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ON β-ABSOLUTE CONVERGENCE OF VILENKIN-FOURIER
SERIES WITH SMALL GAPS

BHIKHA LILA GHODADRA1

Abstract. The study of absolute convergence of Fourier series is one of the most
important problems of Fourier Analysis and the problem has been studied intensively
by many researchers in the setting of circle group in particular and classical groups
in general. Recently, in [Math. Inequal. Appl. 17 (2) (2014), 749–760], we have
studied the β-absolute convergence (0 < β ≤ 2) of Vilenkin-Fourier series for the
functions of various classes of functions of generalized bounded fluctuation and given
sufficient conditions in terms of modulus of continuity. In this paper, we prove that
this is a matter only of local fluctuation for functions with the Vilenkin-Fourier
series lacunary with small gaps. Our results, as in the case of trigonometric Fourier
series, illustrate the interconnection between ‘localness’ of the hypothesis and type
of lacunarity and allow us to interpolate the results.

1. Introduction

Let G be a Vilenkin group, that is, a compact metrizable zero-dimensional (infinite)
abelian group. Then the dual group X of G is a discrete, countable, torsion, abelian
group (see [7, Theorems 24.15 and 24.26]). In 1947, N. J. Vilenkin [21] developed part
of the Fourier theory on G and proved an analogue of Bernstein’s theorem [1, Vol. II,
p. 154] concerning the absolute convergence of Vilenkin-Fourier series for a primary
group G [21, Theorem 5]. Later Onneweer and Waterman [8–11] introduced various
classes of functions of bounded fluctuations and studied the convergence problems
for functions of these classes. Interestingly, Onneweer [8, Corollary 2] proved an
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analogue of Bernstein’s theorem for any bounded Vilenkin group and an analogue
of Zygmund’s theorem [1, Vol. II, p. 161] for functions of p-generalized bounded
fluctuation (1 ≤ p < 2) defined on any bounded Vilenkin group [8, Corollary 3].
Onneweer continued study further and in his second paper he obtained a sufficiency
condition in terms of n-th integral modulus of continuity of order p of a function
f ∈ Lp(G) to be in A(β) [9, Theorem 1] and derived an analogue of Szász’s theorem
[19] from it. Vilenkin and Rubinstěin [22] proved an analogue of a well-known theorem
Stečhkin [18]. Quek and Yap [14] then extended above results of Onneweer to arbitrary
Vilenkin groups and Uno [20] proved an analogue of a circle group result of Schramm
and Waterman [16, Theorem 1] for any Vilenkin group. In [4], for any bounded
Vilenkin group, we have generalized the result of Uno [4, Theorem 1] and also proved
a similar result for functions in the class of φ-Λ-generalized bounded fluctuation [4,
Theorem 2]. Further, in [6], we have proved an analogue of the Wiener-Ingham
inequality (see [6, Theorem 2]) and as its applications, extended the analogues on
a Vilenkin group G of the well-known results of Bernstěin, Zygmund, Szász, and
Stečhkin concerning the absolute convergence of Fourier series on G obtained by
Vilenkin and Rubinstěin [22], Onneweer [9], and Quek and Yap ([14, 15]) for the
lacunary Fourier series on G. In this paper, we prove that this is a matter only of
local fluctuation for functions with the Vilenkin-Fourier series lacunary with small
gaps. As in the case of trigonometric Fourier series (see [12]) and of our earlier results
for Vilenkin-Fourier series (see [5,6]), here also we give an interconnection between the
‘type of lacunarity’ in Vilenkin-Fourier series and the localness of the hypothesis to
be satisfied by the generic functions, which allow us to interpolate results concerning
β-absolute convergence of lacunary and non-lacunary Vilenkin-Fourier series.

