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COMPACTNESS OF MATRIX OPERATORS ON SOME
SEQUENCE SPACES DERIVED BY FIBONACCI NUMBERS

E. E. KARA1, M. BAŞARIR2, AND M. MURSALEEN3

Abstract. In this paper, we apply the Hausdorff measure of noncompactness
to obtain the necessary and sufficient conditions for certain matrix operators on
the Fibonacci difference sequence spaces `p(F̂ ) and `∞(F̂ ) to be compact, where
1 ≤ p <∞.

1. Introduction and Preliminaries

Let N = {0, 1, 2, . . .} and R be the set of all real numbers. We shall write limk,
supk, infk and

∑
k instead of limk→∞, supk∈N, infk∈N and

∑∞
k=0, respectively. Let

ω be the vector space of all real sequences x = (xk)k∈N. By the term sequence
space, we shall mean any linear subspace of ω. Let ϕ, `∞, c and c0 denote the
sets of all finite, bounded, convergent and null sequences, respectively. We write
`p = {x ∈ ω :

∑
k |xk|

p <∞} for 1 ≤ p <∞. Also, we shall use the conventions that
e = (1, 1, . . .) and e(n) is the sequence whose only non-zero term is 1 in the nth place
for each n ∈ N. For any sequence x = (xk), let x[n] =

∑n
k=0 xke

(k) be its n-section.
Morever, we write bs and cs for the sets of series with bounded and convergent partial
sums, respectively.

The Fibonacci numbers are the sequence of numbers {fn}∞n=0 defined by the linear
recurrence equations

f0 = f1 = 1 and fn = fn−1 + fn−2; n ≥ 2.

Key words and phrases. Sequence spaces, Fibonacci numbers, compact operators, Hausdorff
measure of noncompactness.
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Fibonacci numbers have many interesting properties and applications in arts, sci-
ences and architecture. For example, the ratio sequences of Fibonacci numbers con-
verge to the golden ratio which is important in sciences and arts. Also, some basic
properties of Fibonacci numbers can be found in [19].

A B − space is a complete normed space. A topological sequence space in which all
coordinate functionals πk, πk(x) = xk, are continuous is called a K− space. A BK−
space is defined as a K− space which is also a B− space, that is, a BK− space is
a Banach space with continuous coordinates. A BK− space X ⊃ ϕ is said to have
AK if every sequence x = (xk) ∈ X has a unuqiue representation x =

∑
k xke

(k). For
example, the space `p (1 ≤ p <∞) is BK− space with ‖x‖p = (

∑
k |xk|

p)
1/p and c0,

c and `∞ are BK− spaces with ‖x‖∞ = supk |xk|. Further, the BK− spaces c0 and
`p have AK, where 1 ≤ p <∞ ([22, 4]).

A sequence (bn) in a normed space X is called a Schauder basis for X if for
every x ∈ X there is a unique sequence (αn) of scalars such that x =

∑
n αnbn, i.e.,

limm ‖x−
∑m

n=0 αnbn‖ = 0.
The β-dual of a sequence space X is defined by

Xβ = {a = (ak) ∈ ω : ax = (akxk) ∈ cs for all x = (xk) ∈ X} .

Let A = (ank)
∞
n,k=0 be an infinite matrix of real numbers ank, where n, k ∈ N. We

write An for the sequence in the nth row of A, that is An = (ank)
∞
k=0 for every n ∈ N.

In addition, if x = (xk)
∞
k=0 ∈ ω then we define the A-transform of x as the sequence

Ax = {An(x)}∞n=0, where

(1.1) An(x) =
∞∑
k=0

ankxk; n ∈ N

provided the series on the right side converges for each n ∈ N.
For arbitrary subsets X and Y of ω, we write (X, Y ) for the class of all infinite

matrices that map X into Y . Thus, A ∈ (X, Y ) if and only if An ∈ Xβ for all n ∈ N
and Ax ∈ Y for all x ∈ X.

The matrix domain XA of an infinite matrix A in a sequence space X is defined by

(1.2) XA = {x = (xk) ∈ ω : Ax ∈ X}

which is a sequence space ([4]).
Let ∆ denote the matrix ∆ = (∆nk) defined by

∆nk =

{
(−1)n−k, (n− 1 ≤ k ≤ n),
0, (0 ≤ k < n− 1) or (k > n),

or

∆nk =

{
(−1)n−k, (n ≤ k ≤ n+ 1),
0, (0 ≤ k < n) or (k > n+ 1).

