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BERGMAN-TYPE INTEGRAL OPERATORS ON SEMIPRODUCTS
OF THE TUBE DOMAINS OVER SYMMETRIC CONES AND

MULTIFUNCTIONAL ANALYTIC SPACES

S. KURILENKO1 AND R. SHAMOYAN1

Abstract. We introduce new Bergman type operators in semiproducts of tubular
domains over symmetric cones. Properties of such Bergman-type integral operators
on semi-products of the tubular domains over symmetric cones are obtained. We
also define new multifunctional analytic spaces in tubular domains over symmetric
cones and provide their basic properties.

1. Introduction

The goal of this paper is to provide complete analogues of our previous results from
[17,27] in the unit disk and unit ball in context of more complicated tubular domains
over symmetric cones.

This paper consists of two separate parts. The first part is devoted to new assertions
on integral Bergman-type operators acting on some new Bergman type spaces in prod-
ucts (or semi-products) of tubular domains over symmetric cones and the second one
with related new analytic multifunctional spaces in tubular domains over symmetric
cones. Previously it was noted these two topics are related in simpler domains in
the unit disk and in the unit ball (see [17, 26, 27]). Parallel assertions are also valid
in context of general bounded strictly pseudoconvex domains with smooth bound-
ary (see [29, 32]). To summarize this paper and [29, 32] show in most typical Siegel
domains such as bounded strongly pseudonconvex domains with smooth boundary
and unbounded tubular domains over symmetric cones main assertions from [17,27]
are also valid. It is a fundamental fact of the theory of analytic Bergman function
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spaces in the unit disk that the Bergman projection is a bounded operator in analytic
Bergman Apα spaces, 1 < p <∞, α > −1 in the unit disk D (see [12,21,25,33]). This
fact alone has many application in function theory of one complex variables, and also
in operator theory and related areas. Various analogues and extensions of this result
to various domains in one and higher dimension and various related function spaces in
one and higher dimension and their applications are also well-known in literature. We
refer the reader again to [12,21,25,33] and to various references there. To formulate
this basic result in the unit disk we need several basic definitions.

Let D be a unit disk in complex plane C. Let H(D) be the spaces of all analytic
functions in the unit disk.

Then let

Aαp (D) =

f ∈ H(D) :

∫
D

|f(z)|p(1− |z|)α dm2(z) <∞

 , for 1 < p <∞, α > −1

be the classical Bergman space in the unit disk. Replacing as usual A by L we get
the corresponding class of measurable functions in the unit disk. We denote as usual
by dm2 the Lebeques measure in the unit disk D. These spaces are Banach spaces.

Theorem 1.1 (see [12]). The Bergman projection

Tβ(F )(z) =

∫
D

Qβ(z, w)F (w)(1− |w|)β dm2(w),

is a bounded operator from Lpα to Apα and moreover the following estimate is valid.∥∥∥∥∫
D

Qβ(z, w)F (w)(1− |w|)β dm2(w)

∥∥∥∥
Apα

≤ c‖F‖Lpα ,

where β > 1+α
p
− 1, α > −1, 1 < p <∞, Qα(z, w) = (1+α)

π(1−zw̄)2+α , z, w ∈ D.

A complete analogue of this theorem is valid in simplest high-dimensional domains
in Cn namely in the unit ball and polydisk (see, for example, [12, 21, 22, 25, 33] and
various references there). They also serve as a base of many assertions in function
theory, but of several complex variables (in the unit polydisk and in the unit ball).

The intention of this paper is to search new complete extensions of Theorem 1.1 in
more difficult unbounded domains in higher dimension namely in tubular domains over
symmetric cones in Cn. These issues were under intensive study during last decade
(see, for example, [2,4,23,24,30] and references there). Note also to find applications of
such type theorems in tubular domain over symmetric cones is also an important issue
and various aspects of this topic can be seen in recent papers [2,4,23,24,30]. Our work
on the other hand is also related to issues related to product or semiproduct domains.
The product domains are very vital simply since they are the simplest examples
of domains with non-smooth boundaries. Recently many papers appeared in this
direction. As example we mention that in [11] and [10] authors recently studied the
existence and regularity of the well-known d-problem (equation) on product domains.



196 S. KURILENKO AND R. SHAMOYAN

We refer the reader also to [9] for some recent results on function spaces on product
domains related with studies of regularity of the d-problem using various techniques. In
particular various embeddings of function spaces on product domains have important
applications in [11] and [10]. Bergman type integral operators we consider in this
paper may have direct applications in various embedding theorems as we see that in
one dimension. Analytic function spaces on product domains were under intensive
study recently (see, for example, [7, 11, 14, 15, 21, 32] and various references there).
Various other related problems of analytic function theory in tubular domain over
symmetric cones were under attention over last two decades and this paper can be
also considered as some continuation of that research at the same time.

The theory of one functional analytic spaces on convex and pseudoconvex domains
is well-developed by various authors during last decades (see [8, 16, 18] and various
references there). One of the goals of this paper among other things is to define
for the first time in literature multifunctional analytic spaces in tubular domains
over symmetric cones and to establish some basic properties of these spaces. We
believe this new interesting objects can serve as a base for further generalizations
and investigations in this active research area. Multifunctional spaces we mentioned
above are closely connected also with so-called analytic function spaces on products
of strictly tubular domains over symmetric cones TmΩ = TΩ × · · · × TΩ. Various such
connections in the unit ball in Cn and harmonic function spaces were found and
studied recently in [1, 17, 26]. We note basic properties of last spaces on product
domains are closely connected on the other hand with so-called Trace operator (see
[1, 17]). Next in the final part of this paper we will turn to the study of certain new
embedding theorems for some new mixed norm analytic classes in tubular domains
over symmetric cones in Cn. At the end of paper various related to this topic remarks
will be added.

We denote by c, c1, cα, . . . various positive constants in various inequalities below.

2. Basic Preliminaries on Symmetric Cones Ω and Determinant
Function

We first shortly remind the readers some basic facts on symmetric cones (see
[2–4,23,24]). A subset Ω of Rn or V , so that dim V = n to be a cone if λx ∈ Ω, for
all x ∈ Ω, λ > 0, if λx + µy ∈ Ω for all x, y ∈ Ω, λ, µ > 0 then it is convex. Let in
addition Ω∗ = {y ∈ Rn : (y/x) > 0, for all x ∈ Ω̄\{0}} and Ω∗ = Ω. This type open
cone is selfdual (Ω∗ is dual cone).

Let G(Ω) = {g ∈ Gl(Rn) : gΩ = Ω}, where Gl(Rn) denotes the group of all linear
invertible transformation of Rn. If for all x, y ∈ Ω, y = gx, for some g ∈ G(Ω) then
our open convex cone Ω is homogeneous, if also Ω∗ = Ω then it is symmetric cone.
These are one of the main objects of this paper.

If the equation Ω = Ω1 + Ω2 is not possible for each V1 ⊂ Rn, V2 ⊂ Rn, then our
cone is irreducible, here Vi 6= ∅, i = 1, 2 (Ω1, Ω2 are symmetric cones), where also
Ωi ⊂ Vi, i = 1, 2.
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We remind shortly the reader now basic facts on determinant ∆t(Im z), z ∈ Cn,
t ∈ (0,∞). We fix V - a simple Euclidean Jordan algebra with rank r.

(a) A Jordan algebra V over R is said to be Euclidean if there exists a positive defi-
nite bilinear symmetric form on V which is associative (L(x)u/v) = (u, L(x)v),
where (u, v) is an inner product on Rn, for all x, u, v ∈ V ;

(b) A Jordan algebra is simple if all it’s ideals are trivial;
(c) We define rank of V .
If x ∈ V , m(x) = min{k > 0 : (l, x, x2, . . . , xk) are linearly dependent}, then

1 ≤ m(x) ≤ dim V and r = max{m(x) : x ∈ V }, we say rank of V is r.
According to spectral theorem if V has rank r, then x =

∑r
i=1 λici; λi ∈ R; ci - are

elements of so called Jourdan frame, and {λi} are determined uniquely by x (with
their multiplicities). We fix now a Peirce decomposition of V = ⊕1≤i≤j≤rVij; (we
formally look at V as a space of symmetric matrices (Vij), Vii = Rci, where R is a
special mapping (see [13]), Vij = V (ci, 1/2) ∩ V (ci, 1/2) = {x ∈ V : cix = cjx = x

2
},

i < j, dim Vij = d = 2n/r−1
r−1

). We denote by Pij the orthogonal projection of V onto
Vij for i ≤ j. Finally we denote by ∆j(x), j = 1, . . . , r, the principal minors of x ∈ V
with respect to the fixed Jordan frame {c1, . . . , cr}. That is ∆k(x) is the determinant
of the projection Pkx of x in the Jordan subalgebra V (k) = ⊕1≤i≤j≤rVij.

