KRAGUJEVAC JOURNAL OF MATHEMATICS VOLUME 40(2) (2016), PAGES 280–289.

EXPLICIT SOLUTION TO MODULAR OPERATOR EQUATION $TXS^* - SX^*T^* = A$

M. MOHAMMADZADEH KARIZAKI¹, M. HASSANI², AND S. S. DRAGOMIR³

ABSTRACT. In this paper, by using some block operator matrix techniques, we find explicit solution of the operator equation $TXS^* - SX^*T^* = A$ in the general setting of the adjointable operators between Hilbert C^* -modules. Furthermore, we solve the operator equation $TXS^* - SX^*T^* = A$, when ran(T) + ran(S) is closed.

1. INTRODUCTION AND PRELIMINARIES

The equation $TXS^* - SX^*T^* = A$ was studied by Yuan [8] for finite matrices and Xu et al. [7] generalized the results to Hilbert C^* -modules, under the condition that ran(S) is contained in ran(T). When T equals an identity matrix or identity operator, this equation reduces to $XS^* - SX^* = A$, which was studied by Braden [1] for finite matrices, and Djordjevic [3] for the Hilbert space operators. In this paper, by using block operator matrix techniques and properties of the Moore-Penrose inverse, we provide a new approach to the study of the equation $TXS^* - SX^*T^* = A$ for adjointable Hilbert module operators than those with closed ranges. Furthermore, we solve the operator equation $TXS^* - SX^*T^* = A$, when ran(T) + ran(S) is closed.

Throughout this paper, \mathcal{A} is a C^* -algebra. Let \mathfrak{X} and \mathfrak{Y} be two Hilbert \mathcal{A} -modules, and $\mathcal{L}(\mathfrak{X}, \mathfrak{Y})$ be the set of the adjointable operators from \mathfrak{X} to \mathfrak{Y} . For any $T \in \mathcal{L}(\mathfrak{X}, \mathfrak{Y})$, the range and the null space of T are denoted by ran(T) and ker(T) respectively. In case $\mathfrak{X} = \mathfrak{Y}$, $\mathcal{L}(\mathfrak{X}, \mathfrak{X})$ which we abbreviate to $\mathcal{L}(\mathfrak{X})$, is a C^* -algebra. The identity operator on \mathfrak{X} is denoted by $1_{\mathfrak{X}}$ or 1 if there is no ambiguity.

Theorem 1.1. [5, Theorem 3.2] Suppose that $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ has closed range. Then

• ker(T) is orthogonally complemented in \mathfrak{X} , with complement ran(T^{*});

Key words and phrases. Operator equation, Moore-Penrose inverse, Hilbert C^{*}-module. 2010 Mathematics Subject Classification. Primary: 47A62. Secondary: 15A24, 46L08. Received: December 5, 2015.

Accepted: April 4, 2016.

- ran(T) is orthogonally complemented in \mathcal{Y} , with complement ker(T^*);
- The map $T^* \in \mathcal{L}(\mathcal{Y}, \mathfrak{X})$ has closed range.

Xu and Sheng [6] showed that a bounded adjointable operator between two Hilbert \mathcal{A} -modules admits a bounded Moore-Penrose inverse if and only if it has closed range. The Moore-Penrose inverse of T, denoted by T^{\dagger} , is the unique operator $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ satisfying the following conditions:

$$TT^{\dagger}T = T, \quad T^{\dagger}TT^{\dagger} = T^{\dagger}, \quad (TT^{\dagger})^* = TT^{\dagger}, \quad (T^{\dagger}T)^* = T^{\dagger}T.$$

It is well-known that T^{\dagger} exists if and only if ran(T) is closed, and in this case $(T^{\dagger})^* = (T^*)^{\dagger}$. Let $T \in \mathcal{L}(\mathfrak{X}, \mathfrak{Y})$ be a closed range, then TT^{\dagger} is the orthogonal projection from \mathfrak{Y} onto ran(T) and $T^{\dagger}T$ is the orthogonal projection from \mathfrak{X} onto ran(T^{*}). Projection, in the sense that they are self adjoint idempotent operators.

