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EXPLICIT SOLUTION TO MODULAR OPERATOR EQUATION
TXS∗ − SX∗T ∗ = A

M. MOHAMMADZADEH KARIZAKI1, M. HASSANI2, AND S. S. DRAGOMIR3

Abstract. In this paper, by using some block operator matrix techniques, we find
explicit solution of the operator equation TXS∗−SX∗T ∗ = A in the general setting
of the adjointable operators between Hilbert C∗-modules. Furthermore, we solve
the operator equation TXS∗ − SX∗T ∗ = A, when ran(T) + ran(S) is closed.

1. Introduction and Preliminaries

The equation TXS∗ − SX∗T ∗ = A was studied by Yuan [8] for finite matrices
and Xu et al. [7] generalized the results to Hilbert C∗-modules, under the condition
that ran(S) is contained in ran(T). When T equals an identity matrix or identity
operator, this equation reduces to XS∗ − SX∗ = A, which was studied by Braden [1]
for finite matrices, and Djordjevic [3] for the Hilbert space operators. In this paper, by
using block operator matrix techniques and properties of the Moore-Penrose inverse,
we provide a new approach to the study of the equation TXS∗ − SX∗T ∗ = A for
adjointable Hilbert module operators than those with closed ranges. Furthermore, we
solve the operator equation TXS∗ − SX∗T ∗ = A, when ran(T) + ran(S) is closed.

Throughout this paper, A is a C∗-algebra. Let X and Y be two Hilbert A-modules,
and L(X,Y) be the set of the adjointable operators from X to Y. For any T ∈ L(X,Y),
the range and the null space of T are denoted by ran(T) and ker(T ) respectively. In
case X = Y, L(X,X) which we abbreviate to L(X), is a C∗-algebra. The identity
operator on X is denoted by 1X or 1 if there is no ambiguity.

Theorem 1.1. [5, Theorem 3.2] Suppose that T ∈ L(X,Y) has closed range. Then
• ker(T ) is orthogonally complemented in X, with complement ran(T∗);
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• ran(T) is orthogonally complemented in Y, with complement ker(T ∗);
• The map T ∗ ∈ L(Y,X) has closed range.

Xu and Sheng [6] showed that a bounded adjointable operator between two Hilbert
A-modules admits a bounded Moore-Penrose inverse if and only if it has closed range.
The Moore-Penrose inverse of T , denoted by T †, is the unique operator T ∈ L(X,Y)
satisfying the following conditions:

TT †T = T, T †TT † = T †, (TT †)∗ = TT †, (T †T )∗ = T †T.

It is well-known that T † exists if and only if ran(T) is closed, and in this case
(T †)∗ = (T ∗)†. Let T ∈ L(X,Y) be a closed range, then TT † is the orthogonal
projection from Y onto ran(T) and T †T is the orthogonal projection from X onto
ran(T∗). Projection, in the sense that they are self adjoint idempotent operators.

A matrix form of a bounded adjointable operator T ∈ L(X,Y) can be induced
by some natural decompositions of Hilbert C∗-modules. Indeed, if M and N are
closed orthogonally complemented submodules of X and Y, respectively, and X =
M⊕M⊥, Y = N ⊕N⊥, then T can be written as the following 2× 2 matrix

T =

[
T1 T2

T3 T4

]
,

where, T1 ∈ L(M,N), T2 ∈ L(M⊥,N), T3 ∈ L(M,N⊥) and T4 ∈ L(M⊥,N⊥). Note
that PM denotes the projection corresponding to M.

In fact T1 = PNTPM, T2 = PNT (1−PM), T3 = (1−PN)TPM and T4 = (1−PN)T (1−
PM).

Lemma 1.1 (see [4, Corollary 1.2.]). Suppose that T ∈ L(X,Y) has closed range. Then
T has the following matrix decomposition with respect to the orthogonal decompositions
of closed submodules X = ran(T∗)⊕ ker(T) and Y = ran(T)⊕ ker(T∗):

T =

[
T1 0
0 0

]
:

[
ran(T∗)
ker(T )

]
→
[

ran(T)
ker(T ∗)

]
,

where T1 is invertible. Moreover

T † =

[
T−11 0
0 0

]
:

[
ran(T)
ker(T ∗)

]
→
[
ran(T∗)
ker(T )

]
.

