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RECTIFYING SUBMANIFOLDS OF RIEMANNIAN MANIFOLDS
AND TORQUED VECTOR FIELDS

BANG-YEN CHEN!

ABSTRACT. Recently, the author defined and classified rectifying submanifolds in
Euclidean spaces in [12]; extending his earlier work on rectifying curves in Euclidean
3-space done in [6]. In this article, first the author introduces the notion of rectifying
submanifolds in an arbitrary Riemannian manifold. Then he defines torqued vector
fields on Riemannian manifolds and classifies Riemannian manifolds which admit a
torqued vector field. Finally, he characterizes and studies rectifying submanifolds in
a Riemannian manifold equipped with a torqued vector field. Some related results
and applications are also presented.

1. INTRODUCTION

Let E3 denote Euclidean 3-space with its inner product { , ). Consider a unit-speed
space curve x : I — E3 where I = (a,b) is a real interval. Let x denote the position
vector field of the curve and let X’ be denoted by t.

It is possible, in general, that t'(s) = 0 for some s; however, we assume that this
never happens. Then we can introduce a unique vector field n and positive function
k so that t' = kn. We call t’ the curvature vector field, n the principal normal vector
field, and k the curvature of the curve. Since t is of constant length, n is orthogonal
to t. The binormal vector field is defined by b = t x n, which is a unit vector field
orthogonal to both t and n. One defines the torsion 7 by the equation b’ = —7n.
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The famous Frenet-Serret equations are given by

t' = kn,
(1.1) n' = —xt + 7b,
b’ = —7n.

At each point of the curve, the planes spanned by {t,n}, {t,b}, and {n, b} are known
as the osculating plane, the rectifying plane, and the normal plane, respectively.
From elementary differential geometry it is well known that a curve in E? lies in
a plane if its position vector lies in its osculating plane at each point, and lies on a
sphere if its position vector lies in its normal plane at each point.
In view of these basic facts, the author asked the following simple geometric question
in [6]:

QUESTION: When does the position vector of a space curve x : I — E3 always lie in
its rectifying plane?

The author called such a curve a rectifying curve in [6]. The author derived many
fundamental properties of rectifying curves. In particular, he classifies all rectifying
curves. It is known that rectifying curves are related with centrodes, constant-ratio
curves and convolution manifolds (cf. [3-5,7,8]). For a recent survey on rectifying
curves, see [13].

In [12], the author extended the notion of rectifying curves to the notion of rec-
tifying submanifolds in a Euclidean space. Rectifying Euclidean submanifolds are
characterized and classified in [12].

In this article, first the author introduces the notion of rectifying submanifolds in an
arbitrary Riemannian manifold. Then he defines torqued vector fields on Riemannian
manifolds and classifies Riemannian manifolds which admit a torqued vector field.
Finally, he characterizes and studies rectifying submanifolds in a Riemannian manifold
equipped with a torqued vector field. Some related results and applications are also
presented.

2. PRELIMINARIES

Let  : M — M be an isometric immersion of a Riemannian manifold M into
another Riemannian manifold M. For each point p € M, we denote by T,M and
TPLM the tangent and the normal spaces at p.

There is a natural orthogonal decomposition:

(2.1) T,M = T,M & T, M.

Denote by V and V the Levi-Civita connections of M and M, respectively. The
formulas of Gauss and Weingarten are given respectively by (cf. [1,9])

VxY = VxY +h(X,Y),
Vx€=—AcX + Dx¢,
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for vector fields X, Y tangent to M and £ normal to M, where h is the second
fundamental form, D the normal connection, and A the shape operator of M.

For a given point p € M, the first normal space, of M in E™, denoted by Im h,, is
the subspace defined by

Im h, = Span{h(X,Y) : X, Y € T,M}.