A matrix form of a bounded adjointable operator $T \in \mathcal{L}(\mathfrak{X}, \mathfrak{Y})$ can be induced by some natural decompositions of Hilbert C^* -modules. Indeed, if \mathfrak{M} and \mathfrak{N} are closed orthogonally complemented submodules of \mathfrak{X} and \mathfrak{Y} , respectively, and $\mathfrak{X} = \mathfrak{M} \oplus \mathfrak{M}^{\perp}$, $\mathfrak{Y} = \mathfrak{N} \oplus \mathfrak{N}^{\perp}$, then T can be written as the following 2×2 matrix

$$T = \left[\begin{array}{cc} T_1 & T_2 \\ T_3 & T_4 \end{array} \right],$$

where, $T_1 \in \mathcal{L}(\mathcal{M}, \mathcal{N}), T_2 \in \mathcal{L}(\mathcal{M}^{\perp}, \mathcal{N}), T_3 \in \mathcal{L}(\mathcal{M}, \mathcal{N}^{\perp})$ and $T_4 \in \mathcal{L}(\mathcal{M}^{\perp}, \mathcal{N}^{\perp})$. Note that $P_{\mathcal{M}}$ denotes the projection corresponding to \mathcal{M} .

In fact $T_1 = P_N T P_M$, $T_2 = P_N T (1 - P_M)$, $T_3 = (1 - P_N) T P_M$ and $T_4 = (1 - P_N) T (1 - P_M)$.

Lemma 1.1 (see [4, Corollary 1.2.]). Suppose that $T \in \mathcal{L}(\mathfrak{X}, \mathfrak{Y})$ has closed range. Then T has the following matrix decomposition with respect to the orthogonal decompositions of closed submodules $\mathfrak{X} = \operatorname{ran}(T^*) \oplus \ker(T)$ and $\mathfrak{Y} = \operatorname{ran}(T) \oplus \ker(T^*)$:

$$T = \begin{bmatrix} T_1 & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \operatorname{ran}(\mathrm{T}^*) \\ \operatorname{ker}(T) \end{bmatrix} \to \begin{bmatrix} \operatorname{ran}(\mathrm{T}) \\ \operatorname{ker}(T^*) \end{bmatrix},$$

where T_1 is invertible. Moreover

$$T^{\dagger} = \left[\begin{array}{cc} T_1^{-1} & 0\\ 0 & 0 \end{array} \right] : \left[\begin{array}{c} \operatorname{ran}(T)\\ \ker(T^*) \end{array} \right] \to \left[\begin{array}{c} \operatorname{ran}(T^*)\\ \ker(T) \end{array} \right].$$

Remark 1.1. Let \mathfrak{X} and \mathfrak{Y} be two Hilbert \mathcal{A} -modules, we use the notation $\mathfrak{X} \oplus \mathfrak{Y}$ to denote the direct sum of \mathfrak{X} and \mathfrak{Y} , which is also a Hilbert \mathcal{A} -module whose \mathcal{A} -valued inner product is given by

$$\left\langle \left(\begin{array}{c} x_1\\ y_1 \end{array}\right), \left(\begin{array}{c} x_2\\ y_2 \end{array}\right) \right\rangle = \langle x_1, x_2 \rangle + \langle y_1, y_2 \rangle$$

for $x_i \in \mathfrak{X}$ and $y_i \in \mathfrak{Y}$, i = 1, 2. To simplify the notation, we use $x \oplus y$ to denote $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathfrak{X} \oplus \mathfrak{Y}$.

Lemma 1.2 (see [2, Lemma 3.]). Suppose that \mathfrak{X} is a Hilbert \mathcal{A} -module and $S, T \in \mathcal{L}(\mathfrak{X})$. Then $\begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix} \in \mathcal{L}(\mathfrak{X} \oplus \mathfrak{X})$ has closed range if and only if $\operatorname{ran}(T) + \operatorname{ran}(S)$ is closed, and

$$\begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix}^{\dagger} = \begin{bmatrix} T^*(TT^* + SS^*)^{\dagger} & 0 \\ S^*(TT^* + SS^*)^{\dagger} & 0 \end{bmatrix}.$$

Lemma 1.3 (see [2, Corollary 4.]). Suppose that \mathfrak{X} is a Hilbert \mathcal{A} -module and $S, T \in \mathcal{L}(\mathfrak{X})$. Then $\begin{bmatrix} T & 0 \\ S & 0 \end{bmatrix} \in \mathcal{L}(\mathfrak{X} \oplus \mathfrak{X})$ has closed range if and only if $\operatorname{ran}(T^*) + \operatorname{ran}(S^*)$ is closed, and

$$\begin{bmatrix} T & 0 \\ S & 0 \end{bmatrix}^{\dagger} = \begin{bmatrix} (T^*T + S^*S)^{\dagger}T^* & (T^*T + S^*S)^{\dagger}S^* \\ 0 & 0 \end{bmatrix}.$$

2. Solutions to $TXS^* - SX^*T^* = A$

In this section, we will study the operator equation $TXS^* - SX^*T^* = A$ in the general context of the Hilbert C^* -modules. First, in the following theorem we solve to the operator equation $TXS^* - SX^*T^* = A$, in the case when S and T are invertible operators.

