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CHEN-LIKE INEQUALITIES ON LIGHTLIKE HYPERSURFACE OF
A LORENTZIAN PRODUCT MANIFOLD WITH

QUARTER-SYMMETRIC NONMETRIC CONNECTION

NERGİZ (ÖNEN) POYRAZ1 AND EROL YAŞAR2

Abstract. In this paper, we introduce k-Ricci curvature and k-scalar curvature on
lightlike hypersurface of a Lorentzian product manifold with quarter-symmetric non-
metric connection. Using these curvatures, we establish some Chen-type inequalities
for lighlike hypersurface of a Lorentzian product manifold with quarter-symmetric
nonmetric connection. Considering the equality case, we obtain some results.

1. Introduction

In [16], Golab introduced the idea of a quarter-symmetric linear connections in a
differential manifold. Later, the properties of Riemannian manifolds with quarter-
symmetric metric (nonmetric) connection have been studied by some authours [19,24].

Warped products were first defined by Bishop and O’Neill in [6]. In [2], Atçeken and
Kılıç introduced semi-invariant lightlike submanifolds of a semi-Riemannian product
manifold. In [20], Kılıç and Oğuzhan considered lightlike hypersurfaces with respect
to a quarter-symmetric nonmetric connection which is determined by the product
structure. They also gave some equivalent conditions for integrability of disributions
with respect to the Levi-Civita connection of semi-Riemannian manifold and the
quarter-symmetric nonmetric connection, and obtained some results.

In 1993, B. Y. Chen [9] introduced a new Riemannian invariant for a Riemannian
manifold M as follows:

δM(p) = τ(p)− inf(K)(p),
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where τ(p) is scalar curvature of M and

inf(K)(p) = inf{K(Π) : K(Π) is a plane section of TpM}.
In [9], B. Chen established a sharp inequality for submanifolds in a real space form
involving δM and the main extrinsic invariant, namely the squared mean curvature.

Afterwards, B. Y. Chen and some geometers studied similar problems for non-
degenerate submanifolds of different spaces such as in [8, 9, 17,28]. Later, Mihai and
Özgür in [22] proved Chen inequalities for submanifolds of real space forms endowed
with a semi-symmetric metric connection.

In degenerate submanifolds, M. Gülbahar, E. Kılıç and S. Keleş introduced k-Ricci
curvature, k-scalar curvature, k-degenerate Ricci curvature, k-degenerate scalar cur-
vature and they established some inequalities that characterize lightlike hypersurface
of a Lorentzian manifold in [17]. After, they established some inequalities involving
k-Ricci curvature, k-scalar curvature, the screen scalar curvature on a screen homo-
thetic lightlike hypersurface of a Lorentzian manifold and they computed Chen-Ricci
inequality and Chen inequality on a screen homothetic lightlike hypersurface of a
Lorentzian manifold in [18].

In this paper, we study Chen-type inequalities for screen homothetic lightlike hy-
persurface of a real product space form M̃(c) = M1(c1)×M2(c2) of constant sectional
curvature c, endowed with quarter-symmetric nonmetric connection. Considering
these inequalities, we obtain the relation between Ricci curvature and scalar curvature
endowed with the quarter-symmetric nonmetric connection.

2. Preliminaries

Let M be a hypersurface of an (n + 1)−dimensional, n > 1, semi-Riemannian
manifold M̃ with semi-Riemannian metric g̃ of index 1 ≤ ν ≤ n. We consider

TxM
⊥ =

{
Yx ∈ TxM̃ | g̃x (Yx, Xx) = 0, for all Xx ∈ TxM

}
,

for any x ∈M . Then we say that M is a lightlike (null, degenerate) hypersurface of
M̃ or equivalently, the immersion

i : M → M̃

of M in M̃ is lightlike (null, degenerate) if TxM ∩ TxM⊥ 6= {0} at any x ∈ M .
Henceforth we identify i (M) with M and we denote the differential di, immersing a
vector field X in M to a vector field φX in M̃ , by φ. Thus the induced metric tensor
g = g̃|M is defined by

g (X, Y ) = g̃(φX, φY ), for all X, Y ∈ Γ (TM) .

An orthogonal complementary vector bundle of TM⊥ in TM is non-degenerate
subbundle of TM called the screen distribution on M and denoted by S (TM). We
have the following splitting into orthogonal direct sum:

(2.1) TM = S (TM)⊥TM⊥.
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The subbundle S (TM) is non-degenerate, so is S (TM)⊥, and the following holds:

(2.2) TM̃ = S (TM)⊥S (TM)⊥ ,

where S (TM)⊥ is the orthogonal complementary vector bundle to S (TM) in TM̃
∣∣∣
M
.

Let tr(TM) denote the complementary vector bundle of TM⊥ in S (TM)⊥. Then
we have

(2.3) S (TM)⊥ = TM⊥ ⊕ tr(TM).

