
Kragujevac Journal of Mathematics
Volume 39(1) (2015), Pages 93–109.

GEOMETRIC AND TOPOLOGICAL OBSTRUCTIONS TO
VARIOUS IMMERSIONS IN SUBMANIFOLD THEORY AND SOME

RELATED OPEN PROBLEMS

BANG-YEN CHEN1

Abstract. In this article we survey known results on geometric and topological
obstructions to various important classes of isometric immersions in submanifold
theory. In addition we present several related open problems. The main purpose of
this article is an invitation for further research on the topics that it deals with.

1. Introduction

One very important problem in mathematics is to discover obstructions for various
structures on manifolds. Here we quote two important results in this respect. First,
R. Bott discovered in [4] a topological obstruction to integrability by proving that a
subbundle E of the tangent bundle TM of a smooth manifold M is integrable only
if the ring Pont(TM/E) generated by the real Pontrjagin classes of TM/E vanishes
in dimensions greater than 2 · dim(TM/E). Another important result in this respect
is due to A. Newlander and L. Nirenberg [47] which states that an almost complex
manifold (M,J) is a complex manifold if and only if the Nijenhuis tensor NJ of J
vanishes identically. The latter result shows that the Nijenhuis tensor of the almost
complex manifold provides an obstruction to the integrability of the almost complex
structure on the almost complex manifold.

One of the most fundamental problems in the theory of submanifolds is the im-
mersibility of a Riemannian manifold in a Euclidean space (or, more generally, in a
space form). This immersion problem had been around since B. Riemann (1826-1866)
and was posed explicitly by L. Schläfli (1814-1895) in the 1870s. According to the
1956 celebrated theorem of John F. Nash [46], every Riemannian manifold can be
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isometrically immersed in some Euclidean spaces with sufficiently high codimension.
In view of Nash’s theorem, in order to investigate immersion problems in differential
geometry it is very natural to impose some suitable conditions on the immersions.

In this article we survey known results on geometric and topological obstructions to
various important classes of isometric immersions in submanifold theory. In addition
we present several related open problems. The main purpose of this article is an
invitation for further research on the topics that it deals with.

2. Obstructions to minimal immersions

We follow the notions and definitions from [5, 9, 22, 24]. Throughout this article,
by a compact manifold we mean a compact manifold without boundary.

Minimal surface theory originates with J. L. Lagrange (1736–1813) who in 1762
considered the variational problem of finding the surface z = z(x, y) of least area
stretched across a given closed contour. He derived the so-called Euler-Lagrange
equation. Lagrange communicated his method in his first letter to L. Euler dated
August 12, 1755 when he was only nineteen (cf. [38]). Since then the theory of
minimal immersions have been investigated by many mathematicians in the last 250
years (see, e.g. [18, pages 207-242] and [48]).

In this section we discuss the following.

Problem 2.1. What are the obstructions for a Riemannian manifold to admit a minimal
immersion in a Euclidean space?

2.1. Topological obstruction. Let M be a Riemannian submanifold of a Euclidean
m-space Em. A well-known result of E. Beltrami [2] states that the Laplacian ∆ of
M satisfies

(2.1) ∆φ = −nH, n = dimM,

where φ : M → Em denotes the immersion and H is the mean curvature vector.
Since the only harmonic functions on compact Riemannian manifolds are constant

functions, it follows immediately from formula (2.1) that each minimal submanifold
in a Euclidean space is non-compact. Consequently, “compactness” is a topological
obstruction to minimal immersions into Euclidean spaces. To authors’s knowledge this
is the only known topological obstruction to general minimal immersions in Euclidean
spaces.

2.2. Riemannian obstructions. For a Riemannian n-manifold M isometrically im-
mersed in a Euclidean space, the equation of Gauss states that the Riemann curvature
tensor R of M satisfies

(2.2) R(X, Y ;Z,W ) = 〈h(X,W ), h(Y, Z)〉 − 〈h(X,Z), h(Y,W )〉 ,

where 〈 , 〉 and h denote the inner product and the second fundamental form of M ,
respectively.
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Let Ric and τ denote the Ricci curvature and scalar curvature of M , respectively.
It follows from Gauss’ equation (2.2) that a necessary condition for M to admit a
minimal immersion in a Euclidean space is that

(2.3) Ric ≤ 0, (in particular, τ ≤ 0)

with equality holding if and only if the submanifold is totally geodesic.
For many many years this was the only known Riemannian obstruction for a

general Riemannian manifold to admit a minimal immersion into a Euclidean space
with arbitrary codimension (before the invention of δ-invariants). That is why S. S.
Chern asked in the 1960s to search for further obstructions for a Riemannian manifold
to admit a minimal immersion into a Euclidean space besides Ricci curvature.

In order to answer S. S. Chern’s open problem, we need to introduce new types of
Riemannian invariants, different in nature from the “classical” invariants; Ricci and
scalar curvatures. Moreover, we also need to establish universal optimal relationships
between the main extrinsic invariants; mainly the squared mean curvature H2, with
the new type of intrinsic invariants. These are the author’s original motivation in
1990’s to introduce his so-called δ-invariants on Riemannian manifolds.

Let us now recall the notion of δ-invariants introduced in the 1990s (see [22] for
details). Suppose that M is a Riemannian n-manifold. Let K(π) denote the sectional
curvature of a plane section π ⊂ TpM of the tangent space TpM at p ∈M .