In the literature, the matrix domain λ∆ is called the difference sequence space
whenever λ is a normed or paranormed sequence space. The idea of difference sequence
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space was introduced by Kızmaz [17]. In 1981, Kızmaz [17] defined the sequence spaces

X(∆) = {x = (xk) ∈ ω : (xk − xk+1) ∈ X}

for X = `∞, c and c0. The difference space bvp, consisting of all sequnces (xk) such
that (xk − xk−1) is in the sequence space `p, was studied in the case 0 < p < 1 by
Altay and Başar [2] and in the case 1 ≤ p ≤ ∞ by Başar and Altay [5] and Çolak et
al. [12]. The paranormed difference sequence space

∆λ(p) = {x = (xk) ∈ ω : (xk − xk+1) ∈ λ(p)}

was examined by Ahmad and Mursaleen [1] and Malkowsky [23], where λ(p) is any
of the paranormed spaces `∞(p), c(p) and c0(p) defined by Simons [37] and Maddox
[20].

Recently, Başar et al. [3] have defined the sequence spaces bv(u, p) and bv∞(u, p)
by

bv(u, p) = {x = (xk) ∈ ω :
∑
k

|uk(xk − xk−1)|pk <∞}

and
bv∞(u, p) = {x = (xk) ∈ ω : sup

k∈N
|uk(xk − xk−1)|pk <∞},

where u = (uk) is an arbitrary fixed sequence and 0 < pk ≤ H < ∞ for all k ∈ N.
Also in [11, 13, 14, 18, 24, 25, 27, 28, 36, 38], authors studied some difference sequence
spaces.

Let SX denote the unit sphere in a normed linear space X. If X ⊃ ϕ is a BK space
and a = (ak) ∈ ω, then we write

(1.3) ‖a‖∗X = sup
x∈SX

∣∣∣∣∣∑
k

akxk

∣∣∣∣∣
provided the expression on the right side is defined and finite which is the case
whenever a ∈ Xβ.

The following results are very important in our study.

Lemma 1.1. [22, Theorem 1.29] Let 1 < p <∞ and q = p/(p− 1). Then, we have
`β∞ = `1, `β1 = `∞ and `βp = `q. Furthermore, let X denote any of the spaces `∞, `1 or
`p. Then, we have ‖a‖∗X = ‖a‖Xβ for all a ∈ Xβ, where ‖.‖Xβ is the natural norm on
the dual space Xβ.

Lemma 1.2. [22, Theorem 1.23 (a)] Let X and Y be BK-spaces. Then we have
(X, Y ) ⊂ B(X, Y ), that is, every matrix A ∈ (X, Y ) defines a linear operator LA ∈
B(X, Y ) by LA(x) = Ax for all x ∈ X, where B(X, Y ) denotes the set all bounded
(continuous) linear operators L : X → Y .

Lemma 1.3. [22, Lemma 2.2] Let X ⊃ φ be BK-space and Y be any of the spaces
c0, c or `∞. If A ∈ (X, Y ), then
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‖LA‖ = ‖A‖(X,`∞) = sup
n
‖An‖∗X <∞.

By MX , we denote the collection of all bounded subsets of a metric space (X, d).
If Q ∈MX , then the Hausdorff measure of noncompactness of the set Q, denoted by
χ (Q), is defined by

χ (Q) = inf
{
ε > 0 : Q ⊂

n
∪
i=1
B (xi, ri) , xi ∈ X, ri < ε, (i = 1, 2, . . . , n) , n ∈ N− {0}

}
.

The function χ : MX → [0,∞) is called the Hausdorff measure of noncompactness .
The basic properties of the Hausdorff measure of noncompactness can be found in

[22].
The following result gives an estimate for the Hausdorff measure of noncompactness

in the BK space `p for 1 ≤ p <∞.