Let U be a coordinate neighbourhood in M and ξ be a basis of Γ(TM⊥
∣∣
U
). Then

there exists a basis N of tr (TM)|U satisfying the following conditions:

g̃(N, ξ) = 1,

and
g̃ (N,N) = g̃(W,N) = 0, for all W ∈ Γ(S (TM)|U).

The subbundle tr (TM) is called a lightlike transversal vector bundle of M . We note
that tr (TM) is never orthogonal to TM . From (2.1), (2.2) and (2.3) we have

TM̃
∣∣∣
M

= S (TM)⊥
(
TM⊥ ⊕ tr (TM)

)
= TM ⊕ tr (TM) .

Let
◦

∇̃ be the Levi-Civita connection of M̃ and P be the projection morphism of
Γ(TM) on Γ(S(TM)). The Gauss and Weingarten formulas are given

◦

∇̃XY =
◦
∇XY +B(X, Y )N,

◦

∇̃XY = −
◦
ANX + ω(X)N,(2.4)

◦
∇XPY =

∗
◦
∇XPY + C(X,PY )ξ,

◦
∇Xξ = −

∗
◦
AξX − ω(X)ξ,

for any X, Y ∈ Γ(TM), where
◦
∇ and

∗
◦
∇ are the induced linear connection on TM

and S(TM), respectively; B and C are the local second fundemental forms on TM

and S(TM), respectively;
◦
AN and

∗
◦
Aξ are the shape operators on TM and S(TM),

respectively; and ω is a 1-form on TM [14, 15]. Also, the local second fundamental
forms B and C of TM and S(TM), respectively; are related to their shape operators
◦
AN and

∗
◦
Aξ by

B(X, Y ) = g(

∗
◦
AξX, Y ),

C(X,PY ) = g(
◦
ANX,PY ).
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If B = 0, then the lightlike hypsersurface M is called totally geodesic in M̃ . A
point p ∈M is said to be umbilical if

B(X, Y )p = Hgp(X, Y ), X, Y ∈ Γ(TpM),

where H ∈ R. The lightlike hypsersurface M is called totally umbilical in M̃ if every
points of M is umbilical [14].

The mean curvature µ of M with respect to an orthonormal basis {e1, . . . , en} of
Γ(S(TM)) is defined in [5] as follows:

µ =
1

n
tr(B) =

1

n

n∑
i=1

εiB(ei, ei), g(ei, ei) = εi.

A Lightlike hypersurface (M, g) of a semi-Riemannian manifold (M̃, g̃) is called

screen locally conformal if the shape operators
◦
AN and

∗
◦
Aξ of M and S(TM), respec-

tively, are related by

◦
AN = ϕ

∗
◦
Aξ,

where ϕ is a non-vanishing smooth function on a neighbourhood U onM . In particular,
M is called screen homothetic if ϕ is non-zero constant [3].

We denote by
◦

R̃ the curvature tensor of M̃ with respect to Levi-Civita connection
◦

∇̃
and by

◦
R that of M with respect to induced connection

◦
∇. Then the Gauss equations

of M is given by
◦

R̃(X, Y )Z =
◦
R (X, Y )Z + Ah(X,Z)Y − Ah(Y,Z)X
+ (∇Xh)(Y, Z)− (∇Y h)(X,Z),

for X, Y , Z, W ∈ Γ(TM).
Let M be a two-dimensional non-degenerate plane. The number

Kij =
g(R(ej, ei)ei, ej)

g(ei, ei)g(ej, ej)− g(ei, ej)2

is called the sectional curvature of the plane section spanned by ei and ej at p ∈ M
[15].

Let p ∈M and ξ be null vector of TpM . A plane Π of TpM is said to be null plane
if it contains ξ and ei such that g(ξ, ei) = 0 and g(ei, ei) = εi = ±1. The null sectional
curvature of Π is given in [4] as follows

Knull
i =

g(Rp(ei, ξ)ξ, ei)

gp(ei, ei)
.
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The Ricci tensor R̃ic of M̃ and the induced Ricci type tensor R(0,2) ofM are defined
by

R̃ic(X, Y ) = trace{Z → R̃(Z,X)Y }, for all X, Y ∈ Γ(TM̃),

R(0,2)(X, Y ) = trace{Z → R(Z,X)Y }, for all X, Y ∈ Γ(TM),

where

R(0,2)(X, Y ) =
n∑
i=1

εig(R(ei, X)Y, ei) + g(R(ξ,X)Y,N),

for the quasi-orthonormal frame {e1, . . . , en, ξ} of TpM .
If M admits that an induced symmetric Ricci tensor Ric and Ricci tensor satisfy

Ric(X, Y ) = kg(X, Y ),

where k is a constant, then M is called an Einstein hypersurface [15].

3. Lorentzian Product Manifolds

In this section, we use the same notations and terminologies as in [20].
Let (M1, g1) and (M2, g2) be two (m1 + 1) and (m2 + 1) dimensional Lorentzian

manifolds with constant indexes q1 > 0, q2 > 0, respectively, and M̃ = (M1 ×M2, g̃)
be (m1 + m2 + 2)-dimensional differentiable manifold with a tensor field F of type
(1, 1) on M̃ such that

(3.1) F 2 = I.