It is well-known that Ω = {x ∈ V : ∆k(x) > 0 : k = 1, . . . , r}. We have also
∆k(mx) = ∆k(x), x ∈ V , m ∈ Z+, m > 0. See other properties of ∆k in [2, 24].

We define ∆s(x) =
∏r

j=1 ∆
sj−sj+1
j (x) = ∆s1−s2

1 (x) . . .∆Sr
r (x), x ∈ Ω, s ∈ Cr. We

have that |∆s| = ∆(Im z) and ∆s

∑r
i=1 aici =

∏r
i=1 a

si
i ; ai > 0, i = 1, . . . , r.

To formulate our theorems we will need basic facts of theory of analytic function
spaces in tubular domains over symmetric cones taken from [4,23,24]. Let dv(w) and
dvα(w) = [∆α−n

r (v)] du dv, α > n/r − 1, be a standard Lebesque measure in tubular
domains over symmetric cone TΩ and weighted Lebesque measure in tube, w = u+ iv.
The weighted Bergman kernel Bν of TΩ is given as usual by

Bν(w, z) = (dν)∆

(
w − z̄
i

)−ν−n
r

, w, z ∈ TΩ, ν ∈ R,

is a Bergman constant, where

dν =
(
c−1
ν

)
Γ
(
ν +

n

r

)
.

Let Ω be an irreducible symmetric cone in the Euclidean space V , and TΩ = V + iΩ
the corresponding tube domain in the complexified space V C. We shall note n the
dimension of V and r the rank of Ω. Moreover, we shall denote by (x|y) the scalar
product in V , and by ∆ the determinant function. For the description of such cones
Ω in terms of Jordan algebras, one may use the book of Faraut and Koranyi [13]. One
may also have in mind the typical example that one obtains when V is the space of
real symmetric r × r matrices, and Ω is the cone of positive definitive matrices. In
this example, the scalar product on V is induced by the Hilbert-Schmidt norm of the
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matrices, and the determinant function is given by the determinant of the matrices.
The rank is r, while the dimension is r(r+1)

2
.

We shall also make use the generalized wave operator on V , given by � = ∆(1
i
∂
∂x

).
This is a differential operator of degree r, defined by the equality

∆

(
1

i

∂

∂x

)
[ei(z|ζ)] = ∆(ζ)ei(x|ζ), ζ ∈ V.

It’s name is due to another fundamental example, given by the forward light cone
in Rn, {

x ∈ Rn;x1 >
√
x2

2 + · · ·+ x2
n

}
,

which is of rank 2. In this case, the determinant function is equal to

∆(x) = x2
1 − x2

2 − · · · − x2
n.

3. Basic Lemmas and Theorems on Bergman Spaces and Bergman Type
Integral Operators

In this section several known assertions on determinant function, Bergman kernel,
Bergman spaces will be given. Almost all assertions will be used by us later.

Let TΩ be the tube domain over symmetric cone, and H(TΩ) be the space of all
analytic functions in tube (see [2]). We define Bergman spaces for 1 ≤ p, q <∞, γ >
n
r
− 1. Let

(Ap,qγ )(TΩ) =

f ∈ H(TΩ) :

(∫
Ω

(∫
Rn
|f(x+ iy)|p dx

) q
p (

∆γ−n
r (y)

)
dy

) 1
q

<∞

 .

Replacing A by L and H by L1 we get as usual known larger spaces of measurable
functions in tube TΩ. Note

(
Ap,qγ

)
= {0} if γ ≤ n

r
− 1 (see [2]).

These spaces are Banach spaces. We will provide below some known facts in these
analytic spaces in tube TΩ. We will need them for our proofs below.

Lemma 3.1 (Whitney decomposition of the cone Ω, see [2]). Let δ > 0. Given
y ∈ Ω we denote Bδ(y) = {ζ ∈ Ω : d(ζ, y) < δ}; where d : (Ω × Ω) → (R+) is a
distance function, see [2]. There exist a sequence of points of Ω such that the following
properties hold.

1) The balls Bδ(ζk) are pairwise disjoint;
2) the balls Bδ(ζk) form a covering of Ω;
3) there is an integer N = N(Ω) such that every y ∈ Ω belongs to at most N balls

Bδ(ζk) (finite overlapping property).

As a consequence we have [2] a natural covering of the cone and R+ with invariant
balls and the dyadic decomposition of (0,∞), (2j−1, 2j+1) = [Blog 2(2j)] = {p ∈ Ω :
d(p, 2j) < log 2}, j ∈ Z (see [2]).

Let Bδ(zj) = Bj be the Bergman ball in tube (see [2]).
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Lemma 3.2 (Whitney decomposition of tube, see [2]). Given δ ∈ (0, 1] there exist a
sequence {zj} of points of TΩ such that if Bj = Bδ(zj) : B′j = Bδ/3(zj)

1) the balls (B′j) are pairwise disjoint;
2) the balls (Bj) form a cover of TΩ;
3) there exists a positive integer N = N(Ω) (independent of δ) such that every

point of TΩ belongs to at most N balls Bj.

We provide now a vital application of the first lemma.

Lemma 3.3 (see [2]). Let γ > n
r
− 1; 1 ≤ p, q <∞. Then for every lattice {yi} in Ω

there exist constant c > 0 such that

1

c

(
‖f‖Ap,qγ

)
≤

(∑
j

(∆γ(yj)) ‖f(x+ iyj)‖qp

) 1
q

≤ c
(
‖f‖Ap,qγ

)
, for all f ∈ Ap,qγ (TΩ),

where the norm in the middle is the Hardy space norm.

The sequence of points {zi} is called a δ lattice of TΩ, we have also (see [2])

vα(Bj) � vα(B′j) � ∆( 2n
r

)+α(Im zj), α >
n

r
− 1, zj ∈ TΩ, j = 1, . . . , n.

Lemma 3.4 (Estimates for ∆t function and Bergman kernel, see[2]).

1) Let λ > n
r
−1 be fixed. Then ∆(y+y′) ≥ ∆(y); for all y, y′ ∈ Ω, |∆−λ(x+iy

i
)| ≤

(∆(y)−λ); for all x ∈ Rn; y ∈ Ω.
2) Let α, β real, then

Iα,β(t) =

∫
Ω

(∆α(y + t))(∆β(y)) dy <∞,

if β > −1, α + β < (−2n
r

+ 1), and

(3.1) Iα,β(t) = (cα,β)∆α+β+n
r (t).

Moreover

Iα(y) =

∫
Rn
|∆−α

(
x+ iy

i

)
| dx <∞,

if α > 2n
r
− 1; and

(3.2) Iα(y) = cα
(
∆−α+n

r (y)
)
,

where y ∈ Ω.
3) For β > −1, α > n

r
− 1, z = x+ iy, w = u+ iv, w, z ∈ TΩ we have∫

TΩ

(∆β(y))|Bα+β+n
r
(z, w)| dv(z) ≤ c∆−α(v), v ∈ Ω.
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Lemma 3.5 (Reproducing formulas, see [2]). For any analytic function from A2
α(TΩ)

the following integral formula is valid

(3.3) f(z) = c̃α

∫
TΩ

Bα(z, w)(f(w)) dvα(w), z ∈ TΩ.

Let 1 ≤ p <∞, 1 ≤ q <∞; (n/r) ≤ p1; 1
p1

+ 1
p

= 1; (n
r
− 1) < γ.

Let f ∈ Ap,qγ then (3.3) with α > (n
r
− 1) is valid (Bergman representation formula

with α index is valid).

We provide below a well-known and important application of r-lattices of tubular
domains over symmentic cones.

Lemma 3.6 (Atomic decomposition of Apγ, see [2]). Let p >= 1,and ν > n
r
− 1. Let

{zj} be a δ-lattice in TΩ; δ ∈ (0, 1); zj = xj + iyj, zj ∈ TΩ, j = 1, . . . , r. Then

‖f‖Apν �
∑
j

|f(zi)|p∆ν+n
r (yi).

Assume that Bergman projection Pν is bounded on Apν and let {zj} be a δ-lattice in
TΩ. Then if f ∈ Apν then

f(z) =
∑
j

λjBν(z, zj)∆
ν+n

r (yi), z ∈ TΩ;(3.4)

∞∑
j=1

|λj|p∆ν+n
r (yj)) ≤ c‖f‖p

Apν
.(3.5)

If
∞∑
j=1

|λj|p(∆ν+n
r (yj)) <∞,

then the “sum with Bν” (3.4) converges in Apν and the reverse to (3.5) is true also.

We mention now several known results on Bergman type projections . The weighted
Bergman projection Pν is the orthogonal projection from the Hilbert space L2

ν(TΩ)
onto its closed subspace A2

ν(TΩ) and it is given by the integral formula

(Pνf)(z) =

∫
TΩ

Bν(z, w)f(w)∆ν−n
r (Im w) dv(w),

z ∈ TΩ, ν > n
r
− 1 (see [2–4,23,24]).