Lemma 1.4. [35, Theorem 2.8] Let 1 ≤ p <∞ and Q ∈M`p. If Pm : `p → `p (m ∈ N)
is the operator defined by Pm(x) = (x0, x1, . . . , xm, 0, 0, . . .) for all x = (xk) ∈ `p, then
we have

χ(Q) = lim
m→∞

(
sup
x∈Q
‖(I − Pm)(x)‖`p

)
,

where I is the identity operator on `p.

Let X and Y be Banach spaces. Then, a linear operator L : X → Y is said to be
compact if the domain of L is all of X and L(Q) is a totally bounded subset of Y
for every Q ∈ MX . Equivalently, we say that L is compact if its domain is all of X
and for every bounded sequence (xn) in X, the sequence (L (xn)) has a convergent
subsequence in Y .

The idea of compact operators between Banach spaces is closely related to the
Hausdorff measure of noncompactness, and it can be given as follows.

Let X and Y be Banach spaces and L ∈ B(X, Y ). Then, the Hausdorff measure of
noncompactness of L, is denoted by ‖L‖χ, can be given by

(1.4) ‖L‖χ = χ(L(SX))

and we have

(1.5) L is compact if and only if ‖L‖χ = 0.

The Hausdorff measure of noncompactness has various applications in the theory
of sequence spaces, one of them is to obtain necessary and sufficient conditions for
matrix operators between BK spaces to be compact. Recently, several authors have
studied compact operators on the sequence spaces and given very important results
related to the Hausdorff measure of noncompactness of a linear operator. For example
[6-10,16,21,26,29-34].

In this paper, we derive some identities for the Hausdorff measure of noncompactness
on the Fibonacci difference sequence spaces `p(F̂ ) and `∞(F̂ ) defined by Kara [15].
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We also apply the Hausdorff measure of noncompactness to obtain the necessary and
sufficient conditions for such operators to be compact.

2. The Fibonacci Difference Sequence Spaces `p(F̂ ) and `∞(F̂ )

Throughout, let 1 ≤ p ≤ ∞ and q denote the conjugate of p, that is, q = p/(p− 1)
for 1 < p <∞, q =∞ for p = 1 or q = 1 for p =∞.

Recently, Kara[15] has defined the Fibonacci difference sequence spaces `p(F̂ ) and
`∞(F̂ ) by

`p(F̂ ) =

{
x = (xn) ∈ ω :

∑
n

∣∣∣∣ fnfn+1

xn −
fn+1

fn
xn−1

∣∣∣∣p <∞
}

; 1 ≤ p <∞

and

`∞(F̂ ) =

{
x = (xn) ∈ ω : sup

n∈N

∣∣∣∣ fnfn+1

xn −
fn+1

fn
xn−1

∣∣∣∣ <∞} .
With the notation of (1.2), the sequence spaces `p(F̂ ) and `∞(F̂ ) may be redefined

by

(2.1) `p(F̂ ) = (`p)F̂ (1 ≤ p <∞) and `∞(F̂ ) = (`∞)F̂ ,

where the matrix F̂ = (f̂nk) is defined by

(2.2) f̂nk =


−fn+1

fn
, k = n− 1,

fn
fn+1

, k = n,

0, 0 ≤ k < n− 1 or k > n,

n, k ∈ N.

Further, it is clear that the spaces `p(F̂ ) and `∞(F̂ ) are BK spaces with the norms
given by

(2.3) ‖x‖`p(F̂ ) =

(∑
n

|yn|p
)1/p

; 1 ≤ p <∞ and ‖x‖`∞(F̂ ) = sup
n
|yn| ,

where the sequence y = (yn) = (F̂n(x)) is the F̂ -transform of a sequence x = (xn),
i.e.,

(2.4) yn = F̂n(x) =

{
f0
f1
x0 = x0, n = 0,
fn
fn+1

xn − fn+1

fn
xn−1, n ≥ 1,

n ∈ N.

Moreover, it is obvious by (2.2) that F̂ is a triangle. Thus, it has a unique inverse
F̂−1 = (f̂−1

nk ) which is also a triangle and the elements of F̂−1 are given by

(2.5) f̂−1
nk =

{
f2n+1

fkfk+1
, 0 ≤ k ≤ n,

0, k > n,
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for all n, k ∈ N. Therefore, we have by (2.4) that

(2.6) xn =
n∑
k=0

f 2
n+1

fkfk+1

yk; n ∈ N.

