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ON PARALLEL RULED SURFACES IN GALILEAN SPACE

M. DEDE1 AND C. EKICI2

Abstract. In this paper, we investigate the parallel surfaces of the ruled surfaces
in Galilean space. There are three types of ruled surfaces in Galilean space. We
derive the necessary conditions for each type of the ruled surfaces of the parallel
surfaces to be ruled. Consequently, we construct some examples.

1. Introduction

A surface formed by a one-parameter family of straight lines is a ruled surface. The
geometry of ruled surfaces is essential for many different areas of computer aided design
(CAD). Hence, geometers have investigated many properties of the ruled surfaces in
both Euclidean and Minkowski spaces [1,5,6, 10,14]. In Euclidean case, the parallel
surfaces of a ruled surface are in general not ruled surface, but the parallel surface
of cylindrical ruled surface are ruled [16]. Recently, Ünlütürk [11] studied parallel
ruled surfaces in Minkowski space. In [3], the authors discussed the parallel surfaces
in Galilean space.

What is the necessary condition for parallel surface of a ruled surface to be ruled
in Galilean space? The purpose of this paper is to give answers to the question
mentioned above. The paper is organized as follows: In Section 2 we present the
mathematical background on the differential geometry of surfaces in Galilean space.
In Sections 3–5 we introduce parallel surfaces to given ruled surfaces of type A, B
and C. We conclude our paper with two examples.

The Galilean space G3 is a Cayley–Klein space equipped with the projective metric
of signature (0, 0,+,+). The absolute figure of the Galilean geometry consists of
an ordered triple {ω, f, I}, where ω is the real (absolute) plane, f is the real line
(absolute line) in ω and I is the fixed elliptic involution of points of f . We introduce
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homogeneous coordinates in G3 in such a way that the absolute plane ω is given by
x0 = 0, the absolute line f by x0 = x1 = 0 and the elliptic involution by

(1.1) (0 : 0 : x2 : x3)→ (0 : 0 : x3 : −x2).
More details about the Galilean and pseudo-Galilean spaces can be found in [2,4,

12,13,17,18].
Let a = (x, y, z) and b = (x1, y1, z1) be vectors in Galilean space. The scalar

product a and b is defined by

(1.2) < a,b >= x1x.

The scalar product of two isotropic vectors, p = (0, y, z) and q = (0, y1, z1), is given
by

< p,q >1= yy1 + zz1.

The cross product of the vectors u = (u1, u2, u3) and v = (v1, v2, v3) is defined as
follows:

u ∧ v =

∣∣∣∣∣∣
0 e2 e3
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ = (0, u3v1 − u1v3, u1v2 − u2v1),

where e2 and e3 are Euclidean standard basis.

2. Surface Theory in Galilean Space

Let M be a surface given by the parametrization

(2.1) ϕ(v1, v2) = (x(v1, v2), y(v1, v2), z(v1, v2)), v1, v2 ∈ R,
where x(v1, v2), y(v1, v2), z(v1, v2) ∈ C3 [15]. We denote the partial derivatives of
ϕ(v1, v2) with respect to v1 and v2 by ϕ,1(v1, v2) and ϕ,2(v1, v2).

The isotropic unit normal vector field N is given by

(2.2) N =
ϕ,1 ∧ ϕ,2

w
,

where w = ‖ϕ,1 ∧ ϕ,2‖1.
The first fundamental form I of the surface is given by

(2.3) I = (gij + εhij)dv
idvj,

where hij and gij (i, j = 1, 2) are called the induced metric on the surface given by

(2.4) hij = 〈ϕ,i, ϕ,j〉1 , gij = 〈ϕ,i, ϕ,j〉
and

ε =

 0, dv1 : dv2 non-isotropic,

1, dv1 : dv2 isotropic.
The coefficients Lij of the second fundamental form are given by

(2.5) Lij =

〈
ϕ,ijx,1 − x,ijϕ,1

x,1
,N

〉
1

.
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The Gaussian curvature K and the mean curvature H of the surface are given by

(2.6) K =
detLij
w2

, 2H = gijLij,

where

(2.7) g1 =
x,2
w
, g2 = −x,1

w
, gij = gigj.

