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A GENERALIZATION OF HERMITE-HADAMARD’S INEQUALITY
MOHAMMAD W. ALOMARI*

ABSTRACT. In literature the Hermite-Hadamard inequality was eligible for many
reasons, one of the most surprising and interesting that the Hermite-Hadamard ine-
quality combine the midpoint and trapezoid formulae in an inequality. In this work,
a Hermite-Hadamard like inequality that combines the composite trapezoid and
composite midpoint formulae is proved. So that, the classical Hermite-Hadamard
inequality becomes a special case of the presented result. Some Ostrowski’s type
inequalities for convex functions are proved as well.

1. INTRODUCTION

Let f : [a,b] — R, be a twice differentiable mapping such that f” (z) exists on (a, b)
and || f"|l .o = suPue(ap) [f” (¥)] < 0o. Then the midpoint inequality is known as:

[r@a-o-ar ()< 50

and, the trapezoid inequality

_(b-a)
- 12

b 3
/ f(x)dz — (b— a) T

f(a)+f(b)'
2

also hold. Therefore, the integral fab f (z) dx can be approximated in terms of the
midpoint and the trapezoidal rules, respectively such as:

[r@a=o-ar (),

Key words and phrases. Hermite-Hadamard inequality, Ostrowski inequality, convex functions.
2010 Mathematics Subject Classification. Primary: 26A51. Secondary: 26D15.

Received: April 6, 2016.

Accepted: September 23, 2016.

313



314 M. W. ALOMARI

and
/f e o o) LOEL0)

which are combined in a useful and famous relationship, known as the Hermite-
Hadamard’s inequality. That is,

(1.1) f(aer)Sbia/bf(x)dng’

2

which hold for all convex functions f defined on a real interval [a, b].
The real beginning was (almost) in the last twenty five years, where, in 1992
Dragomir [9] published his article about (1.1). The main result in [9] was

Theorem 1.1. Let f : [a,b] is convez function one can define the following mapping
on [0,1] such as:

H(t):ﬁ/bf(tﬁu—t)“;b)dx,

a

then:
(a) H is convex and monotonic non-decreasing on [0, 1];

(b) one has the bounds for H

/ v)dz = H (1),
te(0,1]

sup H (¢

and

. a+b
tell[%),qu(t) —f( 5 ) = H(0).

Few years after 1992, many authors have took (a real) attention to the Hermite-
Hadamard inequality and sequence of several works under various assumptions for the
function involved such as bounded variation, convex, differentiable functions whose
n-derivative(s) belong to L,[a,b]; (1 < p < o0), Lipschitz, monotonic, etc., have
been published. For a comprehensive list of results and excellent bibliography we
recommend the interested to refer to [3,4,13].

In 1997, Yang and Hong [15], continued on Dragomir result (Theorem 1.1) and they
proved the following theorem.

Theorem 1.2. Suppose that f : [a,b] — R, is conver and the mapping F : [0,1] - R
s defined by

F(t):ﬁ b{f<1;ta+1;t >+f(ﬂb+% )]du,

then:
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(a) the mapping F is conver and monotonic nondecreasing on [0, 1];
(b) we have the bounds

inf F(f5) = — /f(x)dx:F(O),

te[0,1] (b—a)
sup F(t) :M =F(1).
te[0,1]

For other closely related results see [1,5-8,10-12].
In terms of composite numerical integration, we recall the composite midpoint rule
[2, p. 202]

n/2

/f dr =203 f (o) =D,

for some p € (a,b), where f € C’Q[a,b], nis even, h = =% and x; = a + (j + 1)h, for
each j = —1,0,...,n+ 1; and, the composite trapezoid rule |2, p. 203]

/f [ +2Zf ) + ()] — <bl_2a)h2f”(u),

for some u € (a,b), where f € CZ[a,b], h = %‘1 and x; = a + jh, for each j =
0,1,....n

The main purpose of this work, is to combine the composite trapezoid and composite
midpoint formulae in an inequality that is similar to the classical Hermite-Hadamard
inequality (1.1) for convex functions defined on a real interval [a, b]. In this way, we
establish a conventional generalization of (1.1) which is in turn most useful and has
a very constructional form.