In [15], the β-duals of the sequence spaces `p(F̂ ) (1 ≤ p < ∞) and `∞(F̂ ) have
been determined and some related matrix classes characterized. Now, by taking into
account that the inverse of F̂ is given by (2.5), we have the following lemma which is
immediate by [15, Theorem 4.6].

Lemma 2.1. Let 1 ≤ p ≤ ∞. If a = (ak) ∈ {`p(F̂ )}β, then ā = (ãk) ∈ `q and we
have

(2.7)
∑
k

akxk =
∑
k

ãkyk

for all x = (xk) ∈ `p(F̂ ) with y = F̂ x, where

(2.8) ãk =
∞∑
j=k

f 2
j+1

fkfk+1

aj; k ∈ N.

Now, we prove the following results which will be needed in the sequel.

Lemma 2.2. Let 1 < p <∞, q = p/(p− 1) and ā = (ãk) be the sequence defined by
(2.8). Then, we have

(a) If a = (ak) ∈ {`∞(F̂ )}β, then ‖a‖∗`∞(F̂ ) =
∑

k |ãk| <∞.
(b) If a = (ak) ∈ {`1(F̂ )}β, then ‖a‖∗`1(F̂ ) = supk |ãk| <∞.

(c) If a = (ak) ∈ {`p(F̂ )}β, then ‖a‖∗`p(F̂ ) = (
∑

k |ãk|
q)

1/q
<∞.

Proof. (a) Let a = (ak) ∈ {`∞(F̂ )}β. Then, it follows by Lemma 2.1 that ā = (ãk) ∈ `1

and the equality (2.7) holds for all sequences x = (xk) ∈ `∞(F̂ ) and y = (yk) ∈ `∞
which are connected by the relation (2.4). Further, we have by (2.3) that x ∈ S`∞(F̂ )

if and only if y ∈ S`∞ . Therefore, we derive from (1.3) and (2.7) that

‖a‖∗`∞(F̂ ) = sup
x∈S

`∞(F̂ )

∣∣∣∣∣∑
k

akxk

∣∣∣∣∣ = sup
y∈S`∞

∣∣∣∣∣∑
k

ãkyk

∣∣∣∣∣ = ‖ā‖∗`∞ .

Hence, by using Lemma 1.1, we have that

‖a‖∗`∞(F̂ ) = ‖ā‖∗`∞ = ‖ā‖`1 .

This completes the proof of part (a).
Since parts (b) and (c) can also be proved by analogy with part (a), we leave the

detailed proof to the reader. �
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Throughout this paper, if A = (ank) is an infinite matrix, we define the associated
matrix defined Ã = (ãnk) by

(2.9) ãnk =
∞∑
j=k

f 2
j+1

fkfk+1

anj; n, k ∈ N

provided the series on the right side converges for all n, k ∈ N which is the case
whenever An ∈ {`p(F̂ )}β for all n ∈ N, where 1 ≤ p ≤ ∞. Then, we have:

Lemma 2.3. Let 1 ≤ p ≤ ∞, X be a sequence space and A = (ank) be an infinite
matrix. If A ∈ (`p(F̂ ), X), then Ã ∈ (`p, X) such that Ax = Ãy for all x ∈ `p(F̂ ) with
y = F̂ x, where Ã = (ãnk) is the associated matrix defined by (2.9).

Proof. Suppose that A ∈ (`p(F̂ ), X) and let x ∈ `p(F̂ ). Then An ∈ {`p(F̂ )}β for all
n ∈ N. Thus, it follows by Lemma 2.1 that Ãn ∈ `q for all n ∈ N and the equality
Ax = Ãy holds which yields that Ãy ∈ X, where y = F̂ x. Since every y ∈ `p is the
assocaited sequence of some x ∈ `p(F̂ ), we obtain that Ã ∈ (`p, X). This concludes
the proof. �

Lemma 2.4. Let 1 ≤ p <∞. If A ∈ (`1(F̂ ), `p), then

‖LA‖ = ‖A‖(`1(F̂ ),`p) = sup
k

(∑
n

|ãnk|p
)1/p

<∞.