Let π : M1×M2 →M1 and σ : M1×M2 →M2 be the projections which are given by
π(x, y) = x and σ(x, y) = y for any (x, y) ∈M1 ×M2. Then M̃ = M1 ×M2 is called
an almost product manifold with almost product structure F . If we put

π =
1

2
(I + F ), σ =

1

2
(I − F ),

then we have

π2 = π, σ2 = σ, πσ = σπ = 0, π + σ = I, F = π − σ,
where π and σ define two complementary distributions [20].

If an almost product manifold M̃ admits a Lorentzian metric g̃ such that

(3.2) g̃(FX,FY ) = g̃(X, Y ),

for any vector fields X, Y ∈ Γ(TM̃), then M̃ = M1 ×M2 is called Lorentzian almost
product manifold. From (3.1) and (3.2), we can easily see that

g̃(FX, Y ) = g̃(X,FY ).

If, for any vector fields X, Y on M̃ ,

(
◦

∇̃XF )Y = 0, that is
◦

∇̃XFY = F (
◦

∇̃XY ),
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then M̃ is called a Lorentzian product manifold, where
◦

∇̃ is the Levi-Civita connection
on M̃ (see, [20]).

Now, let M1 and M2 be real space forms with constant sectional curvatures c1 and

c2 respectively. Then the Riemannian curvature tensor
◦

R̃ of M̃ = M1(c1)×M2(c2) is
given by

◦

R̃(X, Y )Z =
1

16
(c1 + c2)

{
g̃(Y, Z)X − g̃(X,Z)Y

+ g̃(FY, Z)FX − g̃(FX,Z)FY
}

(3.3)

+
1

16
(c1 − c2)

{
g̃(FY, Z)X − g̃(FX,Z)Y

+ g̃(Y, Z)FX − g̃(X,Z)FY
}
,

for any X, Y, Z ∈ Γ(TM̃) [29].

Let (M̃, g̃, F ) be Lorentzian product manifold and
◦

∇̃ a Levi-Civita connection on
M̃ . A linear connection ∇̃ is said to be quarter-symmetric nonmetric connection if
the torsion tensor T̃ is of the form

T̃ (X, Y ) = π̃(Y )FX − π̃(X)FY,

where π̃ is a 1-form on M̃ with Q̃ as associated vector field, that is

g̃(Q̃,X) = π̃(X).

A linear connection ∇̃ is called a nonmetric connection if

(∇̃X g̃)(Y, Z) 6= 0.

Let M be a lightlike hypersurface of a Lorentzian product manifold (M̃, g̃). For
any X ∈ Γ(TM) we can write

(3.4) FX = fX + w(X)N,

where f is a (1, 1) tensor field and w is a 1-form on M given by w(X) = g̃(FX, ξ) =
g̃(X,Fξ).

Following [16], a quarter-symmetric non-metric connection ∇̃ on M̃ is given by

(3.5) ∇̃XY =
◦

∇̃XY + π̃(Y )FX,

for any vector fields X and Y of M .
From (3.5) the curvature tensor R̃ of the quarter-symmetric nonmetric connection
∇̃ is given by

(3.6) R̃(X, Y )Z =
◦

R̃(X, Y )Z + λ̃(X,Z)FY − λ̃(Y, Z)FX,
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for any vector fields X, Y ∈ Γ(TM), where λ̃ is a (0, 2) tensor given by λ̃(X,Z) =

(∇̃Xπ)((Z)− π(Z)π(FX).
Let M be a lightlike hypersurface of a Lorentzian product manifold (M̃, g̃) with

quarter-symmetric nonmetric connection ∇̃. Then the Gauss and Weingarten formulas
with respect to ∇̃ are given by, respectively,

∇̃XY = ∇XY + B̄(X, Y )N,(3.7)

∇̃XN = −ĀNX + τ̄(X)N,(3.8)

for any X, Y ∈ Γ(TM).
From (2.4), (3.4), (3.5), (3.7) and (3.8) we obtain

∇XY = ∇̊XY + π̃(Y )fX,

B̄(X, Y ) = B(X, Y ) + π̃(Y )w(X),

ĀNX = ANX − π̃(N)fX,

τ̄(X) = τ(X) + π̃(N)w(X),

for any X, Y ∈ Γ(TM).
Using (3.7) we have

(3.9) R(X, Y, Z, PW ) = R̃(X, Y, Z, PW )+B̄(Y, Z)C̄(X,PW )−B̄(X,Z)C̄(Y, PW ),

for any any X, Y, Z,W ∈ Γ(TM).
From (3.6) and (3.9)

g̃(R(X, Y )Z, PW ) = g̃(
◦

R̃(X, Y )Z, PW ) + B̄(Y, Z)C̄(X,PW )− B̄(X,Z)C̄(Y, PW )

+ λ̃(X,Z)g(FY, PW )− λ̃(Y, Z)g(FX,PW ),(3.10)

for any any X, Y, Z,W ∈ Γ(TM).
From now on, we will consider a Lorentzian product manifold M̃ endowed with a

quarter-symmetric nonmetric connection ∇̃ and the Levi-Civita connection denoted

by
◦

∇̃.