Remark 1.1. Let X and Y be two Hilbert A-modules, we use the notation X ⊕ Y to
denote the direct sum of X and Y, which is also a Hilbert A-module whose A-valued
inner product is given by〈(

x1

y1

)
,

(
x2

y2

)〉
= 〈x1, x2〉+ 〈y1, y2〉,

for xi ∈ X and yi ∈ Y, i = 1, 2. To simplify the notation, we use x ⊕ y to denote(
x
y

)
∈ X⊕ Y.
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Lemma 1.2 (see [2, Lemma 3.]). Suppose that X is a Hilbert A-module and S, T ∈

L(X). Then
[
T S
0 0

]
∈ L(X⊕ X) has closed range if and only if ran(T) + ran(S) is

closed, and [
T S
0 0

]†
=

[
T ∗(TT ∗ + SS∗)† 0
S∗(TT ∗ + SS∗)† 0

]
.

Lemma 1.3 (see [2, Corollary 4.]). Suppose that X is a Hilbert A-module and S, T ∈

L(X). Then
[
T 0
S 0

]
∈ L(X⊕ X) has closed range if and only if ran(T∗) + ran(S∗)

is closed, and [
T 0
S 0

]†
=

[
(T ∗T + S∗S)†T ∗ (T ∗T + S∗S)†S∗

0 0

]
.

2. Solutions to TXS∗ − SX∗T ∗ = A

In this section, we will study the operator equation TXS∗ − SX∗T ∗ = A in the
general context of the Hilbert C∗-modules. First, in the following theorem we solve to
the operator equation TXS∗ − SX∗T ∗ = A, in the case when S and T are invertible
operators.

Theorem 2.1. Let X,Y,Z be Hilbert A-modules, S ∈ L(X,Y) and T ∈ L(Z,Y) be
invertible operators and A ∈ L(Y). Then the following statements are equivalent:
(a) There exists a solution X ∈ L(X,Z) to the operator equation TXS∗−SX∗T ∗ = A;
(b) A = −A∗.
If (a) or (b) is satisfied, then any solution to

(2.1) TXS∗ − SX∗T ∗ = A, X ∈ L(X,Z),

has the form

X =
1

2
T−1A(S∗)−1 + T−1Z(S∗)−1,

where Z ∈ L(Y) satisfy Z∗ = Z.

Proof. (a) ⇒ (b): Obvious.
(b)⇒ (a): Note that, if A = −A∗ then X = 1

2
T−1A(S∗)−1 + T−1Z(S∗)−1 is a solution

to (2.1). The following sentences state this claim

T

(
1

2
T−1A(S∗)−1 + T−1Z(S∗)−1

)
S∗ − S

(
1

2
S−1A∗(T ∗)−1 + S−1Z∗(T ∗)−1

)
T ∗

=
1

2
(TT−1A(S∗)−1S∗ − SS−1A∗(T ∗)−1T ∗) + TT−1Z(S∗)−1S∗ − SS−1Z∗(T ∗)−1T ∗

=A+ Z − Z∗

=A.
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On the other hand, let X be any solution to (2.1). Then X = T−1A(S∗)−1 +
T−1SX∗T ∗(S∗)−1. We have

X = T−1A(S∗)−1 + T−1SX∗T ∗(S∗)−1

=
1

2
T−1A(S∗)−1 +

1

2
T−1A(S∗)−1 + T−1SX∗T ∗(S∗)−1

=
1

2
T−1A(S∗)−1 + T−1(

1

2
A+ SX∗T ∗)(S∗)−1.

Taking Z = 1
2
A+ SX∗T ∗, we get Z∗ = Z. �

Corollary 2.1. Suppose that Y,Z are Hilbert A-modules and T ∈ L(Z,Y) is invertible
operator, A ∈ L(Y). Then the following statements are equivalent:
(a) There exists a solution X ∈ L(Y,Z) to the operator equation TX −X∗T ∗ = A;
(b) A = −A∗.
If (a) or (b) is satisfied, then any solution to

TX −X∗T ∗ = A, X ∈ L(Y,Z),

has the form

X =
1

2
T−1A+ T−1Z,

where Z ∈ L(Y) satisfy Z∗ = Z.

In the following theorems we obtain explicit solutions to the operator equation

(2.2) TXS∗ − SX∗T ∗ = A,

via matrix form and complemented submodules.

