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ON A CONVEXITY PROPERTY

SLAVKO SIMIĆ

Abstract. In this article we proved an interesting property of the class of contin-
uous convex functions. This leads to the form of pre-Hermite-Hadamard inequality
which in turn admits a generalization of the famous Hermite-Hadamard inequality.
Some further discussion is also given.

1. Introduction

Most general class of convex functions is defined by the inequality

φ(x) + φ(y)

2
≥ φ

(
x+ y

2

)
.

A function which satisfies this inequality in a certain closed interval I is called
convex in that interval. Geometrically it means that the midpoint of any chord of the
curve y = φ(x) lies above or on the curve.

Denote now by Q the family of weights i.e., non-negative real numbers summing to
1. If φ is continuous, then the inequality

(1.1) pφ(x) + qφ(y) ≥ φ(px+ qy)

holds for any p, q ∈ Q. Moreover, the equality sign takes place only if x = y or φ is
linear (cf. [1]).

The same is valid for so-called Jensen functional, defined as

Jφ(p,x) :=
∑

piφ(xi)− φ
(∑

pixi

)
,

where p = {pi}n1 ∈ Q, x = {xi}n1 ∈ I, n ≥ 2.
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Geometrically, the inequality (1.1) asserts that each chord of the curve y = φ(x)
lies above or on the curve.

2. Results and Proofs

Main contribution of this paper is the following

Proposition 2.1. Let f(·) be a continuous convex function defined on a closed interval
[a, b] := I. Denote

F (s, t) := f(s) + f(t)− 2f

(
s+ t

2

)
.

Prove that

(2.1) max
s,t∈I

F (s, t) = F (a, b).

Proof. It suffices to prove that the inequality

F (s, t) ≤ F (a, b)

holds for a < s < t < b.
In the sequel we need the assertion stated in Lemma 2.1 (which is of independent

interest).

Lemma 2.1. Let f(·) be a continuous convex function on some interval I ⊆ R. If
x1, x2, x3 ∈ I and x1 < x2 < x3, then
(i) f(x2)−f(x1)

2
≤ f

(
x2+x3

2

)
− f

(
x1+x3

2

)
;

(ii) f(x3)−f(x2)
2

≥ f
(
x1+x3

2

)
− f

(
x1+x2

2

)
.

We shall prove the first part of the lemma; proof of the second part goes along the
same lines.

Since x1 < x2 < (x2 + x3)/2 < x3, there exist p, q; 0 ≤ p, q ≤ 1, p + q = 1 such
that x2 = px1 + q(x2+x3

2
). Hence,

f(x1)− f(x2)
2

+ f

(
x2 + x3

2

)
=

1

2

[
f(x1)− f

(
px1 + q

x2 + x3
2

)]
+ f

(
x2 + x3

2

)
≥ 1

2

[
f(x1)−

(
pf(x1) + qf

(
x2 + x3

2

))]
+ f

(
x2 + x3

2

)
=
q

2
f(x1) +

2− q
2

f

(
x2 + x3

2

)
≥ f

(
q

2
x1 +

2− q
2

(
x2 + x3

2

))
= f

(
q

2
x1 +

(
x2 + x3

2

)
− 1

2
(x2 − px1)

)
= f

(
x1 + x3

2

)
.
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For the proof of second part we can take x2 = p
(
x1+x2

2

)
+ qx3 and proceed as above.

Now, applying the part (i) with x1 = a, x2 = s, x3 = b and the part (ii) with x1 = s,
x2 = t, x3 = b, we get

(2.2)
f(s)− f(a)

2
≤ f

(
s+ b

2

)
− f

(
a+ b

2

)
;

(2.3)
f(b)− f(t)

2
≥ f

(
s+ b

2

)
− f

(
s+ t

2

)
,

respectively.
Subtracting (2.2) from (2.3), the desired inequality follows. �

Remark 2.1. A challenging task is to find a geometric proof of the property (2.1).

We shall quote now a couple of important consequences. The first one is used in a
number of articles although we never saw a proof of it.

Corollary 2.1. Let f be defined as above. If x, y ∈ [a, b] and x+ y = a+ b, then

f(x) + f(y) ≤ f(a) + f(b).

Proof. Obvious, as a simple application of Proposition 2.1. �

Corollary 2.2. Under the conditions of Proposition 2.1, the double inequality

(2.4) 2f

(
a+ b

2

)
≤ f(pa+ qb) + f(pb+ qa) ≤ f(a) + f(b)

holds for arbitrary weights p, q ∈ Q.
Proof. Applying Proposition 2.1 with s = pa + qb, t = pb + qa; s, t ∈ I we get the
right-hand side of (2.4). The left-hand side inequality is obvious since, by definition,

f(pa+ qb) + f(pb+ qa)

2
≥ f

[
(pa+ qb) + (pb+ qa)

2

]
= f

(
a+ b

2

)
.