Theorem 2.1. Let $\mathfrak{X}, \mathfrak{Y}, \mathfrak{Z}$ be Hilbert \mathcal{A} -modules, $S \in \mathcal{L}(\mathfrak{X}, \mathfrak{Y})$ and $T \in \mathcal{L}(\mathfrak{Z}, \mathfrak{Y})$ be invertible operators and $A \in \mathcal{L}(\mathfrak{Y})$. Then the following statements are equivalent: (a) There exists a solution $X \in \mathcal{L}(\mathfrak{X}, \mathfrak{Z})$ to the operator equation $TXS^* - SX^*T^* = A$; (b) $A = -A^*$.

If (a) or (b) is satisfied, then any solution to

(2.1)
$$TXS^* - SX^*T^* = A, \quad X \in \mathcal{L}(\mathcal{X}, \mathcal{Z})$$

has the form

$$X = \frac{1}{2}T^{-1}A(S^*)^{-1} + T^{-1}Z(S^*)^{-1},$$

where $Z \in \mathcal{L}(\mathcal{Y})$ satisfy $Z^* = Z$.

Proof. (a) \Rightarrow (b): Obvious. (b) \Rightarrow (a): Note that, if $A = -A^*$ then $X = \frac{1}{2}T^{-1}A(S^*)^{-1} + T^{-1}Z(S^*)^{-1}$ is a solution to (2.1). The following sentences state this claim

$$T\left(\frac{1}{2}T^{-1}A(S^*)^{-1} + T^{-1}Z(S^*)^{-1}\right)S^* - S\left(\frac{1}{2}S^{-1}A^*(T^*)^{-1} + S^{-1}Z^*(T^*)^{-1}\right)T^*$$

$$= \frac{1}{2}(TT^{-1}A(S^*)^{-1}S^* - SS^{-1}A^*(T^*)^{-1}T^*) + TT^{-1}Z(S^*)^{-1}S^* - SS^{-1}Z^*(T^*)^{-1}T^*$$

$$= A + Z - Z^*$$

$$= A.$$

On the other hand, let X be any solution to (2.1). Then $X = T^{-1}A(S^*)^{-1} + T^{-1}SX^*T^*(S^*)^{-1}$. We have

$$X = T^{-1}A(S^*)^{-1} + T^{-1}SX^*T^*(S^*)^{-1}$$

= $\frac{1}{2}T^{-1}A(S^*)^{-1} + \frac{1}{2}T^{-1}A(S^*)^{-1} + T^{-1}SX^*T^*(S^*)^{-1}$
= $\frac{1}{2}T^{-1}A(S^*)^{-1} + T^{-1}(\frac{1}{2}A + SX^*T^*)(S^*)^{-1}.$

Taking $Z = \frac{1}{2}A + SX^*T^*$, we get $Z^* = Z$.

Corollary 2.1. Suppose that \mathcal{Y}, \mathcal{Z} are Hilbert \mathcal{A} -modules and $T \in \mathcal{L}(\mathcal{Z}, \mathcal{Y})$ is invertible operator, $A \in \mathcal{L}(\mathcal{Y})$. Then the following statements are equivalent: (a) There exists a solution $X \in \mathcal{L}(\mathcal{Y}, \mathcal{Z})$ to the operator equation $TX - X^*T^* = A$;

(a) There exists a solution $X \in \mathcal{L}(\mathcal{Y}, \mathcal{Z})$ to the operator equation $TX - X^*T^* = A$; (b) $A = -A^*$.

If (a) or (b) is satisfied, then any solution to

$$TX - X^*T^* = A, \quad X \in \mathcal{L}(\mathcal{Y}, \mathcal{Z}),$$

has the form

$$X = \frac{1}{2}T^{-1}A + T^{-1}Z,$$

where $Z \in \mathcal{L}(\mathcal{Y})$ satisfy $Z^* = Z$.

In the following theorems we obtain explicit solutions to the operator equation

 $TXS^* - SX^*T^* = A,$

via matrix form and complemented submodules.