For each normal vector £ at p, the shape operator A is a self-adjoint endomorphism
of T,M. The second fundamental form h and the shape operator A are related by

(A X, Y) = (h(X,Y),€)

where ( , ) is the inner product on M as well as on the ambient space M.
The covariant derivative VA of h with respect to the connection on TM @ T+M is
defined by

(Vxh)(Y,Z) = Dx(h(Y, Z)) — h(VxY,Z) — WY,V xZ).
For a given point p € M, we put
Im (Vh,) ={Vxh)(Y,Z): X,Y,Z € T,M}.

The subspace Im vhp is called the second normal space at p.
The equation of Codazzi is

(R(X,Y)Z)" = (Vxh)(Y,Z) = (Vyh)(X, Z),

where (R(X,Y)Z)* denotes the normal component of R(X,Y)Z.
It follows from the definition of a rectifying curve x : I — E3 that the position
vector field x of x satisfies

x(s) = A(s)t(s) + p(s)b(s),

for some functions A and pu.

For a curve x : I — [E3 with x(sg) # 0 at so € I, the first normal space at s is the
line spanned by the principal normal vector n(sy). Hence, the rectifying plane at sq
is nothing but the plane orthogonal to the first normal space at sq. Therefore, for a
submanifold M of E™ and a point p € M, we call the subspace of T,E™, orthogonal
complement to the first normal space Im o, the rectifying space of M at p.

Now, we introduce the following definitions.

Definition 2.1. Let V' is a non-vanishing vector field on a Riemannian manifold
M and let M be a submanifold of M such that the normal component VV of V is
nowhere zero on M. Then M is called a rectifying submanifold (with respect to V') if
and only if

(V(p),Imh,) =0

holds at every p € M.
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Definition 2.2. A submanifold M of a Riemannian manifold M is called twisted if
Im ?hp Q Im h,,
holds for p € M.

It follows from Definition 2.2 that a curve in E? is twisted if and only if the curve
has nonzero torsion at every point.
We recall the following definition.

Definition 2.3. The twisted product B x, F' of two pseudo Riemannian manifolds
(B,gp) and (F,gr) is the product manifold B x F' equipped with the pseudo Rie-
mannian metric

(2.2) g =gg+ Ngr,

where \ is a positive function on B x F', which is called the twisting function.
In particular, if the function A in (2.2) depending only B, the it is called a warped
product and the function A is called the warping function.

Definition 2.4. A twisted product B x, F of two pseudo Riemannian manifolds
(B, gp) and (F, gr) is called proper if the twisting function A cannot be expressed as
the product of a function f depending only on B and another function k& depending
only on F.

3. TORQUED VECTOR FIELDS

According to K. Yano, a vector field v on a pseudo Riemannian manifold M is
called torse-forming if it satisfies

Vxv=¢X +y(X)v,

for some function ¢ and a 1-form v and any vector X € T M, where V is the Levi-
Civita connection of M (cf. [19,20]). The 1-form - is called the generating form and
the function ¢ is called the conformal scalar of v (see [16]).

For simplicity, we make the following definition.

Definition 3.1. A nowhere zero vector field T on a (pseudo) Riemannian manifold
satisfying the following two conditions

(3.1) VxT =X +a(X)T and oT)=0,
is called a torqued vector field. The function ¢ and the 1-form « are called the torqued
function and the torqued form of the torqued vector field T, respectively.

A torqued vector field T is called proper if it is not a concircular vector field, i.e.,
its torqued form is non-trivial.

The main result of this section is the following.

Theorem 3.1. A Riemannian n-manifold M admits a torqued vector field if and only
if 1t is locally a twisted product I x \ F', where I is an open interval, F' is a Riemannian
(n — 1)-manifold and X is the twisting function.
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Proof. Assume that T is a torqued vector field on a Riemannian n-manifold M. Let
p =|T|. Then we have

(3.2) T = pey,

where e is a unit vector field on M. It follows from (3.1) and (3.2) that
pper = VoI = (Tp)er + p*Ve,e1.

Since V,, e is perpendicular to ey, we find

(3.3) Veer =0 and T(lnp) = .