2. Notation and Definitions

For G and X as above, Vilenkin [21, Sections 1.1, 1.2] proved the existence of a
sequence {Xn} of finite subgroups of X and of a sequence {ϕn} in X such that the
following hold:

(i) X0 = {χ0}, where χ0 is the identity character on G;
(ii) X0 ⊂ X1 ⊂ X2 ⊂ · · · ;
(iii) for each n ≥ 1, the quotient group Xn/Xn−1 is of prime order pn;
(iv) X =

⋃∞
n=0 Xn;

(v) ϕn ∈ Xn+1 \Xn for all n ≥ 0;
(vi) ϕpn+1

n ∈ Xn for all n ≥ 0.
The group G is bounded if

p0 = sup
i=1,2,...

pi <∞;

otherwise, G is said to be unbounded. Using the ϕn’s, we can enumerate X as follows.
Let m0 = 1, and let mn =

∏n
i=1 pi for n ∈ N. Then each k ∈ N can be uniquely
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represented as k =
∑s

i=0 aimi with 0 ≤ ai < pi+1 for 0 ≤ i ≤ s; we define χk by the
formula χk = ϕa00 · · · · · ϕass .
G =

∏∞
n=1 Zpn , {pn} being a sequence of prime numbers, is a standard example.

If pn = 2 for all n, X is the group of Walsh functions ψn, n = 0, 1, 2, . . ., and
Xn = {ψ0, ψ1, . . . , ψ2n−1} (using Payley enumeration; see [13]) described by N. J. Fine
[3]. If pn = p for all n, X is the group of generalized Walsh functions [2].

Let dx or m denote the normalized Haar measure on G. For f ∈ L1(G), the
Vilenkin-Fourier series of f is given by

(2.1) S[f ](x) =
∞∑
n=0

f̂(n)χn(x), f̂(n) =

∫
G

f(x)χ̄n(x)dx,

where f̂(n) (n = 0, 1, 2, . . .) is the nth Vilenkin-Fourier coefficient of f . It is said to
be β-absolutely convergent, where β is a positive real number, if

∑∞
n=0 |f̂(n)|β < ∞.

In this case we write f ∈ A(β) and we shall denote A(1) by A. Further, the Vilenkin-
Fourier series (2.1) is said to be lacunary with small gaps if f̂(n) = 0 for n 6= nk,
where {nk}∞k=1 is an increasing sequence of positive integers satisfying the small gap
condition

(2.2) (nk+1 − nk) ≥ q ≥ 1, k = 1, 2, . . . ,

or, in particular, a more stringent small gap condition

(2.3) (nk+1 − nk)→∞ as k →∞.

Observe that for each n, Xn = {χk : 0 ≤ k < mn}. Let Gn be the annihilator of
Xn, that is,

Gn = {x ∈ G : χ(x) = 1, χ ∈ Xn} = {x ∈ G : χk(x) = 1, 0 ≤ k < mn}.

Then obviously, G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ,
⋂∞
n=0Gn = {0}, and the Gn’s form

a fundamental system of neighborhoods of zero in G which are compact, open and
closed subgroups of G. Further, the index of Gn in G is mn and since the Haar
measure is translation invariant with m(G) = 1, one has m(Gn) = 1/mn. In [21,
Section 3.2] Vilenkin proved that for each n ≥ 0 there exists xn ∈ Gn \Gn+1 such that
χmn(xn) = exp(2πi/pn+1) and observed that each x ∈ G has a unique representation
x =

∑∞
i=0 bixi, with 0 ≤ bi < pi+1 for all i ≥ 0. This representation of the elements ofG

enables one to order them by means of the lexicographic ordering of the corresponding
sequence {bn} and one observes that for each n = 1, 2, . . . ,

Gn =

{
x ∈ G : x =

∞∑
i=0

bixi, b0 = · · · = bn−1 = 0

}
.

Consequently, each coset of Gn in G has a representation of the form z +Gn, where
z =

∑n−1
i=0 bixi for some choice of the bi with 0 ≤ bi < pi+1. These z, ordered

lexicographically, are denoted by
{
z

(n)
α

}
(0 ≤ α < mn).
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Observe also that for l, N0 ∈ N if l > N0 then Gl ⊂ GN0 and therefore

Gl =

{
x ∈ G : x =

∞∑
i=l

bixi

}

=

{
x ∈ GN0 : x =

∞∑
i=N0

bixi, bN0 = · · · = bl−1 = 0

}
.