For an orthonormal basis e1, . . . , en of TpM , the scalar curvature τ of M at p is
defined by

τ(p) =
∑
i<j

K(ei ∧ ej).(2.4)

Let L be a r-subspace of TpM with r ≥ 2. If {e1, . . . , er} is an orthonormal basis of
L, we then define the scalar curvature τ(L) of L by

τ(L) =
∑
α<β

K(eα ∧ eβ), 1 ≤ α, β ≤ r.(2.5)

For two given integers n, k with n ≥ 3 and k ≥ 1, we denote by S(n, k) the finite
set consisting of k-tuples (n1, . . . , nk) of integers satisfying

2 ≤ n1, . . . , nk < n, n1 + · · ·+ nk ≤ n.

When k = 0, we put S(n, k) = ∅.
For each k-tuple (n1, . . . , nk) ∈ S(n, k), the author introduced in the 1990s the

following Riemannian invariant δ(n1, . . . , nk) by

δ(n1, . . . , nk)(p) = τ(p)− inf{τ(L1) + · · ·+ τ(Lk)}, p ∈M,(2.6)

where L1, . . . , Lk run over all k mutually orthogonal subspaces of TpM satisfying
dimLj = nj, j = 1, . . . , k.



96 B.-Y. CHEN

In particular, we have

δ(∅) = τ,

δ(2)(p) = τ(p)− inf Kp,(2.7)
δ(n− 1) = maxRic(p),

where inf Kp is the infinimum of the sectional curvature of M at p.
The universal optimal inequality established in [15, 17] is the following (see also

[13, 20, 23]).

Theorem 2.2. For any isometric immersion of a Riemannian n-manifold M into a
Euclidean space with arbitrary codimension, we have

(2.8) δ(n1, . . . , nk) ≤
n2
(
n+ k − 1−

∑k
j=1 nj

)
2
(
n+ k −

∑k
j=1 nj

) H2

for each k-tuple (n1, . . . , nk) ∈ S(n, k), where H2 is the squared mean curvature.

An important immediate consequence of Theorem 2.2 is the following.

Theorem 2.3. Let M be a Riemannian n-manifold. If there exist a point p and a
k-tuple (n1, . . . , nk) ∈ S(n, k) with δ(n1, . . . , nk)(p) > 0, then M does not admit any
minimal immersion into any Euclidean space for any codimension.

From Theorem 2.3 we know that each δ(n1, . . . , nk) gives rise to a Riemannian
obstruction to minimal immersions in Euclidean spaces. Consequently, we have many
answers to Chern’s open problem on minimal immersions.

Remark 2.1. The condition given in (2.3) is a special case of (2.8) due to (2.7).

Remark 2.2. If M is a minimal surface in E3 with the induced metric g, then the
Gauss curvature G of M is ≤ 0. Thus

√
−Gg defines a new metric on points where

G 6= 0. G. Ricci (1853–1925) proved in 1894 [50] that a given metric g on a plane
domain D arises locally as the metric tensor of a minimal surface in E3 if and only
if the Gauss curvature G of (D, g) is everywhere nonpositive and the corresponding
Gauss curvature Ḡ of

√
−Gg vanishes at each point where G 6= 0. Let g be the

metric tensor of a minimal surface M in Em. If g satisfies Ricci’s condition, then g
corresponds locally to the metric tensor of a minimal surface M̂ in E3. H. B. Lawson
proved in [45] that, in this case either M lies in E3 and belongs to a specific one-
parameter family of surfaces associated to M̂ , or else M lies in E6 and it belongs to a
specific two-parameter family of surfaces obtained from M̂ , none of which lie in any
E5. Lawson’s result implies that the Ricci condition is an intrinsic condition which
completely characterizes minimal surfaces lying in E3 among all minimal surfaces in
E4 or E5.

The Ricci condition provides an obstruction to minimal immersions of surfaces in
E3. However, the Ricci condition only applies to minimal immersions of surfaces.
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Next, we gives some additional Riemannian obstructions to minimal immersions.

Theorem 2.4. [21] If a Riemannian manifold admits a non-trivial Riemannian sub-
mersion with totally geodesic fibers, then it cannot be isometrically immersed into any
Riemannian manifold of non-positive curvature as a minimal submanifold.

It follows from Theorem 2.4 that “existence of a non-trivial Riemannian submersion
structure with totally geodesic fibers” provides an additional geometric obstruction
to minimal immersions in Euclidean spaces.

The next two results show that Riemannian manifolds admitting certain warped
product structures also rise to obstructions to minimal immersions as well.

Theorem 2.5. [19] If a Riemannian manifold admits a warped product structure
M1 ×f M2 with harmonic warping function f , then it does not admit a minimal
immersion into any Euclidean space for any codimension.

Theorem 2.6. [19] If M1 is a compact Riemannian manifold, then every wared
productM1×fM2 does not admit a minimal immersion into any Riemannian manifold
of negative sectional curvature. Also it does not admit a minimal immersion into any
Euclidean space.

In view of these facts, I would like to propose the following.

Problem 2.7. Find further topological and geometric obstructions to minimal immer-
sions.

3. Obstructions to Lagrangian immersions

Let M̃n be a Kähler n-manifold endowed with the complex structure J , a Kähler
metric g and the Kähler 2-form ω. We denote by M̃n(4c) a Kähler n-manifold with
constant holomorphic sectional curvature 4c. We simply called such a Kähler manifold
a complex space form.

It is well-known that a complete simply-connected complex space form M̃n(4c) is
holomorphically isometric to the complex Euclidean n-plane Cn, the complex pro-
jective n-space CP n(4c), or a complex hyperbolic n-space CHn(4c) according to
c = 0, c > 0 or c < 0, respectively.

