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NEW WEIGHTED INTEGRAL INEQUALITIES FOR TWICE
DIFFERENTIABLE CONVEX FUNCTIONS

M. Z. SARIKAYA! AND S. ERDEN?

ABSTRACT. In this paper, we establish several new weighted inequalities for some
twice differentiable mappings that are connected with the celebrated Hermite-
Hadamard type and Ostrowski type integral inequalities. Some of the new inequal-
ities are Hermite-Hadamard-type inequalities involving fractional integrals. The
results presented here would provide extensions of those given in earlier works.

1. INTRODUCTION

Definition 1.1. The function f : [a,b] C R — R, is said to be convex if the following
inequality holds

fOz+ (1 =Ny) <Af(z) + (1= M) f(y)
for all z,y € [a,b] and X € [0,1]. We say that f is concave if (—f) is convex.

The following inequality is well known in the literature as the Hermite-Hadamard
integral inequality (see, [6]):

(5 < ks [ o L0

where f : I C R — R is a convex function on the interval I of real numbers and
a,b e I with a < b.

A largely applied inequality for convex functions, due to its geometrical significance,
is Hadamard’s inequality, (see [4, 5, 18-23]) which has generated a wide range of
directions for extension and a rich mathematical literature.

In 1938, the classical integral inequality established by Ostrowski [8] as follows:
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16 M. Z. SARIKAYA AND S. ERDEN

Theorem 1.1. Let f : [a,b]— R be a differentiable mapping on (a,b) whose derivative
f: (a,b)= R is bounded on (a,b), i.e., |f'l., = sup |f'(t)] < oo. Then, the
te(a,b)

inequality holds:

i+%§§%}]w—mwmu

b
o) - 5 [ sl <

for all x € [a,b]. The constant 1/4 is the best possible.

Inequality (1.1) has wide applications in numerical analysis and in the theory of
some special means; estimating error bounds for some special means, some mid-point,
trapezoid and Simpson rules and quadrature rules, etc. Hence inequality (1.1) has
attracted considerable attention and interest from mathematicans and researchers.
Due to this, over the years, the interested reader is also refered to [1-3,7,9-16]
for integral inequalities in several independent variables. In addition, the current
approach of obtaining the bounds, for a particular quadrature rule, have depended on
the use of Peano kernel. The general approach in the past has involved the assumption
of bounded derivatives of degree greater than one.

In this study, using functions whose twice derivatives absolute values are convex,
we obtain new weighted inequalities that are connected with the celebrated Hermite-
Hadamard type and Ostrowski type integral inequalities. In addition, we obtain
new inequalities of Hermite-Hadamard type and Ostrowski type involving fractional
integrals. The results presented here would provide extensions of those given in earlier
works.

2. MAIN RESULTS

Throughout this section, let us define the S(a;w, f) operator as follows:

« «

T xT

S(a;w, f) = /(u—:c)w(u)du - /(u—x)w(u)du 1 (z)

a b

T a—1 T

ta /(u—m)w(u)du /w(u)du

a a
a—1
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+/b(/<ut)w(u)du)alw@)f@)dt]-

b

In order to prove our main results we need the following lemma.

Lemma 2.1. Let f : I C R — R be twice differentiable function on I°, a,b € 1° with
a <b, f" is absolutely continuous on [a,b] and let w : [a,b] — R be nonnegative and
continuous on [a,b]. Then the following identity holds:

(2.1) S(esw, f) = / Py (1) " (1) dt,

where
(aft(u—t)w(u)du)a, a<t<u,

P, (x,t) == )
(bft(u—t)w(u)du), r<t<b,

for a>1.

Proof. By integration by parts, we have the following identity:

/wa (:c,t)f’/(t)dt:/x (/t(ut)w(u)du)afu(t)dt

a a a
b t @

+/ /(u—t)w(u)du f"(t)dt

T b

= (/(u—t)w(u)du) 1@

a a

+a] (/t(ut)w(u)du)al (jw(u)du) £ (t)dt

a a a
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b

+ (/(ut)w(u)du) (@)

b

+a/b (/t(ut)w(u)du)al (/tw(u)du) 1 () dt

T b

- [(](ut)w(u)dU>a (](ut)w(u)du)a] f(2)

+a{ (/t(ut)w(u)du)a (/tw(u)du) f(t)x
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—i—/ /(u—t)w(u)du w(t) f(t)dt],
z \b
which is the required identity in (2.1) and the proof is completed. O
Remark 2.1. Under the same assumptions of Lemma 2.1 with o = 1, then the following
identity holds:
b b b
st )= | [w-swwdd| £ @+ | [wwd] @ - [woroan

a a a

which was proved by Sarikaya and Yaldiz in [16].