2. A GENERALIZATION OF HERMITE-HADAMARD’S INEQUALITY

Theorem 2.1. Let f : [a,b] — R be a convex function on |a,b], then the double

mequality
Tp-1+ Tk + Tk h
(2.1) hZf f < |f@+2) fa)+f0)
k=1
holds, where x = a + kb’Ta, k=0,1,2,...,n; with h = ,n € N. The constant ‘1’
in the left-hand side and ‘% "in the right- hand side are the best possible for all n € N.
If f is concave then the inequality is reversed.

n—1

Nota bene: after revision of this paper, the anonymous referee informed us that the
inequality (2.1) was proved in more general case in [14] (see also |13, p. 22-23]). We
appreciate this remark from the reviewer.
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Proof. Since f is convex on [a,b], then f so is on each subinterval [z;_1,z;], j =
1,...,n, then for all t € [0,1], we have

(2.2) flzja+ (1 —t) ) <tf(xj) + (1 —1) f(25).

Integrating (2.2) with respect to ¢t on [0, 1] we get

flzj—) + f(2))

(23) /(;1 f (Zf.??jfl + (1 - t) l‘j) dt < 5

Substituting v = tx;_y + (1 — t) x;, in the left hand side of (2.3) , we get

/ () du < LI () + ().

Tj—

Taking the sum over j from 1 to n, we get
(2.4) Z / f(u)du
j=17%i-1

:/abf(u)du

< Z % (f (zj-1) + [ (25))

gﬁmjax{xj—:vj 1} Z (zj-1) + f (25))

o S

f (o) + f (21) + Z{f (@) + [ (2)} + f (2n) +f(!rn)]

=5 [f@+2 3 )+ 10

On the other hand, again since f is convex on I, then for ¢ € [0, 1], we have

(2.5) f (%1T+%) —f (t:cj + (12— t) a1 " (1—-1t) x; +t:cj1)

Lf (trj + (L —=t) i) + (1 —t)z; +txjq)].
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Integrating inequality (2.5) with respect to ¢ on [0, 1] we get

(2.6) f (%)

/0 Lf (g + (L —t)xjq) + f (1 —t)zj +tajq)] dt

| =

<
-2

1 1 1 1
25/0 f(t“’j+(1_t)“fj—1)dt+§/0 FUL =ty + ta;y) dt.

By putting 1 — ¢ = s in the second integral on the right-hand side of (2.6), we have

e (%)

%/ F oty + (1= )25 1) dt + /f (1= 1)) + ta; 1) dt

/ t[E] 1 —t) ZL’j_1>dt.

Substituting u = tz; + (1 — t) x;_4, in the left hand side of (2.7), and then taking the
sum over j from 1 to n, we get

(2.8) hZf(‘”’“ 1”’“) /f

From (2.4) and (2.8), we get the desired inequality (2.1).
To prove the sharpness let (2.1) hold with another constants Cy,Cy > 0, which
gives

(29) - hZf(xk 1”’“) /f

<Cy-h
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Let f : [a,b] — R be the identity map f(z) = z, then the right-hand side of (2.9)
reduces to

b2-—-a2 n—1
<Cy-h a—i—Qka—i—b

k=1

- n—1
b__
=Cy-h a+22(a+k na)+b
L k=1

r n—1 n—1
b__
=Cy-hla+2Y a+2 GE:ker
L k=1 k=1

n

b-ua
=Cy-(b—a)(a+0).

b—a n(n-—1)
n 2

a+2(n—1)a+2 +0b
| |

It follows that % < (s, ie., % is the best possible constant in the right-hand side of
(2.1).
For the left-hand side, we have

2 2 n
Py e
k=1

:(Jl.hZ{a+(2k5—1)b2_na}.
k=1

:C'1~b_a- {na+b—a(2.n(n+1)_n>}

n 2n 2
b2 _ CL2
=C;- 5 ,
which means that 1 > (', and thus 1 is the best possible constant in the left-hand
side of (2.1). Thus the proof of Theorem 2.1 is completely finished. U

Remark 2.1. In Theorem 2.1, if we take n = 1, then we refer to the original Hermite-
Hadamard inequality (1.1).