The Lp,qν boundedness of the Bergman projection Pν is still an open problem and
has attracted a lot of attention in recent years. Today it is only known that this
projection extends to a bounded operator on Lp,qν for general symmetric cones for the
range 1 ≤ p < ∞, q′ν,p < q < qν,p; qν,p = min{p, p′}qν , qν = 1 + ν

n/r−1
and 1

p
+ 1

p′
= 1

(see [23, 24]).
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The importance can be seen for example from the following fact. If Pν extends to
a bounded operator on Lp,qν then the topological dual space (Ap,qν )∗ of the Bergman
space Ap,qν identifies with Ap′,q′ν under the integral pairing

〈f, g〉ν =

∫
TΩ

f(z)g(z)∆ν−n
r (Im z) dv(z),

f ∈ Ap,qν ; g ∈ Ap′,q′ν (see [23, 24]). Let

(Tα,β,γf)(z) =∆α(Im z)

∫
TΩ

Bγ(z, w)f(w)∆β(Im w) dv(w),

(T+
α,β,γf)(z) =∆α(Im z)

∫
TΩ

|Bγ(z, w)|f(w)∆β(Im w) dv(w),

z ∈ TΩ, f ∈ L1(TΩ). The following assertions were proved in [24].

Theorem 3.1. There are ν1 = ν1(α, n, r, q); ν2 = ν2(α, n, r, q) so that for 1 ≤ p, q <
∞, ν ∈ R, γ = α + β + n

r
, α + β > −1 then T+

α,β,γ is a bounded operator on Lp,qν (TΩ)
for all ν ∈ (ν1, ν2).

Theorem 3.2. Let (Q+) be (T+
α,β,γ) operator for α = 0, γ = ν +m; β = ν − n

r
. Then

(Q+) for ν + m > n
r
− 1, 1 ≤ p, q < ∞, is a bounded operator from Lp,qν to Lp,qν+mq if

ν ∈ (ν1, ν2) for some ν1 = ν1(p, q, n, r, ν); ν2 = ν2(p, q, n, r, ν), (T+
α,β,γ) is a bounded

operator on L∞ if α > n
r
− 1, β > −1, γ = α + β + n

r
. The same is valid for Tα,β,γ

operator.

To formulate our theorems in next section we will consider various similar Bergman
type operators on products and semiproducts of tubular domains over symmetric cones.
Note our proofs are much simpler than parallel proofs in [24]. We, in particular, will
consider the following integral operators in functional classes in tube.

Let further

(Tβh)(~w) =

∫
Rn
· · ·
∫
Rn︸ ︷︷ ︸

m

∫
Ω

h(x1 + iy, . . . , xm + iy)∆β(y)
m∏
j=1

∆
β+n/r+mn/r

m

(
x̄j+iȳ−wj

i

) dy dx1 . . . dxm,

where ~w = {w1, . . . , wm} = {ζ1 + iη, . . . , ζm + iη} ∈ TΩ

(T̃~βh)(~w) =

∫
Ωm

∫
Rn

h(x+ iy1, . . . , x+ iym)∆β1(y1) . . .∆βm(ym)
m∏
j=1

∆βj+
n/r+mn/r

m

(
x̄+iȳj−wj

i

) dx dy1 . . . dym,

where ~w = {w1, . . . , wm} = {ζ + iη1, . . . , ζ + iηm} ∈ TΩ, and ~β = {β1, . . . , βm}, where
β > n

r
− 1, βj > n

r
− 1, j = 1, . . . ,m, h ∈ L1(TmΩ ). Complete analogues of these

operators were introduced and studied in [27] in the unit disk. These operators, in
particular, can be considered as direct extensions of classical and well-studied Bergman
projection in tubular domains over symmetric cones.
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4. New Integral Operators in Bergman-type Analytic Spaces on
Semi-Products of Tubular Domains Over Symmetric Cones

This section is devoted to formulations and proofs of all our main results related to
integral operators. We, in particular, extend some results provided by us in previous
section. Note our results of this type may have various applications in function theory
and also in operator theory.

The following theorem gives a new complete extension of Theorem 1.1 to semi-
product of tubular domain over symmetric cones.

Note the complete analogue of Theorem 4.1 in the unit disk can be found in [27].

Theorem 4.1. Let 1 < p <∞, β > mm
r
−m−n

r
+ mnp
r(p−1)

, τ > (p−1)
(

2mn
r
−m− n

r

)
−1

and m ∈ N, m > 1, τ − pβ < 1− n
r
then∫

Rn
· · ·
∫
Rn︸ ︷︷ ︸

m

∫
Ω

|(Tβh)(~w)|p∆τ (η) dη dζ1 . . . dζm

≤ c

∫
Rn
· · ·
∫
Rn︸ ︷︷ ︸

m

∫
Ω

|h(~z)|p∆τ (y) dy dx1 . . . dxm,

where ~w = {w1, . . . , wm} = {ζ1 + iη, . . . , ζm + iη} ∈ TmΩ , ~z = {z1, . . . , zm} = {x1 +
iy, . . . , xm + iy} ∈ TmΩ .

Proof. We have

I(h) =

∫
Rn
· · ·
∫
Rn︸ ︷︷ ︸

m

∫
Ω

|(Tβh)(~w)|p∆τ (η) dη dζ1 . . . dζm

=

∫
Rn
· · ·
∫
Rn︸ ︷︷ ︸

m

∫
Ω

∣∣∣∣∣∣∣∣
∫
Rn
· · ·
∫
Rn︸ ︷︷ ︸

m

∫
Ω

h(x1 + iy, . . . , xm + iy)∆β(y)
m∏
j=1

∆
β+n/r+mn/r

m

(
x̄j+iȳ−wj

i

) dy dx1 . . . dxm

∣∣∣∣∣∣∣∣
p

×∆τ (η) dη dζ1 . . . dζm.

Denote

M(h) =

∣∣∣∣∣∣∣∣
∫
Rn
· · ·
∫
Rn︸ ︷︷ ︸

m

∫
Ω

h(x1 + iy, . . . , xm + iy)∆β(y)
m∏
j=1

∆
β+n/r+mn/r

m

(
x̄j+iȳ−wj

i

) dy dx1 . . . dxm

∣∣∣∣∣∣∣∣
p

.
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We add and subtract 2 + ε below

M(h) =

∣∣∣∣∣∣∣∣
∫
Rn
· · ·
∫
Rn︸ ︷︷ ︸

m

∫
Ω

h(x1 + iy, . . . , xm + iy)∆β(y)
m∏
j=1

∆
β+n/r+mn/r

m
+2+ε−2−ε

(
x̄j+iȳ−wj

i

) dy dx1 . . . dxm

∣∣∣∣∣∣∣∣
p

.

By Holder’s inequality with power p we have
(

1
p

+ 1
p′

= 1
)
,

M(h) =

∣∣∣∣∣∣∣∣
∫
Rn
· · ·
∫
Rn︸ ︷︷ ︸

m

∫
Ω

h(x1 + iy, . . . , xm + iy)∆β(y)
m∏
j=1

∆
β+n/r+mn/r

m
+ 2
p

+ 2
p′ +ε−2−ε

(
x̄j+iȳ−wj

i

) dy dx1 . . . dxm

∣∣∣∣∣∣∣∣
p

≤

∫
Rn
· · ·
∫
Rn︸ ︷︷ ︸

m

∫
Ω

|h(x1 + iy, . . . , xm + iy)|p∆pβ(y)
m∏
j=1

∣∣∣∆(β+n/r+mn/r
m

−2−ε)p+2
(
x̄j+iȳ−wj

i

)∣∣∣ dy dx1 . . . dxm



×

∫
Rn
· · ·
∫
Rn︸ ︷︷ ︸

m

∫
Ω

dy dx1 . . . dxm
m∏
j=1

∣∣∣∆εp′+2
(
x̄j+iȳ−wj

i

)∣∣∣

p/p′

.

By (3.1) and (3.2) the last factor can be calculated as follows∫
Rn
· · ·
∫
Rn︸ ︷︷ ︸

m

∫
Ω

dy dx1 . . . dxm
m∏
j=1

∣∣∣∆εp′+2
(
x̄j+iȳ−wj

i

)∣∣∣

p/p′

= c∆(−εp′m−2m+mn/r+n/r)p/p′(η),

if εp′ + 2 > 2n
r
− 1 and m(εp′ + 2)− mn

r
> 2n

r
− 1. We have to choose now a correct

lower bound for ε in order to satisfy both our estimates which we need to use above.
An easy technical calculation shows that the following bound will satisfy our purposes

(4.1) ε >
3n

p′r
− 3

p′
.