Note that x,1 and x,2 are the partial derivatives of the first component of the surface
given in (2.1).

Definition 2.1. Let M be a surface in Galilean space. We define the parallel surface
Mλ to base surface M at constant distance scalar λ as

(2.8) ϕλ(x, u) = ϕ(x, u) + λN(x, u),

where N is the normal vector of the base surface.

Theorem 2.1. Let M and Mλ be two parallel surfaces in G3. The relations between
the Gaussian curvatures and the mean curvatures of two parallel surfaces are

(2.9) Kλ =
K

1− 2λH

and

(2.10) Hλ =
H

1− 2λH

respectively.

Definition 2.2. A ruled surface is called developable if and only if the parameter of
distribution vanishes.

3. Parallel Surface of Ruled Surface of Type A

There are three types of ruled surfaces in G3. Here we may distinguish the parallel
surfaces of each types of the ruled surfaces. We recall the following definitions, given
in [7–9]. A ruled surface of type A in G3 can be parametrized by

(3.1) ΦA(x, u) = m(x) + ua(x),

where the curve m(x) = (x, y(x), z(x)) is called a directrix does not lie in a Euclidean
plane and the generators a(x) = (1, a2(x), a3(x)) are non-isotropic.

The associated orthonormal trihedron is defined by

t(x) = (1, a2(x), a3(x)),

n(x) =
1

κ
(0, a′2(x), a′3(x)),

b(x) =
1

κ
(0,−a′3(x), a′2(x)),
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where κ =
√

(a′2)
2 + (a′3)

2. Frenet formulas are given as follows

(3.2)
d

dx

 t
n
b

 =

 0 κ 0
0 0 τ
0 −τ 0

 t
n
b

 ,
where τ =

det(a, a′, a′′)

κ2
is called the torsion.

The parameter of distribution d is given by

d = −det(m′, a, a′)

κ
.

A simple calculation implies that

(3.3) m′(x) = t− κdb.

The unit normal vector is

(3.4) N(x, u) =
dn+ub√
d2 + u2

.

The Gaussian curvature K and the mean curvature H are given by

(3.5) K = − d2

(d2 + u2)2

and

(3.6) 2H = −d
′κu− τκ′d2 + κd− κτu2

κ2 (d2 + u2)
3
2

,

respectively.
We consider now the parallel surface of the ruled surface of type A. Substituting

(3.1) and (3.4) into (2.8), we obtain the parallel surface Φλ
A to given ruled surface ΦA

in the following form

Φλ
A(x, u) = m+ λ

dn√
d2 + u2

+ u

(
a+ λ

b√
d2 + u2

)
.

This means that Φλ
A is not generally a ruled surface. Thus, we give the following

corollary.

Corollary 3.1. If the ruled surface of type A is developable (d = 0), then the parallel
surface of the ruled surface is ruled.

It follows that, the parallel ruled surface is parametrized by

Φλ
A(x, u) = mλ(x) + ua(x),

where mλ(x) the directrix of the parallel surface is given by

mλ(x) = m(x) + λb.
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We also want to point out that since mλ(x) the directrix of parallel ruled surface
does not lie in a Euclidean plane and the generator of both ruled surfaces is also
identical, the parallel ruled surface is also ruled surface of type A.

From (3.2) and (3.3), the derivative mλ′ may be calculated as

mλ′ = t− λτn.
It is easy to see that the parameter of distribution of the parallel ruled surface is

dλ = 0.

Hence, we state the following corollary.

Corollary 3.2. If the ruled surface of type A is developable, then the parallel ruled
surface is also developable.

On the other hand, the partial derivatives of the curvatures of Φλ
A with respect to

x and u are obtained in the following form

(3.7)
∂Φλ

A(x, u)

∂x
= t + (uκ− λτ)n,

∂Φλ
A(x, u)

∂u
= t.

