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INEQUALITIES FOR THE POLAR DERIVATIVE OF A
POLYNOMIAL WITH RESTRICTED ZEROS

AHMAD ZIREH! AND MAHMOOD BIDKHAM?

ABSTRACT. For a polynomial p(z) of degree n, we consider an operator D, which
map a polynomial p(z) into Dop(z) := (a—2)p’(2) + np(z) with respect to a.. It was
proved by Liman et al. [A. Liman, R. N. Mohapatra and W. M. Shah, Inequalities
for the Polar Derivative of a Polynomial, Complex Analysis and Operator Theory,
2010] that if p(z) has no zeros in |z| < 1 then for all o, § € C with |a| > 1, |8| <1
and |z| =1,

la] =1 n la| = 1 la] = 1

Dupe) + 18 52{ o+ 1022 o 6 oo

—1 —1

In this paper we extend above inequality for the polynomials having no zeros in
|z| <1, except s-fold zeros at the origin. Our result generalize certain well-known
polynomial inequalities.

1. INTRODUCTION AND STATEMENT OF RESULTS

According to a well known result as Bernstein’s inequality on the derivative of a
polynomial p(z) of degree n, we have
(1.1) max |p/(2)| < n max]p()].
The result is best possible and equality holds for a polynomial having all its zeros at
the origin (see [13| and [4]). The inequality (1.1) can be sharpened, by considering
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the class of polynomials having no zeros in |z| < 1. In fact, P. Erdds conjectured and
later Lax [10] proved that if p(z) # 0 in |z| < 1, then (1.1) can be replaced by

(1.2) max |p/(2)] < 5 ma [p(=)]

As a refinement of (1.2), Aziz and Dawood [1]| proved that if p(z) is a polynomial of
degree n having no zeros in |z| < 1, then

(1.3) max [p'(2)] < 5 {rgla)f [p(2)] - min \p(Z)\} :

As an improvement of inequality (1.3) Dewan and Hans [7] proved that if p(z) is
a polynomial of degree n having no zeros in |z| < 1, then for any complex number [
n
() + p(2)

with || <1 and |2| =1,
n 8| |8
< 2 Lot
7o) <5 { ([t 5]+ |3]) e

(ol

Let a be a complex number. For a polynomial p(z) of degree n, D,p(z), the polar
derivative of p(z) is defined as

Dap(z) = np(z) + (o = 2)p'(2).

It is easy to see that D,p(z) is a polynomial of degree at most n — 1 and that D,p(z)
generalizes the ordinary derivative in the sense that

i |22 )

a—00 o

For the polar derivative D,p(z), Aziz and Shah [2| proved that if p(z) having all its
zeros in |z| < 1, then
(1.5) [ Dap(2)| = n|Oé||Z|”_1glli:Ii p(2)], |2 = 1,

and as an extension to inequality (1.3) they proved that if p(z) is a polynomial of
degree n having no zeros in |z| < 1, then for every complex number o with |a| > 1,

16 mox|D(a) < 5 { ol + Dmaxlp(a)] - (lol - Dminlp(:)]}

Recently Dewan et al. [9] generalized the inequality (1.6) to the polynomial of the form
p(z) =ap+ > _,a,2",1 <t <n,and proved if p(z) = ag+ Y ._,a,2", 1 <t <mn,is
a polynomial of degree n having no zeros in |z| < k, k > 1 then for |o| > 1,

7)ol £ i { ol + ) max 2] = (al = D min 2] |
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where

lat| -
sq = kit { (7%) \ao\—mkt T+ 1}
0 (E 3

lat| k1 41

lao|—m

and m = min,— [p(2)|.

As a generalization of the inequality (1.7), Bidkham et al. [5] proved, if p(z) =
ap + Yy, 2", 1 < p < n, is a polynomial of degree n having no zeros in [2| < k,
k> 1 then for 0 <r < R <k and |a| > R,

n ol | 5
max T4 s, E""So exp i Adt ﬁg{\p(zﬂ

max |D,p(2)| <
R
+(sh+1— (% + 86> exp {n/ Atdt} ‘Hgli |p(2)|} ;

where
(8) mizmhe e +
At _ n/ lagl—m 7
Pl 4 o] 4 (1) <—|a§i'm> (ktn + k2ut)
;RN () R RE
SO - E (E) Iaul ku—f—l + 1 ’
n) Rllaol—m)

and m = min.|— [p(2)|.