Proof. The proof is elementary and left to the reader. �

3. Compact Operators on the Spaces `p(F̂ ) and `∞(F̂ )

In this section, we give some classes of compact operators on the spaces `p(F̂ ) and
`∞(F̂ ), where 1 ≤ p <∞.

The following lemma gives necessary and sufficient conditions for a matrix trans-
formation from a BK space X to c0, c and `∞ to be compact (the only sufficient
condition for `∞).

Lemma 3.1. [29, Theorem 3.7] Let X ⊃ ϕ be a BK space. Then, we have
(a) If A ∈ (X, `∞), then 0 ≤ ‖LA‖χ ≤ lim sup

n
‖An‖∗X .

(b) If A ∈ (X, c0), then ‖LA‖χ = lim sup
n
‖An‖∗X .

(c) If X has AK or X = `∞ and A ∈ (X, c), then
1

2
· lim sup

n
‖An − α‖∗X ≤ ‖LA‖χ ≤ lim sup

n
‖An − α‖∗X ,

where α = (αk) with αk = limn ank for all k ∈ N.

Now, let A = (ank) be an infinite matrix and Ã = (ãnk) the associated matrix
defined by (2.9). Then, by combining Lemmas 2.2, 2.3 and 3.1, we have the following
result.
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Theorem 3.1. Let 1 < p <∞ and q = p/(p− 1). Then we have:
(a) if A ∈ (`p(F̂ ), `∞), then

(3.1) 0 ≤ ‖LA‖χ ≤ lim sup
n

(∑
k

|ãnk|q
)1/q

and

(3.2) LA is compact if lim
n

(∑
k

|ãnk|q
)1/q

= 0;

(b) if A ∈ (`p(F̂ ), c0), then

(3.3) ‖LA‖χ = lim sup
n

(∑
k

|ãnk|q
)1/q

and

(3.4) LA is compact if and only if lim
n

(∑
k

|ãnk|q
)1/q

= 0;

(c) if A ∈ (`p(F̂ ), c), then

(3.5)
1

2
· lim sup

n

(∑
k

|ãnk − α̃k|q
)1/q

≤ ‖LA‖χ ≤ lim sup
n

(∑
k

|ãnk − α̃k|q
)1/q

and

(3.6) LA is compact if and only if lim
n

(∑
k

|ãnk − α̃k|q
)1/q

= 0,

where α̃ = (α̃k) with α̃k = limn ãnk for all k ∈ N.

Proof. It is obvious that (3.2), (3.4) and (3.6) are respectively obtained from (3.1),
(3.3) and (3.5) by using (1.5). Thus, we have to prove (3.1), (3.3) and (3.5).

Let A ∈ (`p(F̂ ), `∞) or A ∈ (`p(F̂ ), c0). Since An ∈ {`p(F̂ )}β for all n ∈ N, we have
from Part (c) of Lemma 2.2 that

(3.7) ‖An‖∗`p(F̂ ) =
∥∥∥Ãn∥∥∥∗

`p
=

(∑
k

|ãnk|q
)1/q

for all n ∈ N. Hence, by using the equality (3.7), we get (3.1) and (3.3) from parts
(a) and (b) of Lemma 3.1, respectively.

To prove (3.5), we have A ∈ (`p(F̂ ), c) and hence Ã ∈ (`p, c) by Lemma 2.3.
Therefore, it follows by part (c) of Lemma 3.1 with Lemma 1.1 that

(3.8)
1

2
· lim sup

n

∥∥∥Ãn − α̃∥∥∥
`q
≤ ‖LÃ‖χ ≤ lim sup

n

∥∥∥Ãn − α̃∥∥∥
`q
,
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where α̃ = (α̃k) with α̃k = limn ãnk for all k ∈ N.
Now, let us write S = S`p(F̂ ) and S̄ = S`p , for short. Then, we obtain by (1.4) and

Lemma 1.2 that

(3.9) ‖LA‖χ = χ(LA(S)) = χ(AS)

and

(3.10) ‖LÃ‖χ = χ(LÃ(S̄)) = χ(ÃS̄).