Thus each coset of Gl in GN0 has a representation of the form z + Gl, where z =∑l−1
i=N bixi for some choice of the bi with 0 ≤ bi < pi+1. These

(ml/mN0) = pN0+1pN0+2 · · · pl = L (say) cosets of Gl in GN0 are precisely the cosets
z

(l)
α +Gl, α = 0, 1, . . . , L− 1, of Gl in G in that order.
Finally, we observe that for a given y0 =

∑∞
i=0 cixi in G and N0 ∈ N, the coset

y0 +GN0 given by

y0 +GN0 =

{
x =

∞∑
i=0

bixi ∈ G : bi = ci, i = 0, 1, . . . , N0 − 1

}
contains y0 and is of Haar measure 1/mN0 . Further, as GN0 is the disjoint union of
the cosets z(l)

α +Gl, α = 0, 1, . . . , L− 1, for l > N0, the coset y0 +GN0 is the disjoint
union of the cosets y0 + z

(l)
α +Gl, α = 0, 1, . . . , L− 1.

It may be noted that the choice of ϕn ∈ Xn+1 \Xn and of the xn ∈ Gn \ Gn+1 is
not uniquely determined by the groups X and G. In the following, it is assumed that
a particular choice has been made.

Let f be a complex-valued function defined on G, let p ≥ 1 be a real number, let
Λ = {λn} be a non-decreasing sequence of positive real numbers such that

∑∞
n=1(1/λn)

diverges, and let φ : [0,∞)→ [0,∞) be a strictly increasing function. Customarily φ
is considered to be a convex function such that

φ(0) = 0,
φ(x)

x
→ 0 (x→ 0+),

φ(x)

x
→∞ (x→∞).

Such a function is called an N -function. It is necessarily continuous and strictly
increasing on [0,∞). For H ⊂ G, the oscillation of f on H is defined as

osc(f ;H) = sup{|f(x1)− f(x2)| : x1, x2 ∈ H}.
We need the following definitions.

Definition 2.1. For a function f : G → C and n ∈ N ∪ {0}, we define the n-th
modulus of continuity of f over the coset I = y0 +GN0 by

ωn(f, I) = sup{|(Thf − f)(x)| : x ∈ I, h ∈ Gn},
where (Thf)(x) = f(x+ h), for all x ∈ G.

Definition 2.2. For a function f : G→ C, n ∈ N ∪ {0}, and 1 ≤ p <∞, we define
the n-th integral modulus of continuity of order p of f over the coset I = y0 +GN0 by

ω(p)(f, n, I) = sup{||Thf − f ||p,I : h ∈ Gn},
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where ||(·)||p,I = ||(·)χI ||p in which χI is the characteristic function of I and ||(·)||p
denotes the Lp norm on G.

When p = ∞ we put, ω(∞)(f, n, I) = ωn(f, I), where ωn(f, I) is as in Definition
2.1. Also, when I = G, we omit writing I and in that case ωn(f) is the n-th
modulus of continuity on G as in [8, Definition 2]. Furthermore, when I = G,
ω(p)(f, n, I) = ω(p)(f, n) as in [9, Definition 1].

Definition 2.3. We say a measurable function f is of:
(a) p-Λ-bounded fluctuation over y0 + GN0 (f ∈ ΛBF(p)(y0 + GN0)) if the total

p-Λ-fluctuation of f on y0 +GN0 , given by

FpΛ(f ; y0 +GN0) = sup


(∑

n

(osc(f ; In))p

λn

)1/p


is finite, where the supremum is taken over all finite disjoint collections
{I1, I2, . . . , IT} in which each It is a coset of some Gm(t) and ∪Tt=1It = y0 +GN0 ;

(b) φ-Λ-bounded fluctuation over y0 + GN0 (f ∈ φΛBF(y0 + GN0)) if the total
φ-Λ-fluctuation of f on y0 +GN0 , given by

FφΛ(f ; y0 +GN0) = sup

{∑
n

φ(osc(f ; In))

λn

}
is finite, where the supremum is taken over all finite disjoint collections
{I1, I2, . . . , IT} in which each It is a coset of some Gm(t) and ∪Tt=1It = y0 +GN0 .