By using (2.2) and (3.7), we have

(3.8) wλ = uκ− λτ.
Hence, the unit normal vector is obtained as follows

(3.9) Nλ = b.

Now we turn our attention to the coefficients of the first fundamental form of
parallel ruled surface. First of all, it is easy to see that the first component of the
parallel ruled surface of type A is

(3.10) Φλ
A(x, u) = (x+ u, . . . , . . . ).

Then, from (1.2), (2.4) and (3.10), we get

(3.11) (g11)
λ = (g12)

λ = (g22)
λ = 1.

Using the projection of
∂Φλ

A(x, u)

∂x
and

∂Φλ
A(x, u)

∂x
vectors onto the Euclidean yz-plane

and (2.4), we have

(3.12) h11 = 1 + (uκ− λτ)2, h12 = h22 = 1.

Then, substituting (3.11) and (3.12) into (2.3), we obtain the first fundamental form
of the parallel ruled surface of type A as

Iλ = (dx+ du)2 + ε(uκ− λτ)2du2,

where

ε =

 0, dx 6= −du non-isotropic,

1, dx = −du isotropic.
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By using (3.9) and the partial derivatives of (3.7), we obtain the coefficients of the
second fundamental form as follows

(3.13) Lλ11 = uκτ − λτ 2, Lλ12 = Lλ22 = 0.

Hence we state the following theorem.

Theorem 3.1. Let ΦA and Φλ
A be two parallel ruled surfaces of type A in G3. The

Gaussian and the mean curvatures of Φλ
A can be obtained in terms of the curvature

and torsion of ΦA as follows

(3.14) Kλ = 0

and

(3.15) Hλ =
τ

2(κu− λτ)
.

Proof. Using (2.6), (3.8) and (3.13) gives

(3.16) Kλ = 0.

Substituting (3.10) and (3.8) into (2.7) implies that

(3.17) (g11)λ = (g22)λ =
1

(uκ− λτ)2

and

(3.18) (g12)λ = − 1

(uκ− λτ)2
.

Combining (2.6), (3.13), (3.17) and (3.18) yields

�(3.19) Hλ =
τ

2(κu− λτ)
.

Finally, we remark that the formulas given in (3.14) and (3.15) can be obtained in
a different way. Using d = 0, (2.9), (2.10), (3.5) and (3.6) gives the same results.

4. Parallel Surface of Ruled Surface of Type B

A ruled surface of type B can be parametrized by

(4.1) ΦB(x, u) = r(x) + ua(x),

where its striction curve r(x) = (0, y(x), z(x)) lies in a Euclidean plane and a(x) =
(1, a2(x), a3(x)) is the generator.

The associated trihedron of the ruled surfaces of type B is defined by

t(x) = (1, a2(x), a3(x)),

n(x) = (0,−z′(x), y′(x)),(4.2)
b(x) = (0, y′(x), z′(x)).



ON PARALLEL RULED SURFACES IN GALILEAN SPACE 53

Then the Frenet formulas are

(4.3)
d

dx

 t
n
b

 =

 0 κ 0
0 0 τ
0 −τ 0

 t
n
b

 ,
where κ is the curvature and τ is the torsion.

It is easy to see that the parameter of distribution is d =
1

κ
. The unit normal vector

N is obtained by

(4.4) N =
−n + uκb√

1 + κ2u2
.

The Gaussian and mean curvatures are given by

(4.5) K = − κ2

(1 + κ2u2)2

and

H =
τ−uκ′+u2κ2τ
2 (1 + κ2u2)

3
2

,

respectively.
Substituting (4.1) and (4.4) into (2.8) implies that

Φλ
B(x, u) = r(x)− λ n√

1 + κ2u2
+ u

(
a(x) + λ

κb√
1 + κ2u2

)
.

Observe that Φλ
B is not a ruled surface. Hence we have the following corollary.