In viewing of (2.1), next we give direct sharp refinements of Hermite-Hadamard’s
type inequalities for convex functions defined on a real interval [a, b], according to the
number of division ‘n’ (in our case n = 1,2,3,4) in Theorem 2.1.

Corollary 2.1. In Theorem 2.1, we have
(a) if n =1, then

a+b
2

(b—a)f( )g/abf(t)dtg(b_a)w;
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(b—a) {f (Sajb)_i_f(a—z?)b)]
/f

<O r@rar (U50) 4 )

(b) if n =2, then

(c) if n =3, then
(b—a) [f<5a;b)+f<a;b>+f(a25b)]
/f
<O r@ear (25 var (52) 4 1]
(d) if n =4, then

(b—a) [f (m;@) +f(5a;r3b) +f(3a;;5b) +f(a;7b)]
/f 0 dt

b1_2a) {f( Y <3a;—b) of (a+b> 2 <a+3b) +f(b)].

Now, let f : [a.b] — R be a convex function on [a,b]. Define the mappings
H;, F;:[0,1] = R, given by

1 [% . :
(2.10) H;(t) = E/ f <tu +(1-1) ””C“TW) du, € [z 1,14,

j—

<

and

1 [% 1+t 1—1¢ 1+t 1—t
(2.11) Fj(t)_ﬁ/x-_l {f(ijmL 5 u)—l—f( 5 Tt u)} du,

J

where u € [z;_1, 7]
Applying Theorems 1.1 and 1.2, for f : [z;_1,7;] = R, j = 1,2,...,n. Then the
following statements hold:
(a) H;(t) and F;(t) are convex for all ¢ € [0,1] and u € [z;_1, z;];
(b) H;(t) and F}(t) are monotonic nondecreasing for all ¢ € [0,1] and u € [x;_1, z;].
(c) we have the following bounds for H;(t)

(2.12) [ =),
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and
(2.13) f (”%W) — H, (0).

and the following bounds for Fj(t)

fla-)+f) _p

(2.14) 5 (1),

and
1 [%
(2.15) 7 f(u)du = F;(0).
Tj—1
Hence, we may establish two related mappings for the inequality (2.1).

Proposition 2.1. Let f be as in Theorem 2.1, define the mappings H, F : [0,1] — R,
given by

H() =Y H(t) and F(t)=3F ),

where H;(t) and F;(t) are defined in (2.10) and (2.11), respectively; then the following
statements hold:
(a) H(t) and F(t) are convex for all t € [0,1] and u € [a,b];
(b) H(t) and F(t) are monotonic nondecreasing for all t € [0,1] and u € [a,b];
(c) We have the following bounds for H(t)

1 b

and

inf H(t):éf(@) — H(0),

te€[0,1]

and the following bounds for F(t)

= F(1),

sup F (1) = [f(a)+22f($k)+f(b)

te(0,1]

and

b
in F(t):%/ F(w)du = F(0).

t€[0,1]

Proof. Taking the sum over j from 1 to n, in (2.12)—(2.15) we get the required results,
and we shall omit the details. O

Remark 2.2. The inequality (2.1) may written in a convenient way as follows:

b n—1
f(m)é%/a f(t)dt—;f(xk)gw

n—1

kz:f (xkl;— :ck> B Z

k=1

I
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which is of Ostrowski’s type.

Some sharps Ostrowski’s type inequalities for convex functions defined on a real
interval [a, b], are proposed in the next theorems.

Theorem 2.2. Let f: [a,b] — R, be a convex function on [a,b], then the inequality

A n—1
) f(@)"‘QZf(ﬂ?k)‘i‘f(b) ;

k=1

(2.16) / f(@)dz — (b—a) f (y) <

holds for all y € [a,b]. where, ), = a + /{:b*T“, k=0,1,2,...,n; with h = b*T“, n € N.
The constant % in the right-hand side is the best possible, in the sense that it cannot be
replaced by a smaller one for alln € N. If f is concave then the inequality is reversed.