4. Chen-Ricci Inequality

In this section, we use the same notations and terminologies as in [17].
LetM be an (n+1)-dimensional lightlike hypersurface of a Lorentzian product man-

ifold M̃ = M1×M2 with a quarter-symmetric nonmetric connection and {e1, . . . , en, ξ}
be a basis of Γ(TM) where {e1, . . . , en} be an orthonormal basis of Γ(S(TM)) and
n = m1 + m2. For k ≤ n, we set πk,ξ = Span{e1, . . . , ek, ξ} is a (k + 1) dimensional
degenerate plane section and πk = Span{e1, . . . , ek} is k-dimensional non degenerate
plane section. Define k−degenerate Ricci curvature and k−Ricci curvature at a unit
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vector X ∈ Γ(TM) as follows:

Ricπk,ξ(X) = R(0,2)(X,X) =
k∑
j=1

g(R(ej, X)X, ej) + g̃(R(ξ,X)X,N),

Ricπk(X) = R(0,2)(X,X) =
k∑
j=1

g(R(ej, X)X, ej),

respectively [17]. Furthermore, k-degenerate scalar curvature and k-scalar curvature
at p ∈M are given by

τπk,ξ(p) =
k∑

i,j=1

Kij +
k∑
i=1

Knull
i +KiN ,

τπk(p) =
k∑

i,j=1

Kij,

respectively [17]. For k = n, πn = Span{e1, . . . , en} = Γ(S(TM)), we have the screen
Ricci curvature and the screen scalar curvature given by

RicS(TM)(e1) = Ricπn(e1) =
n∑
j=1

K1j = K12 + · · ·+K1n,

and

τS(TM) =
n∑

i,j=1

Kij,

respectively [17].
From (3.3) and (3.10) we can write

τS(TM)(p) =
1

16
(c1 + c2)

(
(izF )2 + n(n− 1)

)
+

1

8
(c1 − c2)(izF ) +

n∑
i,j=1

mij

+
n∑

i,j=1

B̄iiC̄jj − B̄ijC̄ji,(4.1)

where B̄ij = B̄(ei, ej), C̄ij = C̄(ei, ej) and m(ei, ej) = mij = λ̃(ei, ej)g(Fej, ei) −
λ̃(ej, ej)g(Fei, ei), for i, j ∈ {1, . . . , n}.

Let M be a screen homothetic lightlike hypersurface of an (n + 2)-dimensional
Lorentzian space form M̃(c). Then, from (4.1) we get

τS(TM)(p) =
1

16
(c1 + c2)

(
(izF )2 + n(n− 1)

)
+

1

8
(c1 − c2)(izF )

+
n∑

i,j=1

mij + ϕn2µ2 − ϕ
n∑

i,j=1

(B̄ij)
2.(4.2)
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Since the sectional curvature of screen homothetic lightlike hypersurface is symmet-
ric, we can denote the screen scalar curvature by rS(TM) as follows:

(4.3) rS(TM)(p) =
∑

1≤i<j≤n

Kij =
1

2

n∑
i,j=1

Kij =
1

2
τS(TM)(p).

By (4.3), (4.2) equality become

2rS(TM)(p) =
1

16
(c1 + c2)

(
(izF )2 + n(n− 1)

)
+

1

8
(c1 − c2)(izF )

+
n∑

i,j=1

mij + ϕn2µ2 − ϕ
n∑

i,j=1

(
B̄ij

)2
.(4.4)

Theorem 4.1. Let M be a screen homothetic lightlike hypersurface of a real product
space form M̃(c) = M1(c1)×M2(c2) of constant sectional curvature c, endowed with
quarter-symmetric nonmetric connection ∇̃. Then, the following statements are true.
(i) For X ∈ S1(TM) = {X ∈ S(TM) : 〈X,X〉 = 1}

RicS(TM)(X) ≤ 1

4
ϕn2µ2 +

1

32
(c1 + c2) (2(izF )ḡ(FX,X) + 3n− 4)

+
1

16
(c1 − c2)(n− 1)ḡ(FX,X)− 1

2

∑
2≤i<j≤n

mij

+
1

2

(
n∑
i=1

mii +
∑

1≤j<i≤n

mij +
n∑
j=2

m(X, ej)

)
.(4.5)

(ii) The equality case of (4.5) is satisfied by X ∈ T 1
p (M) if and only if

B̄(X, Y ) = 0, for all Y ∈ Tp(M) orthogonal to X,

B̄(X,X) =
n

2
µ.(4.6)

(iii) The equality case of (4.5) holds for all X ∈ T 1
p (M) if and only if either p is a

totally geodesic point or n = 2 and p is a totally umbilical point.

