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CONCIRCULAR VECTOR FIELDS AND PSEUDO-KAEHLER
MANIFOLDS

BANG-YEN CHEN1

Abstract. A vector field on a pseudo-Riemannian manifold N is called concircular
if it satisfies ∇Xv = µX for any vector X tangent to N , where ∇ is the Levi-Civita
connection of N . A concircular vector field satisfying ∇Xv = µX is called a non-
trivial concircular vector field if the function µ is non-constant. A concircular vector
field v is called a concurrent vector field if the function µ is a non-zero constant. In
this article we prove that every pseudo-Kaehler manifold of complex dimension > 1
does not admit a non-trivial concircular vector field. We also prove that this result
is false whenever the pseudo-Kaehler manifold is of complex dimension one. In the
last section we provide some remarks on pseudo-Kaehler manifolds which admit a
concurrent vector field.

1. Introduction

A. Fialkow introduced in [8] the notion of concircular vector fields on a Riemannian
manifold N as vector fields which satisfy

∇Xv = µX(1.1)

for vectors X tangent to N , where ∇ denotes the Levi-Civita connection of N and
µ is a non-trivial function on N . A concircular vector field satisfying (1.1) is called
non-trivial if the function µ is non-constant. Concircular vector fields can also be
defined on pseudo-Riemannian manifolds exactly in the same way.

A concircular vector field v is called a concurrent vector field if the function µ in
(1.1) is equal to one. However, for simplicity we call a concircular vector field v a
concurrent vector field if the function µ in (1.1) is a nonzero constant throughout this
article.
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Concircular vector fields also known as geodesic fields in literature since integral
curves of such vector fields are geodesics. Concircular vector fields appeared in the
study of concircular mappings, i.e., conformal mappings preserving geodesic circles
[8,13]. Concircular vector fields also play an important role in the theory of projective
and conformal transformations. Such vector fields have interesting applications in
general relativity, e.g. trajectories of time-like concircular fields in the de Sitter model
determine the world lines of receding or colliding galaxies satisfying the Weyl hypoth-
esis [12]. Furthermore, it was proved by the author in [3] that a Lorentzian manifold
is a generalized Robertson-Walker spacetime if and only if it admits a time-like con-
circular vector field. For some further results related to concircular vector fields, see
[4, 6–8,11–13] for instance.

A pseudo-Riemannian metric g on a complex manifold (M,J) is called pseudo-
Hermitian if the metric g and the complex structure J on M are compatible, i.e.,

g(JX, JY ) = g(X, Y ), X, Y ∈ TpM, p ∈M.(1.2)

A pseudo-Hermitian manifold, by definition, is a complex manifold equipped with a
pseudo-Hermitian metric. A pseudo-Hermitian manifold is called a pseudo-Kaehler
manifold if its complex structure J is parallel with respect to its Levi-Civita connection
∇, i.e., ∇J = 0. Notice that the real index of a pseudo-Hermitian metric is always
even, say 2s, due to (1.2). The integer s is called the complex index.

The main result of this article is the following.

Theorem 1.1. We have:

(a) every pseudo-Kaehler manifold Mn with n = dimCM
n > 1 does not admit a

non-trivial concircular vector field;
(b) the result is false for pseudo-Kaehler manifolds Mn with n = 1.

In the last section we provide some remarks on pseudo-Kaehler manifolds which
admit a concurrent vector field.

2. Proof of Theorem 1.1

For general references on pseudo-Riemannian and pseudo-Kaehler manifolds, we
refer to books [1, 2, 5, 9, 10]. Throughout this article, we shall follow the notations
given in the book [2] closely.

Assume thatMn is a complex n-dimensional pseudo-Kaehler manifold which admits
a non-zero concircular vector field v satisfying condition (1.1).