Definition 2.1. Let f € L;[a,b]. The Riemann-Liouville integrals J¢, f and J;* f of
order o > 0 with a > 0 are defined by

o f () = ﬁ / (x -0 fBdt, > a,

and

b
@) = e [ o e <t

respectively. Here, I'(«v) is the Gamma function and J?, f(z) = Jp_f(z) = f(x).

Corollary 2.1. Under the same assumptions of Lemma 2.1 with w(s) = 1, then the
following identity holds:

st = (-3) [@-o-0-0"]7@
(2.2) ta (—%)Q_l (a2 o= @)
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4 2L (_E)H 722 p(a) + 72271 £ 0)].

2 2
Remark 2.2. If we take x = %t in (2.2), we get
et t a b t @
/ /(u—t) du | f"(t)dt + / /(u—t) du | f"(t)dt
a \a atb  \b
. (_l)al (b— a)2a_1f(a+ b)
2 22a-2 2

P () s 0]

Theorem 2.1. Let f : I C R — R be twice differentiable function on I°, a,b € I°
with a < b, f" is absolutely continuous on [a,b] and let w : [a,b] — R be nonnegative
and continuous on [a,b]. If | f"| is convex on [a,b] then for all x € [a,b], the following
inequalities hold:

00,09 00

a5, 1) < el
(e E S o+ o)
23) e
<[ i (B L )
(e bt
(Ot P L ]
where o > 1 and ||wl|, = sup w(t)]-

Proof. We take the absolute value of (2.1). Using bounded of the mapping w, we find
that

b
S w, f)] < / P (e, t)] |/ (8)] dt



NEW WEIGHTED INTEGRAL INEQUALITIES 21

_|_/b (/b(u—t)w(u)du)a|f”(t)dt

T t

. b
lwlt o o [w]]7 47,00 a
< et [ a7 o+ e g o

a x

Since | f”(t)| is convex on [a,b] = [a,2] U [z, b], we have

7 b—t t—a t—a
(b—aa+b—ab>’_b— @]

From (2.4), it follows that

(2.4)

T

S(as n_%%%%ﬁ/@—@mﬁw%>"mw+@—@fwwyﬁ
o b
+—!i”(|l|jﬁ”];; / b—t [o=0|f @]+ -0 ®)] a

!ZUJLaj]a) K(b : agg: 1a)2a+1 N (xg_aaltﬂ) |1 (a)]
U] e e
e ITIU]

20+ 1 200+ 2

[ (a)]

and because of [[w], . < ]y o0 a0 0] 410 < 0],y 00 we Obtain

|S( )| - !a(‘l)a_b] ) {<(b . a)(x . a)2a+1 N (b _ 3:)2°‘+2 _ (m 2a+2) ‘f ‘

20+ 1 200+ 2
N (b o a)(b o x)?a—f—l N (l’ _ a)2a+2 _ (b 2a+2 ‘f ‘
200+ 1 200+ 2
which completes the proof. 0

Remark 2.3. Under the same assumptions of Theorem 2.1 with o = 1, then the
following inequality holds:

50, 1) < petiee [ (O r =y oalZlemaly o)
+((b—a)éb—x)3+($—a) 4(1;—3; )‘f H

which was proved by Sarikaya and Yaldiz in [16].
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Corollary 2.2. Under the same assumptions of Theorem 2.1 with w(s) = 1, then the
following inequality holds:

st 1< g (e +
(2.5) + ((b — a;;b; 1:U)2a+1 N (x — a)2a;l—+(25 - x)2a+2) f”(b)”

Remark 2.4. 1If we take o =1 in (2.5), we get

(“3" ) f’<m>+f<x>—bia/bf<t>dt

1 (z—a)® (b—2)"—(z—a) "
e [ L

¥ (“‘a) 02D g 2T ) ]f”(b)]] |

3
which is proved by Sarikaya and Yaldiz in [16].

Corollary 2.3. Under the same assumptions of Theorem 2.1 with w(s) = 1 and
T = “T“’, then we have

o (4) G + R () [ + L) '

Remark 2.5. If we take o = 1 in (2.6), we obtain

atb\ 1 b—a? (£ @]+ | ®)
H(%57) -2 [ < U5 ( . )

which is proved by Sarikaya and Yildirim in [17].