Finally we have

I(h) ≤ c

∫
Rn
· · ·
∫
Rn︸ ︷︷ ︸

m

∫
Ω

∆(−εp′m−2m+mn/r+n/r)p/p′+pβ(η)

×
∫
Rn
· · ·
∫
Rn︸ ︷︷ ︸

m

∫
Ω

|h(x1 + iy, . . . , xm + iy)|p∆pβ(y)
m∏
j=1

∣∣∣∆(β+n/r+mn/r
m

−2−ε)p+2
(
x̄j+iȳ−wj

i

)∣∣∣ dy dx1 . . . dxmdη dζ1 . . . dζm
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Applying Fubbini’s theorem we have

I(h) ≤ c

∫
Rn
· · ·
∫
Rn︸ ︷︷ ︸

m

∫
Ω

|h(x1 + iy, . . . , xm + iy)|p∆pβ(y)

×
∫
Rn
· · ·
∫
Rn︸ ︷︷ ︸

m

∫
Ω

∆(−εp′m−2m+mn/r+n/r)p/p′+τ (η)
m∏
j=1

∣∣∣∆(β+n/r+mn/r
m

−2−ε)p+2
(
x̄j+iȳ−wj

i

)∣∣∣dη dζ1 . . . dζm dy dx1 . . . dxm.

Note that we can apply (3.1) and (3.2) again for the following values of parameters.
pβ

m
+
np

rm
+
np

r
− 2p− εp+ 2 >

2n

r
− 1,(4.2)

−εpm− 2mp

p′
+
mnp

rp′
+
np

rp′
+ τ > −1,(4.3)

τ − εpm− 2mp/p′ +mnp/(rp′) + np/(rp′)− βp− pn/r −mpn/r

+2mp+ εmp− 2m+mn/r < −2n

r
+ 1.(4.4)

Looking at (4.2) with respect to (4.1) we have
pβ

m
+
np

mr
+
np

r
− 2p− 3np

p′r
+ 3

p

p′
+ 2 >

2n

r
− 1,

pp′βr + npp′ + nmpp′ − 2pmrp′ − 3npm+ 3pmr + 2mrp′ − 2nmp′ +mrp′

mrp′
> 0,

βr + n− nm+mr − np

p′
> 0,

β > m
n

r
−m− n

r
+

mnp

r(p− 1)
.

Looking at (4.3) with respect to (4.1) we have

τ > (p− 1)

(
2mn

r
−m− n

r

)
− 1.

We will heavily simplify estimate (4.4) below.
We have∫

Rn
· · ·
∫
Rn︸ ︷︷ ︸

m

∫
Ω

∆(−εp′m−2m+mn/r+n/r)p/p′+τ (η)
m∏
j=1

∣∣∣∆(β+n/r+mn/r
m

−2−ε)p+2
(
x̄j+iȳ−wj

i

)∣∣∣ dη dζ1 . . . dζm

= c1(∆y)pβ−εpm−2mp/p′+mnp/(rp′)+np/(rp′)−βpr/n−p−mp+2mp+εmp−2m+mn/r+n/r.

But given pp′ = p+ p′ we obtain

τ − εpm− 2mp/p′ +mnp/(rp′) + np/(rp′)− βp− pn/r −mpn/r + 2mp

+ εmp− 2m+mn/r + n/r = τ − pβ.
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Now looking simply at the previous page and combining the estimates from there
we arrive at the new estimate

τ − pβ − n

r
< −2n

r
+ 1; τ − pβ < −n

r
+ 1.

This means

I(h) ≤ c2

∫
Rn
· · ·
∫
Rn︸ ︷︷ ︸

m

∫
Ω

|h(x1 + iy, . . . , xm + iy)|p∆pβ+τ−pβ(y) dy dx1 . . . dxm.

This completes the proof of our assertion. �

We can prove almost similarly the following theorem for related T̃β operator. We
omit the technical proof leaving it to interested readers. Note complete analogue of
Theorem 4.2 in case of unit disk can be seen in [27].

Theorem 4.2. Let βj > n
r
− 1, j = 1, . . . ,m, 1 < p <∞, βj > 2 + n

r
− 2n

pr
− 3

m
− 2

p
+

n
rmp

+ 2
mp

, τj > n
r
p− p− n

r
, τj − pβj < 1− n

r
, j = 1, . . . ,m, then∫

Ωm

∫
Rn
|(T̃~βh)(~w)|p∆τ1(η1)× · · · ×∆τm(ηm) dζ dη1 . . . dηm

≤ c

∫
Ωm

∫
Rn
|h(~z)|p∆τ1(y1)× · · · ×∆τm(ym) dx dy1 . . . dym,

where ~w = {ζ + iη1, . . . , ζ + iηm}, ~z = {z1, . . . , zm} = {x+ iyj, . . . , zm + iyj}, ~z ∈ TmΩ ,
~w ∈ TmΩ .

Proof. Here is a short scheme of the proof. Denote

I(h) =

∫
Ωm

∫
Rn
|(T̃~βh)(~w)|p∆τ1(η1)×· · ·×∆τm(ηm) dζ dη1 . . . dηm, M = |(T̃~βh)(~w)|p.

Let add and subtract 2 + ε in denominator’s power:

M(h) =

∣∣∣∣∣∣∣∣
∫

Ωm

∫
Rn

h(x+ iyj, . . . , x+ iyj)∆
β1(y1) . . .∆βm(ym)

m∏
j=1

∆βj+
n/r+mn/r

m
+2+ε−2−ε

(
x̄+iȳj−wj

i

) dx dy1 . . . dym

∣∣∣∣∣∣∣∣
p

.

By Holders’ inequality with power p we have
(

1
p

+ 1
p′

= 1
)

M(h)

≤

∫
Ωm

∫
Rn

|h(x+ iyj, . . . , x+ iyj)|p∆pβ1(y1)× · · · ×∆pβm(ym)
m∏
j=1

∣∣∣∆(βj+n/r+mn/r
m

−2−ε)p+2
(
x̄+iȳj−wj

i

)∣∣∣ dx dy1 . . . dym


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×

∫
Ωm

∫
Rn

dx dy1 . . . dym
m∏
j=1

∣∣∣∆εp′+2
(
x̄+iȳj−wj

i

)∣∣∣

p/p′

≤

(∫
Ωm

m∏
j=1

∫
Rn

dx∣∣∣∆mεp′+2m
(
x̄+iȳj−wj

i

)∣∣∣
 1

m

dy1 . . . dym

)p/p′

.

By (3.1) and (3.2) with restriction for ε we obtain∫
Ωm

m∏
j=1

∫
Rn

dx∣∣∣∆mεp′+2m
(
x̄+iȳj−wj

i

)∣∣∣
 1

m

dy1 . . . dym


p/p′

= c∆(−εp′−2+n/(rm)+n/r)p/p′(η1)× · · · ×∆(−εp′−2+n/(rm)+n/r)p/p′(ηm).

So

I(h) ≤ c1

∫
Ωm

∫
Rn

∆(−εp′−2+n/(rm)+n/r)p/p′+τ1(η1)

×∆(−εp′−2+n/(rm)+n/r)p/p′+τm(ηm)

×
∫

Ωm

∫
Rn

|h(x+ iyj, . . . , x+ iyj)|p
m∏
j=1

∣∣∣∆(βj+n/r+mn/r
m

−2−ε)p+2
(
x̄+iȳj−wj

i

)∣∣∣
×∆pβ1(y1) . . .∆pβm(ym) dx dy1 . . . dymdζ dη1 . . . dηm.

By Fubbini’s theorem and applying (3.1), (3.2) and Holder’s inequality again we
have∫

Ωm

∫
Rn

∆(−εp′−2+n/(rm)+mn/r)p/p′+τ1(η1)× · · · ×∆(−εp′−2+n/(rm)+mn/r)p/p′+τm(ηm)

× 1
m∏
j=1

∣∣∣∆(βj+n/r+mn/r
m

−2−ε)p+2
(
x̄+iȳj−wj

i

)∣∣∣ dζdη1 . . . dηm

≤ c2

m∏
j=1

∆τj−pβj(yj); yj ∈ Ω, j = 1, . . . ,m,

where βj and τj satisfy the conditions of the theorem statement.
So

I(h) ≤ c3

∫
Ωm

∫
Rn
|h(x+ iyj, . . . , x+ iyj)|p∆τ1(y1)× · · · ×∆τm(ym) dx dy1 . . . dym.

The proof of the theorem is complete. �
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Note assertions related to boundedness of Bergman-type operators on products of
tubular domains over symmetric cones very similar to Theorem 4.1 and 4.2 have direct
applications in problems connected with traces in Bergman type analytic function
spaces and to various related problems in operator theory. We refer the reader to
recent paper [30] and references there and also separately to [4, 23,24].