Further, we have by (2.3) that x ∈ S if and only if y ∈ S̄ and since Ax = Ãy by
Lemma 2.3, we deduce that AS = ÃS̄. This leads us with (3.9) and (3.10) to the
consequence that ‖LA‖χ = ‖LÃ‖χ. Hence, we get (3.5) from (3.8). This completes
the proof. �

The conclusions of Theorem 3.1 still hold for `1(F̂ ) or `∞(F̂ ) instead of `p(F̂ ) with
q = 1, and on replacing the summations over k by the supremums over k in the case
`1(F̂ ). Then, we have the following results:

Theorem 3.2. Let Ã = (ãnk) be the associated matrix defined by (2.9). Then we
have:

(a) if A ∈ (`∞(F̂ ), `∞), then

0 ≤ ‖LA‖χ ≤ lim sup
n

∑
k

|ãnk|

and
LA is compact if lim

n

∑
k

|ãnk| = 0;

(b) if A ∈ (`∞(F̂ ), c0), then

‖LA‖χ = lim sup
n

∑
k

|ãnk|

and
LA is compact if and only if lim

n

∑
k

|ãnk| = 0;

(c) if A ∈ (`∞(F̂ ), c), then
1

2
· lim sup

n

∑
k

|ãnk − ãk| ≤ ‖LA‖χ ≤ lim sup
n

∑
k

|ãnk − ãk|

and
LA is compact if and only if lim

n

∑
k

|ãnk − ãk| = 0,

where α̃ = (α̃k) with α̃k = limn ãnk for all k ∈ N.

Theorem 3.3. Let Ã = (ãnk) be the associated matrix defined by (2.9). Then we
have
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(a) If A ∈ (`1(F̂ ), `∞), then

0 ≤ ‖LA‖χ ≤ lim sup
n

(
sup
k
|ãnk|

)
and

LA is compact if lim
n

(
sup
k
|ãnk|

)
= 0.

(b) If A ∈ (`1(F̂ ), c0), then

‖LA‖χ = lim sup
n

(
sup
k
|ãnk|

)
and

LA is compact if and only if lim
n

(
sup
k
|ãnk|

)
= 0.

(c) If A ∈ (`1(F̂ ), c), then
1

2
· lim sup

n

(
sup
k
|ãnk − ãk|

)
≤ ‖LA‖χ ≤ lim sup

n

(
sup
k
|ãnk − ãk|

)
and

LA is compact if and only if lim
n

(
sup
k
|ãnk − ãk|

)
= 0,

where α̃ = (α̃k) with α̃k = limn ãnk for all k ∈ N.

Morever, as an immediate consequence of Theorem 3.2, we have the following
corollary.

Corollary 3.1. If either A ∈ (`∞(F̂ ), c0) or A ∈ (`∞(F̂ ), c), then the operator LA is
compact.

Proof. Let A ∈ (`∞(F̂ ), c0). Then, we have by Lemma 2.3 that Ã ∈ (`∞, c0) which
implies that limn (

∑
k |ãnk|) = 0, [39]. This leads us with Theorem 3.2(b) to the

consequence that LA is compact. Similarly, if A ∈ (`∞(F̂ ), c) then Ã ∈ (`∞, c) and
hence limn (

∑
k |ãnk − ãk|) = 0, where α̃ = (α̃k) with α̃k = limn ãnk for all k ∈ N.

Therefore, we deduce from Theorem 3.2(c) that LA is compact. �

Throughout, let Fm (m ∈ N) be the subcollection of F consisting of all nonempty
and finite subsets of N with elements that are greater than m, that is

Fm = {n ∈ N ∈ F : n > m for all n ∈ N} ; m ∈ N.
The next lemma [29, Theorem 3.11] gives necessary and sufficient conditions for a

matrix transformation from a BK space to `1 to be compact.

Lemma 3.2. Let X ⊃ ϕ be a BK space. If A ∈ (X, `1), then

lim
m

(
sup
N∈Fm

∥∥∥∥∥∑
n∈N

An

∥∥∥∥∥
∗

X

)
≤ ‖LA‖χ ≤ 4 · lim

m

(
sup
N∈Fm

∥∥∥∥∥∑
n∈N

An

∥∥∥∥∥
∗

X

)
.
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Now, we prove the following result.