Theorem 2.2. Suppose $S \in \mathcal{L}(\mathbb{Z}, \mathbb{Y})$ is an invertible operator and $T \in \mathcal{L}(\mathbb{Z}, \mathbb{Y})$ has closed range and $A \in \mathcal{L}(\mathbb{Y})$. Then the following statements are equivalent: (a) There exists a solution $X \in \mathcal{L}(\mathbb{Z})$ to (2.2); (b) $A = -A^*$ and $(1 - TT^{\dagger})A(1 - TT^{\dagger}) = 0$. If (a) or (b) is satisfied, then any solution to (2.2) has the form (2.3) $X = \frac{1}{2}T^{\dagger}ATT^{\dagger}(S^*)^{-1} + T^{\dagger}ZTT^{\dagger}(S^*)^{-1} + T^{\dagger}A(1 - TT^{\dagger})(S^*)^{-1} + (1 - T^{\dagger}T)Y(S^*)^{-1},$ where $Z \in \mathcal{L}(\mathbb{Y})$ satisfies $T^*(Z - Z^*)T = 0$, and $Y \in \mathcal{L}(\mathbb{Y}, \mathbb{Z})$ is arbitrary. Proof. (a) \Rightarrow (b): Obviously, $A = -A^*$. Also, $(1 - TT^{\dagger})A(1 - TT^{\dagger}) = (1 - TT^{\dagger})(TXS^* - SX^*T^*)(1 - TT^{\dagger})$ $= (T - TT^{\dagger}T)XS^*(1 - TT^{\dagger}) - (1 - TT^{\dagger})SX^*(T^* - T^*TT^{\dagger})$ = 0

 $(b) \Rightarrow (a)$: Note that the condition $(1 - TT^{\dagger})A(1 - TT^{\dagger}) = 0$ is equivalent to $A = ATT^{\dagger} + TT^{\dagger}A - TT^{\dagger}ATT^{\dagger}$. On the other hand, since $T^*(Z - Z^*)T = 0$, then $(Z - Z^*)T \in \ker(T^*) = \ker(T^{\dagger})$. Therefore $T^{\dagger}(Z - Z^*)T = 0$.

Hence we have

$$\begin{aligned} &\frac{1}{2}TT^{\dagger}ATT^{\dagger} + TT^{\dagger}ZTT^{\dagger} + TT^{\dagger}A(1 - TT^{\dagger}) + T(1 - T^{\dagger}T)Y - \frac{1}{2}TT^{\dagger}A^{*}(T^{\dagger})^{*}T^{*} \\ &- TT^{\dagger}Z^{*}(T^{\dagger})^{*}T^{*} - (1 - TT^{\dagger})A^{*}(T^{\dagger})^{*}T^{*} - Y^{*}(1 - T^{\dagger}T)T^{*} \\ &= ATT^{\dagger} + TT^{\dagger}A - TT^{\dagger}ATT^{\dagger} + TT^{\dagger}ZTT^{\dagger} - TT^{\dagger}Z^{*}(T^{\dagger})^{*}T^{*} \\ &= A. \end{aligned}$$

That is, any operator X of the form (2.3) is a solution to (2.2). Now, suppose that

(2.4)
$$X = X_0(S^*)^{-1}, \quad X_0 \in \mathcal{L}(\mathcal{Y}, \mathcal{Z}),$$

is a solution to (2.2). We let (2.4) in (2.2). Hence (2.2) get into the following equation

(2.5)
$$TX_0 - X_0^* T^* = A, \quad X_0 \in \mathcal{L}(\mathcal{Y}, \mathcal{Z}).$$

Since T has closed range, we have $\mathcal{Z} = \operatorname{ran}(T^*) \oplus \ker(T)$ and $\mathcal{Y} = \operatorname{ran}(T) \oplus \ker(T^*)$. Now, T has the matrix form

$$T = \begin{bmatrix} T_1 & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \operatorname{ran}(\mathrm{T}^*) \\ \operatorname{ker}(T) \end{bmatrix} \to \begin{bmatrix} \operatorname{ran}(\mathrm{T}) \\ \operatorname{ker}(T^*) \end{bmatrix},$$

where T_1 is invertible. On the other hand, $A = -A^*$ and $(1 - TT^{\dagger})A(1 - TT^{\dagger}) = 0$ imply that A has the form

$$A = \begin{bmatrix} A_1 & A_2 \\ -A_2^* & 0 \end{bmatrix} : \begin{bmatrix} \operatorname{ran}(T) \\ \ker(T^*) \end{bmatrix} \to \begin{bmatrix} \operatorname{ran}(T) \\ \ker(T^*) \end{bmatrix}$$

where $A_1 = -A_1^*$. Let X_0 have the form

$$X_0 = \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} : \begin{bmatrix} \operatorname{ran}(\mathrm{T}) \\ \ker(T^*) \end{bmatrix} \to \begin{bmatrix} \operatorname{ran}(\mathrm{T}^*) \\ \ker(T) \end{bmatrix}$$