Let R denote the Riemann curvature tensor of Mn which is defined by

(2.1) R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z
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for vector fields X, Y, Z tangent to Mn. It is well-known that the Riemann curvature
tensor R satisfies

R(X, Y ) = −R(Y,X),(2.2)
R(X, Y )JZ = J(R(X, Y )Z),(2.3)
R(JX, JY )Z = R(X, Y )Z,(2.4)
g(R(X, Y )Z,W ) = g(R(Z,W )X, Y ).(2.5)

It follows from (1.1) and (2.1) that the curvature tensor R satisfies

(2.6)

R(X, v)v = ∇X∇vv −∇v∇Xv −∇[X,v]v

= ∇X(µv)−∇v(µX)− µ∇Xv + µ∇vX

= (Xµ)v − (vµ)X,

for any vector field X tangent to Mn. Thus after taking the inner product of (2.6)
with v we find

(2.7) (Xµ)g(v, v) = (vµ)g(X, v), for all X ∈ TMn.

In particular, (2.7) implies the following

vµ = 0, whenever g(v, v) = 0,(2.8)
Xµ = 0, whenever g(v, v) 6= 0 and g(X, v) = 0.(2.9)

Let X be a vector satisfying g(X, v) = 0. By taking the inner product of (2.6) with
X, we find

(2.10) g(R(X, v)v,X) = −(vµ)g(X,X), whenever g(X, v) = 0.

Similarly, by applying (1.1), (2.1) and (2.3), we also have

(2.11)

R(Y, Jv)Jv = J(R(Y, Jv)v)

= J{∇Y∇Jvv −∇Jv∇Y v −∇[Y,Jv]v}
= J{∇Y (µJv)−∇Jv(µY )− µ∇Y (Jv) + µ∇JvY }
= −(Y µ)v − ((Jv)µ)JY

for any vector field Y tangent to Mn. Therefore, by combining (2.11) with (2.7), we
obtain

(2.12) g(R(Y, Jv)Jv, Y ) = 0

for any tangent vector Y satisfying g(Y, v) = 0.
Next, by applying (2.2), (2.4), (2.5) and (2.12) we have

0 = −g(R(Y, Jv)Jv, Y ) = g(R(JY, v)Jv, Y )

= g(R(Jv, Y )JY, v) = −g(R(v, JY )JY, v)(2.13)
= g(R(JY, v)v, JY )

for any Y satisfying g(Y, v) = 0.
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Now, by combining (2.10) and (2.13) we get

(2.14) (vµ)g(X,X) = 0

for any tangent vector X satisfying g(X, v) = g(JX, v) = 0.

Proof of Theorem 1.1. Statement (a). Let p be an arbitrary fixed point in Mn.
Case (a.i): v(p) is either space-like or time-like. In this case, there exists an orthonor-

mal basis e1, . . . , e2n of TpMn such that

e2 = Je1, g(ei, ej) = εiδij, v(p) = ce1,(2.15)

where c 6= 0 and εi = ±1. It follows from (2.14) and (2.15) that vµ = 0 whenever
n = dimCM

n > 1.
On the other hand, we find from (2.9) that e2µ = · · · = e2nµ = 0. Hence we have

Uµ = 0, for all U ∈ TpMn.

Case (a.ii): v(p) is light-like. In this case, it follows from (1.1), (2.1), and ∇J = 0
that

(2.16) R(X, Jv)v = (Xµ)Jv − ((Jv)µ)X,

for any vector X tangent to Mn. Thus, after taking the inner product of (2.16)
with v, we find

0 = ((Jv)µ)g(X, v).

Since v(p) is a light-like vector, there exists another light-like vector u at p such
that g(u, v) = −1. Therefore we also have

(2.17) (Jv)µ = 0.

Now, by combining (2.16) and (2.17) we obtain

(2.18) R(X, Jv)v = (Xµ)Jv.

Similarly, we also find from (1.1), (2.1) and (2.8) that

(2.19) R(JX, v)v = (JXµ)v.