As an improvement and generalization to the inequalities (1.6) and (1.4), Liman
et al. [11] proved that if p(z) is a polynomial of degree n having no zeros in |z| < 1,
then for all o, 8 with |a| > 1, 8] <1 and |z| =1,

(1.8)

o] =1 ||

2Dp(z) + nﬁ—p(z)‘ <2{ (‘a +BT_1’ + ‘z - 5|a|—_1D max [p(z)]

2 2
—1 -1

In this paper, we first obtain the following generalization of polynomial inequality
(1.5), as follows:

Theorem 1.1. Let p(z) be a polynomial of degree n, having all its zeros in |z| < 1,

with s-fold zeros at the origin, then

(n+s)(jaf = 1) (n+s)(jaf = 1)
2 2

for every real or complex numbers B, o with |B| <1, |a| > 1 and |z| > 1. The result
is best possible and equality holds for the polynomials p(z) = az™.

(1.9) [2Dup(2) + B

> |na+

|2]" min [p(z)],

p(2) min

If we take s = 0 in Theorem 1.1, we have
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Corollary 1.1. If p(2) is a polynomial of degree m, having all its zeros in |z| < 1,
then for |B] <1, |a] > 1 and |z| > 1, we have

For 8 = 0 the inequality (1.10) reduces to inequality (1.5).
Next by using Theorem 1.1, we generalize the inequality (1.8).

(1.10) 2D,p(z )—l—nﬂ |z|"m1n Ip(2)].

‘+6

Theorem 1.2. Let p(z) be a polynomial of degree n does not vanish in |z| < 1, except
s-fold zeros at the origin, then for all a, B € C with |a| > 1, |5] <1 and |z| =1, we
have

2Dap(2) + glnt S)ga| — 1)p(z)
s% H na+5(n+s>g&’_1) '+ (n—s)z + sa + B(n+8)ga|_1) ’} max |p(2)|
(1.11) — { na+ﬁ(n+8)<2|a|_l> ‘— (n—s)z + sa + ﬁ<n+s)(2|a|_1) ‘} \Iﬁlri p(= )‘} .

If we take s = 0 in Theorem 1.2, then the inequality (1.11) reduces to the inequality
(1.8).
Theorem 1.2 simplifies to the following result by taking 5 = 0.

Corollary 1.2. Let p(z) be a polynomial of degree n does not vanish in |z| < 1, except
s-fold zeros at the origin, then for any o € C with |a| > 1 and |z] = 1, we have

1
[Dap(2)] <5 {nlal +1(n=s)2+ saf) max|p(z)| - (nfa] =[(n—s)z + saf) min p(z )I} :
Dividing two sides of inequality (1.11) by |a| and letting || — oo, we have the
following generalization of the inequality (1.4).

Corollary 1.3. Let p(z) be a polynomial of degree n, having no zeros in |z| < 1,
except s-fold zeros at the origin, then for any f € C with |B| < 1, and |z| = 1 we have

2p’(2)+wp(2) S%{(nﬂLBnTH 5—D ?ﬂ'mf\p z)|
oot v
2. LEMMAS

For the proofs of these theorems, we need the following lemmas. The first lemma
is due to Laguerre [12].

Lemma 2.1. If all the zeros of an n'™ degree polynomial p(2) lie in a circular region
C and w is any zero of D.p(z), then at most one of the points w and o may lie
outside C'.
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Lemma 2.2. Let p(z) is a polynomial of degree n, has no zero in |z| < 1, then on
|2l =1,
p'(2) < g ()],
where q(z) = 2"p(1/%).
The above lemma is due to Chan and Malik [6].

Lemma 2.3. If p(2) is a polynomial of degree n, having all its zeros in the closed
disk |z| < 1, then on |z| =1,

4 (2)] < 1P (2)],

where q(z) = z"p(1/Z).

Proof. Since p(z) has all its zeros in |z| < 1, therefore ¢(z) has no zero in |z| < 1.
Now applying Lemma 2.2 to the polynomial ¢(z) and the result follows. O

The following lemma is due to Aziz and Shah [3].