Theorem 2.2. Suppose S ∈ L(Z,Y) is an invertible operator and T ∈ L(Z,Y) has
closed range and A ∈ L(Y). Then the following statements are equivalent:
(a) There exists a solution X ∈ L(Z) to (2.2);
(b) A = −A∗ and (1− TT †)A(1− TT †) = 0.
If (a) or (b) is satisfied, then any solution to (2.2) has the form

X =
1

2
T †ATT †(S∗)−1 + T †ZTT †(S∗)−1 + T †A(1− TT †)(S∗)−1 + (1− T †T )Y (S∗)−1,

(2.3)

where Z ∈ L(Y) satisfies T ∗(Z − Z∗)T = 0, and Y ∈ L(Y,Z) is arbitrary.

Proof. (a) ⇒ (b): Obviously, A = −A∗. Also,
(1− TT †)A(1− TT †) = (1− TT †)(TXS∗ − SX∗T ∗)(1− TT †)

= (T − TT †T )XS∗(1− TT †)− (1− TT †)SX∗(T ∗ − T ∗TT †)

= 0.

(b) ⇒ (a): Note that the condition (1 − TT †)A(1 − TT †) = 0 is equivalent to
A = ATT † + TT †A − TT †ATT †. On the other hand, since T ∗(Z − Z∗)T = 0, then
(Z − Z∗)T ∈ ker(T ∗) = ker(T †). Therefore T †(Z − Z∗)T = 0.
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Hence we have
1

2
TT †ATT † + TT †ZTT † + TT †A(1− TT †) + T (1− T †T )Y − 1

2
TT †A∗(T †)∗T ∗

− TT †Z∗(T †)∗T ∗ − (1− TT †)A∗(T †)∗T ∗ − Y ∗(1− T †T )T ∗

=ATT † + TT †A− TT †ATT † + TT †ZTT † − TT †Z∗(T †)∗T ∗

=A.

That is, any operator X of the form (2.3) is a solution to (2.2).
Now, suppose that

(2.4) X = X0(S
∗)−1, X0 ∈ L(Y,Z),

is a solution to (2.2). We let (2.4) in (2.2). Hence (2.2) get into the following equation

(2.5) TX0 −X∗0T
∗ = A, X0 ∈ L(Y,Z).

Since T has closed range, we have Z = ran(T∗) ⊕ ker(T) and Y = ran(T) ⊕ ker(T∗).
Now, T has the matrix form

T =

[
T1 0
0 0

]
:

[
ran(T∗)
ker(T )

]
→
[

ran(T)
ker(T ∗)

]
,

where T1 is invertible. On the other hand, A = −A∗ and (1− TT †)A(1− TT †) = 0
imply that A has the form

A =

[
A1 A2

−A∗2 0

]
:

[
ran(T)
ker(T ∗)

]
→
[

ran(T)
ker(T ∗)

]
,

where A1 = −A∗1. Let X0 have the form

X0 =

[
X1 X2

X3 X4

]
:

[
ran(T)
ker(T ∗)

]
→
[
ran(T∗)
ker(T )

]
.

Now by using matrix form for operators T , X0 and A, we have[
T1 0
0 0

] [
X1 X2

X3 X4

]
−
[
X∗1 X∗3
X∗2 X∗4

] [
T ∗1 0
0 0

]
=

[
A1 A2

−A∗2 0

]
,

or equivalently [
T1X1 −X∗1T

∗
1 T1X2

−X∗2T ∗1 0

]
=

[
A1 A2

−A∗2 0

]
.

Therefore
T1X1 −X∗1T

∗
1 = A1,

and

(2.6) T1X2 = A2.

Now, we obtain X1 and X2. By Lemma 1.1, T1 is invertible. Hence, Corollary 2.1
implies that

X1 =
1

2
T−11 A1 + T−11 Z1,
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where Z1 ∈ L(ran(T)) satisfy Z∗1 = Z1. Now, multiplying T−11 from the left to (2.6),
we get

(2.7) X2 = T−11 A2.

Hence
[

1
2
T−11 A1 + T−11 Z1 T−11 A2

X3 X4

]
is a solution to (2.5), such that X3, X4 are arbi-

trary operators. Let

Y =

[
Y1 Y2

X3 X4

]
:

[
ran(T)
ker(T ∗)

]
→
[
ran(T∗)
ker(T )

]
,

and

Z =

[
Z1 Z2

Z3 Z4

]
:

[
ran(T)
ker(T ∗)

]
→
[

ran(T)
ker(T ∗)

]
.