A totally real submanifold M of a Kähler manifold M̃ (or more generally, of a
Hermitian manifold) is a submanifold such that the almost complex structure J of the
ambient manifold M̃ carries each tangent space of M into the corresponding normal
space of M , that is, J(TpM) ⊂ T⊥p M for any point p ∈M (cf. [30]). Equivalently, M
is a totally real submanifold if and only if, for any nonzero vector X tangent to M
at any point p ∈ M , the angle between JX and the tangent plane TpM is equal to
π
2
. A totally real submanifold M of a Kähler manifold M̃ is known as a Lagrangian

submanifold if dimRM = dimC M̃ ; in other word, a Lagrangian submanifold is a
totally real submanifold with the smallest possible codimension.
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A result of M. Gromov states that a compact n-manifold M admits a Lagrangian
immersion (not necessary isometric) into the complex Euclidean n-space Cn if and
only if the complexification TM ⊗C of the tangent bundle TM of M is trivial [41].
This result of Gromov implies that there are no topological obstructions to Lagrangian
immersions for compact 3-manifolds in C3, simply due to the fact that the tangent
bundle of every 3-manifold is trivial.

In addition, another result of Gromov [43] states that every compact embedded
Lagrangian submanifold of Cn is not simply-connected (see [51] for a complete proof
of this fact). This result is not true when the compact Lagrangian submanifolds were
immersed but not imbedded. The simplest example is the Whitney immersion of an
n-sphere Sn in Cn defined by

w(y0, y1, . . . , yn) =
1 + i y0
1 + y20

(y1, . . . , yn),(3.1)

with y20 + y21 + · · ·+ y2n = 1. The Whitney immersion w : Sn → Cn is a Lagrangian im-
mersion which has a unique self-intersection point at w(−1, 0, . . . , 0) = w(1, 0, . . . , 0).

If one imposes isometrical condition on Lagrangian immersions, it leads to the next
problem.

Problem 3.1. What are Riemannian obstructions to Lagrangian isometric immersions
of a Riemannian n-manifold into Cn?

In order to provide some answers to this problem, we recall the following result
from [16].

Theorem 3.2. If a compact n-manifold M , n ≥ 2, has finite fundamental group or
null first Betti number, then every Lagrangian immersion of M into any Einstein-
Kähler manifold has minimal points, i.e., the mean curvature vector of M vanishes
at some points on M .

An important consequence of Theorem 3.2 is the following (see [22, page 308]).

Corollary 3.1. There do not exist Lagrangian isometric immersions from a compact
Riemannian manifold with positive Ricci curvature into any flat Kähler manifold or
into any complex hyperbolic space.

Obviously, Corollary 3.1 provides a partial answer to Problem 3.1. Another solution
to Problem 3.1 is the following obstruction obtained in [15, 17] (see also [22, page
308]).

Theorem 3.3. Let M be a compact Riemannian n-manifold with null first Betti
number or with finite fundamental group π1(M). If there exists a k-tuple (n1, . . . , nk) ∈
S(n, k) such that δ(n1, . . . , nk) > 0, then M does not admit any Lagrangian isometric
immersion into Cn.
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4. Obstructions to slant immersions

Let M be a Riemannian n-manifold isometrically immersed in a Kähler manifold
(M̃, J, g). For a vector X ∈ TM , let PX and FX denote the tangential and the
normal components of JX, respectively. For a nonzero vector X ∈ TpM at p ∈ M ,
the angle θ(X) between JX and the tangent space TpM in TpM̃ is called the Wirtinger
angle of X.

A submanifold M of M̃ is called a slant submanifold if the Wirtinger angle θ(X)
is constant; so it is independent of the choice of p ∈ M and of X ∈ TpM . The
Wirtinger angle of a slant submanifold is called the slant angle (cf. [11, 12]). Complex
submanifolds and totally real submanifolds are nothing but slant submanifolds with
slant angle θ = 0 and θ = π/2, respectively.

A slant submanifold is called proper slant if it is neither a complex submanifold
nor a totally real submanifold. Clearly, every slant submanifold is even-dimensional
unless it is totally real.

Analogous to Lagrangian immersions, it is natural to ask the following.

Problem 4.1. What are the obstructions to slant immersions of a Riemannian manifold
into a complex Euclidean m-space Cm?

We denote the j-th de Rham cohomology group of a manifold M by Hj(M ;R).
The next two theorems provide two very simple topological obstructions to slant

immersions.

Theorem 4.2. [34] If M is a compact 2k-manifold such that H2i(M ;R) = {0} for
some integer i ∈ {1, . . . , k}, then M cannot immersed into any Kähler manifold as a
proper slant submanifold.

Theorem 4.3. [34] Every proper slant submanifold in a complex Euclidean space Cm

is non-compact.

Remark 4.1. Although there do not exist compact proper slant submanifolds in some
complex Euclidean spaces, there exist compact proper slant submanifolds immersed
in some complex flat tori.

The next result from [15, 17] provides a Riemannian obstruction to slant immersions
into flat Kähler manifolds.

Theorem 4.4. Let M be a compact Riemannian n-manifold with finite fundamental
group π1(M). If there is a k-tuple (n1, . . . , nk) ∈ S(n, k) such that δ(n1, . . . , nk) > 0
on M , then M admits no slant immersion into any flat Kähler n-manifold.

Now, we propose the following.