The first equation in (3.3) shows that the integrable curves of e; are geodesics in
M. Thus, if we put D = Span {e;}, then D is a totally geodesic foliation, i.e., D is
an integrable distribution whose leaves are totally geodesic in M.

We may extend the unit vector field e; to a local orthonormal frame eq, ..., e, on
M. If we put
n
(3.4) Ve,ei = wa(ej)ek, i=1,...,n,
k=1
then we have wf = —wi.

Let us put D+ = Span {es, ..., e, }. Then we derive from (3.1) and (3.2) that

(3.5) pej +alej)per = Ve, T = (ejp)er + pVe,er.
for j =2,...,n. We find from (3.4) and (3.5) that

(36) wf(ej) - g(sjlw jak:277n7

(3.7) ale;) =ej(lnp), j=2,...,n.
Also, (3.1) and (3.2) give

(3.8) aler) =0.

Equation (3.6) implies that D is an integrable distribution whose leaves are totally
umbilical hypersurfaces of M. Therefore, it follows from a result of R. Ponge and
H. Reckziegel [17] that M is locally a twisted product I x, F', where [ is an open
interval, F' is a Riemannian (n — 1)-manifold and A is a positive function on I x F,
so that the metric tensor g of M takes the form

(3.9) g =ds’ + Ny,

with e; = 0/0s.

From (3.2) and (3.3), we know that the torqued function of T satisfies ¢ = dp/0s.
Moreover, it follows from (3.7) and (3.8) that the torqued form a of T is the dual
1-form of dnp(V(In f)), where 7 : I X\ F' — F is the natural projection and V(In f)
is the gradient of In f.
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Conversely, suppose that M is the twisted product I x, F' of an open interval and
a Riemannian (n — 1)-manifold F' so that the metric of M is given by (3.9). Then we
have (cf. [9,15,17])

0 0 Jln A

1 = = = =
(3.10) Vg Os 0 vvas ( Os ) v
for V' tangent to F.

Let us put

0

3.11 = A—.
(3.11) V=25,

Then it follows from (3.10) and (3.11) that

(3.12) Vov= (ax) 0

g ds ) Os
0 oA 0
1 = — — 1 —.
(3.13) Vyv (V)x)as + (83) v, V s
Now, let us define a scalar function ¢ on M by
o\
3.14 - -
(3.14) Y=

and define a 1-form a on M by
Q =
(3.15) *a,) =0, | )
a(V)=V(ny), ifV L.
Then we obtain from (3.11)—(3.15) that
Vxv=pX+aX)v, foral X eTM,
a(v) =0,

Consequently, the twisted product I x, F' admits a torqued vector field given by
v=A\Z. O]
Js

By applying the same method as given in the proof of Theorem 3.1, we also have
the following result.

Theorem 3.2. A Lorentzian n-manifold M admits a time-like torqued vector field if
and only if it is locally a twisted product I X, F, where I is an open interval, F is a
Riemannian (n — 1)-manifold so that the metric of M takes the form

g = _d82 + )\29F7
where X is a positive function on I x F.

Remark 3.1. Theorem 3.2 can be regarded as an extension of Theorem 1 of [10].
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Remark 3.2. Tt is well-known in elementary differential geometry that, for a given
non-closed simple curve v in a surface, the surface admits a geodesic coordinate patch
along . Because every geodesic coordinate patch on a surface is a twisted product
metric on the surface, twisted products do exist extensively. Consequently, there
exist ample examples of Riemannian manifolds which admit a torqued vector field
according to Theorem 3.1.

On the other hand, it was known in [15] that if a twisted product B x ¢ F' of (B, gp)
and (F, gr) with dim F' > 1 is an Einstein manifold, then it is non-proper. In other
word, B X ;s F' can be expressed as a warped product B x¢ F of (B, gg) and (F, gr) with
a warping function ®, where gr is a conformally metric tensor to gr. Consequently,
not every Riemannian manifold can be expressed locally as a proper twisted product.