We also remark similar assertions based on same technique are valid in more
general analytic Bergman type mixed norm spaces on product of tubular domains
over symmetric cones. We refer the reader to [27,28,30] for other such type results in
analytic mixed norm spaces in context of tubular domains over symmetric cones and
also in the unit polyball.

Next let 1 ≤ p <∞, f = f(z1, . . . , zm), we consider analytic subspaces of H(TmΩ ),
TmΩ = TΩ × · · · × TΩ, νj >

n
r
− 1, ν > n

r
− 1, j = 1, . . . ,m. These are spaces (Apν)1,

(Apν)2, (Apν)3 with norms

‖f‖p
(Ap
~ν

)1
=

∫
TΩ

· · ·
∫
TΩ

|f(x1 + iy1, . . . , xm + iym)|p
m∏
j=1

∆νj−nr (yj) dxj dyj <∞,

‖f‖p
(Apν)2

=

∫
Rn
· · ·
∫
Rn

∫
Ω

|f(x1 + iy, . . . , xm + iy)|p∆ν−n
r (y)

(
m∏
j=1

dxj

)
dy <∞,

‖f‖p
(Ap
~ν

)3
=

∫
Rn

∫
Ω

· · ·
∫

Ω

|f(x+ iy1, . . . , x+ iym)|p
m∏
j=1

∆νj−nr (yj) dx dyj <∞.

An estimate relating ‖f‖(Apν)1
and ‖f‖Apν via Bergman type operator can be seen in

recent paper [30].
The natural problem which obviously arise here is to to find some relation between

these norms and to find appropriate embeddings between these spaces (Ap~ν)1, (Ap~ν)2,
(Ap~ν)3. Note in the unit disk this problem was solved in [27,28].

Let also for g ∈ L1(TmΩ )

(V~α,~βg)(~w)

=

∫
Ω

· · ·
∫

Ω︸ ︷︷ ︸
m

∫
Rn

g(x+ iy1, . . . , x+ iym)(∆y1)β1 × · · · × (∆ym)βm
m∏
j=1

∆αj

(
x̄+iȳj−wj

i

) dx dy1 . . . dym,

(U~α,βg)(~w)

=

∫
Rn
· · ·
∫
Rn︸ ︷︷ ︸

m

∫
Ω

g(x1 + iy, . . . , xm + iy)(∆y)β

m∏
j=1

∆αj

(
x̄+iȳj−wj

i

) dy dx1 . . . dxm,

w = (w1, . . . , wm), ωj ∈ TΩ, j = 1, . . . ,m, βj > n
r
−1, β > n

r
−1, αj > 0, j = 1, . . . ,m,

−→
β = (β1, . . . , βm) or

−→
β = (β, . . . , β).
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Let also for g ∈ L1(TmΩ )

[G~α,β(g)](x+ iy1, . . . , x+ iym) =

∫
TΩ

g(w)[∆β(Im w)] dv(w)∣∣∣∏m
j=1 ∆αj

(
w−(x̄+ȳj)

i

)∣∣∣ ,
where x ∈ Rn, yj ∈ Ω, j = 1, . . . ,m, αj > 0, β > n

r
− 1, j = 1, . . . ,m.

[G̃~α,~β(g)](x1 + iy, . . . , xm + iy) =

∫
TΩ

g(w)[∆β(Im w)] dv(w)∣∣∣∏m
j=1 ∆αj

(
w−(x̄j+iȳ)

i

)∣∣∣ ,
where β > n

r
− 1, j = 1, . . . ,m;αj > 0, xj ∈ Rn, j = 1, . . . ,m, y ∈ Ω.

The analogue of this theorem in the unit disk can be found in [27].

Theorem 4.3. For 1 ≤ p < ∞, some αj ∈ (α0, α
′
0); βj ∈ (β0, β

′
0), β ∈ (β̃0, β̃′0),

νj > (n
r
− 1), τj > (n

r
− 1), j = 1, . . . ,m, for some fixed positive αj0, (αj0)′,βj0, (βj0)′,

j = 1, . . . ,m.
The following estimates are valid:
1) ‖G~α,β(g)‖(Ap

~ν
)3
≤ c1‖g‖(Apτ )(TΩ); for some values ~ν and τ ,

2) ‖G̃~α,β(g)‖(Apν)2
≤ c2‖g‖(Apτ )(TΩ); for some values ν and τ ,

3) ‖V~α,~β(g)‖(Apν)1
≤ c3‖g‖(Ap

~τ
)3(TΩ); for some values ν and ~τ ,

4) ‖U~α,~β(g)‖(Apν)1
≤ c4‖g‖(Ap

~τ
)2(TΩ); for some values ν and ~τ .

where αj0, . . . , (β
j
0)′ depend on νj, τj, p, n, ν, τ , j = 1, . . . ,m and 1

p
+ 1

p′
= 1.

Remark 4.1. Note the following equalities are valid forG and G̃ operators if−
∑m

j=1 νj+

τ = β(1 + p
p′

) − p
∑m

j=1 αj + n
r
(1 + 2p

p′
) (for G operator) and −ν + τ = β(1 + p

p′
) −

p
∑m

j=1 αj + n/r(m+ 2p
p′

) (for G̃ operator).

Remark 4.2. Note such results may be true for all types of domains of tube type where
analogue of Lemma 3.4 can be found.

Remark 4.3. For less general case where Rn is unit interval I, I = (0, 1) and Ω is unit
circle T = {|z| = 1} such type results where proved previously in [27,28].

Proof. We can now prove Theorem 4.3. Let us prove the first estimate. Let

[G~α,β(g)](x+ iy1, . . . , x+ iym) =

∫
TΩ

g(w)[∆β(Im w)] dv(w)∣∣∣∏m
j=1 ∆αj

(
w−(x̄+ȳj)

i

)∣∣∣ ;
we need to prove that

J =

∫
Rn

∫
Ω

· · ·
∫

Ω

∣∣∣∣∣∣
∫
TΩ

g(w)[∆β(Im w)] dv(w)∏m
j=1 ∆αj

(
w−(x̄+ȳj)

i

)
∣∣∣∣∣∣
p
m∏
j=1

∆νj−nr (yj) dyj dx ≤ c‖g‖(Apτ )(TΩ).

With some restriction on parameters using Holder’s inequality we have

|G~α,β(g)](x+ iy1, . . . , x+ iym)|p
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≤
∫
TΩ

|g(w)|p∆β(Im w) dv(w)∏m
j=1

∣∣∣∆phj

(
w−(x̄+iȳj)

i

)∣∣∣
∫

TΩ

∆β(Im w) dv(w)∏m
j=1

∣∣∣∆p′bj

(
w−(x̄+iȳj)

i

)∣∣∣


p
p′

,

where hj + bj = αj, 1
p

+ 1
p′

= 1, j = 1, . . . ,m.
Let us estimate the second integral using the third estimate of Lemma 3.4∫

TΩ

∆β(= w) dv(w)∏m
j=1

∣∣∣∆p′bj

(
w−(x̄+iȳj)

i

)∣∣∣


p
p′

≤
m∏
j=1

∫
TΩ

∆β(Im w) dv(w)∣∣∣∆p′mbj

(
w−(x̄+iȳj)

i

)∣∣∣


p
mp′

≤ c1

m∏
j=1

∆
(β−p′mbj+2n/r) p

mp′ (yj).

Denote (β/m− p′bj + 2n/(mr)) p
p′

= −νj + n
r
, j = 1, . . . ,m. In this case we have

I =

∫
Rn

∣∣∣∣∣∣
∫
TΩ

g(w)∆β(Im w)dv(w)∏m
j=1 ∆αj

(
w−(x̄+iȳj)

i

)
∣∣∣∣∣∣
p
m∏
j=1

∆νj−nr (yj) dx

≤ c1

∫
Rn

∫
TΩ

|g(w)|p∆β(Im w)dv(w)∏m
j=1

∣∣∣∆phj

(
w−(x̄+iȳj)

i

)∣∣∣ dx.
Using Fubbini’s theorem we obtain

I ≤ c1

∫
TΩ

|g(w)|p∆β(Im w)
m∏
j=1

∫
Rn

dx∣∣∣∆mphj

(
w−(x̄+iȳj)

i

)∣∣∣
 1

m

dv(w).

From (3.2) we have

I ≤ c2

∫
TΩ

|g(w)|p∆β(Im w)
m∏
j=1

1∣∣∣∆phj−n/(mr)
(

Im w−iȳj
i

)∣∣∣ dv(w).

So

J ≤ c2

∫
Ω

· · ·
∫

Ω

∫
TΩ

|g(w)|p∆β(Im w)
m∏
j=1

1∣∣∣∆phj−n/(mr)
(

Im w−iȳj
i

)∣∣∣ dv(w) dy1 . . . dym.