Problem 4.5. Find further topological and geometric obstructions to Lagrangian and
slant immersions, besides those given in this section.
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5. Obstructions to CR-immersions

A CR manifold is a manifold together with a geometric structure modeled on that of
a real hypersurface in a complex vector space. More precisely, let N be a differentiable
manifold and let TCN denote the complexified tangent bundle of N . A CR structure
on N is a complex subbundle H of TCN such that H ∩ H̄ = {0} (i.e., H is almost
Lagrangian) and H is integrable. A manifold endowed with a CR structure is called
a CR manifold [40].

It is well-known that if (N,H) is a CR manifold, then there exists a unique (real)
subbundle D of TN and a field of endomorphism J : D→ D such that J2 = −I. D
is just Re(H ⊕ H̄) and Hp = {X − iJX : X ∈ Dp}.

A Riemannian submanifold M of a Hermitian manifold is called a CR-submanifold
if there exist a holomorphic distribution D (i.e., J(Dp) = Dp) and a totally real
distribution D⊥ (i.e., J(D⊥p ) ⊂ T⊥p M) on M such that TM = D⊕D⊥ [1].

A CR-submanifold is called proper if it is neither a complex submanifold nor a totally
real submanifold. Obviously, every real hypersurface M of a Hermitian manifold with
dimCM ≥ 2 is a CR-submanifold automatically.

Consider CR-immersions of a Riemannian manifold M , i.e., isometric immersions
of M in a Hermitian manifold immersed as a CR-submanifold. Assume that M is a
CR-submanifold of a Hermitian manifold M̃ with the holomorphic distribution D. Let
us consider the complex subbundle L of TCM defined by Lp = {X − iJX : X ∈ Dp}.

It was proved by D. E. Blair and the author in [3] that L is a CR structure on M .
Thus every CR-submanifold of a Hermitian manifold is a CR manifold. Consequently,
for a manifold to admit a proper CR-immersion, it must admit a CR structure.

There is another necessary condition for a manifold to admit a CR-immersion. In
fact, it was proved in [6] that in order for a CR manifold M with CR structure
H to admit a CR-immersion in a Kähler manifold, the orthogonal complementary
distribution (Re(H ⊕ H̄))⊥ of Re(H ⊕ H̄) in TM must be integrable.

Let K be a distribution of a Riemannian manifold M with Levi-Civita connection
∇. We denote the orthogonal complementary distribution of K in TM by K⊥. Put

h̊(X, Y ) = (∇XY )⊥(5.1)

for vector fields X, Y in K, where (∇XY )⊥ denotes the K⊥-component of ∇XY . Then
h̊ is a well-defined K⊥-valued tensor field. It follows from Frobenius’ theorem that K
is integrable if and only if h̊ is symmetric.

Let e1, . . . , ek be an orthonormal basis of K. If we put

H̊ =
1

k
trace h̊ =

1

k

k∑
j=1

h̊(ej, ej),(5.2)

then, up to sign, H̊ is a well-defined vector field, which is called the mean curvature
vector of the distribution K. If H̊ vanishes identically, then K is called a minimal
distribution (cf. [22, page 200]).
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In addition to the two obstructions mentioned above, there exists a third obstruction
to CR-immersions into Kähler manifolds. In fact, it was proved in [6] that in order
for a CR manifold M to admits a CR-immersion in some Kähler manifold, the
distribution Re(H ⊕ H̄) must be a minimal distribution in M .

In view of these facts, we ask the problem.

Problem 5.1. Do there exist other obstructions to CR-immersions of a Riemannian
manifold into a Kähler manifold besides the three obstructions given above?

6. Obstructions to ideal immersions

Recall the following universal inequality from [15, 17, 20, 22].

Theorem 6.1. If φ : M → N is an isometric immersion of a Riemannian n-manifold
M into a Riemannian m-manifold N , then we have

δ(n1, . . . , nk) ≤
n2
(
n+ k − 1−

∑k
j=1 nj

)
2
(
n+ k −

∑k
j=1 nj

) H2(6.1)

+
1

2

{
n(n− 1)−

k∑
j=1

nj(nj − 1)

}
maxKN

for each k-tuple (n1, . . . , nk) ∈ S(n, k), where maxKN(p) denotes the maximum of the
sectional curvature of the ambient space N restricted to 2-plane sections of TpM .

When the ambient space N is the Euclidean m-space Em, Theorem 6.1 reduces to
the following.

Theorem 6.2. If φ : M → Em is an isometric immersion from a Riemannian
n-manifold M into Em, then we have

(6.2) δ(n1, . . . , nk) ≤
n2
(
n+ k − 1−

∑k
j=1 nj

)
2
(
n+ k −

∑k
j=1 nj

) H2.

An isometric immersion φ : M → Em is called δ(n1, . . . , nk)-ideal if it satisfies
the equality case of (6.2) identically. Roughly speaking, ideal immersions are those
immersions which receive the least possible tension from the ambient space (see [22,
pages 268-269] for details).

Obviously, every negatively curved Riemannian manifold does not admit any ideal
immersions in any Euclidean space.

Let us define a Riemannian invariant ∆̃0 on a Riemannian n-manifold M by

∆̃0 = max{∆(n1, . . . , nk) : (n1, . . . , nk) ∈ S(n, k) and k ≥ 0},
where

∆(n1, . . . , nk) =
2(n+ k −

∑k
j=1 nj)

n2(n+ k − 1−
∑k

j=1 nj)
δ(n1, . . . , nk).
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We recall the following result from [15, 17] (see also [22, Theorem 14.7]).