Proof. From (4.4) we get

1

4
ϕn2µ2 = rS(TM)(p)−

1

32
(c1 + c2)

(
(izF )2 + n(n− 1)

)
− 1

16
(c1 − c2)(izF )

− 1

2

n∑
i,j=1

mij +
1

4
ϕ
(
B̄11 − B̄22 − · · · − B̄nn

)2
+ ϕ

n∑
j=2

(
B̄1j

)2
− ϕ

m∑
2≤i<j≤n

(
B̄iiB̄jj −

(
B̄ij

)2)
.(4.7)
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Using (3.3) and (3.10) we also have

ϕ

m∑
2≤i<j≤n

(
B̄iiB̄jj −

(
B̄ij

)2)
=

∑
2≤i<j≤n

Kij −
∑

2≤i<j≤n

K̃ij

=
∑

2≤i<j≤n

Kij −
1

32
(c1 + c2)

(
(izF )2 − 2 (izF ) ḡ (Fe1, e1)

)
− 1

16
(c1 − c2) ((izF )− (n− 1)ḡ (Fe1, e1))

− 1

32
(c1 + c2)(n− 2)2 −

∑
2≤i<j≤n

mij.(4.8)

From (4.7) and (4.8) we obtain

RicS(TM)(e1) =
1

4
ϕn2µ2ϕ− 1

4
ϕ
(
B̄11 − B̄22 − · · · − B̄nn

)2 − ϕ n∑
j=2

(
B̄1j

)2
+

1

32
(c1 + c2) (2(izF )ḡ(Fe1, e1) + 3n− 4)−

∑
2≤i<j≤n

mij

+
1

16
(c1 − c2)(n− 1)ḡ(Fe1, e1)

+
1

2

(
n∑
i=1

mii +
∑

1≤j<i≤n

mij +
n∑
j=2

m1j

)
.(4.9)

If we put e1 = X as any vector of T 1
p (M) in (4.9) we obtain (4.5).

The equality case of (4.5) holds for X ∈ T 1
p (M) if and only if

(4.10) B̄12 = B̄13 = · · · = B̄1n = 0 and B̄11 = B̄22 + · · ·+Bnn,

equivalent to (4.6).
Now we prove the statement (iii). Assuming the equality case of (4.5) for all

X ∈ T 1
p (M), in view of (4.10), we have

(4.11) B̄ij = 0, i 6= j,

and

(4.12) 2B̄ii = B̄11 + B̄22 + · · ·+ B̄nn, i ∈ {1, . . . , n}.

From (4.12) we have 2B̄11 = 2B̄22 = · · · = 2B̄nn = B̄11 + B̄22 + · · ·+ B̄nn which implies
that

(n− 2)
(
B̄11 + B̄22 + · · ·+ B̄nn

)
= 0.

Thus, either B̄11 + B̄22 + · · ·+ B̄nn = 0 or n = 2. If B̄11 + B̄22 + · · ·+ B̄nn = 0, then in
view of (4.12), we get B̄ii = 0 for all i ∈ {1, . . . , n}. This together with (4.11) gives
B̄ij = 0 for all i, j ∈ {1, . . . , n}, that is, p is a totally geodesic point. If n = 2, then
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from (4.12), 2B̄11 = 2B̄22 = B̄11 + B̄22, which shows that p is a totally umbilical point.
The proof of the converse part is straightforward. �

We recall the following algebraic Lemma from [27].

Lemma 4.1. Let a1, a2, . . . , an, be n-real number (n > 1), then

1

n

(
n∑
i=1

ai

)2

≤
n∑
i=1

a2i

with equality if and only if a1 = a2 = · · · = an.

Theorem 4.2. Let M be a screen homothetic lightlike hypersurface of a real product
space form M̃(c) = M1(c1)×M2(c2) of constant sectional curvature c, endowed with
quarter-symmetric nonmetric connection ∇̃

τS(TM)(p) ≤ ϕn(n− 1)µ2 +
1

16
(c1 + c2)

(
(izF )2 + n(n− 1)

)
+

1

8
(c1 − c2)(izF ) +

n∑
i,j=1

mij,(4.13)

with equality if and only if p is a totally umbilical point.

Proof. From (4.2) we have

ϕn2µ2 = τS(TM)(p) + ϕ
n∑
i=1

(Bii)
2 + ϕ

∑
i 6=j

(Bij)
2 −

n∑
i,j=1

mij(4.14)

− 1

16
(c1 + c2)

(
(izF )2 + n(n− 1)

)
− 1

8
(c1 − c2)(izF ).

Using Lemma 4.1 we get

(4.15) nµ2 ≤
n∑
i=1

(Bii)
2.

Considering (4.14) and (4.15) we obtain (4.13). Equality case of (4.13) holds if and
only if

B̄11 = B̄22 = · · · = B̄nn,

the shape operator A∗ξ take the form:

(4.16) A∗ξ =


B̄11 0 · · · 0 0
0 B̄11 · · · 0 0
...