Definition 2.4. We say a measurable function f is of:
(a) p-Λ-generalized bounded fluctuation over y0 +GN0 (f ∈ ΛGBF(p)(y0 +GN0)) if

the total generalized p-Λ-fluctuation of f on y0 +GN0 , given by

ΛGFp(f ; y0 +GN0) = sup
l≥N0

sup
α

ml/mN0
−1∑

j=0

(
osc(f ; y0 + z

(l)
α +Gl)

)p
λj+1

1/p

is finite, where supα denotes the supremum over all permutations of
{0, 1, . . . ,ml/mN0 − 1};

(b) φ-Λ-generalized bounded fluctuation over y0 +GN0 (f ∈ φΛGBF(y0 +GN0)) if
the total generalized φ-Λ-fluctuation of f on y0 +GN0 , given by

ΛGFφ(f ; y0 +GN0) = sup
l≥N0

sup
α

ml/mN0
−1∑

j=0

φ
(

osc(f ; y0 + z
(l)
α +GN)

)
λj+1

is finite, where supα is as in (a) above.

We observe that when p = 1 and y0+GN0 = G, the class ΛBF(p)(y0+GN0) is same as
the class ΛBF of functions of Λ-bounded fluctuation on G (see
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[10, Definition 2]). Also, when y0 +GN0 = G, φΛBF(y0 +GN0)) is the class of functions
of φ-Λ-bounded fluctuation over G [10, Definition 3]. Further, if φ(x) = xp (p ≥ 1),
then φΛBF(y0+GN0) = ΛBF(p)(y0+GN0) and φΛGBF(y0+GN0) = ΛGBF(p)(y0+GN0);
we shall omit writing the superscript (p) when p = 1. Further, from Definition 2.3
and Definition 2.4, it is clear that ΛBF(p)(y0 + GN0) ⊂ ΛGBF(p)(y0 + GN0) and
φΛBF(y0 +GN0) ⊂ φΛGBF(y0 +GN0).

3. Statements of Results

We prove the following results.

Theorem 3.1. Let G be bounded, f ∈ L1(G) possess a lacunary Vilenkin-Fourier
series

(3.1)
∞∑
k=1

f̂(nk)χnk
(x)

with small gaps (2.2), and let I = y0 +GN0 be the coset with Haar measure 1/mN0 ≥
1/q. If f ∈ ΛGBF(p)(I), 1 ≤ p < 2r, 1 ≤ r <∞, 0 < β ≤ 2, and

∞∑
n=N0


(ω(p+(2−p)s)(f, n, I))2−p/r

(
∑mn/mN0

j=1
1
λj

)1/r

β/2 ∑
k

mn≤nk<mn+1

1

kβ/2

 <∞,

in which 1/r + 1/s = 1, then

(3.2)
∞∑
k=1

∣∣∣f̂(nk)
∣∣∣β <∞.

Remark 3.1. Since ΛBF(p)(I) ⊂ ΛGBF(p)(I), Theorem 3.1 obviously holds for func-
tions in ΛBF(p)(I) also.

When the Fourier series is non-lacunary, taking nk = k for all k and I = G in
Theorem 3.1 we obtain

Corollary 3.1. Let 1 ≤ r <∞ and 1 ≤ p < 2r. If f ∈ ΛGBF(p)(G) satisfies

∞∑
n=0

(mn)2/β−1
(
ω(p+(2−p)s)(f, n)

)2−p/r(∑mn

j=1
1
λj

)1/r


β/2

<∞,

in which 1/r + 1/s = 1, then f ∈ A(β) for 0 < β ≤ 2.



β-ABSOLUTE CONVERGENCE OF VILENKIN-FOURIER SERIES 97

Theorem 3.2. Let G, f , and I be as in Theorem 3.1. If f ∈ φΛGBF(I), 1 ≤ p < 2r,
1 ≤ r <∞, 1/r + 1/s = 1, and

∞∑
n=N0



φ−1

(ω(p+(2−p)s)(f, n, I)
)2r−p∑mn/mN0

j=1
1
λj


1/r

β/2 ∑

k
mn≤nk<mn+1

1

kβ/2

 <∞,

then (3.2) holds, in which φ is a ∆2-function (that is, there is a constant d ≥ 2 such
that φ(2x) ≤ dφ(x), for all x ≥ 0).