Theorem 6.3. A compact homogeneous Riemannian n-manifold M with irreducible
isotropy action admits an ideal immersion into a Euclidean space if and only if the
first nonzero eigenvalue λ1 of the Laplacian of M satisfies λ1 = n ∆̂0.

Not every compact homogeneous Riemannian manifold can be isometrically im-
mersed in some Euclidean space as an ideal submanifold for some k-tuple (n1, . . . , nk).
For example, although the unit sphere Sn(1) does admit an ideal immersion in En+1

as a hypersurface, Theorem 6.3 implies that the real, complex, quaternion projective
spaces RP n, CP n, QP n and the Cayley plane OP 2 equipped with standard Riemann-
ian metrics do not admit any ideal immersions into any Euclidean space.

In view of these facts, the following problem is natural and interesting.

Problem 6.4. Find topological and geometric obstructions to ideal immersions.

Theorem 6.3 provides a solution to Problem 6.4 for the class of compact irreducible
homogeneous spaces. A more general solution for compact Riemannian manifolds is
the following (see [17, Theorem 14.4(1)]).

Theorem 6.5. If the first non-zero eigenvalue λ1 of the Laplacian ∆ on a compact
Riemannian n-manifold M satisfies

λ1 >
n

volume(M)

∫
M

∆(n1, . . . , nk)dV(6.3)

for some k-tuple (n1, . . . , nk), then M does not admit a δ(n1, . . . , nk)-ideal immersion
into any Euclidean space.

A Riemannian manifold M is called semi-symmetric if R ·R = 0 holds identically,
where R ·R is defined by

(R(X, Y )·R)(U, V )W := R(X, Y )(R(U, V )W )−R(R(X, Y )U, V )W(6.4)
−R(U,R(X, Y )V )W −R(U, V )(R(X, Y )W )

= 0.

Given a symmetric (0, 2)-tensor B and any pair of vector fieldX, Y on a Riemannian
manifold M , one may consider the associated endomorphism:

(X ∧BY )Z := B(Y, Z)X −B(X,Z)Y.

The action of the natural metrical endomorphism X ∧g Y as a derivation on the
curvature tensor R results the (0, 6)-tensor Q(g,R) = −∧g ·R, which is known as the
Tachibana tensor.

A Riemannian manifoldM of dimension≥ 3 is called pseudo-symmetric (in the sense
of Deszcz) if R ·R = L ·Q(g,R) for some function L on M . A Riemannian manifold
is called Weyl semi-symmetric if R · C = 0, where C denotes the Weyl conformal
curvature tensor. Similarly, a Riemannian manifold is said to have pseudo-symmetric
Weyl tensor if C · C = LC Q(g, C) for a function LC on M .
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The following result was obtained in [37] by R. Deszcz, M. Petrović-Torgašev, L.
Verstraelen and G. Zafindratafa.

Theorem 6.6. A δ(2)-ideal submanifold M of dimension ≥ 4 in a Euclidean m-space
Em has pseudo-symmetric Weyl conformal curvature tensor C and

LC =
3− n

(n− 1)(n− 2)
Kinf .

This theorem shows that a necessary condition for a Riemannian n-manifoldM with
n ≥ 4 to admit a δ(2)-ideal immersion in some Euclidean space is that the manifold
M must have pseudo-symmetric Weyl conformal curvature tensor. Consequently, the
Weyl curvature tensor C gives rise to a geometric obstruction to δ(2)-ideal immersions
in Euclidean spaces.

7. Obstructions to finite type immersions and finite type maps

Let φ : M → Em be a differentiable map from a Riemannian manifold M into the
Euclidean m-space Em. As before we denote the Laplacian of M by ∆. The map φ is
said to be of finite type if φ is a finite sum of Em-valued eigen-maps of the Laplacian,
i.e., if φ can be expressed as

φ = c+ φ1 + φ2 + · · ·+ φk,(7.1)

where c is a constant vector in Em and φ1, φ2, . . . , φk are k non-constant Em-valued
maps satisfying

∆xi = λixi, i = 1, . . . , k.(7.2)

The decomposition (7.1) is called the spectral decomposition or the spectral resolution
of φ. In particular, if all of the eigenvalues λ1, . . . , λk associated with the spectral
decomposition are mutually different, then φ is said to be of k-type. If one of λ1, . . . , λk
in (7.2) is zero, then φ is said to be of null k-type (cf. [9, 31, 14, 24] for more details).
Clearly, if a Riemannian manifold admits a null k-type map in a Euclidean space,
then M is non-compact.

A submanifold or a map is said to be of infinite type if it is not of finite type. In
terms of finite type theory, a result of T. Takahashi [52] states that a submanifold of
a Euclidean m-space Em is of 1-type if and only if it is either a minimal submanifold
of Em or a minimal submanifold of a hypersphere of Em.

The class of finite type submanifolds is very large, which contains many important
families of submanifolds; including all minimal submanifolds of Euclidean space; all
minimal submanifolds of hyperspheres; all parallel submanifolds as well as all equivari-
antly immersed compact homogeneous submanifolds. In contrast, very few examples
of finite type hypersurfaces are known.