... . . . ...
...

0 0 · · · B̄11 0
0 0 · · · 0 0

 ,
which shows thatM is totally umbilical. This completes the proof of the theorem. �
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Also, the components of the second fundamental form B̄ and the screen second
fundamental form C̄ satisfy

(4.17)
n∑

i,j=1

B̄ijC̄ji =
1

2

{
n∑

i,j=1

(
B̄ij + C̄ji

)2 − n∑
i,j=1

(
B̄ij

)2
+
(
C̄ji
)2}

,

and

(4.18)
∑
i,j

B̄iiC̄jj =
1

2


(∑

i,j

B̄ii + C̄jj

)2

−

(∑
i

B̄ii

)2

−

(∑
j

Cjj

)2
 .

Theorem 4.3. Let M be lightlike hypersurface of a real product space form M̃(c) =
M1(c1)×M2(c2) of constant sectional curvature c, endowed with quarter-symmetric
nonmetric connection ∇̃. Then
(i)

τS(TM)(p) ≤ nµ traceAN +
1

2

n∑
i,j=1

((
B̄ij

)2
+
(
C̄ji
)2)

+
n∑

i,j=1

mij

+
1

16
(c1 + c2)

(
(izF )2 + n(n− 1)

)
+

1

8
(c1 − c2)(izF ).(4.19)

The equality case of (4.19) holds for all p ∈ M if and only if either M is a screen
homothetic lightlike hypersurface with ϕ = −1 or M is a totally geodesic lightlike
hypersurface.
(ii)

τS(TM)(p) ≥ nµ traceAN −
1

2

n∑
i,j=1

((
B̄ij

)2
+
(
C̄ji
)2)

+
n∑

i,j=1

mij

+
1

16
(c1 + c2)

(
(izF )2 + n(n− 1)

)
+

1

8
(c1 − c2)(izF ).(4.20)

The equality case of (4.20) holds for all p ∈ M if and only if either M is a screen
homothetic lightlike hypersurface with ϕ = 1 or M is a totally geodesic lightlike
hypersurface.
(iii) The equalities case of (4.19) and (4.20) hold at p ∈M if and only if p is a totally
geodesic point.

Proof. Using (4.1) and (4.17), we get

τS(TM)(p) =
n∑

i,j=1

B̄iiC̄jj −
1

2

n∑
i,j=1

(
B̄ij + C̄ji

)
+

1

2

n∑
i,j=1

((
B̄ij

)2
+
(
C̄ji
)2)

+
1

16
(c1 + c2)

(
(izF )2 + n(n− 1)

)
+

1

8
(c1 − c2)(izF ) +

n∑
i,j=1

mij,(4.21)

which yields (4.19).
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Since

(4.22)
1

2

((
B̄ij

)2
+
(
C̄ji
)2)

=
1

4

(
B̄ij + C̄ji

)2
+

1

4

(
B̄ij − C̄ji

)2
,

we obtain

τS(TM)(p) =
n∑

i,j=1

B̄iiCjj −
1

2

n∑
i,j=1

((
B̄ij

)2
+
(
C̄ji
)2)

+
1

2

n∑
i,j=1

(
B̄ij − C̄ji

)2
+

1

16
(c1 + c2)

(
(izF )2 + n(n− 1)

)
+

1

8
(c1 − c2)(izF ) +

n∑
i,j=1

mij,(4.23)

which yields (4.20). From (4.19), (4.20), (4.21) and (4.23) it is easy to get (i), (ii) and
(iii) statements.

By Theorem 4.3 we have the following corollary. �

Corollary 4.1. Let M be a screen homothetic lightlike hypersurface of a real product
space form M̃(c) = M1(c1)×M2(c2) of constant sectional curvature c, endowed with
quarter-symmetric nonmetric connection ∇̃. Then, we have

τS(TM)(p) ≤ ϕn2µ2 +
(1 + ϕ2)

2

n∑
i,j=1

(
B̄ij

)2
+

1

16
(c1 + c2)

(
(izF )2 + n(n− 1)

)
+

1

8
(c1 − c2)(izF ) +

n∑
i,j=1

mij.

and

τS(TM)(p) ≥ ϕn2µ2 − (1 + ϕ2)

2

n∑
i,j=1

(
B̄ij

)2
+

1

16
(c1 + c2)

(
(izF )2 + n(n− 1)

)
+

1

8
(c1 − c2)(izF ) +

n∑
i,j=1

mij.