Now by using matrix form for operators T, X_0 and A, we have

$$\begin{bmatrix} T_1 & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} X_1 & X_2\\ X_3 & X_4 \end{bmatrix} - \begin{bmatrix} X_1^* & X_3^*\\ X_2^* & X_4^* \end{bmatrix} \begin{bmatrix} T_1^* & 0\\ 0 & 0 \end{bmatrix} = \begin{bmatrix} A_1 & A_2\\ -A_2^* & 0 \end{bmatrix},$$

or equivalently

$$\begin{bmatrix} T_1 X_1 - X_1^* T_1^* & T_1 X_2 \\ -X_2^* T_1^* & 0 \end{bmatrix} = \begin{bmatrix} A_1 & A_2 \\ -A_2^* & 0 \end{bmatrix}.$$

Therefore

$$T_1 X_1 - X_1^* T_1^* = A_1,$$

and

(2.6)
$$T_1 X_2 = A_2.$$

Now, we obtain X_1 and X_2 . By Lemma 1.1, T_1 is invertible. Hence, Corollary 2.1 implies that

$$X_1 = \frac{1}{2}T_1^{-1}A_1 + T_1^{-1}Z_1,$$

where $Z_1 \in \mathcal{L}(\operatorname{ran}(\mathbf{T}))$ satisfy $Z_1^* = Z_1$. Now, multiplying T_1^{-1} from the left to (2.6), we get

(2.7)
$$X_2 = T_1^{-1} A_2.$$

Hence $\begin{bmatrix} \frac{1}{2}T_1^{-1}A_1 + T_1^{-1}Z_1 & T_1^{-1}A_2 \\ X_3 & X_4 \end{bmatrix}$ is a solution to (2.5), such that X_3, X_4 are arbitrary operators. Let

$$Y = \begin{bmatrix} Y_1 & Y_2 \\ X_3 & X_4 \end{bmatrix} : \begin{bmatrix} \operatorname{ran}(T) \\ \ker(T^*) \end{bmatrix} \to \begin{bmatrix} \operatorname{ran}(T^*) \\ \ker(T) \end{bmatrix},$$

and

$$Z = \begin{bmatrix} Z_1 & Z_2 \\ Z_3 & Z_4 \end{bmatrix} : \begin{bmatrix} \operatorname{ran}(T) \\ \ker(T^*) \end{bmatrix} \to \begin{bmatrix} \operatorname{ran}(T) \\ \ker(T^*) \end{bmatrix}.$$

Then

$$\frac{1}{2}T^{\dagger}ATT^{\dagger} = \begin{bmatrix} \frac{1}{2}T_{1}^{-1}A_{1} & 0\\ 0 & 0 \end{bmatrix}, \quad T^{\dagger}ZTT^{\dagger} = \begin{bmatrix} T_{1}^{-1}Z_{1} & 0\\ 0 & 0 \end{bmatrix}$$

and

$$T^{\dagger}A(1-TT^{\dagger}) = \begin{bmatrix} 0 & T^{-1}A_2 \\ 0 & 0 \end{bmatrix}, \quad (1-T^{\dagger}T)Y = \begin{bmatrix} 0 & 0 \\ X_3 & X_4 \end{bmatrix}.$$
antly
$$X_5 = \frac{1}{2}T^{\dagger}ATT^{\dagger} + T^{\dagger}ZTT^{\dagger} + T^{\dagger}A(1-TT^{\dagger}) + (1-T^{\dagger}T)$$

Consequently, $X_0 = \frac{1}{2}T^{\dagger}ATT^{\dagger} + T^{\dagger}ZTT^{\dagger} + T^{\dagger}A(1 - TT^{\dagger}) + (1 - T^{\dagger}T)Y$, where $Z \in \mathcal{L}(\mathcal{Y})$ satisfies $T^*(Z - Z^*)T = 0$, and $Y \in \mathcal{L}(\mathcal{Y}, \mathcal{Z})$ is arbitrary. \Box

In the following theorem we obtain explicit solution to the operator equation $TXS^* - SX^*T^* = A$ when $(1 - P_{ran(S)})T$ and S have closed ranges.