Remark 3.3. On a twisted product manifold I x, F', let us consider a coordinate
system {s, ug, ..., u,} such that the metric is given by

g = +ds* + Ngp,
with gp = Z? k2 gfkdujduk. We may regard such a coordinate system as a geodesic
coordinate patch on the twisted product I x, F.

A vector field on a Riemannian manifold M is called a gradient vector field if it is
the gradient V f of some function f on M.
For torqued vector fields, we also have the following.

Proposition 3.1. If a torqued vector field on a Riemannian manifold M is a gradient
vector field, then it is a concircular vector field.

Proof. Let T be a torqued vector field on a Riemannian manifold (M, g) with torqued

function ¢ and torqued form «. Then it satisfied the two conditions in (3.1). Let

us assume that T is the gradient vector field V f for a function f on M. Then the

Hessian H/ of f satisfies

HI(X,Y) = XY = (VxY)f = Xg(Y,Vf) = g(VxY, V)
=g9(Y,Vx(V[)) = g(Y,VxT) = 0g(X.Y) + a(X)g(Y, 7).

Since the Hessian HY(X,Y) of f is a symmetric in X and Y, it follows from (3.16)

that

(3.17) a(X)g(Y,T) = a(Y)g(X,7),

for vector fields X and Y tangent to M.
If we choose the vector fields X and Y in such way that X = T and Y L T, then
we find from (3.17) that

(3.16)

0=a(Y)g(T,7).
Since the torqued vector field T is nowhere zero according to Definition 3.1, we obtain
from (3.17) that a(Y") = 0 for any Y perpendicular to T. Therefore, after combining
this with the second condition in (3.1), we get a = 0. Consequently, the torqued
vector field T is a concircular vector field. U



100 B.-Y. CHEN

4. CHARACTERIZATION OF RECTIFYING SUBMANIFOLDS WITH RESPECT TO A
TORQUED FIELD

Let M be a Riemannian m-manifold equipped with a torqued vector field J. We
have the following very simple characterization of rectifying submanifolds of M with
respect to 7J.

Theorem 4.1. Let M be a submanifold of a Riemannian manifold M endowed with
a torqued vector field T. If the tangential component TT of T is nonzero on M, then
M s a rectifying submanifold (with respect to T) if and only if T* is torse-forming
vector field on M whose conformal scalar is the restriction of the torqued function and
whose generating form is the restriction of the torqued form of T on M.

Proof. Let M be a submanifold of a Riemannian manifold M endowed with a torqued
vector field T. Consider the orthogonal decomposition

(4.1) T=T7"+ 7V, |with respect to (2.1)]
of T restricted to M, where T7 and TV are the tangential and normal components of
T, respectively.

From (3.1), (4.1) and the formulas of Gauss and Weingarten, we find
(4.2) ©X +a(X)T =VxT = VxT" + (X, TT) — Apn X + DxTV
for any X € TM. After comparing the tangential components in (4.2), we obtain
(4.3) Apn X = VxT! — pX — a(X)T".
Similarly, by comparing the normal components in (4.2) we find

DxTY = o(X)TY — h(X, 7).

Now, assume that M is a rectifying submanifold with respect to J. Then by
Definition 2.1 we know that TV is nonzero on M. Moreover, it follows from the
Definition 2.1 that

(4.4) (T.h(X,Y)) =0, forall X,Y € TM,
which gives Ayny = 0. Hence (4.3) yields
Vi TT = X + a(X)T7.

Therefore T7 is a torse-forming vector field on M whose conformal scalar is the
restriction of the torqued function of T on M and whose generating form is the
restriction of the torqued form of T on M.

