)⇒ (i).

3. Some results about the 3-convex functions

Let be n ∈ N?. The notion of n− convex function is due to T. Popoviciu (see [11]).
More details about these functions and their properties can be found in [4], [5] or [10].
In this section we focus to the case n = 3. First, let be I an open interval of R. We
recall that a function f : I → R is 3-convex if∑

cyclic

1

(x− y)(x− z)(x− t)
· f(x) ≥ 0,

for any x, y, z, t ∈ I, with x < y < z < t.
We denote K3(I), the set of all the functions f : I → R which is 3-convex on I. Is

is known that every function f ∈ K3(I) is derivable and f ′ ∈ K2(I) (see Theorem
1.41 from [10]). Moreover, for any derivable function f : I → R such that f ′ ∈ K2 (I),
we have f ∈ K3 (I) (see Theorem 15.8.2 from [5]).

Next, we obtain some results for 3-convex functions, similar to Theorem 2.1 or
Theorem 2.2. We use same notation like in the previous section.

Theorem 3.1. Let be f ∈ K3(I) and p, q, r be real positive numbers. The following
inequality holds

(3.1) q · f(b2)− f(b1)
b2 − b1

≤ p · f(a2)− f(a1)
a2 − a1

+ r · f(c2)− f(c1)
c2 − c1

if and only if q = p+ r and q · b = p · a+ r · c.

Proof. The proof of the ’if’ part is similar with same part of the Theorem 2.1, but
we are using the functions f1, f2, f3, f4 : I → R defined by f1(x) = x, f2(x) = −x,
f3(x) = x2 and f4(x) = −x2, for any x ∈ I. This functions are 3-convex and similar
calculus gives us q = p+ r and q · b = p · a+ r · c.

For the ’only if’ part, first we note that the inequality (3.1) is equivalent with

(3.2) (c− a) · f(b2)− f(b1)
b2 − b1

≤ (c− b) · f(a2)− f(a1)
a2 − a1

+ (b− a) · f(c2)− f(c1)
c2 − c1

·

Since f ∈ K3(I), then f is derivable and f ′ ∈ K2(I). Now, we apply Theorem 2.2 for
the function f ′ and we obtain the inequality (3.2) and the conclusion. �

By applying Theorem 3.1 for q = b2 − b1, p = a2 − a1 and r = c2 − c1, we obtain
the next corollary, similar with Corollary 2.1.

Corollary 3.1. Let be f ∈ K3(I). Then

f(b2) + f(a1) + f(c1) ≤ f(b1) + f(a2) + f(c2)

if and only if b2 − b1 = a2 − a1 + c2 − c1 and b22 − b21 = a22 − a21 + c22 − c21.
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The result from the next corollary represents the Theorem 2 from [1]. For its proof
we need the following lemma.

Lemma 3.1. Let be m,n, p, u, v, w ∈ R such that m 6 n 6 p and u 6 v 6 w. If

(3.3) m+ n+ p = u+ v + w,

(3.4) m2 + n2 + p2 = u2 + v2 + w2

and p 6 w, then m 6 u.

Proof. From (3.3) and (3.4), we obtain mn + np + pm = uv + vw + wu. Denote
A = m + n + p and B = mn + np + pm. We consider the functions f, g : R → R,
defined for any x ∈ R by

f (x) = (x−m) (x− n) (x− p)
and

g (x) = (x− u) (x− v) (x− w) .
Then, there exist C,D ∈ R so that

f (x) = x3 − Ax2 +Bx+ C

and
g (x) = x3 − Ax2 +Bx+D.

Now is clear that f (x)− g (x) = C −D, for any x ∈ R.
Further, f (x) > 0 for any x ∈ [p,∞). Then f (w) > 0 = g (w) and we obtain C >

D. In same time, we have g (x) 6 0, for any x ∈ ( −∞, u]. Then 0 = f (m) > g (m),
which concludes our proof. �

We can remark that the proof of previous lemma shows us that we have two distinct
situations. If p = w, then m = u and n = v. If p < w, we obtain m < u and we have

m < u ≤ v < n ≤ p < w.