�

Remark 2.2. The relation (2.4) represents a kind of pre-Hermite-Hadamard inequalities.
Indeed, integrating both sides of (2.4) over p ∈ [0, 1], we obtain the form of Hermite-
Hadamard inequality (cf. [2]),

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(t)dt ≤ f(a) + f(b)

2
.

Moreover, the inequality (2.4) admits a generalization of the Hermite-Hadamard
inequality.

Proposition 2.2. Let g be an arbitrary non-negative and integrable function on I.
Then, with f defined as above, we get

(2.5) 2f

(
a+ b

2

)∫ b

a

g(t)dt ≤
∫ b

a

(g(t)+g(a+b−t))f(t)dt ≤ (f(a)+f(b))

∫ b

a

g(t)dt.
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Proof. Multiplying both sides of (2.4) with g(pa+ qb) and integrating over p ∈ [0, 1],
we obtain

2f

(
a+ b

2

) ∫ b
a
g(t)dt

b− a
≤
∫ b
a
(f(t) + f(a+ b− t))g(t)dt

b− a
≤ (f(a) + f(b))

∫ b
a
f(t)dt

b− a
,

and, because∫ b

a

(f(t) + f(a+ b− t))g(t)dt =
∫ b

a

(g(t) + g(a+ b− t))f(t)dt,

the inequality (2.5) follows. �

We shall give in the sequel some illustrations of this proposition.

Corollary 2.3. For any f that is convex and continuous on I := [a, b], 0 < a < b and
α ∈ R/{0}, we have

2f

(
a+ b

2

)
≤ α

bα − aα

∫ b

a

[
tα−1 + (a+ b− t)α−1

]
f(t)dt ≤ f(a) + f(b).

Also, for α→ 0, we get

Corollary 2.4.

2f

(
a+ b

2

)
log(b/a)

a+ b
≤
∫ b

a

f(t)

t(a+ b− t)
dt ≤ [f(a) + f(b)]

log(b/a)

a+ b
.

Similarly,

Corollary 2.5.

2f
(π
2

)
≤
∫ π

0

f(t) sin tdt ≤ f(0) + f(π);

2f
(π
4

)
≤
∫ π/2

0

[sin t+ cos t]f(t)dt ≤ f(0) + f
(π
2

)
.

Estimations of the convolution of symmetric kernel on a symmetric interval are also
of interest.

Corollary 2.6. Let f and g be defined as above on a symmetric interval [−a, a], a > 0.
Then we have that

2f(0)

∫ a

−a
g(t)dt ≤

∫ a

−a
[g(−t) + g(t)]f(t)dt ≤ [f(−a) + f(a)]

∫ a

−a
g(t)dt.

Remark 2.3. There remains the question of possible extensions of the relation (2.1).
In this sense one can try to prove, along the lines of the proof of (2.1), that

max
p,q∈Q;x,y∈[a,b]

F ∗(p, q;x, y) = F ∗(p, q; a, b),

where
F ∗(p, q;x, y) := pf(x) + qf(y)− f(px+ qy).
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Anyway the result will be wrong, as simple examples show (apart from the case
f(x) = x2).

On the other hand, it was proved in [3] that for pi ∈ Q and xi ∈ [a, b] there exist
p, q ∈ Q such that

(2.6) Jf (p,x) =
∑

pif(xi)− f
(∑

pixi

)
≤ pf(a) + qf(b)− f(pa+ qb),

for any continuous function f which is convex on [a, b].
Therefore, an important conclusion follows.

Corollary 2.7. For arbitrary pi ∈ Q and xi ∈ [a, b], we have that∑
pif(xi)− f

(∑
pixi

)
≤ max

p
[pf(a) + qf(b)− f(pa+ qb)] := Tf (a, b),

where Tf (a, b) is an optimal upper global bound, depending only on a and b (cf. [3]).

An answer to the above remark is given by the next

Proposition 2.3. If f is continuous and convex on [a, b], then

max
p,q∈Q;x,y∈[a,b]

F ∗(p, q;x, y) ≤ F (a, b).

Proof. We shall prove just that

F ∗(p, q;x, y) ≤ F (x, y),

for all p, q ∈ Q and x, y ∈ [a, b].
Indeed,

F (x, y)− F ∗(p, q;x, y) = qf(x) + pf(y) + f(px+ qy)− 2f

(
x+ y

2

)
≥ f(qx+ py) + f(px+ qy)− 2f

(
x+ y

2

)
≥ 2f

(
(qx+ py) + (px+ qy)

2

)
− 2f

(
x+ y

2

)
= 0.

The rest of the proof is an application of Proposition 2.1. �

Putting there x = a, y = b and combining with (2.6), we obtain another global
bound for Jensen functional.

Corollary 2.8. We have that

Jf (p,x) ≤ f(a) + f(b)− 2f

(
a+ b

2

)
:= T ′f (a, b).

The bound T ′f (a, b) is not so precise as Tf (a, b) but is much easier to calculate.
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