Corollary 4.1. If the curvature κ of the ruled surface of type B is zero, then the
parallel surface of ruled surface is also ruled. Moreover κ = 0 means that the generator
a(x) of parallel ruled surface of type B is a constant unit vector.

On the other hand, the parallel ruled surface of type B can be parametrized by

(4.6) Φλ
B(x, u) = rλ(x) + ua(x),

where a(x) is the generator and directrix is

(4.7) rλ(x) = r(x)− λn.

From (4.2), (4.3) and (4.7), we have the derivative of directrix in the following form

(4.8) rλ′ = (1− λτ)b.

The partial derivatives of Φλ
B with respect to x and u are

(4.9)
∂Φλ

B(x, u)

∂x
= (1− λτ)b,

∂Φλ
B(x, u)

∂u
= t.

By using (2.2), we have

(4.10) wλ = 1− λτ.
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Thus, the unit normal vector is

(4.11) Nλ = n.

The first component of the parallel ruled surface of type B is

(4.12) Φλ
A(x, u) = (u, . . . , . . . ).

Then, by using (2.4), (2.7), (4.9) and (4.12) we get

(4.13) (g11)
λ = (g12)

λ = 0, (g22)
λ = 1

and

(4.14) hλ11 = (1− λτ)2.

Substituting (4.13) and (4.14) into (2.3) gives

Iλ = du2 + ε(1− λτ)2dx2,

where

ε =

 0, du 6= 0 non-isotropic,

1, du = 0 isotropic.
By using the derivatives of (4.9), (4.11) and (2.5), the coefficients of the second

fundamental form are obtained as

(4.15) Lλ11 = (1− λτ)τ, Lλ12 = Lλ22 = 0.

Theorem 4.1. Let ΦB and Φλ
B be two parallel ruled surfaces in G3. The Gaussian

and the mean curvatures of Φλ
B may be calculated in terms of the curvature and torsion

of ΦB as
Kλ = 0

and
2Hλ =

τ

1− λτ
.

Proof. Using (2.6), (4.10) and (4.15) gives

Kλ = 0.

Substituting (4.10) and (4.12) into (2.7) implies that

(4.16) (g11)λ =
1

(1− λτ)2

and

(4.17) (g12)λ = (g22)λ = 0.

From (2.6), (4.15), (4.17) and (4.16) we have

2Hλ =
τ

1− λτ
.

On the other hand, using κ = 0, (2.9) and (4.5) gives the same results. �
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5. Parallel Surface of Ruled Surface of Type C

A ruled surface of type C can be parametrized by

(5.1) ΦC(x, u) = r(x) + ua(x),

where r(x) = (x, y(x), 0) is called the directrix and a(x) = (0, a2(x), a3(x)) is the
generator.

The associated orthonormal trihedron is given by

t = (1, y′(x), 0),

n = (0, a2(x), a3(x)),

b = (0,−a3(x), a2(x)).

Let θ be the Euclidean angle between z = 0 plane and n. Then, Frenet formulas
are

(5.2)
d

dx


t

n

b

 =


0 κ cos θ −κ sin θ

0 0
1

δ

0 −1

δ
0




t

n

b

 ,
where κ = y′′ is the curvature and δ = −a3

a′2
is the parameter of distribution.

A simple calculation implies that

(5.3) r′(x) = t, N = b.

The Gaussian and mean curvatures are given by

(5.4) K = − 1

δ2
, 2H = 0.

Substituting (5.1) and (5.3) into (2.8), we get the parallel surface of the ruled surface
of type C in the following form

Φλ
C(x, u) = r(x) + λb + ua(x).

Observe that the generator a(x) is identical and the directrix is given by

(5.5) rλ(x) = r(x) + λb.

Hence, the following corollary can be given.

Corollary 5.1. The parallel surface of a ruled surface of type C is also a ruled surface.