(2.6)

Corollary 2.4. Under the same assumptions of Theorem 2.1 with
in (2.3), then the following inequalities hold:

@)= )

1 « « « « "
St NI £ G 0l (0= 0 0l 0= 0 |10
kuﬁz,b],oo 2a+1 2a+17 | p

Theorem 2.2. Let f : I C R — R be twice differentiable function on I°, a,b € I°
with a < b, f" is absolutely continuous on [a,b] and let w : [a,b] — R be nonnegative
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and continuous on [a,b]. If | f"|* is convex on [a,b], ¢ > 1, then for all x € [a,b], the
following inequalities hold:

ol 2a+1
HwH[a,x},oo (IE—CL> i
20 (b— a)i (2ap + 1)»

y [(b—a>2—<b—x>2

2

|S(e;;w, f)] <

1"

1
204-1—5

N [l 4,00 (b — )
20 (b— a)7 (2ap + 1)»

x[(b‘ﬁ f )+ =) f”(b)"]q
o Ml
~20(b—a)7 (2ap+1)»

x{ (@ — et [“’“‘) N AGIEa=R ]
(b= z)*th [—“)‘2‘”) £+ O Al ] |

where a > 1, 2 +1 =1, and ||w|| = sup |w(t)].
P 1 t€[a,b]

Proof. We take absolute value of (2.1). Using Holder’s inequality, we find that

Sl < [ | [e-wwwa) 1ol
+/ /(u—t)w(u)du |f" (t)] dt

10,07 00

T a b
20 | g1 Hw”[Z,bLOO 20 | g1
< 2o [ a gy a2 [ o) o) ar

HwHﬁz,z},oo 2ap " q
< P [ aper ()1 dt

a

3=

1
q
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24
[l [ f " *
w
el A N AT
Since |f"(t) |q is convex on [a,b] = [a,x] U [z, b], we have
t—a ? b—t ” q t—a ” q
2.7 b b)| .
(27) ‘f (b—a b—a) “b—a (a) b—af()
From (2.7), it follows that
1
||w||aaw o - 2a+; / b_t " q t_ " q !
S(asw, f)] < Hotiesee £ 0V / F@f =] o) @
Qo (20&p+1)5 J b—a b—a
ol b= 2 (o=t o tmap )
. /(@) ) at
Qu (2@p+1); J b—a b—a
_ [l ae0 (x—a)** >
20(b—a)? (2ap+1)»
b—a b—x z—a) |, a|°
x[( ool (2)]f<b)]
[ (b—x)mi
1 1
29(b—a)s 2ap+1)»
b—$2 ” q b—a2—$—a2 " l]%
x[< )+ C S0 f(b)]

and because of ||w||[a,gc]7C>O < ||w||[a7b]7C>o

complete.

and [Jwl|, ;o

< [l o p),00

. Hence, the proof is
O

Remark 2.6. Under the same assumptions of Theorem 2.2 with @ = 1, then the

following inequality holds:

|| ||[ab

1S w, ] <
2(b—a) (2p+1)
S R e s |
4 (b—a)F (b—2$) fﬂ(a>q+(b—a) ;(:r—a) f”(b)q ! |
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which is given by Sarikaya and Yaldiz in [16].

Corollary 2.5. Under the same assumptions of Theorem 2.2 with w(s) = 1, then the
following inequality holds:

1

1S(e 1, f)] < T T
20(b—a)s (2ap+1)»
2.9 Qo ayes | L Ot g1 Al e
st [(b=2 | 0 (b= =@ =) [0 ]
F = S | @) 5 \f(b)_}
Remark 2.7. If we take a = 1 in (2.8), we get
b
(a;b_x)f@g+f@y—bia/fayu
1 a
< T T
2(b—a)ta(2p+1)F
<3 @ —aprs | CE SO 1y B2 ]
+ (b—x)*tr [<b_2x> 7@+ =9 ;(x_a) )f”<b) q]}

which is given by Sarikaya and Yaldiz in [16].

Corollary 2.6. Under the same assumptions of Theorem 2.2 with w(s) = 1 and

x = %L then, we have
e
T (‘%)M )+ T 0]
(2.9) < (=™

(2ap + 1)#23a+1
y [3 f'(a)] 4+ ()]

1
q

fa)|"+3
4

_|_

f”<b>qr
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Remark 2.8. If we take & = 1 in (2.9), we obtain

f(a;b) —bia/bf(t)dt

(b— a)’ [3}f”(a>\q+
4

1
q

_|_

£

fa)|"+3
4

<
16 (2p+1)

?

f”<b>qr

B =

which is proved by Sarikaya and Yildirim in [17].