Then
1

2
T †ATT † =

[
1
2
T−11 A1 0
0 0

]
, T †ZTT † =

[
T−11 Z1 0

0 0

]
and

T †A(1− TT †) =

[
0 T−1A2

0 0

]
, (1− T †T )Y =

[
0 0
X3 X4

]
.

Consequently, X0 = 1
2
T †ATT † + T †ZTT † + T †A(1 − TT †) + (1 − T †T )Y , where

Z ∈ L(Y) satisfies T ∗(Z − Z∗)T = 0, and Y ∈ L(Y,Z) is arbitrary. �

In the following theorem we obtain explicit solution to the operator equation
TXS∗ − SX∗T ∗ = A when (1− Pran(S))T and S have closed ranges.

Theorem 2.3. Suppose that X,Y,Z are Hilbert A-modules, S ∈ L(X,Y), T ∈ L(Z,Y)
and A ∈ L(Y) and such that (1− SS†)T and S have closed ranges. If the equation

(2.8) TXS∗ − SX∗T ∗ = A, X ∈ L(X,Z),

is solvable, then

(2.9)
[

0 X
−X∗ 0

]
=

[
T S
0 0

]† [
A 0
0 0

] [
T ∗ 0
S∗ 0

]†
Proof. Taking H =

[
T S
0 0

]
: Z ⊕ X → Y ⊕ Y. The operator H has closed range,

since let {zn ⊕ xn} be sequence chosen in Z⊕X, {zn}, {xn} be sequences chosen in Z

and X, respectively such that T (zn) + S(xn)→ y for some y ∈ Y. Then

(1− SS†)T (zn) = (1− SS†)(T (zn) + S(xn))→ (1− SS†)(y).

Since ran((1−SS†)T) is assumed to be closed, (1−SS†)(y) = (1−SS†)T (z1) for some
z1 ∈ Z. It follows that y− T (z1) ∈ ker(1−SS†) = ran(S), hence y = T (z1) +S(x) for

some x ∈ X. Therefore H has closed range. Let Y =

[
0 X
−X∗ 0

]
: Z⊕ X→ Z⊕ X
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and H∗ =

[
T ∗ 0
S∗ 0

]
: Y⊕ Y→ Z⊕ X and B =

[
A 0
0 0

]
: Y⊕ Y→ Y⊕ Y, therefore

(2.8) get into

(2.10) HYH∗ = B.

Since H has closed range and (2.8) has solution, then (2.10) has solution, therefore
with multiplying HH† on the left and multiply H∗(H∗)† on the right, we have

Y = H†B(H∗)†. �

The proof of the following remark is the same as in the matrix case.

Remark 2.1. Let T ∈ L(Y,Z) and S ∈ L(X,Y) have closed ranges, and A ∈ L(X,Z).
Then the equation

(2.11) TXS = A, X ∈ L(Y),

has a solution if and only if
TT †AS†S = A.

In which case, any solution of (2.11) has the form

X = T †AS†.

Now, we solve to the operator equation TXS∗ − SX∗T ∗ = A in the case when
ran(T) + ran(S) is closed.

Theorem 2.4. Suppose that X is a Hilbert A-module, S, T,A ∈ L(X) such that
ran(T) + ran(S) is closed. Then the following statements are equivalent:
(a) There exists a solution X ∈ L(X) to the operator equation TXS∗ − SX∗T ∗ = A;
(b) A = −A∗ and Pran(TT∗+SS∗)APran(TT∗+SS∗) = A.
If (a) or (b) is satisfied, then any solution to

(2.12) TXS∗ − SX∗T ∗ = A, X ∈ L(X),

has the form

(2.13) X = T ∗(TT ∗ + SS∗)†A(TT ∗ + SS∗)†S.

Proof. (a) ⇒ (b) Suppose that (2.12) has a solution X ∈ L(X). Then obviously
A = −A∗. On the other hand, (2.12) get into

(2.14)
[
T S
0 0

] [
0 X
−X∗ 0

] [
T ∗ 0
S∗ 0

]
=

[
A 0
0 0

]
.