On the other hand, from (5.2) and (5.5) we have the derivative of the directrix in
the following form

rλ′ = t− λ1

δ
n.
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The parameter of distribution of the parallel ruled surface is dλ = d = δ. The partial
derivatives of Φλ

C with respect to x and u are obtained by

(5.6)
∂Φλ

C(x, u)

∂x
= t− λ1

δ
n+u

1

δ
b,

∂Φλ
C(x, u)

∂u
= n.

Thus,

(5.7) wλ = 1.

The unit normal vector Nλ is

(5.8) Nλ = b.

By using (2.4), (2.7) and (5.6) we have

(5.9) (g11)
λ = 1, (g12)

λ = (g22)
λ = 0

and

(5.10) hλ22 = 1.

Substituting (5.9) and (5.10) into (2.3) gives

(5.11) Iλ = dx2 + εdu2,

where

ε =

 0, dx 6= 0 non-isotropic,

1, dx = 0 isotropic.
Using (5.8), the derivatives of (5.6) and (2.5), the coefficients of the second funda-

mental form of the parallel ruled surface of type C are obtained by

(5.12) Lλ11 = κ sin θ−λ 1

δ2
+ u

1

δ′
, Lλ12 =

1

δ
, Lλ22 = 0.

Theorem 5.1. Let ΦC and Φλ
C be two parallel ruled surfaces in G3. The Gaussian

and the mean curvatures of Φλ
C are calculated as

(5.13) Kλ = − 1

δ2
, 2Hλ = 0.

Proof. Substituting (5.7) and (5.12) into (2.6) gives

(5.14) Kλ = − 1

δ2
.

By using (5.7) and (2.7) implies that

(5.15) (g11)λ = (g12)λ = 0, (g22)λ = 1.

From (2.6), (5.15) and (5.12) we have

(5.16) 2Hλ = 0.

Note that substituting (5.4) into (2.9) and (2.10), gives the same results. �

Finally, we can give the following corollary.
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Figure 1.

Corollary 5.2. The parallel ruled surface of each type is a Weingarten surface in
Galilean space.

6. Examples

Example 6.1. Consider the developable ruled surface of type A parametrized by

ΦA(x, u) = (x+ u, cosx− u sinx, sinx+ u cosx).

The associated trihedron is obtained by

t = (1,− sinx, cosx),

n = (0,− cosx,− sinx),

b = (0, sinx,− cosx),

where κ = τ = 1. The unit normal is

N = (0,− sinx, cosx).

For λ = 1, the parallel ruled surface is parametrized by

Φλ
A(x, u) = (x+ u,− sinx+ cosx− u sinx, cosx+ sinx+ u cosx),

where the directrix and the generator are given by

mλ(x) = (x,− sinx+ cosx, cosx+ sinx)

and
aλ(x) = (1,− sinx, cosx).

The Gaussian and mean curvatures of the parallel ruled surface are obtained as

Kλ = 0, Hλ = − 1

1 + v
.

The ruled surface (red) and the parallel ruled surface (blue) are illustrated in
Figure 1.
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Figure 2.

Figure 3.

Example 6.2. Assume that the ruled surface of type B is parametrized by

ΦB(x, u) = (u, cosx, sinx),

where r(x) = (0, cosx, sinx) is the directrix and a(x) = (1, 0, 0) is the generator.
It is easy to see that κ = 0, τ = 1. Thus, the parallel ruled surface is obtained by

Φλ
B(x, u) = (u, 2 cosx, 2 sinx).

Figure 2 shows the ruled surface (red) and the parallel ruled surface (blue) in
Galilean space.

Example 6.3. Assume that the ruled surface of type C is parametrized by

ΦC(x, u) = (x, x2 + u cosx, u sinx),

where r(x) = (x, x2, 0) is the directrix and a(x) = (0, cosx, sinx) is the generator. For
λ = 1, the parallel ruled surface is parametrized by

Φλ
C(x, u) = (x,− sinx+ x2 + u cosx, cosx+ u sinx).

The ruled surface (red) and the parallel ruled surface (blue) are illustrated in Figure 3.
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