Next using Fubbini theorem and Lemma 3.4 we have

J ≤ c2

∫
TΩ

|g(w)|p∆β(Im w)
m∏
j=1

∫
Ω

1∣∣∣∆phj−n/(mr)
(

Im w−iȳj
i

)∣∣∣ dyj dv(w),

J ≤ c3

∫
TΩ

|g(w)|p∆β−p
∑m
j=1 hj+mn/r+n/r(Im w) dv(w) =

∫
TΩ

|g(w)|p∆τ (Im w) dv(w),
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where τ = β − p
∑m

j=1 hj +mn/r+ n/r. But (−
∑m

j=1 νj + mn
r

) = βp/p′− p
∑m

j=1 bj +

2np/(rp′) and −
∑m

j=1 νj + τ = β(1 + p
p′

)− p
∑m

j=1 αj + n
r
(1 + 2p

p′
).

We prove the second case now. Let

[G̃~α,β(g)](x1 + iy, . . . , xm + iy) =

∫
TΩ

g(w)∆β(Im w) dv(w)∏m
j=1 ∆αj

(
w−(x̄j+iȳ)

i

) .
We assume that all αj, j = 1, . . . ,m are large enough numbers.

We need to prove that

J =

∫
Rn
· · ·
∫
Rn

∫
Ω

∣∣∣∣∣∣
∫
TΩ

g(w)∆β(Im w) dv(w)∏m
j=1 ∆αj

(
w−(x̄j+iȳ)

i

)
∣∣∣∣∣∣
p

∆ν−n
r (y)dy

(
m∏
j=1

dxj

)
≤ c‖g‖(Apτ )(TΩ).

With some restriction on parameters using Holder’s inequality we have

|G̃~α,β(g)](x1 + iy, . . . , xm + iy)|p ≤
∫
TΩ

|g(w)|p∆β(Im w) dv(w)∏m
j=1

∣∣∣∆phj

(
w−(x̄j+iȳ)

i

)∣∣∣
×

∫
TΩ

∆β(Im w) dv(w)∏m
j=1

∣∣∣∆p′bj

(
w−(x̄j+iȳ)

i

)∣∣∣


p
p′

,

where hj + bj = αj, 1
p

+ 1
p′

= 1, j = 1, . . . ,m.
Let us estimate the second integral using third part of Lemma 3.4∫

TΩ

∆β(Im w) dv(w)∏m
j=1

∣∣∣∆p′bj(
w−(x̄j+iȳ)

i
)
∣∣∣


p
p′

≤
m∏
j=1

∫
TΩ

∆β(Im w) dv(w)∣∣∣∆p′mbj

(
w−(x̄j+iȳ)

i

)∣∣∣


p
mp′

≤ c1

m∏
j=1

∆
(β−p′mbj+2n/r) p

mp′ (y)

= c1∆
(β−p′

∑m
j=1 bj+2n/r) p

p′ (y).

Denote (β − p′
∑m

j=1 bj + 2n/r) p
p′

= −ν + n
r
. In this case we have

I =

∫
Rn
· · ·
∫
Rn

∣∣∣∣∣∣
∫
TΩ

g(w)∆β(Im w) dv(w)∏m
j=1 ∆αj

(
w−(x̄j+iȳ)

i

)
∣∣∣∣∣∣
p

∆ν−n
r (y)

(
m∏
j=1

dxj

)

≤ c1

∫
Rn
· · ·
∫
Rn

∫
TΩ

|g(w)|p∆β(Im w) dv(w)∏m
j=1

∣∣∣∆phj

(
w−(x̄j+iȳ)

i

)∣∣∣
(

m∏
j=1

dxj

)
.
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Using Fubbini’s theorem we obtain

I ≤ c1

∫
TΩ

|g(w)|p∆β(Im w)

∫
Rn
· · ·
∫
Rn

1∏m
j=1

∣∣∣∆phj

(
Im w−(x̄j+iȳ)

i

)∣∣∣
(

m∏
j=1

dxj

)
dv(w).

From Lemma 3.4 we have for large enough hj, j = 1, . . . ,m

I ≤ c2

∫
TΩ

|g(w)|p ∆β(Im w)∣∣∣∆∑m
j=1 phj−mn/r

(
Im w−iȳ

i

)∣∣∣ dv(w).

So

J ≤ c2

∫
Ω

∫
TΩ

|g(w)|p ∆β(Im w)∣∣∣∆p
∑m
j=1 hj−mn/r

(
Im w−iȳ

i

)∣∣∣ dv(w) dy.

Next using Fubbini’s theorem and Lemma 3.4 we have

J ≤ c2

∫
TΩ

|g(w)|p∆β(Im w)

∫
Ω

1∣∣∣∆p
∑m
j=1 hj−mn/r

(
Im w−iȳ

i

)∣∣∣ dy dv(w),

J ≤ c3

∫
TΩ

|g(w)|p∆β−p
∑m
j=1 hj+mn/r+n/r(Im w) dv(w)

= c3

∫
TΩ

|g(w)|p∆τ (Im w) dv(w),

where τ = β − p
∑m

j=1 hj + mn/r + n/r. But (−ν + n
r
) = β p

p′
− p

∑m
j=1 bj + 2n/r p

p′

and −ν + τ = β(1 + p
p′

)− p
∑m

j=1 αj + n/r(m+ 2p
p′

).
We omit proofs of the third and forth cases because they are similar. The proof of

theorem is complete. �

Remark 4.4. As a direct corollary of Whitney decomposition of Ω cone and Theorem
4.3 we have the following estimate∫

Ω

∫
Rn
|g(~w)|p∆(Im w)α−

n
r dv(w) ≤ c

∫
Ω

· · ·
∫

Ω︸ ︷︷ ︸
m

∫
Rn
|g(x1 + iy1, . . . , xm + iym)|p

×
m∏
j=1

∆(Im wj)
αj dv(wj),

where wj = x + iyj, j = 1, . . . ,m, g ∈ H(TmΩ ), αj ∈ (α̃,∞), α ∈ (α̃0,∞), α > n
r
− 1,

αj >
n
r
− 1, j = 1, . . . ,m, 0 < p < ∞ for some fixed α̃ and α̃0, where α depends on

all αj.

The proof of this estimate repeats arguments provided in one dimensional case of
unit disk in [27] which is also based on Whitney decomposition of unit interval (0, 1)
and the fact that inner integral is monotonic in cone (see [3, page 30]).
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Similar estimate∫
Ω

∫
Rn
|g(~w)|p∆(Im w)α−

n
r dv(w) ≤ c1

∫
TΩ

· · ·
∫
TΩ

|g(x+ iy1, . . . , x+ iym)|p

×
m∏
j=1

∆(Im wj)
αj−nr dv(wj),

where 1 < p <∞, αj > n
r
− 1, α > n

r
− 1, j = 1, . . . ,m, where α parameter depends

on all αj, j = 1, . . . ,m was obtained recently in [30].
Both assertions for unit ball can be seen in [28] and [26].

5. Multifunctional Analytic Spaces in Tubular Domains Over
Symmetric Cones.

The intention of this section is to introduce for the first time in literature multi-
functional analytic spaces in tubular domains over symmetric cone and provide their
basic properties.

Similar results for harmonic function spaces and for analytic spaces in the unit ball
can be seen in [1, 17].

We will need for all proofs various properties of r-lattice of TΩ (see for example [24])
and various nice properties of Bergman balls from recent papers [3, 4]). We listed all
these properties in detail in previous section.

Theorem 5.1. Let α > −1, Fi ∈ H(TΩ×· · ·×TΩ), i = 1, . . . ,m, T tΩ = TΩ×· · ·×TΩ,
t ∈ N. Let 0 < pi, qi <∞, i = 1, . . . ,m so

∑m
i=1

pi
qi

= 1. Then we have∫
TΩ

|F1(w, . . . , w)|p1 × · · · × |Fm(w, . . . , w)|pm∆α(Im w) dν(w)

≤ c
m∏
i=1

 ∫
TΩ

· · ·
∫
TΩ

|Fi(w1, . . . , wt)|qi
t∏

j=1

∆βi(Im wj) dv(wj)


pi
qi

,

where

βi =

(
2n
r

+ α
)
qi

tmpi
− 2n

r
> −1, i = 1, . . . ,m.

If all pj = qj = p, j = 1, . . . ,m above then we get the “limit case” of Theorem 5.1.

Theorem 5.2. Let Fi ∈ H(TΩ × · · · × TΩ), i = 1, . . . ,m, T tΩ = TΩ × · · · × TΩ, t ∈ N,
α > −1, α > tn− n− 1, βi > −1, 0 < p <∞. Then∫

TΩ

m∏
i=1

|Fi(w, . . . , w)|p∆α(Im w) dv(w)



BERGMAN-TYPE INTEGRAL OPERATORS ON SEMIPRODUCTS 213

≤ c

∫
TΩ

· · ·
∫
TΩ

m∏
i=1

|Fi(w1, . . . , wt)|p
t∏

j=1

∆βj(Im wj) dv(wj),

where

βi =
2n
r

+ α

t
− 2n

r
, i = 1, . . . , t.