Theorem 3.4. Let 1 < p <∞ and q = p/(p− 1). If A ∈ (`p(F̂ ), `1), then

(3.11) lim
m
‖A‖(m)

(`p(F̂ ),`1)
≤ ‖LA‖χ ≤ 4 · lim

m
‖A‖(m)

(`p(F̂ ),`1)

and

(3.12) LA is compact if and only if lim
m
‖A‖(m)

(`p(F̂ ),`1)
= 0,

where

‖A‖(m)

(`p(F̂ ),`1)
= sup

N∈Fm

(∑
k

∣∣∣∣∣∑
n∈N

ãnk

∣∣∣∣∣
q)1/q

; m ∈ N.

Proof. It is obvious that (3.11) is obtained by combining Lemmas 2.2(c), 2.3 and 3.2.
Also, by using (1.5), we get (3.12) from (3.11). �

Theorem 3.5. Let 1 ≤ p <∞. If A ∈ (`1(F̂ ), `p), then

(3.13) ‖LA‖χ = lim
m

sup
k

(
∞∑
n=m

|ãnk|p
)1/p


and

(3.14) LA is compact if and only if lim
m

sup
k

(
∞∑
n=m

|ãnk|p
)1/p

 = 0,

Proof. Let us remark that the limit in (3.13) exists by Lemma 2.4.
Now, we write S = S`1(F̂ ). Then, we have by Lemma 1.2 that LA(S) = AS ∈M`p .

Thus, it follows from (1.4) and Lemma 1.4 that

(3.15) ‖LA‖χ = χ(AS) = lim
m

(
sup
x∈S
‖(I − Pm)(Ax)‖`p

)
,

where Pm : `p → `p (m ∈ N) is the operator defined by Pm(x) = (x0, x1, . . . , xm, 0, 0, . . .)
for all x = (xk) ∈ `p and I is the identity operator on `p.

On the other hand, let x ∈ `1(F̂ ) be given. Then y ∈ `1 and since A ∈ (`1(F̂ ), `p),
we obtain from Lemma 2.3 that Ã ∈ (`1, `p) and Ax = Ãy. Thus, we have for every
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m ∈ N that

‖(I − Pm)(Ax)‖`p =
∥∥∥(I − Pm)(Ãy)

∥∥∥
`p

=

(
∞∑

n=m+1

∣∣∣Ãn(y)
∣∣∣p)1/p

=

(
∞∑

n=m+1

∣∣∣∣∣∑
k

ãnkyk

∣∣∣∣∣
p)1/p

≤
∑
k

(
∞∑

n=m+1

|ãnkyk|p
)1/p

≤ ‖y‖`1

sup
k

(
∞∑

n=m+1

|ãnk|p
)1/p


= ‖x‖`1(F̂ )

sup
k

(
∞∑

n=m+1

|ãnk|p
)1/p

 .

This yields that

sup
x∈S
‖(I − Pm)(Ax)‖`p ≤ sup

k

(
∞∑

n=m+1

|ãnk|p
)1/p

; m ∈ N.

Therefore, we deduce from (3.15) that

(3.16) ‖LA‖χ ≤ lim
m

sup
k

(
∞∑

n=m+1

|ãnk|p
)1/p

 .

To prove the converse inequality, let c(k) ∈ `1(F̂ ) be such that F̂ c(k) = e(k) (k ∈ N),
that is, e(k) is the F̂ -transform of c(k) for each k ∈ N. Then, we have by Lemma 2.3
that Ac(k) = Ãe(k) for every k ∈ N.

Now, let U = {c(k) : k ∈ N}. Then U ⊂ S and hence AU ⊂ AS which implies that
χ(AU) ≤ χ(AS) = ‖LA‖χ.

Further, it follows by applying Lemma 1.4 that

χ(AU) = lim
m

sup
k

( ∞∑
n=m+1

∣∣An(c(k))
∣∣p)1/p


= lim

m

sup
k

(
∞∑

n=m+1

|ãnk|p
)1/p

 .
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Thus, we obtain that

(3.17) lim
m

sup
k

(
∞∑

n=m+1

|ãnk|p
)1/p

 ≤ ‖LA‖χ .
Hence, we get (3.13) by combining (3.16) and (3.17). This completes the proof,

since (3.14) is immediate by (1.5) and (3.13). �
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