Theorem 2.3. Suppose that $\mathfrak{X}, \mathfrak{Y}, \mathfrak{Z}$ are Hilbert \mathcal{A} -modules, $S \in \mathcal{L}(\mathfrak{X}, \mathfrak{Y}), T \in \mathcal{L}(\mathfrak{Z}, \mathfrak{Y})$ and $A \in \mathcal{L}(\mathfrak{Y})$ and such that $(1 - SS^{\dagger})T$ and S have closed ranges. If the equation

(2.8)
$$TXS^* - SX^*T^* = A, \quad X \in \mathcal{L}(\mathfrak{X}, \mathfrak{Z})$$

is solvable, then

(2.9)
$$\begin{bmatrix} 0 & X \\ -X^* & 0 \end{bmatrix} = \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix}^{\dagger} \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} T^* & 0 \\ S^* & 0 \end{bmatrix}^{\dagger}$$

Proof. Taking $H = \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix}$: $\mathcal{Z} \oplus \mathcal{X} \to \mathcal{Y} \oplus \mathcal{Y}$. The operator H has closed range, since let $\{z_n \oplus x_n\}$ be sequence chosen in $\mathcal{Z} \oplus \mathcal{X}$, $\{z_n\}$, $\{x_n\}$ be sequences chosen in \mathcal{Z} and \mathcal{X} , respectively such that $T(z_n) + S(x_n) \to y$ for some $y \in \mathcal{Y}$. Then

$$(1 - SS^{\dagger})T(z_n) = (1 - SS^{\dagger})(T(z_n) + S(x_n)) \to (1 - SS^{\dagger})(y).$$

Since ran($(1-SS^{\dagger})T$) is assumed to be closed, $(1-SS^{\dagger})(y) = (1-SS^{\dagger})T(z_1)$ for some $z_1 \in \mathbb{Z}$. It follows that $y - T(z_1) \in \ker(1-SS^{\dagger}) = \operatorname{ran}(S)$, hence $y = T(z_1) + S(x)$ for some $x \in \mathbb{X}$. Therefore H has closed range. Let $Y = \begin{bmatrix} 0 & X \\ -X^* & 0 \end{bmatrix} : \mathbb{Z} \oplus \mathbb{X} \to \mathbb{Z} \oplus \mathbb{X}$

and $H^* = \begin{bmatrix} T^* & 0 \\ S^* & 0 \end{bmatrix} : \mathcal{Y} \oplus \mathcal{Y} \to \mathcal{Z} \oplus \mathcal{X}$ and $B = \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} : \mathcal{Y} \oplus \mathcal{Y} \to \mathcal{Y} \oplus \mathcal{Y}$, therefore (2.8) get into (2.10) $HYH^* = B.$

Since *H* has closed range and (2.8) has solution, then (2.10) has solution, therefore with multiplying HH^{\dagger} on the left and multiply $H^*(H^*)^{\dagger}$ on the right, we have

$$Y = H^{\dagger}B(H^*)^{\dagger}.$$

The proof of the following remark is the same as in the matrix case.

Remark 2.1. Let $T \in \mathcal{L}(\mathcal{Y}, \mathcal{Z})$ and $S \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ have closed ranges, and $A \in \mathcal{L}(\mathcal{X}, \mathcal{Z})$. Then the equation

(2.11) $TXS = A, \quad X \in \mathcal{L}(\mathcal{Y}),$

has a solution if and only if

 $TT^{\dagger}AS^{\dagger}S = A.$

In which case, any solution of (2.11) has the form

$$X = T^{\dagger} A S^{\dagger}.$$

Now, we solve to the operator equation $TXS^* - SX^*T^* = A$ in the case when ran(T) + ran(S) is closed.

