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NORMAL FAMILIES OF MEROMORPHIC FUNCTIONS
CONCERNING SHARED FUNCTIONS
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ABSTRACT. It is mainly proved: Let § be a family of meromorphic function in D,
a(z)(#£ 0) and b(2)(# 0) be two holomorphic functions on D. Suppose that admits
the zeros of multiplicity at least 3 for each function f € §. For each f € g, if
f =a(z) & f = b(z), then § is normal in D. Some example shows that the
multiplicity of zeros of f is best in some sense. And the result of paper improve
and supplement the result of Lei, Yang and Fang [J. Math. Anal. App. 364 (2010),
143-150].

1. INTRODUCTION AND MAIN RESULTS

Let D be a domain in C, and § be a family of meromorphic functions defined
in the domain D. § is said to be normal in D, in the sense of Montel, if for every
sequence { f, }o2; contains a subsequence { f,,}32, such that f,,. converges spherically
uniformly to a meromorphic function f(z) or co (see [1]).

A family § is said to be normal at a point 2y € D if there exists a neighborhood of
zo in which § is normal. It is well known that § is normal in a domain D if and only
if it is normal at each of its points (see [1]).

Let f(z) and g(z) be two meromorphic functions in D and a,b € C. If g(z) = b
whenever f(z) = a, we write f(z) = a = g(2) = b. If f(2) = a = g(z) = b and
g(z) = b= f(z) = a, we write f(z) =a < g(z) =b.

In 2002, Fang and Zalcman [2] proved the following theorem.

Theorem 1.1. Let § be a family of meromorphic functions in a domain D and a,b
be two nonzero complex numbers. Let k be a positive integer. Suppose that admits
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the zeros of multiplicity at least k + 1 for each function f € §. For each f € §, if
f=ax f® =b, then § is normal in D.

In 2010, Lei, Yang and Fang [3| extended the constants a,b in Theorem 1.1 to
holomorphic functions a(z)(# 0),b(z)(# 0), as follows.

Theorem 1.2. [4] Let § be a family of meromorphic functions in a domain D and
a(z)(#£ 0),b(2)(£ 0) be two holomorphic functions. Let k(> 2) be a positive integer.
Suppose that admits the zeros of multiplicity at least k + 1 for each function f € §.
For each f €5, if f = a(z) & f®) =b(2), then § is normal in D.

Naturally, we pose the following question: Is the conclusion of Theorem 1.2 also
true for k = 1.
First, we give the following counterexample.

Example 1.1. Let D = {z : |2| < 1},a(z) = Z22+2,b(z) = z. Let § = {f.} where

2
falz) = 2((221—%1)), z€ D (n=12...). Clearly, all the zeros of f,(z) are multiple,
o

and f,(z) —a(z) = —%, fi(z)=b(z) = —%. Thus f,(z) —a(z) # 0,

fl(z) = b(z) # 0in C\ {0}. It follows that f,(z) —a(z) = 0 < f/(z) —b(z) = 0,
this is f.(2) = a(z) < f(2) = b(z), however, § fails to be normal in D since

fn<\/iﬁ>:0,fn(ﬁ):ooasn—>oo.

Example 1.1 shows that the conclusion of Theorem 1.2 does not hold for k = 1.
This suggests that some further investigation is necessary for the case k = 1. In the
paper we take up this problem and prove the following result.

Theorem 1.3. Let § be a family of meromorphic function in D, a(z)(# 0) and
b(z) (# 0) be two holomorphic functions on D. Suppose that admits the zeros of
multiplicity at least 3 for each function f € §. For each f € F, if f = a(z) & f' =
b(z), then § is normal in D.

Evample 1.2. Let D = {z : |2| < 1},a(2) = 5,b(2) = 2. Let § = {f.} where

2
24 = . ni
fo = Ty z€D(n=1,2,...). Then f,(2)—32* = ey fl(z)—z = —@.
Clearly, fn(z) = a(z) & fl(2) = b(z), however, § fails to be normal in D since

In (\%) =00, fn(0) =0 as n — oo.

Remark 1.1. Example 1.1 shows that the condition that all zeros of f have multiplicity
at least 3 in Theorems 1.3 is shape. Example 1.2 shows that the condition that
a(z) # 0 is necessary.
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2. AUXILIARY RESULTS

To prove our result, we require some preliminary results.