Theorem 2.3. Let f : I C R — R be twice differentiable function on I°, a,b € I°
with a < b, f" is absolutely continuous on [a,b] and let w : [a,b] — R be nonnegative
and continuous on [a,b]. If | f"|* is convexr on [a,b], ¢ > 1, then for all x € [a,b], the
following inequalities hold:

1

(b—a)s
20 (2ap + 1)»

. [ f'(@)]" + If”(b)lq] '
2

|S(Oé,w7f)| S (b_x)Qap-i-l]E

2 1
152, o (2 = @7 4 el

1
wl|? b—a)4

< H ”[a,b],oo( 1)
2% (2ap+ 1)5

. [ f'@)|" + If”(b)lq]q’
2

(2.10) [(z — a)* Pt 4 (b — x)2ap+1]%

where a > 1, 1 +1 =1, and ||w||_ = sup |w(t)|.
P 1 t€la,b]

Proof. We take absolute value of (2.1). Using Holder’s inequality, we find that

b

Sasw. )l < [P0l @] d

a

3=

¢ ap ap

< ] /(t—u)w(u)du dt + | /b(u—t)w(u)du dt

b :
x / ()| dt

a
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1

Il @ = 0wl 0 — 2|

~ 2ap 204]7 —+ 1 2ap 20(]9 + 1
b :
X / |f" ()| dt
From (2.7), it follows that
1
|S(a W f)l < ”wH[aZj:cLOO (ZU - a)Zap+1 ”wH[:czjb],oo (b — :U)ZQP—H b
y Wy — Qap 2CYp +1 Qap 2Ckp +1

1

q
q t—a ”

“ |7 o)

q
]dt

1
_CL)E a 2ap+1 «a 2 1%
2 o0 (2 = @7 4 Julli2y oo (b= 27

. [If"(a)\q+ f"(b)\q]“
2

and because of [[wl], . .0 < W[4 400 a0 W], 41 00 < (W]} 4,00 Hence, the proof is
complete. 0

Remark 2.9. Under the same assumptions of Theorem 2.3 with @ = 1, then the
following inequality holds:

w b—a ‘ 1
’5(1;w7 f)‘ < H ||2[a(7;],oo(1)1 ) [($_a)2p+1+(b_x)2p+1}p
p+1)

) [ £ (a)|" + If”(b)lqr
2

which is proved by Sarikaya and Yaldiz in [16].

Corollary 2.7. Under the same assumptions of Theorem 2.3 with w(s) = 1, then the
following inequality holds:

(b—a)s
20 (2ap 4 1)
. [If”(a)l"+

a)2ap+1 + (b . x)QO{p%»l} ?

1S(e; 1, f)] <

(z —

3 =

(2.11)

f”<b>qr
2 |



28 M. Z. SARIKAYA AND S. ERDEN

Remark 2.10. If we take o = 1 in (2.11), we get
b

(a—Qi-b_x) f'(x)+f(x)—bia/f(t)dt

a

f%@q+UYW1;_

1

1

2(b—a)» 2p+1)*

Corollary 2.8. Under the same assumptions of Theorem 2.3 with w(s) = 1 and
T = aTJ“b, then we have

1 a—1 h— 200—1 +b
() ()

(2.12) 4 o) (_1) h {J(zfgbl)_ fla) + T, f(b)]

B (G ) [
- 2

2 2

(b—a)*" [ @]+
" (20p + 1)r230 2
Remark 2.11. If we take o = 1 in (2.12), we obtain

(55 -k from| et

a

F®)

U%@V+U%w13
! ,

which is proved by Sarikaya and Yildirim in [17].

@ =1 of

Corollary 2.9. Under the same assumptions of Theorem 2.3 with
in (2.10), then the following inequality holds:
b—a)t|f (a 1
stos i < O DO [y oot gty (0 a2
20 (2ap + 1)

1"

1(@)] [ = @)™+ (o — )]

1
w|? b—a)s
< H ||[a,b],oo( 1)
20 (2ap + 1)
Theorem 2.4. Let f : I C R — R be twice differentiable function on I°, a,b € I°
with a < b, " is absolutely continuous on [a,b] and let w : [a,b] — R be nonnegative

and continuous on [a,b]. If | f"|* is convezr on [a,b], ¢ > 1, then for all x € [a,b], the
following inequalities hold:

St f)] < NMspoo (2 =0
-~ 22 (2a + 1)7 (b—a)e

(b—a)+ (2a+1)(b—2x)
(2a+1) (2a+2)

2a+1

"

f(a)

"

f(b)

¢ (r—a)
200 + 2

1
q}q
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« 2a+1
”wH[:c,b],oo (b - ) *
220 (20 + 1)7 (b— a)s
(b—a)+ (2a+1)(z—a)
(2a+1) (2a+2)
(2.13) < ||wH[a,b],oo
. — 1 1
220 2o+ 1)7 (b—a)

i [(b— )+ Qat 1) (b—2) |
X{(x_a) ' { 2a+ 1) (2a + 2) )f (a)

+<22—_+“2) f”(b)H L (b— )™
et b0 rof 2l o)

where « > 1, 2 +1 =1 and ||w||_ = sup |w(t)|.
L t€la,b]

Proof. We take absolute value of (2.1). Because of % + % =1 «a <§ + é) can be

written instead of a. Using Holder’s inequality and the convexity of ! f”q, we find

that
[S(a;w, f] < (/ (/ (t —u) w (u) du) dt)

a a

Q=

From (2.7), it follows that

|S(aw f)‘ < ||w‘|[o;7x]7oo ((x_a)Qa-‘rl)p

22 200+1
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Q=

X
9 t—a

"

2a b— " a
| fumom [t @]+ =t rof |
lol e (b — 2+ ?
+ 22a ( 20+ 1
b t :
X /Yb—t { )f b:zyf@)}dt

xT

Ml (2 —a)* ! g
22a(b_a)§ 200+ 1
y (b B a) (I’ _ a)2a+1 B (Q? o CL 2a+2 )f
2041 20 4 2

(Z) 2a+2

(z —
200 + 2

1
lollzpoo ((0—2)* )"
+ I
220 (h — a)u 2a+1
2a0+1 2a+2

(b o x>2a+2

200+ 2
a 2a+1
_ ||wH[a,w],oo (I - (l) i

22020+ 1)7 (b—a)

Q=

(-5 ol + = lro]
il 00 (0 = 27

220 (20 + 1)7 (b — a)7 1
(3-S5 or -2

and because of [|w||, 1 o < [Wl4400 a0 [[0][[ 4 0 < [1Wl(44),00- therefore, the proof
is complete. O



NEW WEIGHTED INTEGRAL INEQUALITIES 31

Corollary 2.10. Under the same assumptions of Theorem 2.4 with o = 1, then the
following inequality holds:

) ||U)||[a7b]700 3(4b—a—3x | .
|S(L;w, f)] < m {(x—a) {T ‘f (a)

a (a:—a)‘ "

q}é}'

Corollary 2.11. Under the same assumptions of Theorem 2.4 with w(s) = 1, then
the following inequality holds:

Q=

3r —4a+b

e

q b— "
L w)‘

+o-a| ' (a)

1
220 (2 + 1)7 (b — a)

sat1 [ (b—a) + (2a+1) (b —x)
X{(x_a) { 2a + 1) (2a + 2)
(2.14) L Ema)) e

200 + 2 7 0) }

2041 | (b—a)+ (2a+1)(x—a) |~
+(b-2) { (20 + 1) (2a +2) ‘f ()

1
(b — .[L') ” q|a
Tag2lf @ ‘
Corollary 2.12. If we take o =1 in (2.14), we get
b

(“gb—x)f@»+fu0—bia/fuwﬁ

1S(a; 1, f)| <

f(a)

q

! z—a) b-a—3z "(a ¢ (v—a)| q]a
§4.3é(b—a)é+1{( ) { TR | © ]
b (b—a) [i’w%éwb fff(b)g(b;x) ) ]}

Corollary 2.13. Under the same assumptions of Theorem 2.4 with w(s) = 1 and

“T“’, we obtain

1 a—1 h— 200—1 +b
() ()

. ar(22a) (_%)H { Tt o)+ J(Zi};,}ﬁf(b)}

r =
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1

(b—a)QO‘Jrl (2a0+ 3) ‘f q]a
T (2a+1)r polatity (2a+1) (2a +2) 2a+2
(2a0 + 3) . jd]s
{(204—1—1 200+ 2) ’f ’ 2a+2‘f()

Corollary 2.14. Under the same assumptions of Corollary 2.13 with o = 1, then we

have
b
a+b 1
H(450) - 52 [ rwa

(b —a)’ 5U%@V+3U%@VE+,3U%@V+5U%@W
= ob+s g2 12 12
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