Remark 3.2. Since φΛBF(I) ⊂ φΛGBF(I), Theorem 3.2 obviously holds for functions
in φΛBF(I) also.

Corollary 3.2. If f ∈ φΛGBF(G), 1 ≤ p < 2r, 1 ≤ r <∞, 1/r + 1/s = 1, and

∞∑
n=0

(mn)2/β−1

{
φ−1

((
ω(p+(2−p)s)(f, n)

)2r−p∑mn

j=1
1
λj

)}1/r
β/2 <∞,

then f ∈ A(β) for 0 < β ≤ 2, in which φ is a ∆2-function.

Remark 3.3. Theorems 3.1 and 3.2 are Vilenkin group analogues of the corresponding
circle group results of Vyas [23, Theorem 1.1] and [24, Theorem 1.1] respectively.

Remark 3.4. Observe that nk = k for all k =⇒ q = 1 in (2.2) =⇒ I is of Haar measure
1 in above theorems =⇒ I = G; and one gets above Corollaries 3.1 and 3.2 which are
corresponding results for non-lacunary Vilenkin-Fourier series (see [4, Theorems 1 and
2]). On the other hand, if the Vilenkin-Fourier series (3.1) of f ∈ L1(G) has gaps (2.3)
then above results hold if the coset I is just of positive measure. Because if |I| > 0, by
the form of I, |I| = 1/mN0 where N0 ∈ N can be taken as large as required. In view of
(2.3), one gets (nk+1−nk) ≥ mN0 for all k ≥ k0 for a suitable k0 = k0(N0). Then adding
to f(x) the Vilenkin polynomial

∑k0
j=1(−f̂(nj))χnj

(x) one gets a function g whose
Vilenkin-Fourier series is lacunary of the form (3.1) having gaps (2.2) with q = mN0

and results are true for g. Since f and g differ by a polynomial, results are true for f
as well. Our results thus interpolates lacunary and non-lacunary results concerning β-
absolute convergence of Vilenkin-Fourier series—displaying beautiful interconnection
between types of lacunarity (as determined by q in (2.2)) and localness of hypothesis
to be satisfied by the generic function (as determined by the q-dependent length of I).

4. Proof of the Results

The following lemmas are needed.

Lemma 4.1 ([22, p. 5]). For each N = 0, 1, 2, . . . , and k ≥ mN we have
(a)

∫
GN

χk(h)dh = 0;
(b)

∫
GN
|χk(h)− 1|2dh = 2

∫
GN

[1−Reχk(h)]dh = 2|GN | = 2/mN .
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Lemma 4.2 ([17, Lemma 2]). If un ≥ 0, for n ∈ N, un 6≡ 0 and a function F (u) is
concave, increasing, and F (0) = 0, then

∞∑
n=1

F (un) ≤ 2
∞∑
n=1

F

(
1

n

∞∑
k=n

uk

)
.

The following lemma was proved in [6, Theorem 3.1] which gives an analogue of
the Wiener-Ingham inequality [25, Vol. I, p. 222] to Vilenkin groups.

Lemma 4.3. Let f and I be as in Theorem 3.1. If f ∈ Lr(I), 1 < r ≤ 2, and
1/s = 1− 1/r then |f̂(nk)| ≤ |I|−1||f ||1,I and

(4.1)

(
∞∑
k=1

∣∣∣f̂(nk)
∣∣∣s)1/s

≤ |I|−1||f ||r,I .

Proof of Main Theorem 3.1. We may assume without loss of generality that y0 = 0 so
that I = GN0 ; for, otherwise one works with g = Ty0f ∈ ΛGBF(p)(GN0) whose Fourier
series also has gaps (2.2).

Let M ∈ N be fixed such that nM ≥ mN0 and let N ∈ N be the integer such
that mN ≤ nM < mN+1. Then clearly N ≥ N0. Put tN = mN/mN0 and for each
α = 0, 1, . . . , tN − 1, h ∈ GN , define

fα(x) = f
(
x+ z(N)

α + h
)
− f

(
x+ z(N)

α

)
, x ∈ G.

Then for all n ≥ 0 we have

f̂α(n) = f̂(n)χn
(
z(N)
α + h

)
− f̂(n)χn

(
z(N)
α

)
= f̂(n)χn

(
z(N)
α

)
(χn(h)− 1).