Theorem 2.4. Suppose that \mathfrak{X} is a Hilbert \mathcal{A} -module, $S, T, A \in \mathcal{L}(\mathfrak{X})$ such that $\operatorname{ran}(T) + \operatorname{ran}(S)$ is closed. Then the following statements are equivalent: (a) There exists a solution $X \in \mathcal{L}(\mathfrak{X})$ to the operator equation $TXS^* - SX^*T^* = A$;

(a) There exists a solution $A \in \mathcal{L}(X)$ to the operator equation TAS = SA T = A, (b) $A = -A^*$ and $P_{\operatorname{ran}(TT^*+SS^*)}AP_{\operatorname{ran}(TT^*+SS^*)} = A$. If (a) or (b) is satisfied, then any solution to

(2.12)
$$TXS^* - SX^*T^* = A, \quad X \in \mathcal{L}(\mathfrak{X}),$$

$$12) IAS - SA I = A,$$

has the form

(2.13)
$$X = T^* (TT^* + SS^*)^{\dagger} A (TT^* + SS^*)^{\dagger} S.$$

Proof. (a) \Rightarrow (b) Suppose that (2.12) has a solution $X \in \mathcal{L}(\mathcal{X})$. Then obviously $A = -A^*$. On the other hand, (2.12) get into

(2.14)
$$\begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & X \\ -X^* & 0 \end{bmatrix} \begin{bmatrix} T^* & 0 \\ S^* & 0 \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix}.$$

Since (2.12) is solvable, then (2.14) is solvable. Since $\operatorname{ran}(T) + \operatorname{ran}(S)$ is closed, then Lemma 1.2 implies that $\begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix}^{\dagger}$ exists. Hence, by Remark 2.1 we have

$$\begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix} \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix}^{\dagger} \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} T^* & 0 \\ S^* & 0 \end{bmatrix}^{\dagger} \begin{bmatrix} T^* & 0 \\ S^* & 0 \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix}$$

286

By applying Lemma 1.2, Corollary 1.3 are shown that

$$\begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix} \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix}^{\dagger} \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} T^* & 0 \\ S^* & 0 \end{bmatrix}^{\dagger} \begin{bmatrix} T^* & 0 \\ S^* & 0 \end{bmatrix}$$

$$= \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix} \begin{bmatrix} T^*(TT^* + SS^*)^{\dagger} & 0 \\ S^*(TT^* + SS^*)^{\dagger} & 0 \end{bmatrix} \begin{bmatrix} A(TT^* + SS^*)^{\dagger}T & A(TT^* + SS^*)^{\dagger}S \\ 0 & 0 \end{bmatrix} \begin{bmatrix} T^* & 0 \\ S^* & 0 \end{bmatrix}$$

$$= \begin{bmatrix} (TT^* + SS^*)(TT^* + SS^*)^{\dagger}A(TT^* + SS^*)^{\dagger}(TT^* + SS^*) & 0 \\ 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} P_{ran}(TT^* + SS^*)AP_{ran}((TT^* + SS^*)) & 0 \\ 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} P_{ran}(TT^* + SS^*)AP_{ran}(TT^* + SS^*) & 0 \\ 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix}.$$
That is, $P_{ran}(TT^* + SS^*)AP_{ran}(TT^* + SS^*) = A.$

$$(b) \Rightarrow (a): \text{ If } P_{ran}(TT^* + SS^*)AP_{ran}(TT^* + SS^*) = A, \text{ then we have}$$

$$\begin{bmatrix} P_{ran}(TT^* + SS^*)AP_{ran}((TT^* + SS^*)) & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} P_{ran}(TT^* + SS^*)AP_{ran}(TT^* + SS^*) = A, \text{ then we have}$$

$$\begin{bmatrix} P_{ran}(TT^* + SS^*)AP_{ran}((TT^* + SS^*)) & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} P_{ran}(TT^* + SS^*)AP_{ran}(TT^* + SS^*) & 0 \\ 0 & 0 \end{bmatrix},$$

or equivalently

$$\begin{bmatrix} (TT^* + SS^*)(TT^* + SS^*)^{\dagger}A(TT^* + SS^*)^{\dagger}(TT^* + SS^*) & 0 \\ 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix} \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix}^{\dagger} \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} T^* & 0 \\ S^* & 0 \end{bmatrix}^{\dagger} \begin{bmatrix} T^* & 0 \\ S^* & 0 \end{bmatrix}$$
$$= \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix}.$$