Conversely, let us assume that T7 is a torse-forming vector field on M whose
conformal scalar is the restriction of the torqued function of 7 on M and whose
generating form is the restriction of the torqued form of 7 on M. Then we have

(4.5) VxT! = pX + a(X)T7,
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for any vector X tangent to M. Therefore, after combining (4.5) with (4.3) we obtain
Agv = 0. Hence we obtain (4.4). Consequently, we conclude that M is a rectifying
submanifold of M with respect to 7. O

5. SOME APPLICATIONS

Recall that a nonzero vector field Z on a Riemannian manifold M is called a
concircular vector field if it satisfies

(5.1) VxZ =¢X, forall X e TM,

where ¢ is a function and V is the Levi-Civita connection of M. The function ¢ is
called the concircular function of Z (see [10] for a brief history on concircular vector
fields). Obviously, a torqued vector field with trivial torqued form, i.e., with a = 0, is
a concircular vector field.

A concircular vector field is called a concurrent vector field if the function ¢ in (5.1)
is equal to one (see, e.g., [21]).

The following result follows easily from Theorem 4.1.

Theorem 5.1. Let M be a submanifold of a Riemannian manifold M endowed with a
concircular vector field Z # 0 with Z¥ # 0 on M. Then M is a rectifying submanifold
with respect to Z if and only if the tangential component ZT of Z is a concircular
vector field with the concircular function given by the restriction of the concircular
function of Z on M.

Proof. Let M be a submanifold of a Riemannian manifold M endowed with a concir-
cular vector field Z # 0 such that Z7 # 0 on M. Clearly, the concircular vector field
Z is a torqued vector field with a trivial torqued form.

Suppose that M is a rectifying submanifold of M with respect to Z. Then it follows
from Theorem 4.1 that the tangential component Z7 of Z on M is a torse-forming
vector field whose conformal scalar is the restriction of the torqued function of Z on
M and whose generating form is the trivial 1-form, since Z has trivial torqued form.

Consequently, Z7 is a concircular vector field whose concircular function is the
restriction of the concircular function of Z on M.

The converse is easy to verify. 0

The following result is an immediate consequence of Theorem 5.1.

Corollary 5.1. Let M be a submanifold of a Riemannian manifold M endowed with
a concurrent vector field Z # 0 such that Z¥ # 0 on M. Then M is a rectifying
submanifold with respect to Z if and only if the tangential component ZT of Z is a
concurrent vector field on M.
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6. BASIC PROPERTIES OF RECTIFYING SUBMANIFOLDS WITH RESPECT TO A
CONCIRCULAR VECTOR FIELD

Finally, we provide two basic properties of rectifying submanifolds of M equipped
with a concircular vector field Z.

Proposition 6.1. Let M be a Riemannian m-manifold endowed with a concircular
vector field Z. If M is a rectifying submanifold of M with respect to Z, then we have:

(1) ZN is of constant length # 0;
(2) the concircular function ¢ of ZT is given by ¢ = ZT(Inp), where p = |Z7|.

Proof. Let M be a Riemannian m-manifold endowed with a concircular vector field
Z. Assume that M is a rectifying submanifold of M with respect to Z. Then, by

definition, we have Z%V # 0.
Now, by applying (5.1), equation (4.2) reduces to

(6.1) 0X =VxZ"+h(X,Z") — AynX + Dx Z".
By comparing the normal components in (6.1), we find
(6.2) Dx7ZN = —h(X,Z7).

for any X € TM.
It follows from (4.4) and (6.2) that (Z, DxZ") = 0. Hence we obtain

X(z",ZV) =0,

which implies that Z% is of constant length # 0. This proves statement (1).
Since Azy =0 on M, we find from (6.1) that

(6.3) \V A X
for X tangent to M. If we put p = |Z7|, then we have
(6.4) 7T = pey,

where ey is a unit vector field tangent to M.
From (6.3) with X = e; and (6.4) we find

per = Ve, ZT = (erp)er + pVe, e,
which implies that

(65) ¥ = e1p, V6161 =0.
Also, it follows from (6.3) with X =V L e; and (6.4) that
(6.6) Vp=0, forall V L e.

Now, it follows from (6.5) and (6.6) that there exists a function s on M such that
p = p(s) and e; = 0/0s. Hence we obtain ¢ = p'(s). Consequently, by (6.4) we obtain
statement (2). O
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