Since f ∈ ΛGBF(p)(GN0) for any x ∈ GN0 we have

|f(x)|p = |f(0) + f(x)− f(0)|p

≤ 2p|f(0)|p + 2p|f(x)− f(0)|p

= 2p|f(0)|p + 2pλ1

(
|f(x)− f(0)|p

λ1

)

≤ 2p|f(0)|p + 2pλ1


(

osc
(
f ; z

(0)
0 +GN0

))p
λ1


≤ 2p|f(0)|p + 2pλ1(ΛGFp(f ;GN0))

p.

Thus f is bounded on GN0 = I and hence f ∈ L2(I). In view of (4.1) for r = s = 2,
f ∈ L2(G) and hence each fα ∈ L2(I). Since the Fourier series of fα also has gaps
(2.2), again using (4.1) for fα and for r = s = 2 (since |χn(z

(N)
α )| = 1) we get

(4.2) B(h) ≡
∞∑
k=1

∣∣∣f̂(nk)
∣∣∣2 |χnk

(h)− 1|2 ≤ |I|−2||fα||22,I , for all α.
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Now, suppose r > 1 and set 2 = p+(2−p)s
s

+ p
r
; then using the Hölder’s inequality we

get

||fα||22,I =

∫
I

|fα(x)|2dx

=

∫
I

|fα(x)|(
p+(2−p)s

s
+ p

r )dx

=

∫
I

(
|fα(x)|(p+(2−p)s))1/s

(|fα(x)|p)1/r dx

≤
{∫

I

|fα(x)|(p+(2−p)s)dx

}1/s{∫
I

|fα(x)|pdx
}1/r

≤ (ΩN)1/r

(∫
I

|fα(x)|pdx
)1/r

,

where ΩN =
(
ω(p+(2−p)s)(f,N, I)

)2r−p since h ∈ GN . This together with (4.2) implies

(4.3) (B(h))r ≤ |I|−2rΩN

∫
I

|fα(x)|pdx,

for all α = 0, 1, . . . , tN − 1. Since the left hand side of (4.3) is independent of α,
multiplying both sides of it by (1/λα+1) and taking summation over α, we get

(B(h))rθtN ≤ |I|−2rΩN

∫
I

(
tN−1∑
α=0

|fα(x)|p

λα+1

)
dx,

where θt =
∑t

j=1(1/λj) =
∑t−1

j=0(1/λj+1), for all t ∈ N; and hence

B(h) ≤ |I|−2

(
ΩN

θtN

)1/r
{∫

I

(
tN−1∑
α=0

|fα(x)|p

λα+1

)
dx

}1/r

.

Integrating both sides of this inequality over GN with respect to h we get

(4.4)
∫
GN

B(h)dh ≤ |I|−2

(
ΩN

θtN

)1/r ∫
GN

{∫
I

tN−1∑
α=0

|fα(x)|p

λα+1

dx

}1/r

dh.

Now, for any h ∈ GN and any x ∈ I = GN0 the points x + z
(N)
α + h and x + z

(N)
α lie

in the coset x+ z
(N)
α +GN of GN in GN0 (since N ≥ N0) and hence

(4.5) |fα(x)| =
∣∣f (x+ z(N)

α + h
)
− f

(
x+ z(N)

α

)∣∣ ≤ osc
(
f, x+ z(N)

α +GN

)
.

Since f ∈ ΛGBF (p)(I), for h ∈ GN , in view of (4.5),

(4.6)
tN−1∑
α=0

|fα(x)|p

λα+1

≤
tN−1∑
α=0

(
osc
(
f, x+ z

(N)
α +GN

))p
λα+1

≤ (ΛGFp(f ; I))p,
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for all x ∈ I; because for any x ∈ I, the finite sequence of cosets {x+ z
(N)
α +GN : α =