Since (2.12) is solvable, then (2.14) is solvable. Since ran(T) + ran(S) is closed, then

Lemma 1.2 implies that
[
T S
0 0

]†
exists. Hence, by Remark 2.1 we have[

T S
0 0

] [
T S
0 0

]† [
A 0
0 0

] [
T ∗ 0
S∗ 0

]† [
T ∗ 0
S∗ 0

]
=

[
A 0
0 0

]
.
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By applying Lemma 1.2, Corollary 1.3 are shown that[
T S
0 0

] [
T S
0 0

]† [
A 0
0 0

] [
T ∗ 0
S∗ 0

]† [
T ∗ 0
S∗ 0

]
=

[
T S
0 0

][
T ∗(TT ∗ + SS∗)† 0
S∗(TT ∗ + SS∗)† 0

][
A(TT ∗ + SS∗)†T A(TT ∗ + SS∗)†S

0 0

][
T ∗ 0
S∗ 0

]
=

[
(TT ∗ + SS∗)(TT ∗ + SS∗)†A(TT ∗ + SS∗)†(TT ∗ + SS∗) 0

0 0

]
=

[
Pran(TT∗+SS∗)APran((TT∗+SS∗)∗) 0

0 0

]
=

[
Pran(TT∗+SS∗)APran(TT∗+SS∗) 0

0 0

]
=

[
A 0
0 0

]
.

That is, Pran(TT∗+SS∗)APran(TT∗+SS∗) = A.
(b)⇒ (a): If Pran(TT∗+SS∗)APran(TT∗+SS∗) = A, then we have[

Pran(TT∗+SS∗)APran((TT∗+SS∗)∗) 0
0 0

]
=

[
Pran(TT∗+SS∗)APran(TT∗+SS∗) 0

0 0

]
=

[
A 0
0 0

]
,

or equivalently[
(TT ∗ + SS∗)(TT ∗ + SS∗)†A(TT ∗ + SS∗)†(TT ∗ + SS∗) 0

0 0

]
=

[
T S
0 0

] [
T S
0 0

]† [
A 0
0 0

] [
T ∗ 0
S∗ 0

]† [
T ∗ 0
S∗ 0

]
=

[
A 0
0 0

]
.

Therefore, Remark 2.1 implies that (2.14) is solvable and hence (2.12) is solvable.
Now, by applying Remark 2.1 and Lemma 1.2, Corollary 1.3 imply that[

0 X
−X∗ 0

]
=

[
T S
0 0

]† [
A 0
0 0

] [
T ∗ 0
S∗ 0

]†
=

[
T ∗(TT ∗ + SS∗)† 0
S∗(TT ∗ + SS∗)† 0

] [
A 0
0 0

] [
(TT ∗ + SS∗)†T (TT ∗ + SS∗)†S

0 0

]
=

[
T ∗(TT ∗ + SS∗)†A(TT ∗ + SS∗)†T T ∗(TT ∗ + SS∗)†A(TT ∗ + SS∗)†S
S∗(TT ∗ + SS∗)†A(TT ∗ + SS∗)†T S∗(TT ∗ + SS∗)†A(TT ∗ + SS∗)†S

]
.
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Therefore

T ∗(TT ∗ + SS∗)†A(TT ∗ + SS∗)†T = S∗(TT ∗ + SS∗)†A(TT ∗ + SS∗)†S = 0.

Consequently, X has the form (2.13). �

Using exactly similar arguments, we obtain the following analogue of Theorem 2.1,
in which to (2.1) is replaced by

(2.15) TXS∗ + SX∗T ∗ = A.

All results of this section can be rewritten for to (2.15), considering the following
theorem.

Theorem 2.5. Let X,Y,Z be Hilbert A-modules, S ∈ L(X,Y) and T ∈ L(Z,Y) be
invertible operators and A ∈ L(Y). Then the following statements are equivalent:
(a) There exists a solution X ∈ L(X,Z) to the operator equation TXS∗+SX∗T ∗ = A.
(b) A = A∗.
If (a) or (b) is satisfied, then any solution to

TXS∗ + SX∗T ∗ = A, X ∈ L(X,Z)

has the form

X =
1

2
T−1A(S∗)−1 − T−1Z(S∗)−1,

where Z ∈ L(Y) satisfy Z∗ = −Z.
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