Lemma 2.1. [4] Let § be a family of functions meromorphic on a domain D , all of
whose zeros have multiplicity at least k. Suppose that there exists A > 1 such that
}f(k)(z)’ < A whenever f(z) = 0. Then if § is not normal at zy € D, there exist, for
each 0 < a < k,

(1) points z,, z, = 2o;

(ii) functions f, € §; and

(iii) positive numbers p, — 0T
such that p, fu(Zn4pn€) = gn(&) — g(&) locally uniformly with respect to the spherical
metric, where g(§) is a nonconstant meromorphic function on C, all of whose zeros
of g(&) are of multiplicity at least k, and order at most 2.

Lemma 2.2. 5| Let f(z) be a transcendental meromorphic function with finite order,
all of whose zeros are of multiplicity at least 2, and let P(z)(# 0) be a polynomial,
then f'(z) — P(z) has infinitely many zeros.

Lemma 2.3. [5| Let k be a positive integer, f(z) be a meromorphic function with
finite order, all of whose zeros have multiplicity at least k + 2. If f*) #£ 1, then f(2)
1s a constant function.

Lemma 2.4. |6 Let k, be positive integers, Q(z) be a non-constant rational function,
all of whose zeros have multiplicity at least k + 2. If Q¥ (2) # 2!, then | = 1 and

QW (2) = m%, where ¢ is a nonzero constant.

Lemma 2.5. Let {f,} be a family of meromorphic functions in a domain D, all
of whose zeros are of multiplicity at least 3, and let a,(z),b,(2) be two sequences of
analytic functions in D such that a,(z) — a(z) # 0,b,(2) — b(2). If fl(2) = bu(2) =
fn(z) = an(2), then {f,} is normal in D.

Proof. Suppose that {f,} is not normal at zy € D. We may assume that b(zy) = 1.
By Lemma 2.1, there exists a sequence of complex numbers 2, — 2y, a sequence of
functions f,, € {f,} and a sequence of positive numbers p,, — 0 such that p,* f,(z, +
Pn€) = gn(&) — g(&) locally uniformly with respect to the spherical metric to a non-
constant meromorphic functions g(£) on C. Also the order of g(£) does not exceed 2
and ¢(&) has no zero of multiplicity less than 3.

We claim ¢'(§) # 1.

If this is not true, then ¢'(§) = 1. So we have ¢'(§) # 1, otherwise g(¢) must
be a polynomial with deg(g) = 1, which contradicts the fact that each zero of g(¢&)
has multiplicity at least 3. Since ¢'(§y) = 1 = b(&), then there exist &, — & such
that (for n sufficiently large) f) (2, + pn&n) = 95, (&) = b(2n + préyn). It follows that
fu(zn + pn&n) = alzn + puén), then gu(§a) = p" fulzn + paf) = prlan(za + puéa)-
Thus g(&) = oo, which contradicts ¢'(§y) = 1. This proves ¢'(§) # 1. By Lemma 2.3
g(&) is a constant, a contradiction. Thus {f,} is normal in D. O
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3. PROOF OF THEOREM 1.3

Proof. For any point zy € D, either b(zy) = 0 or b(zy) # 0. We consider two cases.
Case 1. b(zy) # 0. Then by Lemma 2.5, we get that § is normal at 2.

Case 2. b(z) = 0. Let 2 =0, D =A ={z:|2] < 1} and b(2) = 2™ + apy12™ +
Suppose that § is not normal in D. Without loss of generality, we assume that §

is not normal at zg = 0.
Consider the family as follows

¢ = {9(2) = f(z),f € 3}

Zm

Then & is not normal at zg = 0 in D. Applying Lemma 2.1, there exists a sequence
of complex numbers z, — 2y, a sequence of functions f, € {f,} and a sequence of
positive numbers p,, — 0 such that

. gn(2n + pnf) _ fa(zn + puf)
31 Gufg) = L2l DEn 0l

locally uniformly with respect to the spherical metric to a non-constant meromorphic
functions G(£) on C. Also the order of G(§) does not exceed 2 and G(€) has no zero
of multiplicity less than 3.

Next, we consider two cases.