Therefore, Remark 2.1 implies that (2.14) is solvable and hence (2.12) is solvable. Now, by applying Remark 2.1 and Lemma 1.2, Corollary 1.3 imply that

$$\begin{bmatrix} 0 & X \\ -X^* & 0 \end{bmatrix}$$

$$= \begin{bmatrix} T & S \\ 0 & 0 \end{bmatrix}^{\dagger} \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} T^* & 0 \\ S^* & 0 \end{bmatrix}^{\dagger}$$

$$= \begin{bmatrix} T^*(TT^* + SS^*)^{\dagger} & 0 \\ S^*(TT^* + SS^*)^{\dagger} & 0 \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} (TT^* + SS^*)^{\dagger}T & (TT^* + SS^*)^{\dagger}S \\ 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} T^*(TT^* + SS^*)^{\dagger}A(TT^* + SS^*)^{\dagger}T & T^*(TT^* + SS^*)^{\dagger}A(TT^* + SS^*)^{\dagger}S \\ S^*(TT^* + SS^*)^{\dagger}A(TT^* + SS^*)^{\dagger}T & S^*(TT^* + SS^*)^{\dagger}A(TT^* + SS^*)^{\dagger}S \end{bmatrix}.$$

Therefore

$$T^*(TT^* + SS^*)^{\dagger}A(TT^* + SS^*)^{\dagger}T = S^*(TT^* + SS^*)^{\dagger}A(TT^* + SS^*)^{\dagger}S = 0.$$

Consequently, X has the form (2.13).

Using exactly similar arguments, we obtain the following analogue of Theorem 2.1, in which to (2.1) is replaced by

(2.15)
$$TXS^* + SX^*T^* = A.$$

All results of this section can be rewritten for to (2.15), considering the following theorem.

Theorem 2.5. Let $\mathfrak{X}, \mathfrak{Y}, \mathfrak{Z}$ be Hilbert A-modules, $S \in \mathcal{L}(\mathfrak{X}, \mathfrak{Y})$ and $T \in \mathcal{L}(\mathfrak{Z}, \mathfrak{Y})$ be invertible operators and $A \in \mathcal{L}(\mathcal{Y})$. Then the following statements are equivalent: (a) There exists a solution $X \in \mathcal{L}(\mathfrak{X}, \mathfrak{Z})$ to the operator equation $TXS^* + SX^*T^* = A$. (b) $A = A^*$.

If (a) or (b) is satisfied, then any solution to

$$TXS^* + SX^*T^* = A, \quad X \in \mathcal{L}(\mathcal{X}, \mathcal{Z})$$

has the form

$$X = \frac{1}{2}T^{-1}A(S^*)^{-1} - T^{-1}Z(S^*)^{-1},$$

where $Z \in \mathcal{L}(\mathcal{Y})$ satisfy $Z^* = -Z$.

References

- [1] H. Braden, The equations $A^T X \pm X^T A = B$, SIAM J. Matrix Anal. Appl. **20** (1998), 295–302.
- [2] C.Y. Deng, H. K. Du, Representations of the Moore-Penrose inverse for a class of 2 by 2 block operator valued partial matrices, Linear Multilinear Algebra, 58 (2010), 15–26.
- [3] D. S. Djordjevic, Explicit solution of the operator equation $A^*X + X^*A = B$, J. Comput. Appl. Math. 200(2007), 701-704.
- [4] M. Mohammadzadeh Karizaki, M. Hassani, M. Amyari and M. Khosravi, Operator matrix of Moore-Penrose inverse operators on Hilbert C^{*}-modules, Collog. Math. 140 (2015), 171–182
- [5] E. C. Lance, *Hilbert C^{*}-Modules*, LMS Lecture Note Series 210, Cambridge Univ. Press, 1995.
- [6] Q. Xu, L. Sheng, Positive semi-definite matrices of adjointable operators on Hilbert C^* -modules, Linear Algebra Appl. **428** (2008), 992–1000.
- [7] Q. Xu, L. Sheng, Y. Gu, The solutions to some operator equations, Linear Algebra Appl. 429 (2008), 1997-2024.
- [8] Y. Yuan, Solvability for a class of matrix equation and its applications, J. Nanjing Univ. (Math. Biquart.) 18 (2001), 221–227.

 $^1{\rm University}$ of Torbat-e-Heydarieh, Iran $E\text{-}mail\ address:$ mohammadzadehkarizaki@gmail.com

²DEPARTMENT OF MATHEMATICS, MASHHAD BRANCH, ISLAMIC AZAD UNIVERSITY, MASHHAD, IRAN *E-mail address*: mhassanimath@gmail.com

³MATHEMATICS, COLLEGE OF ENGINEERING & SCIENCE VICTORIA UNIVERSITY, PO Box 14428, MELBOURNE CITY, MC 8001, AUSTRALIA *E-mail address*: Sever.Dragomir@vu.edu.au