Corollary 3.2. Let m,n, p, u, v, w be real numbers. Then the inequality

f(m) + f(n) + f(p) ≤ f(u) + f(v) + f(w)

holds for any f ∈ K3(R) if and only if

m+ n+ p = u+ v + w,

m2 + n2 + p2 = u2 + v2 + w2

and max {m,n, p} ≤ max {u, v, w} .

Proof. We use the functions f1, f2, f3, f4 : I → R defined by f1(x) = x, f2(x) = −x,
f3(x) = x2 and f4(x) = −x2 for any x ∈ I and we obtain the proof of the ’if’ part .

For the ’only if’ part, we can admit that m ≤ n ≤ p and u ≤ v ≤ w. Now, the
inequality max {m,n, p} ≤ max {u, v, w} becames p ≤ w. Lemma 3.1 shows us that
m ≤ u. Due to the previous remark, two cases are possible. If {m,n, p} = {x, y, z} ,
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then the conclusion is trivial. If p < w, the conclusion is consequence of the Corollary
3.1. �

We conclude this paper with two characterizations of the 3 − convex function,
similar to Theorem 2.3.

Theorem 3.2. Let be f : I → R a continuously differentiable function. Then f ∈
K3(I) if and only if for any a1, a2, b1, b2, c1, c2 ∈ I, such that a1 < a2 ≤ b1 < b2 ≤
c1 < c2, the next inequality holds

(3.5) (c− a) · f
′(b1) + f ′(b2)

2
≤ (c− b) · f(a2)− f(a1)

a2 − a1
+ (b− a) · f(c2)− f(c1)

c2 − c1
,

where a = a1 + a2, b = b1 + b2 and c = c1 + c2.

Proof. The relation (3.5) can be written as

(c− a) · f
′(b1) + f ′(b2)

2
≤ (c− b) ·

∫ a2
a1
f ′(x)dx

a2 − a1
+ (b− a) ·

∫ c2
c1
f ′(x)dx

c2 − c1
.

Now, we obtain the conclusion by using the equivalence (i)⇔ (ii) from Theorem 2.3,
applied for the continuous function f ′. �

Theorem 3.3. Let f : I → R be a differentiable function. Then f ∈ K3(I) if and
only if for any a1, a2, b1, b2, c1, c2 ∈ I, such that a1 < a2 ≤ b1 < b2 ≤ c1 < c2, the next
inequality holds

(3.6) (c− a) · f(b2)− f(b1)
b2 − b1

≤ (c− b) · f(a2)− f(a1)
a2 − a1

+ (b− a) · f(c2)− f(c1)
c2 − c1

,

where a = a1 + a2, b = b1 + b2 and c = c1 + c2.

Proof. If f ∈ K3(I), then f ′ ∈ K2(I). By applying the implications (i) ⇒ (iii) of
Theorem 2.3 for the function f ′, we obtain the proof of the ’if’ part.

For the ’only if’ part, let x, y ∈ I and t ∈ (0, 1). Denote z = tx + (1 − t)y. We
admit that x < y. Then we have x < z < y. We consider ε > 0 so that

x < x+ ε < z − ε < z < y − ε < y.

We choose a1 = x, a2 = x+ ε, b1 = z − ε, b2 = z , c1 = y − ε and c2 = y. Then, we
have

(2y − 2x− 2ε) · f(z)− f (z − ε)
ε

≤ (2y − 2z) · f(x+ ε)− f (x)
ε

+ (2z − 2x− 2ε) · f(y)− f (y − ε)
ε

.(3.7)

By using the definition of a derivative, we obtain that lim
ε→0

f(z)−f(z−ε)
ε

= f ′(z),

lim
ε→0

f(x+ε)−f(x)
ε

= f ′ (x) and lim
ε→0

f(y)−f(y−ε)
ε

= f ′ (y) . In (3.7), we put ε → 0 and
we obtain

(y − x) · f ′(z) ≤ (y − z) · f ′(x) + (z − x) · f ′(y),
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also
f ′(z) ≤ t · f ′(x) + (1− t) · f ′(y),

which shows that the function f ′ ∈ K2(I). Then f ∈ K3(I) and our proof is complete.
�
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