Case 2.1. We may suppose that ;—Z — o0o. From (3.1), we have

(32) Gl o= PEELE) (1422 6,0 - 6
Pnip, Zn
on C, then we have é; — G’ on C\G'(00). We claim G’ # 1 on C.
Suppose that G'(§y) = 1 for {§; € C. Then we get G’ # 1, otherwise G(&) = & + ¢,
where ¢ is a non-zero constant, which contradicts the fact each zero of G(&) has
multiplicity at least 3.

Since G, (€) — (1 + g—:f)md)(zn + pn€) = G'(€) —1 on C\G~*(c0), then there exists

&, — &, such that é;(én) — (1 + z—:&TL) &(zn + pnén) = 0. Thus, for n sufficiently
large, we obtain

f;z(zn + pnn) = Z;né/n(én) =2z, (1 + z_ngn) O(2n + puén) = b(2n + puén)-

It follows that f,,(z, + pn&n) = a(zn + pn&n). From (3.2) we have

G(&) = lim Gi(6,) = lim D20 TPi8) _ pyy @lon T pul)

n—0o0 an;n n—o00 pnzgl ’
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which contradicts G'(§) = 1. So G'(§) # 1. By Lemma 2.3 G is a constant, a
contradiction.

Case 2.2. We may suppose that Z—Z — «, a finite complex number. From (3.1), we
have

A oen o Ju(pn§)
(3.3) Go() = Jntien = G, (

on C. Then @(f) has no a zero of multiplicity less than 3, and the pole of @(f) at
¢ = 0 has multiplicity at least m. R
Now set F,(§) := f;fnLﬁf, and F(&) = £"G(€). From (3.3), we can get F,(§) =

EmGL(€) — F(€). Clearly F,(¢) — F(€) on C, F(0) # 0 and the zero of F(€) has
multiplicity at least 3.

We claim: (i) F'(§) # £™, (ii) all the poles of F(§) are multiple.

First, we now prove that F’(£) # ™. Otherwise F(§) = m+1§m+1 +d, where d is a
constant. Since F'(0) # 0, then d # 0. So F(£) has only simple zeros, contradiction.
Thus let & € C with F'(&) = &™, then F(&) is holomorphic at . Therefore, we

can obtain ' (ou) — bput)
By Hurwitz’s theorem, there exists point &, — & such that f(pn&.) — b(pnén) = 0

for n sufficiently large. So we have f,,(pn&n) —a(pn&n) = 0, thisis f,(pn&n) = a(pnén)-
Noting that a(0) # 0, thus

¢ - ﬁ) — G(E—a) = G(¢)

n

F(&) = lim Fy(&,) = lim Flpn&n) _ 1 alon€n) _

n—00 pm+1 n—00 pm+1

which contradicts that F'(§) is holomorphic at &. This proves (i).
Next we prove (ii). Suppose F'(&) = oo. There exists a A = {¢ : [€ — &| < 5} such

that % is holomorphic and & is the zero of %) Hence Fl(g) % ( on A
and = §é 0. It follows that there exists &, — & such that &) af;ngn) =0 forn
sufﬁmently large. Therefore f!(pn&n) = b(pn&n). So we get

Fy(g) = Lolnbn) _Mon) _ o, e yem .

s Pn

!
Thus we have (#(E))
£=¢%o

F/(§) / Y
1G] L:&) = 0 and (Fn(§)> — (@) . It follows

/
that &y is a multiple zero of (%) , this is, & is a multiple pole of F(§). This proves

(ii).
By Lemma 2.2, F'(£) must be a rational function. Then by Lemma 2.4, we have

m=1and F(§) = Eggc which contradicts the fact F'(¢) has multiple poles. Hence

we show that & is normal at zg = 0.
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Next, we show that § is normal at zy = 0. Since & is normal at zp = 0, let g, — ¢
in a neighborhood of 0, then there exist As; = {z:|z] <} and a subsequence of
{gn} such that {g,} converges uniformly to a meromorphic function or co. Noting
g(0) = 0o, we can find a € with 0 < e < § and M > 0 such that |g(z)| > M, z € A..
So, for sufficiently large n, we get |g,(2)| > %. Therefore f,(z) # 0 for sufficiently
large n and z € A..

Hence fin is analytic in A.. It follows that, for sufficiently large n,
1 1 1 < (Z)m 2 12| €
= m > | — e Zl =z
@) lan(2)] 2] ) M 2

By the Maximum Principle and Montel’s theorem, § is normal at zy = 0.
These shows that § is normal in D. O
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