0, 1, . . . , tN − 1} is a rearrangement of the sequence {z(N)
α +GN : α = 0, 1, . . . , tN − 1}

since this collection gives all the cosets of GN in I. Further, since mN ≤ nM < mN+1

and nk ≥ nM for k ≥M , from (4.2), we have∫
GN

B(h)dh ≥
∞∑

k=M

∣∣∣f̂(nk)
∣∣∣2 ∫

GN

|χnk
(h)− 1|2dh

=

(
2

mN

) ∞∑
k=M

∣∣∣f̂(nk)
∣∣∣2 ,(4.7)

for all α; in view of Lemma 4.1. Using (4.6) and (4.7) in (4.4) we get

RnM
≡

∞∑
n=nM

∣∣∣f̂(n)
∣∣∣2

=
∞∑

k=M

∣∣∣f̂(nk)
∣∣∣2

≤ |I|−2
(mN

2

)(ΩN

θtN

)1/r ∫
GN

{∫
I

(ΛGFp(f ; I))p dx

}1/r

dh

= |I|−2
(mN

2

)(ΩN

θtN

)1/r (
(ΛGFp(f ; I))p

mN0

)1/r (
1

mN

)
= O

[(
ΩN

θtN

)1/r
]
.(4.8)

Now, applying Lemma 4.2 with uk = |f̂(nk)|2 and F (u) = uβ/2 we get

(4.9)
∞∑
k=1

∣∣∣f̂(nk)
∣∣∣β =

∞∑
k=1

F (uk) ≤ 2
∞∑
k=1

F

(
1

k

∞∑
j=k

∣∣∣f̂(nj)
∣∣∣2) = 2

∞∑
k=1

(
Rnk

k

)β/2
.

Therefore in view of (4.8) we obtain
∞∑
k=1

∣∣∣f̂(nk)
∣∣∣β = O(1)

∞∑
k=1

(
Rnk

k

)β/2
= O(1)

∞∑
n=0

∑
k

mn≤nk<mn+1

(
Rnk

k

)β/2

= O(1)

1 +
∞∑

n=N0

∑
k

mn≤nk<mn+1

[
(Ωn)1/r

k(θtn)1/r

]β/2
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= O(1)

1 +
∞∑

n=N0

[
(Ωn)1/r

(θtn)1/r

]β/2 ∑
k

mn≤nk<mn+1

1

kβ/2

 <∞,

by the assumption of theorem. Thus the theorem is proved for r > 1.
For the case r = 1, s =∞, simply note that

|fα(x)|2 = |fα(x)|2−p|fα(x)|p ≤ (ωN(f, I))2−p|fα(x)|p,
because

|fα(x)| =
∣∣f (x+ z(N)

α + h
)
− f

(
x+ z(N)

α

)∣∣ ≤ ωN(f, I)

for x ∈ I and h ∈ GN ; and proceed as above. �

Proof of Corollary 3.1. Taking nk = k for all k, N0 = 0, I = G, and using the relation∑mn+1−1
mn

k−β/2 = O
(
m

1−β/2
n

)
, n ∈ Z+, we easily deduce Corollary 3.1 from Theorem

3.1. �

Proof of Theorem 3.2. As in the proof of Theorem 3.1, here also we may assume that
y0 = 0. Since f ∈ φΛGBF(I) for any x ∈ I = GN0 , we have

|f(x)| ≤ |f(0)|+ Cφ−1(ΛGFφ(f ; I)).

Thus f is bounded on I and hence f ∈ L2(I). For r > 1, proceeding as in the
proof of Theorem 3.1 we get (4.3). Since multiplying f by a positive constant alters
ω(p)(f, n, I) by the same constant, and φ is ∆2, we may assume that |f(x)| ≤ 1

2
for

all x ∈ I. Therefore we get 0 ≤ |fα(x)| =
∣∣∣f (x+ z

(N)
α + h

)
− f

(
x+ z

(N)
α

)∣∣∣ ≤ 1 and
hence, as p ≥ 1, it follows that |fα(x)|p ≤ |fα(x)|. Now, in view of (4.3) we get

(B(h))r ≤ |I|−2rΩN

∫
I

|fα(x)|pdx ≤ |I|−2rΩN

∫
I

|fα(x)|dx, α = 0, 1, . . . , tN − 1.