Just like minimal submanifolds, submanifolds of finite type in a Euclidean space can
be described by a spectral variation principle, namely as critical points of directional
deformations [24, 27].
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On one hand, the notion of finite type submanifolds provides a very natural way to
combine the spectral geometry with the theory of submanifolds; as well as with maps;
in particular with Gauss map. On the other hand, one can apply finite type theory to
investigate spectral geometry of submanifolds. In fact, by studying finite type maps
and finite type submanifolds, one often gets useful information on eigenvalues of a
Riemannian manifold. By showing that a certain submanifold is of k-type, one can,
in principle, determine k eigenvalues of the Laplacian from the roots of its minimal
polynomial.

The first results on finite type theory were collected in author’s book [9] published
in 1984. A report on the progress in this subject up to 1996 was presented in [14].
The most recent survey on finite type theory is the author’s recent book [24].

7.1. Finite type immersions. The main purpose of this subsection is to discuss the
following.

Problem 7.1. What are the obstructions to finite type immersions of a Riemannian
manifold into a Euclidean space or a real space form (immersed standardly in a
Euclidean space)?

In this subsection we concern mainly on this problem which are related with the
following two conjectures on finite type hypersurfaces (see [14, page 321] and [24, page
180]).

Conjecture 7.2. The only compact hypersurfaces of finite type in a Euclidean space
are hyperspheres.

Conjecture 7.3. The only complete non-compact hypersurfaces in a Euclidean space
are standard hyperspheres, minimal hypersurfaces and hypersurfaces of null 2-type.

Now, we make some observations related to Problem 7.1 and Conjecture 7.2.

Observation 7.4. It is known that the only finite type immersions of a unit speed curve
in the Euclidean 2-plane are open portions of circles and lines (cf. [24, Theorem 6.7]).
Such curves are of 1-type. Consequently, there do not exist any obstruction to finite
type immersions for 1-dimensional Riemannian manifolds.

In view of Observation 7.4 we shall only consider manifolds of dimension n ≥ 2
throughout the remaining part of this section.

The next three observations illustrate that sectional curvature on a Riemannian
manifold of dimension n ≥ 2 rise gives to obstructions to finite type immersions in
Euclidean spaces.

Observation 7.5. A classical result of D. Hilbert in [44] states that there do not exist
complete surfaces in E3 with constant negative Gauss curvature. This result is false
if the surfaces are non-complete. For example, the classical “pseudosphere” in E3

(generated by rotating a tractrix around a central axis) has constant Gauss curvature
−1. Hilbert’s result implies that every complete surface of constant negative Gauss
curvature admit no finite type immersions in E3.



OBSTRUCTIONS TO VARIOUS IMMERSIONS 105

Observation 7.6. T. Otsuki [49] proved that every Riemannian n-manifold of constant
negative sectional curvature cannot be isometrically immersed in E2n−2. Therefore,
for n > 2, every Riemannian n-manifold with constant negative curvature admits no
finite type immersions in En+1.

For compact manifolds, we make the following.

Observation 7.7. Every compact Riemannian n-manifold M with sectional curvature
K ≤ 0 and n ≥ 2 admits no finite type immersions in En+1.

Proof. Assume that ψ : M → En+1 is an isometric immersion of a compact Riemannian
n-manifold M into En+1. Without loss of generality, we may assume that M is
orientable; otherwise we can replace M by its two-fold covering.

Let e be a unit normal vector of M in En+1. Consider the height function he
defined on M by he(p) = 〈e, ψ(p)〉 , p ∈ M. Then we have Xhe = 〈e,X〉 for each
vector X ∈ TM . Thus we get

XY he = 〈e,∇XY + h(X, Y )〉(7.3)

for X, Y tangent to M . Since he is a continuous function on a compact manifold, he
has at least one absolute maximum, say at q. Because e is normal to M at q, we find
from (7.3) that the shape operator A of M satisfies

XY he = 〈AeX, Y 〉(7.4)

at q. Hence the shape operator A is positive definite at p. Consequently, the sectional
curvature of M cannot be ≤ 0 at p. �

Remark 7.1. Observation 7.7 is false when the codimension of M in Em is ≥ 2. The
simplest example is the standard imbedding of the flat torus S1(1)×S1(1) ⊂ E4 which
is of 1-type.

For finite type spherical immersions, we mention the following.

Theorem 7.8. [25] If M is a compact surface with constant negative Gauss curvature.
Then M admits no finite type immersions into S3(1).

Theorem 7.8 shows that Gauss curvature gives rise to an obstruction for finite type
immersions of a compact surface in S3(1) ⊂ E4.

Contrast to Theorem 7.8, there do exist finite type immersions of compact surfaces
with constant Gauss curvature ≥ 0. For instance, a totally geodesic S2(1) ⊂ S3(1)
and the Clifford torus T 2 = S1(1/

√
2)× S1(1/

√
2) ⊂ S3(1) are 1-type immersions in

S3(1) ⊂ E4.

7.2. Obstructions to submanifold with low type Gauss map. Let V be a
linear n-subspace of Em. If en+1, . . . , em is an oriented orthonormal basis of V , then
en+1 ∧ · · · ∧ em is a decomposable (m − n)-vector of norm one and en+1 ∧ · · · ∧ em
gives an orientation of V . Conversely, each decomposable (m− n)-vector of norm one
determines a unique oriented linear n-subspace of Em.
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If G(m,m−n) denotes the Grassmann manifold of oriented linear (m−n)-subspaces
in Em, we may then identify G(m,m − n) with the set of decomposable (m − n)-
vectors of norm one. Hence G(m,m−n) can be regarded as an n(m−n)-dimensional
submanifold of the unit hypersphere SNm,n−1(1) centered at the origin in = ∧m−nEm
in a natural way. Therefore we have the following canonical inclusions:

G(m,m− n) ⊂ SNm,n−1(1) ⊂ ENm,n := ∧m−nEm, Nm,n =

(
m

n−m

)
.(7.5)

The classical Gauss map was introduced by Gauss in his fundamental paper [39] on
surfaces. He used the classical Gauss map to define Gauss curvature. Since then the
notion of Gauss map plays one of important roles in the theory of submanifolds.