Proof. Fix y € [z;_1,2;], j = 1,...,n. Since f is convex on [a, b], then f so is on each
subinterval [x;_1,x;], in particular on [z;_;,y], then for all ¢ € [0, 1], we have

(2.17) flrja+ A=)y <tf(rjo)+A—-1)f(y), j=1L....,n

Integrating (2.17) with respect to ¢ on [0, 1] we get

(2.18) /Olf(t:z:j_l +(1—-t)y)dt < f(x“);f(y).

Substituting v = tx;_1 + (1 — t) y, in the left hand side of (2.18), we get

(2.19) [ s =B G )+ ).

Now, we do similarly for the interval [y, z;], we therefore have

(220  Flty+(—Da) @ +0-0F(x), j=1L...n

Integrating (2.20) with respect to ¢t on [0, 1] we get

(2.21) /01 fly+ (1 —t)x;)dt < M

Substituting u = ty + (1 — t) z;, in the left hand side of (2.21), we get

(2.22) /xj f(u)du < ij—y (f (y) + f (x7)).
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Adding the inequalities (2.19) and (2.22), we get

(2.23) / y £ () du+ /y 7 () du
_ £ (u) du
ST () + L)+ 25 (F )+ £ ()
< T )+ () o (= 2ge) 1 ()
< H P (f () + f () + A ).

Taking the sum over j from 1 to n, we get

Z/Wf

:/af(u)du

— Z S () + f ()} + Z hf (y)

] ax{z; —xj-1} - Z (@j—1) + [ (z;)) + (b—a) f (y)

+(b—a) f(y)

|

f (o) + f (1) + Z {f (@jm1) + f(2)} + [ (@ao1) + f (20)

| =

) +2Y 7 @)+ O

which gives that

/f Ydu—(b—a) f () < 2 |7

Fla)+2Y f )+ 1 0)]

forally € [xj_1,2;] C[a,b] for all j =1,2,...,n, which gives the desired result (2.16).
To prove the sharpness let (2.16) hold with another constants C' > 0, which gives

Y423 F o)+ F )]

k=1

b
(2.24) /f(x)dx—(b—a>f<y>sc-h f(a
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Let f :]0,1] — R be the identity map f(z) = z, then the right-hand side of (2.24)
reduces to

1 1|«
5—@/30-5[22““
k=1
:01F122;2+q
nin 2
=C.

Choose y = 0, it follows that % < (), ie, % is the best possible constant in the
right-hand side of (2.16). O

Theorem 2.3. Under the assumptions of Theorem 2.2, we have

(2.25) / f(x)dz — (b—a) f ()

h
< |Z
- {2 —1—121]%}% 4

Tj—1 + T
2

Y

}

for all y € [a,b]. The constant % i the right-hand side is the best possible for all
n € N. If f is concave then the inequality is reversed.
In particular, if n =1 then

Fla)+2 3 )+ 1 (0

b—a _a+b

[r@ar-w-arw =[S0+ | v o,

for ally € [a,b].

Proof. Repeating the steps of the proof of Theorem 2.2, therefore by (2.23)

(2.26) /%ijdug225L141%4y+%;ﬂ.fwfﬁ+hf@)

< ma { Y2 B (7 ay0) 4 £ (21-0) S 0

Ti— Ti_q Ti1 + X,
< |Zi J 4 J
ey

+hf(y)

} A (25m) + £ (250)
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Taking the sum over j from 1 to n, we get

/abf(u)du

N [ e
2 e
7j=1

} AS (@) + f @)+ Dof ()

} ST () + f (@) + (b —a) £ ()

J=1

T;— T Tj1+T;
< max |2 —2— - J
- 1<j<n|: 2 +’y 2

|

Tj—1 + T

[h
< |z + max |y 5

2 1<i<n

. [f () + F 0) + S AF (@) + F (@)} + F (@) 7 )| + (0 0) £ )
= 5+ e [y - E ] ) F2 T )10+ 001 )

which gives that

/f Ydu— (b—a) f ()

Tj1+x;

§{2+maxy 5

1<j<n

]~[f<a>+2if<xj>+f<b> m

forall y € [xj_1,2;] C [a,b] for all j = 1,2,...,n, which gives the desired result (2.25).
The proof of sharpness goes likewise the proof of the sharpness of Theorem 2.2 and
we shall omit the details. 0