Remark 5.1. Note for t = 1,m = 1 these estimates are obvious. For m = 1, t > 1 in
case of unit disk, polydisk these estimates can be found in [25, 27]. For case of unit
ball D = Bn ⊂ Cn these results can be found in [17].

Remark 5.2. For case of unit ball B ⊂ Cn these results can be found in [17]. Form = 1,
t > 1 this result for unit ball can be found in [17]. For unit disk D = {z ∈ C : |z| < 1}
these estimates were found much earlier by various authors (see, for example, [25, 33]
and references there).

Let µ be a measure supported in the boundary of the cone. M. Vergne and H. Rossi
([13,31]) studied analytic function spaces of Hardy type

Hp
µ =

{
F ∈ H(TΩ) : sup

y∈Ω

∫
∂Ω

∫
Rn
|F (x+ i(y + t))|p dx dµ(t) <∞

}
.

Similar spaces will be considered by us below.

Theorem 5.3.
1) Let µ be a positive Borel measure on TΩ and let {ak} be a sequence an r-lattice based
on Bergman balls. Let fj ∈ H(TΩ), j = 1, . . . ,m, 0 < pi, qi < ∞, i = 1, . . . ,m + 1,∑m+1

i=1
pi
qi

= 1. If  ∞∑
k=1

 ∫
BTΩ

(ak)

dµ(z)


qm+1
pm+1


pm+1
qm+1

≤ c,

then we have the following estimate

∫
TΩ

m∏
i=1

|fi(z)|pi∆(Im z)m( 2n
r ) dµ(z) ≤ c


m∏
i=1

 ∞∑
k=1

 ∫
BTΩ

(ak)

|fi(z)|pi dv(z)


qi
pi


pi
qi

 .
2) Let µ be a positive Borel measure on TΩ and let {ak} be a sequence an r-lattice based
on Bergman balls. Let fj ∈ H(TΩ), j = 1, . . . ,m, 0 ≤ pi < qi <∞, i = 1, . . . ,m + 1,
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so that
∑m+1

i=1
pi
qi

= 1. If

(5.1)

 ∞∑
k=1

 ∫
BTΩ

(ak)

dµ(z)


qm+1
pm+1


pm+1
qm+1

≤ c <∞,

then we have following estimate

∫
TΩ

m∏
i=1

|fi(z)|pi(∆(Im z))
( 2n
r )

m∑
i=1

pi
qi dµ(z) ≤ c

m∏
i=1

 ∫
TΩ

|fi(z)|qi dv(z)


pi
qi

.

Below based on preliminaries we provided complete proofs of our assertions (The-
orems 5.1–5.3) will be given, some proofs however are missed. We refer the reader
for them to [17], where analogues for unit ball can be found. The main idea is the
adaptation of r-lattice of TΩ to r-lattice of unit ball and we leave this partially to
readers.

Various results on product domains can be seen in [15] and for other product
domains in [7]. Hence our results also can be seen as some supplement of results
from [15] and [7]. All these results can be seen also as direct extensions of estimates
previously known in polydisk which is the simple case.

Note again our proofs are parallel to the unit ball case and we will omit some
of them here. We again should heavily use in all proofs certain nice properties of
r-lattices in tubular domains over symmetric cones which can be seen for example in
[24]. In the case of unit ball we heavily used similar properties of r-lattice, but for
unit ball (see [17]), moreover our arguments are similar.

Let us prove of Theorem 5.1 now.

Proof. Let {ak} be an r-lattice based on BTΩ
(ak, R) = BTΩ

(ak) Bergman balls. Using
properties we listed above we have:

I =

∫
TΩ

m∏
i=1

|Fi(w, . . . , w)|pi∆α(Im w) dv(w)

≤c
∞∑
k=1

∫
BTΩ

(ak)

m∏
i=1

|Fi(w, . . . , w)|pi∆α(Im w) dv(w)

≤c1

∞∑
k=1

sup
z∈BTΩ

(ak)

m∏
i=1

|Fi(z, . . . , z)|pi∆α(Im ak)v(BTΩ
(ak))



BERGMAN-TYPE INTEGRAL OPERATORS ON SEMIPRODUCTS 215

≤c2

∞∑
k1=1

· · ·
∞∑
kt=1

[
sup

z1 ∈ BTΩ
(ak1)

...
zt ∈ BTΩ

(akt)

|F1(z1, . . . , zt)|p1

× · · · × sup
z1 ∈ BTΩ

(ak1)
...

zt ∈ BTΩ
(akt)

|Fm(z1, . . . , zt)|pm × . . .

]

×
[
∆

2n
r +α

t (Im ak1)× · · · ×∆
2n
r +α

t (Im akt)

]
.

Using Holder inequality for m-functions and again properties of r-lattice we listed
above we have

I ≤ c4

m∏
s=1

(
∞∑

k1,...,kt=1

sup
z1 ∈ BTΩ

(ak1)
...

zt ∈ BTΩ
(akt)

|Fs(z1, . . . , zt)|qs
t∏

s=1

∆
( 2n
r +α)qs
tmps (Im aks)

) ps
qs

≤ c5

m∏
s=1

 ∞∑
k1,...,kt=1

∫
TΩ(ak1

,R̃)

· · ·
∫

TΩ(akt ,R̃)

|Fs(w1, . . . , wt)|qs dv(w1) . . . dv(wt)

×
t∏

j=1

∆βj(Im akj)

) ps
qs

≤ c6

 ∫
TΩ

· · ·
∫
TΩ

|F1(w1, . . . , wt)|q1
t∏

s=1

(∆(Im ws))
βs dv(w1) . . . dv(wt)


p1
q1

× · · · ×

 ∫
TΩ

· · ·
∫
TΩ

|Fm(w1, . . . , wt)|qm
t∏

j=1

(∆(Im wj))
βj dv(w1) . . . dv(wt)


pm
qm

,

R̃ =
1 +R

2
, R ∈ (0, 1).

The proof of theorem is complete. �

Proof of Theorem 5.2. can be obtained by small modification of Theorem 5.1 and we
omit here details, referring the reader also to unit ball case (see [17]). �

And now we can prove Theorem 5.3.
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Proof. We again follow arguments of unit ball case and properties of r-lattice from
[3, 4] which we listed above, we omit the first part referring to our mentioned paper
[17] and concentrate only on proof of second part of our theorem.

Note also the proof of first part has similarities with the proof of second part
below. We have the following estimates. Suppose (5.1) holds then we have by Holder
inequality

J =

∫
TΩ

m∏
i=1

|fi(z)|pi
(

∆
( 2n
r )

m∑
i=1

pi
qi (Im z)

)
dµ(z)

=
∞∑
k=1

∫
BTΩ

(ak,r)

(
m∏
i=1

|fi(zi)|pi
)

∆τ (Im z) dµ(z)

≤c
∞∑
k=1

m∏
i=1

sup
z∈BTΩ

(ak,r)

|fi(z)|pi
∫

BTΩ
(ak,r)

∆
( 2n
r )

m∑
i=1

pi
qi (Im z) dµ(z)

≤c1

(
∞∑
k=1

sup
z∈BTΩ

(ak,r)

|f1(z)|q1∆
2n
r (Im z)

) p1
q1

× · · · ×

(
∞∑
k=1

sup
z∈BTΩ

(ak,r)

|fm(z)|qm∆
2n
r (Im z)

) pm
qm

×

 ∞∑
k=1

 ∫
BTΩ

(ak,r)

dµ(z)


qm+1
pm+1


pm+1
qm+1

≤c2

m∏
i=1

 ∫
TΩ

|fi(z)|qidv(z)


pi
qi

 ∞∑
k=1

 ∫
BTΩ

(ak,r)

dµ(z)


qm+1
pm+1


pm+1
qm+1

≤c3

m∏
i=1

 ∫
TΩ

|fi(z)|qi dv(z)


pi
qi

.

Theorem 5.3 is proved. �

Finally we add a series of various remarks.

Remark 5.3. We note that various (not sharp) embedding theorems can be obtained
from the following simple observation also related with r-lattices (we give only one
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function model). We search condition on positive Borel measure µ so that∫
TΩ

|f(z)|p dµ(z) ≤ c‖f‖pY ,

where Y is a holomorphic subspace of H(TΩ). We have for any {ak} - r-lattice∫
TΩ

|f(z)|p∆α(Im z) dµ(z) ≤
∞∑
k=1

max
z∈BTΩ

(ak,r)
|f(z)|p∆α(Im z)µ(BTΩ

(ak, r))

≤ c

∫
TΩ

|f(z)|pg1(z)∆α(Im z) dv(z),

where g1(z) =
∑∞

k=1 ∆−( 2n
r

)(Im ak)[µ(BTΩ
(ak, r))][χBTΩ

(ak,r)(z)], z ∈ TΩ, 0 < p <∞,
α > −1.