Since we have R(X, Jv) = −R(JX, v) from (2.4), we may obtain from (2.18) and
(2.19) that

(2.20) (Xµ)Jv + (JXµ)v = 0.

Because v and Jv are linearly independent vector, (2.20) implies that Xµ =
JXµ = 0. Therefore we also have Uµ = 0 for any vector U ∈ TpMn. Because
p can be chosen to any any arbitrary point with v(p) 6= 0, this shows that µ is
a constant function. Consequently, Mn admits no non-trivial concircular vector
fields whenever n > 1. This proves statement (a) of the theorem.

Statement (b). Assume that Mn is a pseudo-Kaehler manifold with n = 1. Then it
follows from (1.2) that M1 is either space-like or time-like.
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Case (b.i): M1 is space-like. Let us consider the complex projective line CP 1(4)
equipped with the Fubini-Study metric of constant Gauss curvature 4. Let
z = x + iy be a local complex coordinate on CP 1(4) so that the metric ten-
sor of CP 1(4) is given by

(2.21) g =
dzdz̄

(1 + zz̄)2
.

It is easy to verify that the Levi-Civita connection of CP 1(4) satisfies

∇∂/∂x
∂

∂x
= − 2x

1 + zz̄

∂

∂x
+

2y

1 + zz̄

∂

∂y
,

∇∂/∂x
∂

∂y
= − 2y

1 + zz̄

∂

∂x
− 2x

1 + zz̄

∂

∂y
,(2.22)

∇∂/∂y
∂

∂y
=

2x

1 + zz̄

∂

∂x
− 2y

1 + zz̄

∂

∂y
.

Let us consider the function ϕ defined by

ϕ =
1− zz̄
1 + zz̄

.

By applying (2.21) and (2.22). It is straight-forward to verify that the gradient
vector of ϕ, denoted by grad ϕ, is given by

grad ϕ = −4

(
x
∂

∂x
+ y

∂

∂y

)
.

It is direct to show that grad ϕ satisfies

∇X grad ϕ = −4ϕX

for any X tangent to CP 1(4). Therefore grad ϕ is a non-trivial concircular vector
field defined on CP 1(4).

Case (b.ii): M1 is time-like. Let CP 1
(4) denote the unit disc D = {z ∈ C : zz̄ < 1}

equipped with the following time-like metric:

(2.23) g =
−dzdz̄

(1− zz̄)2
.

It is easy to verify that the Levi-Civita connection of CP 1
(4) satisfies

∇∂/∂x
∂

∂x
=

2x

1− zz̄
∂

∂x
− 2y

1− zz̄
∂

∂y
,

∇∂/∂x
∂

∂y
=

2y

1− zz̄
∂

∂x
+

2x

1− zz̄
∂

∂y
,(2.24)

∇∂/∂y
∂

∂y
= − 2x

1− zz̄
∂

∂x
+

2y

1− zz̄
∂

∂y
.

It follows from (2.24) that CP 1
(4) has constant Gauss curvature 4 as well.
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Now, let us consider the function

ψ =
1 + zz̄

1− zz̄

defined on CP 1
(4). By applying (2.23) and (2.24), we find

grad ψ = −4

(
x
∂

∂x
+ y

∂

∂y

)
,

∇X grad ψ = µX,

with µ = −4ψ. Therefore grad ψ is a non-trivial concircular vector field on
CP

1
(4). This proves statement (b) of the theorem.

�

3. Some Remarks on Concurrent Vector Fields

Recall that a vector field v on a pseudo-Riemannian manifold is called concurrent
if it satisfies

(3.1) ∇Xv = cX

for any tangent vector X, where c is a non-zero constant.

Proposition 3.1. Let Mn be a pseudo-Kaehler manifold. Then we have the following.
(a) For any concurrent vector field v on Mn, Jv is never a concurrent vector field

on Mn.
(b) The complex distribution D := Span {v, Jv} is always integrable.
(c) If D is non-degenerate, then the leaves of D are flat totally geodesic surfaces.