Corollary 2.2. Let a; > 0, for alli = 0,1,2,...,n, be positive real numbers such
that Y ¢, a; =1, then under the assumptions of Theorem 2.3, we have

/f )dx — ( b—a)f< 1120%95@-)

h €, 1—|—l"
< |2 R ]
- [2 1<J<n n—o—lz&Z '

for all y € |a,b]. The constant % in the right-hand side is the best possible. If f is
concave then the inequality is reversed.

n—1

+2Zf zj) + f ()],

Theorem 2.4. Under the assumptions of Theorem 2.3, we have

(2.27) ﬁ/abf(u u——Zf("”11+%>__Zf 2) < )ern+f()7
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forall j =1,2,...,n. The constant % in the right-hand side is the best possible. If f
15 concave then the inequality is reversed.

Tj—1tx;

Proof. Repeating the steps of the proof of Theorem 2.3, (2.26) if we choose y = ==,
then we get

[ s B )+ o)+ hr (B,

Taking the sum over j from 1 to n, we get

/f du<zx] S A{f (o) f xj}+2hf<x”—+%)
_QZ{f z;1) + f (z; }+h2f(x3 1“71),

which gives that

b - Ti1+ x5
/ f(u)du—hZf(]‘T“) =

forall j = 1,2,...,n, which gives the desired result (2.27). The proof of sharpness goes
likewise the proof of the sharpness of Theorem 2.2 and we shall omit the details. [

D) +2Y () + 0

Theorem 2.5. Let I C R be an open interval and a,b € I, a <b. Let f: I — R, be
an increasing convex function on [a,b], then the inequality

e [roa-C50 w25y (B 20

is valid for all y € [a,b] C I. The constant % in the right-hand side is the best possible,
in the sense that it cannot be replaced by a greater one. If f is concave then the
inequality is reversed. In particular, if n =1 then

/abf@)dt—@f(y)zb%af(a;b) >0,

Proof. Let y € [xj_1,x;] be an arbitrary point such that z;_y <y—p <y <y+p < x;
forall y =1,2,...,n with p > 0.
It is well known that f is convex on [ iff

1 y+p

s, | i

for every subinterval [y — p,y + p|] C [a,b] C I for some p > 0. But since f increases
on [a,b], we also have

1 y+p 1 Tj
UEES ICLEr R ICL



326 M. W. ALOMARI

Choosing p > %, (this choice is available since it is true for every subinterval in I),
therefore from the last inequality we get

y+p
sy [ rmasg / 7

Again by convexity we have

()=

Tj—

Adding the last two inequalities, we get

hf(y) + hf (%ﬂcﬂ) Sz/:lf(t)dt

hf(%) sz/%j f&)dt=nf(y).

Taking the sum over j from 1 to n, we get

D B 3 BIUEE Sl

/abf(t) “U(y)Z%if(zj%m)zo,

holds by positivity of f and this proves our assertion.
To prove the sharpness let (2.28) holds with another constant C' > 0, which gives

b —a = Ti_1+ x;
(2.29) /f(t)dt—(b2 ) (y)zc.hZf(JTﬂ)zo.

j=1
Let f:[0,1] — R, be the identity map f(x) = z, then the right-hand side of (2.29)
reduces to

or we write

hence,

L _223—1

O
[\]

I
Q
S|
| —— |
3
S <.
|
:M:
[N}
3|H
| I

=1 =
e L[l
ni|n 2 2n
1
=—C.
2
Choose y = 3, it follows that %C’ which means that % > C, ie., % is the best

possible Constant in the right- hand side of (2.28). O
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Corollary 2.3. Let a; > 0, for all1 = 0,1,2,...,n, be positive real numbers such
that Y, o; =1, then under the assumptions of Theorem 2.5, we have

’ (b—a) RN h (T 2y
/Qf(t)dt_ 5 f n+1;0ﬁ$z‘ Zng;f(T)ZO-

The constant % in the right-hand side is the best possible. If f is concave then the
inequality is reversed. In particular case if n =1, then

[ rom () ().

for all o € [0, 1].
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