For a submanifold M of Em with arbitrary codimension, the classical Gauss map ν̂
can be defined as the map

ν̂ : M → G(m,m− n), n = dimM,(7.6)

which carries a point p ∈ M to the linear (m − n)-subspace of Em obtained from
the normal space T⊥p M via parallel displacement. If {en+1, . . . , em} is an oriented
orthonormal frame of T⊥M , then the Gauss map:

ν : M → G(m,m− n) ⊂ SNm,n−1(1) ⊂ ENm,n(7.7)

is defined by ν(p) = (en+1 ∧ · · · ∧ em)(p).
In this subsection we are concerning the following.

Problem 7.9. What are the obstructions to isometric immersions of a Riemannian
manifold into a Euclidean space with finite type (or low type) Gauss map?

Analogous to Observation 7.4, there are no obstructions to curves in 1-type Gauss
map (see [32, Proposition 3.1]). Hence in order to study Problem 7.9 it is natural to
assume that the submanifold is of dimension ≥ 2.

Ordinary spheres and square tori do admit immersions with 1-type Gauss map.
Otherwise, very little were known on Problem 7.9. However, we have the following
result which is an immediate consequence of [32, Theorem 4.4].

Theorem 7.10. Each compact surface with genus ≥ 2 admits no immersions into
any Euclidean space with 1-type Gauss map.

In addition to Theorem 7.10, we have another topological obstruction to immersions
with low type Gauss map.

Theorem 7.11. [29] Let M be a compact n-manifold with nonzero Euler number.
Then M does not admit a Lagrangian immersion into Cn whose Gauss map has type
number < n/2.

Remark 7.2. In views of these facts, it is interesting to obtain further obstructions for
a submanifold in a Euclidean space with low type Gauss map.



OBSTRUCTIONS TO VARIOUS IMMERSIONS 107

References

[1] A. Bejancu, CR-submanifolds of a Kaehler manifold I, Proc. Amer. Math. Soc. 69 (1978),
134–142.

[2] E. Beltrami, Ricerche di analisi applicata alla geometria, Giornale di Math. II (1864), 150–162.
[3] D. E. Blair and B.-Y. Chen, On CR-submanifolds of Hermitian manifolds, Israel J. Math. 34

(1979), 353–363.
[4] R. Bott, On a topological obstruction to integrability, 1970 Global Analysis (Proc. Sympos. Pure

Math., 16, Berkeley, Calif., 1968) pp. 127–131.
[5] B.-Y. Chen, Geometry of submanifolds, Marcel Dekker, New York, 1973.
[6] B.-Y. Chen, CR-submanifolds of a Kaehler manifold I, J. Differential Geom. 16 (1981), no. 2,

305–322.
[7] B.-Y. Chen, CR-submanifolds of a Kaehler manifold II, J. Differential Geom. 16 (1981), no. 3,

493–509.
[8] B.-Y. Chen, Cohomology of CR-submanifolds, Ann. Fac. Sc. Toulouse Math. Ser. V, 3 (1981),

167–172.
[9] B. Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, 1984.
[10] B. Y. Chen, Finite type submanifolds and generalizations, University of Rome, 1985.
[11] B.-Y. Chen, Slant immersions, Bull. Austral. Math. Soc. 41 (1990), no. 1, 135–147.
[12] B.-Y. Chen, Geometry of slant submanifolds, Katholieke Universiteit Leuven, 1990.
[13] B.-Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math.

60 (1993), 568–578.
[14] B. Y. Chen, A report on submanifolds of finite type, Soochow J. Math. 22 (1996), 117–337.
[15] B.-Y. Chen, Strings of Riemannian invariants, inequalities, ideal immersions and their ap-

plications, The Third Pacific Rim Geometry Conference (Seoul, 1996), 7–60, Intern. Press,
1998.

[16] B.-Y. Chen, A vanishing theorem for Lagrangian immersions into Einstein-Kaehler manifolds
and its applications, Soochow J. Math. 24 (1998), no. 2, 155–162.

[17] B.-Y. Chen, Some new obstruction to minimal and Lagrangian isometric immersions, Japan. J.
Math. 26 (2000), 105–127.

[18] B.-Y. Chen, Riemannian submanifolds, Handbook of Differential Geometry, vol. I (2000), (eds.
F. Dillen and L. Verstraelen), 187–418.

[19] B.-Y. Chen, On isometric minimal immersions from warped products into real space forms, Proc.
Edinb. Math. Soc. 45 (2002), no. 3, 579–587.

[20] B.-Y. Chen, A general optimal inequality for arbitrary Riemannian submanifolds, J. Inequal.
Pure Appl. Math. 6 (2005), no. 3, Paper No. 77, 10 p.

[21] B.-Y. Chen, Riemannian submersions, minimal immersions and cohomology class, Proc. Japan
Acad. Ser. A Math. Sci. 81 (2005), 162–167.

[22] B.-Y. Chen, Pseudo-Riemannian geometry, δ-invariants and Applications, World Scientific,
Hackensack, NJ, 2011.