Since φ(2x) ≤ dφ(x), for all x ≥ 0, it follows (see, for example,
[4, Proof of Theorem 2]) that

(4.10) φ(ax) ≤ dlog2 a+1φ(x), for all x ≥ 0 and for all a ≥ 1.

Since |I|−2rΩN ≥ 0, if |I|−2rΩN < 1 then we get

φ (mN0(B(h))r) ≤ φ

(
mN0|I|−2rΩN

∫
I

|fα(x)|dx
)

≤ |I|−2rΩNφ

(
mN0

∫
I

|fα(x)|dx
)
.

Further when |I|−2ΩN ≥ 1, in view of (4.10), we have

φ (mN0(B(h))r) ≤ φ

(
mN0 |I|−2rΩN

∫
I

|fα(x)|dx
)

≤ dlog2(|I|−2rΩN )+1 · φ
(
mN0

∫
I

|fα(x)|dx
)
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= d · (|I|−2rΩN)log2 d · φ
(
mN0

∫
I

|fα(x)|dx
)

= d · |I|−2r log2 d · (ΩN)log2 d−1 · ΩN · φ
(
mN0

∫
I

|fα(x)|dx
)

≤ d · |I|−2r log2 d · ΩN · φ
(
mN0

∫
I

|fα(x)|dx
)
,

in view of the fact that (ΩN)log2 d−1 ≤ 1, as |f(x)| ≤ 1
2
, for all x ∈ I, and log2 d−1 ≥ 0.

Therefore in either case

φ (mN0(B(h))r) = O(1)ΩNφ

(
mN0

∫
I

|fα(x)|dx
)

= O(1)ΩNmN0

∫
I

φ (|fα(x)|) dx,

in view of the Jensen’s inequality. Now multiplying both the sides of this inequality
by (1/λα+1) and taking summation over α = 0, 1, . . . , tN − 1 we get

(4.11) φ (mN0(B(h))r) = O(1)

(
ΩN

θtN

)∫
I

(
tN−1∑
α=0

φ(|fα(x)|)
λα+1

)
dx,

where in the right-hand side we have denoted the constant ‘O(1)mN0 ’ by ‘O(1)’ itself.
Since f ∈ φΛGBF(I) and φ is increasing, for all h ∈ GN and x ∈ I we have

(4.12)
tN−1∑
α=0

φ(|fα(x)|)
λα+1

≤
tN−1∑
α=0

φ
(

osc
(
f ;x+ z

(N)
α +GN

))
λα+1

≤ ΛGFφ(f ; I).

Using (4.12) in (4.11) we get

φ (mN0(B(h))r) ≤ C

(
ΩN

θtN

)
,

where C is a constant such that C ≥ 1. Thus

mN0(B(h))r ≤ φ−1

{
C

(
ΩN

θtN

)}
≤ Cφ−1

(
ΩN

θtN

)
and therefore

B(h) = O

[{
φ−1

(
ΩN

θtN

)}1/r
]
.

Integrating both sides of this inequality over GN with respect to h, in view of (4.7)
we get

RnM
≡

∞∑
k=M

∣∣∣f̂(nk)
∣∣∣2 ≤ (mN

2

)∫
GN

B(h)dh = O

[{
φ−1

(
ΩN

θtN

)}1/r
]
.

Thus from (4.9) we get
∞∑
k=1

∣∣∣f̂(nk)
∣∣∣β = O(1)

∞∑
k=1

(
Rnk

k

)β/2
= O(1)

∞∑
n=0

∑
k

mn≤nk<mn+1

(
Rnk

k

)β/2



β-ABSOLUTE CONVERGENCE OF VILENKIN-FOURIER SERIES 103

= O(1)

1 +
∞∑

n=N0

∑
k

mn≤nk<mn+1

[
1

k

{
φ−1

(
Ωn

θtn

)}1/r
]β/2

= O(1)

1 +
∞∑

n=N0

[{
φ−1

(
Ωn

θtn

)}1/r
]β/2 ∑

k
mn≤nk<mn+1

1

kβ/2

 <∞,

in view of the assumption of the theorem. This completes the proof of the theorem
for r > 1. For the case r = 1, s =∞, the proof is similar as that of Theorem 3.1. �

Proof of Corollary 3.2. Similar as the proof of Corollary 3.1. �
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