
Kragujevac Journal of Mathematics
Volume 41(2) (2017), Pages 313–328.

A GENERALIZATION OF HERMITE-HADAMARD’S INEQUALITY

MOHAMMAD W. ALOMARI1

Abstract. In literature the Hermite-Hadamard inequality was eligible for many
reasons, one of the most surprising and interesting that the Hermite-Hadamard ine-
quality combine the midpoint and trapezoid formulae in an inequality. In this work,
a Hermite-Hadamard like inequality that combines the composite trapezoid and
composite midpoint formulae is proved. So that, the classical Hermite-Hadamard
inequality becomes a special case of the presented result. Some Ostrowski’s type
inequalities for convex functions are proved as well.

1. Introduction

Let f : [a, b]→ R, be a twice differentiable mapping such that f ′′ (x) exists on (a, b)
and ‖f ′′‖∞ = supx∈(a,b) |f ′′ (x)| <∞. Then the midpoint inequality is known as:∣∣∣∣∫ b

a

f (x) dx− (b− a) f
(
a+ b

2

)∣∣∣∣ ≤ (b− a)3

24
‖f ′′‖∞ ,

and, the trapezoid inequality∣∣∣∣∫ b

a

f (x) dx− (b− a) f (a) + f (b)

2

∣∣∣∣ ≤ (b− a)3

12
‖f ′′‖∞ ,

also hold. Therefore, the integral
∫ b

a
f (x) dx can be approximated in terms of the

midpoint and the trapezoidal rules, respectively such as:∫ b

a

f (x) dx ∼= (b− a) f
(
a+ b

2

)
,
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and ∫ b

a

f (x) dx ∼= (b− a) f (a) + f (b)

2
,

which are combined in a useful and famous relationship, known as the Hermite-
Hadamard’s inequality. That is,

(1.1) f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f (x) dx ≤ f (a) + f (b)

2
,

which hold for all convex functions f defined on a real interval [a, b].
The real beginning was (almost) in the last twenty five years, where, in 1992

Dragomir [9] published his article about (1.1). The main result in [9] was

Theorem 1.1. Let f : [a, b] is convex function one can define the following mapping
on [0, 1] such as:

H (t) =
1

(b− a)

b∫
a

f

(
tx+ (1− t) a+ b

2

)
dx,

then:
(a) H is convex and monotonic non-decreasing on [0, 1];
(b) one has the bounds for H

sup
t∈[0,1]

H (t) =
1

(b− a)

b∫
a

f (x) dx = H (1) ,

and
inf

t∈[0,1]
H (t) = f

(
a+ b

2

)
= H (0) .

Few years after 1992, many authors have took (a real) attention to the Hermite-
Hadamard inequality and sequence of several works under various assumptions for the
function involved such as bounded variation, convex, differentiable functions whose
n-derivative(s) belong to Lp[a, b]; (1 ≤ p ≤ ∞), Lipschitz, monotonic, etc., have
been published. For a comprehensive list of results and excellent bibliography we
recommend the interested to refer to [3, 4, 13].

In 1997, Yang and Hong [15], continued on Dragomir result (Theorem 1.1) and they
proved the following theorem.

Theorem 1.2. Suppose that f : [a, b]→ R, is convex and the mapping F : [0, 1]→ R
is defined by

F (t) =
1

b− a

∫ b

a

[
f

(
1 + t

2
a+

1− t
2

u

)
+ f

(
1 + t

2
b+

1− t
2

u

)]
du,

then:
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(a) the mapping F is convex and monotonic nondecreasing on [0, 1];
(b) we have the bounds

inf
t∈[0,1]

F (t, s) =
1

(b− a)

b∫
a

f (x) dx = F (0) ,

sup
t∈[0,1]

F (t) =
f (a) + f (b)

2
= F (1) .

For other closely related results see [1, 5–8,10–12].
In terms of composite numerical integration, we recall the composite midpoint rule

[2, p. 202] ∫ b

a

f (x) dx = 2h

n/2∑
j=0

f (x2j) +
(b− a)

6
h2f ′′ (µ) ,

for some µ ∈ (a, b), where f ∈ C2[a, b], n is even, h = b−a
n+2

and xj = a+ (j + 1)h, for
each j = −1, 0, . . . , n+ 1; and, the composite trapezoid rule [2, p. 203]∫ b

a

f (x) dx =
h

2

[
f (a) + 2

n−1∑
j=1

f (xj) + f (b)

]
− (b− a)

12
h2f ′′ (µ) ,

for some µ ∈ (a, b), where f ∈ C2[a, b], h = b−a
n

and xj = a + jh, for each j =
0, 1, . . . , n.