Lemma 2.4. If p(2) is a polynomial of degree n, having all its zeros in the closed
disk |z| < 1, with s-fold zeros at the origin, then

n—+s
P = =), =1

Lemma 2.5. If p(z) is a polynomial of degree n, having all its zeros in the closed
disk |z| < 1, with s-fold zeros at the origin, then for all real or complex number o with
la| > 1 and |z| = 1, we have

Dup(e) = CENAZD

The above lemma is due to K. K. Dewan and A. Mir [8].

Lemma 2.6. If p(z) is a polynomial of degree n with s-fold zeros at the origin, then
foralla, p € Cwith |B| <1, || > 1 and |z| =1, we have

1) [eDapte) + s LD (o)

< ’na—i—ﬁ

Proof. Let M = max.j—1 [p(2)|, if || < 1, then [Ap(2)| < |M2"| for |z| = 1. Therefore
it follows by Rouche’s Theorem that the polynomial G(z) = M 2™ — Ap(z) has all its
zeros in |z| < 1 with s-fold zeros at the origin. By using Lemma 2.5, to the polynomial
G(z), we have for every real or complex number « with |a| > 1 and for |z| = 1,

2D,6() = = W)
" -+ 5)(Ja] - 1)

[naMz" — AzDyp(z)| >

S (o),
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On the other hand by Lemma 2.1 all the zeros of D,G(2) = naMz""1 — AD,p(z)

lie in |z| < 1, where |a| > 1. Therefore for any  with |3] < 1, Rouche’s Theorem

implies that all the zeros of

(n+s)(la] = 1)
2

lie in |z] < 1. This conclude that the polynomial

(2.2)

1) = (na 8D o (g o0 A0I=D )

naMz" — X\zDuyp(z) + B (Mz" — Ap(2)),

will have no zeros in |z| > 1. This implies that for every  with |f| < 1 and |z| = 1,

(n+8)(!@\—1)p(z) (n+s)(af — 1

(2.3) ; ;

zDap(2) + B

§‘na+ﬂ )‘M

If the inequality (2.3) is not true, then there is a point z = 2z, with |zo| > 1, such that

(n+ s)(2|a| — (n+ s)(2|a| — 1)]9(20)‘ |

1
noa+ 3 )‘M<

ZODap(ZO> + B

Take
(m n 5<n+s>(2|a|71>> M

20Dap(20) + 5%17(20)

then |A| < 1 and with this choice of A\, we have T'(zp) = 0 for |z| > 1, from (2.2).
But this contradicts the fact that T'(z) # 0 for |z| > 1. For  with |8| = 1, inequality
(2.3) follows by continuity. This completes the proof of Lemma 2.6. O

Y

Lemma 2.7. If p(z) is a polynomial of degree n with s-fold zeros at the origin, then
foralla, B € Cwith |B| <1, |a| > 1 and |z| =1, we have

(n+ s)(Q\a\ — 1)p(2)‘ N ‘ZDQQ(Z) +ﬁ(n + s)(zla\ - 1)

(n+s)(laf = 1) (n+8)(|a|—1)‘}
2 2

zDap(2) + 8

“{
where Q(z) = z"p(1/Z).

Proof. Let M = max.— [p(z)|. For X\ with |[A| > 1, it follows by Rouche’s Theorem
that the polynomial G(z) = p(z) — AM z* has no zeros in |z| < 1, except s-fold zeros
at the origin. Consequently the polynomial

Q)

max [p()|.

no + f3

(n—s)z+sa+f

K

H(z) =2""G(1/7),

has all its zeros in |z| < 1 with s-fold zeros at the origin, also |G(z)| = |H(z)| for
|z| = 1. Since all the zeros of H(z) lie in |z| < 1, therefore, for § with |§| > 1, by
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Rouche’s Theorem all the zeros of G(z) + dH(z) lie in |z| < 1. Hence by Lemma 2.5
for every av with |a| > 1, and |z| = 1, we have
(n+s)(laf -1
2
Now using a similar argument as used in the proof of Lemma 2.6, we get for every
real or complex number S with |3] <1 and |z| > 1,
(n+s)(la] —1
2

)|G(2) +0H (2)| < |2Do(G(2) + 0H(2))].

(n+s)(laf = 1)

Jarz) .

(2.4) |2D,G(z)+

< |zD.H(z)+

H(z)|.