Theorem 4.4. Let M be lightlike hypersurface of a real product space form M̃(c) =
M1(c1)×M2(c2) of constant sectional curvature c, endowed with quarter-symmetric
nonmetric connection ∇̃. Then, we have

τS(TM)(p) ≤
1

2

(
trace Ā

)2 − 1

2
(traceAN)2 − 1

4

n∑
i,j=1

(
B̄ij + C̄ji

)2
+

1

4

n∑
i,j=1

(
B̄ij − C̄ji

)2
+

1

16
(c1 + c2)

(
(izF )2 + n(n− 1)

)
+

1

8
(c1 − c2)(izF ) +

n∑
i,j=1

mij,(4.24)
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where

(4.25) Ā =


B̄11 + C̄11 B̄12 + C̄21 · · · B̄1n + C̄n1
B̄21 + C̄12 B̄22 + C̄22 · · · B̄2n + C̄n2

...
... . . . ...

B̄n1 + C1n B̄n2 + C̄2n · · · B̄nn + C̄nn

 .
The equality case of (4.24) holds for all p ∈M if and only if M is minimal.

Proof. From (4.1), (4.17) and (4.18) we get

τS(TM)(p) =
1

2

(∑
i,j

B̄ii + Cjj

)2

− 1

2

(∑
i

B̄ii

)2

− 1

2

(∑
j

Cjj

)2

− 1

2

n∑
i,j=1

(
B̄ij + C̄ji

)2
+

1

2

n∑
i,j=1

((
B̄ij)

2 + (C̄ji
)2)

+
n∑

i,j=1

mij

+
1

16
(c1 + c2)

(
(izF )2 + n(n− 1)

)
+

1

8
(c1 − c2)(izF ).(4.26)

From (4.22) we have

− 1

2

n∑
i,j=1

(
B̄ij + C̄ji

)2
+

1

2

n∑
i,j=1

(
B̄ij

)2
+
(
C̄ji
)2

=− 1

4

n∑
i,j=1

(
B̄ij + C̄ji

)2
+

1

4

n∑
i,j=1

(
B̄ij − C̄ji

)2
.(4.27)

If we put (4.27) in (4.26), we obtain

τS(TM)(p) =
1

2

(∑
i,j

B̄ii + Cjj

)2

− 1

2

(∑
i

B̄ii

)2

− 1

2

(∑
j

Cjj

)2

− 1

4

n∑
i,j=1

(
B̄ij + C̄ji

)2
+

1

4

n∑
i,j=1

(
B̄ij − C̄ji

)2
+

n∑
i,j=1

mij

+
1

16
(c1 + c2)

(
(izF )2 + n(n− 1)

)
+

1

8
(c1 − c2)(izF ).

The equality case of (4.24) satisfies then∑
i

B̄ii = 0.

This shows that M is minimal. �

By Theorem 4.4 we have the following corollary.
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Corollary 4.2. Let M be a screen homothetic lightlike hypersurface of a real product
space form M̃(c) = M1(c1)×M2(c2) of constant sectional curvature c, endowed with
quarter-symmetric nonmetric connection ∇̃

τS(TM)(p) ≤
(2ϕ+ 1)

2
n2µ2 − ϕ

n∑
i,j=1

(
B̄ij

)2
+

1

16
(c1 + c2)

(
(izF )2 + n(n− 1)

)
+

1

8
(c1 − c2)(izF ) +

n∑
i,j=1

mij.(4.28)

The equality case of (4.28) holds for all p ∈M if and only if M is minimal.

Theorem 4.5. Let M be lightlike hypersurface of a real product space form M̃(c) =
M1(c1)×M2(c2) of constant sectional curvature c, endowed with quarter-symmetric
nonmetric connection ∇̃. Then, we have

τS(TM)(p) ≤
n− 1

2n

(
trace Ā

)2 − 1

2
(traceAN)2 − 1

2
n2µ2 − 1

2

∑
i 6=j

(
B̄ij + C̄ji

)2
+

1

2

n∑
i,j=1

((
B̄ij

)2
+
(
C̄ji
)2)

+
1

16
(c1 + c2)

(
(izF )2 + n(n− 1)

)
+

1

8
(c1 − c2)(izF ) +

n∑
i,j=1

mij,(4.29)

where Ā is equal to (4.25).
The equality case of (4.29) holds for all p ∈M if and only if nµ = − traceAN .

Proof. From (4.26)

τS(TM)(p) =
1

2

(
trace Ā

)2 − 1

2
(traceAN)2 − 1

2
n2µ2 − 1

2

∑
i

(B̄ii + C̄ii)
2

− 1

2

∑
i 6=j

(
B̄ij + C̄ji

)2
+

1

2

n∑
i,j=1

((
B̄ij

)2
+
(
C̄ji
)2)

+
n∑

i,j=1

mij

+
1

16
(c1 + c2)

(
(izF )2 + n(n− 1)

)
+

1

8
(c1 − c2)(izF ).(4.30)

Using Lemma 4.1 and equality case of (4.30), we have

τS(TM)(p) ≤
1

2
(trace Ā)2 − 1

2
(traceAN)2 − 1

2
n2µ2 − 1

2n

∑
i

(B̄ii + C̄ii)
2

− 1

2

∑
i 6=j

(B̄ij + C̄ji)
2 +

1

2

n∑
i,j=1

(
B̄ij

)2
+
(
C̄ji
)2

+
n∑

i,j=1

mij

+
1

16
(c1 + c2)

(
(izF )2 + n(n− 1)

)
+

1

8
(c1 − c2)(izF ),
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which implies (4.29). The equality case of (4.29) holds, then

(4.31) B̄11 + C̄11 = · · · = B̄nn + C̄nn.