Moreover, Mn is foliated by totally geodesic flat holomorphic curves.

Proof. For a concurrent vector field v on Mn, we have

(3.2) ∇XJv = J∇Xv = cJX, X ∈ TMn,

which implies that Jv is not a concurrent vector field. This proves statement (a).
From (3.1) and (3.2), we find

(3.3) ∇Jvv = ∇vJv = cJv.

Thus we have
[v, Jv] = ∇vJv −∇Jvv = 0,

which implies that the distribution D is an integrable distribution. Moreover, it
follows from (3.1) and (3.2) that

(3.4) ∇vv = −∇JvJv = cv.

Hence the leaves ofD are totally geodesic surfaces inMn. Also, it is easy to verify from
(3.3) and (3.4) that the leaves are flat surfaces. Therefore, we also have statements
(b) and (c). �
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Let e1, . . . , e2n be an orthonormal frame on the pseudo-Kaehler manifold Mn, the
Ricci tensor Ric of Mn is defined by

(3.5) Ric(X, Y ) =
2n∑
i=1

εig(R(ei, X)Y, ei),

where g(ei, ej) = εiδij. Since v is a concurrent vector field, it follows from (2.6), (2.11)
and (3.1) that

(3.6) R(X, v)v = R(X, Jv)Jv = 0.

Therefore, we find from (3.5) and (3.6) that

(3.7) Ric(v, v) = Ric(Jv, Jv) = 0.

Consequently, we have the following.

Proposition 3.2. Every pseudo-Kaehler manifold with positive (or negative) Ricci
curvature admits no concurrent vector fields.

An immediate consequence this proposition is the following.

Corollary 3.1. If an Einstein pseudo-Kaehler manifold admits a concurrent vector
field, then it is Ricci-flat.

Remark 3.1. The complex pseudo-Euclidean n-space Cn
s with the pseudo-Kaehlerian

metric

g = −
s∑
i=1

dzidx̄i +
n∑

j=s+1

dzjdz̄j,

is a Ricci-flat pseudo-Kaehler manifold which admits a concurrent vector field; namely,
the position vector field of Cn

s .

Let Nm be a Riemannian m-manifold with m > 2. Denote by K(π) the sectional
curvature of a plane section π ⊂ TpN

m, p ∈ Nm. For any orthonormal basis e1, . . . , em
of TpNm, the scalar curvature τ at p is defined by

τ(p) =
∑
i<j

K(ei ∧ ej).

Let L be a r-subspace of TpNm with r ≥ 2 and {e1, . . . , er} an orthonormal basis
of L. The scalar curvature τ(L) of L is defined by

τ(L) =
∑
α<β

K(eα ∧ eβ), 1 ≤ α, β ≤ r.

For given integer k ≥ 1, we denote by S(m, k) the finite set consisting of k-tuples
(n1, . . . , nk) of integers satisfying 2 ≤ n1, · · · , nk < m and

∑k
j=1 i ≤ m.

For each k-tuple (n1, . . . , nk) ∈ S(m, k), the author introduced in the early 1990s
the invariant δ(n1, . . . , nk) defined by

δ(n1, . . . , nk)(p) = τ(p)− inf{τ(L1) + · · ·+ τ(Lk)}, p ∈ Nm,
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where L1, . . . , Lk run over all k mutually orthogonal subspaces of TpNm such that
dimLj = nj, j = 1, . . . , k (cf. [2, page 253] for details).

Another immediate consequence of (3.6) is the following.

Corollary 3.2. If a Kaehler manifold Mn admits a concurrent vector field, then we
have

δ(2n− 1) ≥ 0.

Proof. This corollary follows from (3.7) and the fact that

δ(2n− 1) = max
u∈T1Mn

Ric(u, u),

where T1Mn is the unit tangent bundle of Mn. �
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