Therefore by the equalities
H(z)=2""G (1/2) = 2""*p(1/2) — AM 2" = Q(z) — AM 2",
or B
H(z) =Q(z) — A\Mz",
and substitute for G(z) and H(z) in (2.4) we get
(n+ s)(laf

(zDap(z) + 5 o - D p(z)) ) ((n )zt satf

< ‘ (zDaQ(z) Ll S)(Q'(” - ”Q(Z)) by (na Lt S)(QM - 1>> M=l

z

(n+s)(al =D ),
el

This implies

Dup(e) + 0D = = 9 0 5P
PR TR o RS T
As [p(z)| = |Q(2)] for |z| = 1, i.e., max.|=1 |p(2)| = max.j=1 |Q(2)| = M, by using
Lemma 2.6 for Q(z), we obtain for \z| =1,
2D, Q(z) + ﬁ<n i S)<2|Q| - 1)Q(z) < |A| |na + B(n i s)(2|a| —D ‘ M.
Thus taking suitable choice of argument of A, result is
[ T MR RNCE THET
(26) = [na + gUF 3)(2‘0" —b ‘ M= |20, + g 3)(2‘0" - 1)62(2)‘ .
By combining right hand side of (2.5) and (2.6) we get for |z| = 1 and |5] < 1,
2Dyp(z) + ﬁ(n i 8)(2’a| - 1)p(z) — Al [(n = s)z + sa+ B(n il S)<2|a| —b ‘ M
suﬂm%%<”+@g ‘M»’z%Q@wH¥”+Q9”‘”Qu>,
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Dap(z) + 58N b ey g0 Dy
< A {‘na+ﬁ(n+s)(2|a| - 1)‘ + (n—s)z+sa+ﬁ<n+s)<2|a| _1)'}M.
Taking |A| — 1, we have
Dupte) + pU A= )4 Lap,ge) + 680 = g
§{ na+6(n+s)(2|a| _1)'+ (n—s)z+sa+ﬁ(n+s)(2|a| _1)’}M.
This gives the result. 0

The following lemma is due to Zireh [14].

Lemma 2.8. If p(z) =Y _,a,2" is a polynomial of degree n, having all its zeros in
|z| <k, (k>0), then m < k"|a,|, where m = lrr‘nr’i Ip(2)].
3. PROOF OF THE THEOREMS

Proof of Theorem 1.1. If p(z) has a zero on |z| = 1, then the inequality (1.9) is trivial.

Therefore we assume that p(z) has all its zeros in |2| < 1. Let m = minj; - [p(2)],

then m > 0 and |p(z)| > m where |z| = 1. Therefore, for |A\| < 1, it follows by

Rouche’s Theorem and Lemma 2.8 that the polynomial G(2) = p(z) — Amz" is of

degree n and has all its zeros in |z| < 1 with s-fold zeros at the origin. By using

Lemma 2.1, D,G(2) = D,p(z) —admnz""1 has all its zeros in |z| < 1, where |a| > 1.

Applying Lemma 2.5 to the polynomial G(z), yields

(n+s)(jol = 1)
2

Since zD,G(z) has all its zeros in |z| < 1, by using Rouche’s Theorem, it can be easily

verifies from (3.1), that the polynomial

(n+s)(jol = 1)
2

(3.1) |2D,G(z)| >

G(2)], |z = L.

2D.G(2) +

G(2),
has all its zeros in |z| < 1, where |5] < 1.

Substituting for G(z), we conclude that the polynomial

(3.2)
T(2) = (ZDQP(Z) +5(n+s)(2|0z| —~ 1)p<z)) N (na+ﬁ(n+s)(2|oz| - 1)) |

will have no zeros in |z| > 1. This implies for every § with || < 1 and |z| > 1,
n+s)(ja] —1 n+s)(ja] —1
RIS e el 2 1)

(3.3) 2Dup(z) + > ml|2"| |na+ S

2 2
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If the inequality (3.3) is not true, then there is a point z = 2o with |29 > 1 such that

(n+s)(ol = 1) (n+s)(ja] —1)|

5 na+ 5

p(z0)| < m|z]

ZODap<ZO) + 6

Take
20Dap(20) + 5%17(20)
mzy (na + 5—(n+s)(2|al_1)> |
then |A| < 1 and with this choice of A\, we have T'(zp) = 0 for |z| > 1, from (3.2).