[23] B.-Y. Chen, A tour through δ-invariants: From Nash embedding theorem to ideal immersions,
best ways of living and beyond, Publ. Inst. Math. (Beograd) (N.S.), 94(108) (2013), 67–80.

[24] B.-Y. Chen, Total mean curvature and submanifolds of finite type, 2nd Edition, World Scientific,
Hackensack, NJ, 2015.

[25] B.-Y. Chen and F. Dillen, Surfaces of finite type and constant curvature in the 3-sphere, C. R.
Math. Rep. Acad. Sci. Canada, 12, 47–49.

[26] B.-Y. Chen and F. Dillen, Optimal general inequalities for Lagrangian submanifolds in complex
space forms, J. Math. Anal. Appl. 379 (2011), 229–239.

[27] B. Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken, A variational minimal principle charac-
terizes submanifolds of finite type, C.R. Acad. Sc. Paris 317 (1993), 961–965.



108 B.-Y. CHEN

[28] B.-Y. Chen, F. Dillen, J. Van der Veken and L. Vrancken, Curvature inequalities for Lagrangian
submanifolds: the final solution, Differential Geom. Appl. 31 (2013), no. 6, 808–819.

[29] B.-Y. Chen, J.-M. Morvan and T. Nore, Energy, tension and finite type maps, Kodai Math. J.
9 (1986), 406–418.

[30] B.-Y. Chen and K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974),
257–266.

[31] B.-Y. Chen and M. Petrovic, On spectral decomposition of immersions of finite type, Bull.
Austral. Math. Soc. 44 (1991), no. 1, 117–129.

[32] B.-Y. Chen and P. Piccinni, Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc.
44 (1987), 161–186.

[33] B.-Y. Chen and Y. Tazawa, Slant surfaces of codimension two, Ann. Fac. Sci. Toulouse Math.
11 (1990), no. 3, 29–43.

[34] B.-Y. Chen and Y. Tazawa, Slant submanifolds in complex Euclidean spaces, Tokyo J. Math. 14
(1991), no. 1, 101–120.

[35] B.-Y. Chen and Y. Tazawa, Slant submanifolds of complex projective and complex hyperbolic
spaces, Glasgow Math. J. 42 (2000), no. 3, 439–454.

[36] S. S. Chern, Minimal Submanifolds in a Riemannian Manifold, University of Kansas, 1968.
[37] R. Deszcz, M. Petrović-Torgašev, L. Verstraelen and G. Zafindratafa, On the intrinsic symmetries

of Chen ideal submanifolds, Bull. Transilv. Univ. Brasov Ser. III, 1(50) (2008), 99–108.
[38] L. Euler, Euler à Lagrange, Berolini, die 6 Sept. 1755, Oeuvres de Lagrange 14 (1755), 144–146.
[39] C. F. Gauss, Disquisitiones generales circa superficies curvas, Comment. Soc. Sci. Gotting.

Recent. Classis Math. 6 (1827).
[40] S. Greenfield, Cauchy-Riemann equations in several variables, Ann. Scoula Norm. Sup. Pisa 22

(1968), 275–314
[41] M. Gromov, A topological technique for the construction of solutions of differential equations

and inequalities, Intern. Congr. Math. (Nice 1970) 2 (1971), 221–225.
[42] M. Gromov, Isometric immersions of Riemannian manifolds, Elie Cartan et les Mathématiques

d’Aujourd’hui, Astérisque 1985, pp. 129–133.
[43] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307–

347.
[44] D. Hilbert, Ueber Flächen von konstanter Gausscher Krümmung, Trans. Amer. Math. Soc. 2

(1901), 87–99.
[45] H. B. Lawson, Some intrinsic characterizations of minimal surfaces, J. D’Analyse Math. 24

(1971), 151–161.
[46] J. F. Nash, The imbedding problem for Riemannian manifolds, Ann. of Math. 63 (1956), 20–63.
[47] A. Newlander and L. Nirenberg, Complex analytic coordinates in almost complex manifolds,

Annals of Math. 65 (1957), 391–404.
[48] J. C. C. Nitschem Lectures on minimal surfaces, Cambridge Univ. Press, 1989.
[49] T. Otsuki, Isometric imbedding of Riemann manifolds in a Riemann manifold, J. Math. Soc.

Japan 6, (1954), 221–234.
[50] G. Ricci, Sulla teoria intrinseca delle superficie ed in ispecie di quelle di secondo, Atti R. Ist.

Ven. di Lett. ed Arti. 6 (1894), 445–488.
[51] J. Sikorav, Non-existence de sous-variété lagrangienne exacte dans Cn (d’après Gromov), As-

pects Dynamiques et Topologiques des Groupes Infinis de Transformation de la Mécanique Lyon,
Travaux en Cours, Hermann, Paris 25 (1986), 95–110.

[52] T. Tahakashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966),
380–385.



OBSTRUCTIONS TO VARIOUS IMMERSIONS 109

1Department of Mathematics,
Michigan State University,
East Lansing, Michigan 48824–1027, U.S.A.
E-mail address: bychen@math.msu.edu


	1. Introduction
	2. Obstructions to minimal immersions
	2.1. Topological obstruction
	2.2. Riemannian obstructions

	3. Obstructions to Lagrangian immersions
	4. Obstructions to slant immersions
	5. Obstructions to CR-immersions
	6. Obstructions to ideal immersions
	7. Obstructions to finite type immersions and finite type maps
	7.1. Finite type immersions
	7.2. Obstructions to submanifold with low type Gauss map

	References