Remark 5.4. Note also estimates of this section can be partially extended to some
mixed norm spaces defined on product domains. For these type spaces in pseudoconvex
domains we refer the reader to [20].

We define these mixed norm spaces on product domains as spaces with norms

∫
Ωm

∫
Rn
· · ·
∫
Rn︸ ︷︷ ︸

m

|f(z1, . . . , zm)| dx1 . . . dxm


q
p

m∏
j=1

∆γj−nr (yj) dyj,

where 1 < p <∞, 1 < q ≤ ∞, γj > n
r
− 1, j = 1, . . . , n.

Note for m = 1 and p = q we get ordinary Bergman space Apβ(TΩ) with norm ∫
TΩ

|f(z)|p∆β(Im z) dv(z)

 1
p

, 1 < p <∞, β > −1,

and for m > 1, p = q we get the Bergman spaces on product domains with the norm ∫
TΩ

· · ·
∫
TΩ

|f(z1, . . . , zm)|p∆β1(Im z1)× · · · ×∆βm(Im zm) dv(z1) . . . dv(zm)

 1
p

,

where 1 < p <∞, βj > −1, j = 1, . . . ,m. At the end we discuss some issues related
to integral operators on product of cones.

Remark 5.5. It is known (see [6])

L =

∫
Ω

(∫
Ω

f(v + y)∆(y)m−n/rdy

)q
∆(v)ν−n/rdv
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≤ c

∫
Ω

(∆(y)mf(y))q∆ν−n/r dy(5.2)

= L2,

if 1 ≤ q < qν , f ≥ 0, m > n/r − 1, ν > n/r − 1, L2 <∞ for some fixed qν .

We can consider for m > n/r − 1, f > 0, f = f(v1, . . . , vk), vj ∈ Ω, j = 1, . . . , k
more general versions

(T kmf)(~v) =

∫
Ω

f(v1 + y, . . . , vk + y)∆(y)m−n/r dy, k ∈ N,

and

(T kmf)(v1, . . . , vk) =

∫
Ω

· · ·
∫

Ω︸ ︷︷ ︸
k

f(v1 + y1, . . . , vk + yk)

×∆(y1)m1−n/r × · · · ×∆mk−n/r(yk) dy1 . . . dyk,

k ∈ N, mj > n/r − 1, j = 1, . . . , k and show analogues of (5.2) as we did with
Bergman type integral operators on product domains in previous section.

It is known also (see [6]) the classical Bergman projections are closely related with
Hardy type inequalities and some duality theorems in Ap,qτ spaces. We give an example
of Hardy type inequality.

‖F‖Lp,qν ≤ cp,q‖∆(Im y)�F‖Lp,qν ,

where p ∈ (p0, p1), q ∈ (q0, q1), ν > n/r − 1 where � is so-called generalized wave
operator (see [6]), for some fixed p0, p1, q0, q1 numbers.

Hence results of previous section can be related to such type estimates but on
Lp,qν (TmΩ ) and Ap,qν (TmΩ ) type spaces on product domains which are based on norms(∫

V1

· · ·
∫
V1

(∫
V

· · ·
∫
V

|F (z1, . . . , zm)|p dx1 . . . dxm

) q
p

m∏
j=1

∆νj−nr (yj) dyj

) 1
q

or∫
V1

(∫
V

(
· · ·
∫
V1

(∫
V

|f(z1, . . . , zm)|p1 dx1

)q1/p1
)
× · · · ×∆νm−n/r(ym) dym

) 1
qm

,

pi, qi ≥ 1, νj > n/r − 1, j = 1, . . . ,m, where V1 or V is equal to Rn or Ω.
We can finally define new mixed norm Ap,qα (TmΩ ) spaces on products of TmΩ domains

in two natural ways. Some results previous section can be extended to such spaces.
We define analytic spaces with norms in H(TmΩ ), m ≥ 1 as follows

A~p,~q
~γ (TmΩ ) =

{
f ∈ H(TmΩ ) :

(∫
Ω

(∫
Rn
. . .

(∫
Ω

(∫
Rn
|f(z1, . . . , zm)|p1 dx1

) q1
p1
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×∆γ1−nr (y1)dy1

) p2
q1

× · · · ×∆γm−nr (ym)

)
dym

)
<∞

}
,

where 1 ≤ pj, qj <∞, γj > n
r
− 1, i = 1, . . . ,m, zj = xj + iyj, j = 1, . . . ,m and

Ãp,q~γ (TmΩ ) =

f ∈ H(TmΩ ) :

∫
Ωm

∫
Rn
· · ·
∫
Rn︸ ︷︷ ︸

m

|f(z1, . . . , zm)|p dx1 . . . dxm


q
p

×
m∏
j=1

∆γj−nr (yj) dyj <∞

,
where 1 <= q, p <∞, γj > n

r
− 1, zj = xj + iyj, j = 1, . . . ,m.

Note for particular values of parameters we get spaces studied in [23,24] and in this
paper (m = 1 or p = q or pj = qj = s, γj = γ, j = 1, . . . ,m). It can be shown that all
these new scales of analytic spaces are Banach spaces. We finally remark the study
of these scales of analytic spaces on products of tube domains and related spaces on
semiproducts of tube domains is a large interesting and separate problem.

We finally provide a sharp embedding theorem for multifunctional analytic spaces in
tubular domains over symmetric cones. The proof repeats the ideas used in proofs of
previous theorems and we also follow arguments of the parallel result of Shamoyan-Li
(see [17]) in the unit ball. The key ingredient is the estimate from below of Bergman
kernel on Bergman ball obtained Recently by Sehba and Nana (see [19]). We need
some lemmas.

In the following lemma we denote by B the unweighted Bergman kernel (B(z, w) =
B0(z, w)).

Lemma 5.1 ([5], Theorem 1.1). For every δ > 0, there is a constant Cδ > 0 such
that ∣∣∣B(ζ, z)

B(ζ, w)
− 1
∣∣∣ ≤ Cδd(z, w),

for all ζ, z, w ∈ TΩ, with d(z, w) ≤ δ.

For ν > n
r
−1 and w ∈ TΩ, for simplicity, let us consider the normalized reproducing

kernel

kν(·, w) =
Bν(·, w)

‖Bν(·, w)‖2,ν

= ∆−ν−
n
r

(
· − w̄
i

)
∆

1
2(ν+n

r )(Im w).

For z ∈ TΩ, we define

µ̃(z) :=

∫
TΩ

|kν(z, w)|2 dµ(w),
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and for δ ∈ (0, 1) we define the average of the positive measure µ at z by

µ̂(z) =
µ(BTΩ

(z, δ))

vν(BTΩ
(z, δ))

.

The following lemma is a straightforward consequence of [2, Corollary 3.4] and
Lemma 5.1.

Lemma 5.2 (see [19]). Let ν > n
r
− 1, δ > 0 and z, w ∈ TΩ. There is a positive

constant Cδ such that for all z ∈ BTΩ
(w, δ),

vν(BTΩ
(w, δ))|kν(z, w)|2 ≤ Cδ.

If δ is sufficiently small, then there is C > 0 such that for all z ∈ BTΩ
(w, δ),

vν(BTΩ
(w, δ))|kν(z, w)|2 ≥ (1− Cδ).

The following two results are direct consequences of the above lemma.

Lemma 5.3 (see [19]). Let δ ∈ (0, 1). Then there exists a constant C = Cδ > 0 such
that

µ̂δ(z) ≤ Cδµ̃(z),

for any z ∈ TΩ.

Lemma 5.4 (see [19]). Let ν > n
r
− 1, δ, t ∈ (0, 1). Let 0 < δ1, δ2, δ3 < δ with

t < δ1/δ2 < t−1. Then there exists a constant C = C(δ, t) > 0 such that for any
z, w ∈ TΩ such that w ∈ BTΩ

(z, δ3),
1

C
<
vν(BTΩ

(z, δ1))

vν(BTΩ
(w, δ2))

< C.

We have the following sharp result based on these lemmas.

Theorem 5.4. Let µ be a positive Borel measure on TΩ and let {ak} be a sequence
an r-lattice based on Bergman balls. Let fj ∈ H(TΩ), j = 1, . . . ,m, 0 < pi, qi < ∞,
α > −1, i = 1, . . . ,m. If ∫

BTΩ
(ak)

dµ(z) ≤ c∆(Im ak)
m(2n

r
+α),

then we have the following estimate

∫
TΩ

m∏
i=1

|fi(z)|pi dµ(z) ≤ c

 m∏
i=1

 ∞∑
k=1

 ∫
BTΩ

(ak)

|fi(z)|pi∆(Im z)α dv(z)


qi

1
qi

 .
Moreover the reverse assertion is also valid.
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