But this contradicts the fact that T'(z) # 0 for |z| > 1. For § with |8| = 1, inequality
(3.3) follows by continuity. This completes the proof of Theorem 1.1. U

A:

Proof of Theorem 1.2. Under the assumption of Theorem 1.2, we can write p(z) =
2°h(z), where the polynomial h(z) # 0 in |2| < 1, and thus if m = minp.|— |h(2)] =
miny.j— [p(z)|, then m < |h(2)| for |z] < 1. Now for A with |A| < 1, we have

|Am| <m < |h(2)],

where |z| = 1.

It follows by Rouche’s Theorem that the polynomial h(z) — Am has no zero in
|z] < 1. Hence the polynomial G(z) = 2°(h(z) — Am) = p(z) — Amz*, has no zero in
|z] < 1 except s-fold zeros at the origin. Therefore the polynomial

H(z) = 2""G(1/2) = Q(z) — Amz",

will have all its zeros in |z| < 1 with s-fold zeros at the origin, where Q(z) = 2""*p(1/%).
Also |G(z)| = |H(2)| for |z] = 1.

Now, using a similar argument as used in the proof of Lemma 2.7 (inequality (2.4)),
for the polynomials H(z) and G(z), we have

(n+s)(laf = 1)
2

where |a] > 1, |f] < 1 and |z| = 1. Substituting for G(z) and H(z) in the above
inequality, we conclude that for every «, 5, with |a| > 1, |f| < 1 and |z]| = 1,

2D,G(2) +

2D H(z)+

H{(z)

Y

(n+s)(laf = 1)
2

G(z)\ <

2Dap(2) — AM(n — 8)z + sa)mz® + ﬂ(n i 5)(2|a] i) (p(2) — Amz?)
<|2D,Q(2) — danmz" + 5(71 i 8);‘&’ —b (Q(2) — Amz")|,
zDap(z)+ﬁ(n+S)(2|a| _1)p(z)—)\<(n — s)z—l—sa—i—ﬁ(n i S>2(|a| _1)>mzs
(3.4) <|2D,Q(z) + 5(n - s)(2|a| — 1)Q<Z) -2 <na + ﬁ(n ki s)(2|a| — 1)> mz"|.
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Since all the zeros of Q(z) lie in |2z| < 1 with s-fold zeros at the origin, and |p(z)| =
|Q(2)] for |z| = 1, therefore by applying Theorem 1.1 to Q(z), we have

0,(2) + 8= g0 2 fna 45U ENA =D i)
s gl 9)lal = 1)
= lna+ (3 5 ‘m

Then for an appropriate choice of the argument of A\, we have

:0,Q() + s "N Dg(s) % (na yplrt ool U) "
5 = |2+ 8NN g < ) fna 4 p D=,

where |z| = 1.
Then combining the right hand sides of (3.4) and (3.5), we can rewrite (3.4) as

(nt+s)(Jel=1)

2Dap(2)+5 5

(n—s)z+sa+p

IR

o9,

2

ntoel-D)
2

(3.6) <

D0z + g S);"” - 1)Q(z)’ N 'na P

Y

where |z]| = 1.

Equivalently
2Dap(z) + LT 8)(2'04 “z)
< |+pu(e) + 88D - i fa 4 s A0

(n—s)z+sa+p

<n+s><2\a|—1>‘}m

As |A] = 1 we have

zDap(z) + 5 p(2)
< |Dae) + 8=~ {fna 4 gt

(n—s)z—ksa—i—ﬁMT_l‘}m
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It implies for every real or complex number 8 with |5] < 1 and |z| =1,

2|:Dup(z) + p 2L, )
< |oDan(e) + S EIIIE D) 1 |opagre) + s =)
—{Ma+ﬁm+sﬁm_lw—(n—Qz+&wH%n+$gM_1W}m.
This in conjunction with Lemma 2.7 gives for || <1 and |z]| = 1,
2|supte) + 6=
S{ na+ﬁ(n+s)(2|a| _1)‘ + (n—s)z+so¢+ﬁ(n+s)(2|a| _1)‘ }max]p(zﬂ
|z|=1
- { na+6(n+s)(2|a| _1)’ — (n—s)z+sa+6(n+8)(2|a| — 1)' }g}g|p(z)|
The proof is complete. U
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