From (4.31) we get

(1− n)B̄11 + B̄22 + · · ·+ B̄nn + (1− n)C̄11 + C̄22 + · · ·+ C̄nn = 0,

B̄11 + (1− n)B̄22 + · · ·+ B̄nn + C̄11 + (1− n)C̄22 + · · ·+ C̄nn = 0,

...

B̄11 + B̄22 + · · ·+ (1− n)B̄nn + C̄11 + C̄22 + · · ·+ (1− n)C̄nn = 0.

By the above equations, we have

(n− 1)2(traceAN + nµ) = 0.

Since n 6= 1, we obtain nµ = − traceAN . �

By Theorem 4.5 we have the following corollary.

Corollary 4.3. Let M be screen homothetic lightlike hypersurface of a real product
space form M̃(c) = M1(c1)×M2(c2) of constant sectional curvature c, endowed with
quarter-symmetric nonmetric connection ∇̃. Then

τS(TM)(p) ≤ ϕn(n− 1)µ2 − (1 + ϕ2)

2
nµ2 − (1 + ϕ)2

2

∑
i 6=j

(
B̄ij

)2
+

(1 + ϕ2)

2

n∑
i,j=1

(
B̄ij

)2
+

1

16
(c1 + c2)

(
(izF )2 + n(n− 1)

)
+

1

8
(c1 − c2)(izF ) +

n∑
i,j=1

mij.(4.32)

The equality case of (4.32) holds for all p ∈M if and only if either ϕ = −1 or M is
minimal.

Theorem 4.6. Let M be lightlike hypersurface of a real product space form M̃(c) =
M1(c1)×M2(c2) of constant sectional curvature c, endowed with quarter-symmetric
nonmetric connection ∇̃. Then

τS(TM)(p) ≥
1

2

(
trace Ā

)2 − 1

2
(traceAN)2 − 1

2
n(n− 1)µ2 − 1

2

n∑
i,j=1

(
B̄ij + C̄ji

)2
+

1

2

∑
i 6=j

(
B̄ij

)2
+

1

2

n∑
i,j=1

(
C̄ji
)2

+
1

16
(c1 + c2)

(
(izF )2 + n(n− 1)

)
+

1

8
(c1 − c2)(izF ) +

n∑
i,j=1

mij.(4.33)

The equality case of (4.33) holds for all p ∈ M if and only if p is a totally umbilical
point.
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Proof. From (4.26)

τS(TM)(p) =
1

2

(
trace Ā

)2 − 1

2
(traceAN)2 − 1

2
n2µ2 +

1

2

∑
i

(
B̄ii

)2
+

1

2

∑
i 6=j

(
B̄ij

)2
+

1

2

n∑
i,j=1

(
C̄ji
)2 − 1

2

n∑
i,j=1

(
B̄ij + C̄ji

)2
+

n∑
i,j=1

mij

+
1

16
(c1 + c2)

(
(izF )2 + n(n− 1)

)
+

1

8
(c1 − c2)(izF ).(4.34)

Using Lemma 4.1 and equality case of (4.34) we have

τS(TM)(p) ≥
1

2

(
trace Ā

)2 − 1

2
(traceAN)2 − 1

2
n2µ2 +

1

2n

(∑
i

B̄ii

)2

+
1

2

∑
i 6=j

(
B̄ij

)2
+

1

2

n∑
i,j=1

(
C̄ji
)2 − 1

2

n∑
i,j=1

(
B̄ij + C̄ji

)2
+

n∑
i,j=1

mij

+
1

16
(c1 + c2)

(
(izF )2 + n(n− 1)

)
+

1

8
(c1 − c2)(izF ),

which implies (4.33). Equality case of (4.33) holds if and only if B̄11 = · · · = B̄nn the
shape operator A∗ξ take the form as (4.16), which shows that M is totally umbilical.
This completes the proof of the theorem. �

By Theorem 4.6 we have the following corollary.

Corollary 4.4. Let M be screen homothetic lightlike hypersurface of a real product
space form M̃(c) = M1(c1)×M2(c2) of constant sectional curvature c, endowed with
quarter-symmetric nonmetric connection ∇̃. Then

τS(TM)(p) ≥
(2ϕ+ 1)

2
n2µ2 − 1

2
n(n− 1)µ2 − (2ϕ+ 1)

2

n∑
i,j=1

(
B̄ij

)2
+

1

16
(c1 + c2)

(
(izF )2 + n(n− 1)

)
+

1

8
(c1 − c2)(izF ) +

n∑
i,j=1

mij.(4.35)

The equality case of (4.35) holds for all p ∈ M if and only if p is a totally umbilical
point.
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