The main purpose of this work, is to combine the composite trapezoid and composite
midpoint formulae in an inequality that is similar to the classical Hermite-Hadamard
inequality (1.1) for convex functions defined on a real interval [a, b]. In this way, we
establish a conventional generalization of (1.1) which is in turn most useful and has
a very constructional form.

2. A Generalization of Hermite-Hadamard’s Inequality

Theorem 2.1. Let f : [a, b] → R be a convex function on [a, b], then the double
inequality

(2.1) h

n∑
k=1

f

(
xk−1 + xk

2

)
≤
∫ b

a

f (t) dt ≤ h

2

[
f (a) + 2

n−1∑
k=1

f (xk) + f (b)

]
,

holds, where xk = a+ k b−a
n
, k = 0, 1, 2, . . . , n; with h = b−a

n
, n ∈ N. The constant ‘1’

in the left-hand side and ‘1
2
’ in the right-hand side are the best possible for all n ∈ N.

If f is concave then the inequality is reversed.

Nota bene: after revision of this paper, the anonymous referee informed us that the
inequality (2.1) was proved in more general case in [14] (see also [13, p. 22–23]). We
appreciate this remark from the reviewer.
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Proof. Since f is convex on [a, b], then f so is on each subinterval [xj−1, xj], j =
1, . . . , n, then for all t ∈ [0, 1], we have

(2.2) f (txj−1 + (1− t)xj) ≤ tf (xj−1) + (1− t) f (xj) .

Integrating (2.2) with respect to t on [0, 1] we get

(2.3)
∫ 1

0

f (txj−1 + (1− t)xj) dt ≤
f (xj−1) + f (xj)

2
.

Substituting u = txj−1 + (1− t)xj, in the left hand side of (2.3) , we get∫ xj

xj−1

f (u) du ≤ xj − xj−1
2

(f (xj−1) + f (xj)) .

Taking the sum over j from 1 to n, we get

n∑
j=1

∫ xj

xj−1

f (u) du(2.4)

=

∫ b

a

f (u) du

≤
n∑

j=1

xj − xj−1
2

(f (xj−1) + f (xj))

≤ 1

2
max

j
{xj − xj−1} ·

n∑
j=1

(f (xj−1) + f (xj))

=
h

2

[
f (x0) + f (x1) +

n−1∑
j=2

{f (xj−1) + f (xj)}+ f (xn−1) + f (xn)

]

=
h

2

[
f (a) + 2

n−1∑
j=1

f (xj) + f (b)

]
.

On the other hand, again since f is convex on Ix, then for t ∈ [0, 1], we have

f

(
xj−1 + xj

2

)
= f

(
txj + (1− t)xj−1

2
+

(1− t)xj + txj−1
2

)
(2.5)

≤ 1

2
[f (txj + (1− t)xj−1) + f ((1− t)xj + txj−1)] .
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Integrating inequality (2.5) with respect to t on [0, 1] we get

f

(
xj−1 + xj

2

)
(2.6)

≤ 1

2

∫ 1

0

[f (txj + (1− t)xj−1) + f ((1− t)xj + txj−1)] dt

=
1

2

∫ 1

0

f (txj + (1− t)xj−1) dt+
1

2

∫ 1

0

f ((1− t)xj + txj−1) dt.

By putting 1− t = s in the second integral on the right-hand side of (2.6), we have

f

(
xj−1 + xj

2

)
(2.7)

≤ 1

2

∫ 1

0

f (txj + (1− t)xj−1) dt+
1

2

∫ 1

0

f ((1− t)xj + txj−1) dt

=

∫ 1

0

f (txj + (1− t)xj−1) dt.

Substituting u = txj + (1− t)xj−1, in the left hand side of (2.7), and then taking the
sum over j from 1 to n, we get

h
n∑

k=1

f

(
xk−1 + xk

2

)
≤
∫ b

a

f (t) dt.(2.8)

From (2.4) and (2.8), we get the desired inequality (2.1).
To prove the sharpness let (2.1) hold with another constants C1, C2 > 0, which

gives

C1 · h
n∑

k=1

f

(
xk−1 + xk

2

)
≤
∫ b

a

f (t) dt(2.9)

≤ C2 · h

[
f (a) + 2

n−1∑
k=1

f (xk) + f (b)

]
.
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Let f : [a, b] → R be the identity map f(x) = x, then the right-hand side of (2.9)
reduces to

b2 − a2

2
≤ C2 · h

[
a+ 2

n−1∑
k=1

xk + b

]

= C2 · h

[
a+ 2

n−1∑
k=1

(
a+ k

b− a
n

)
+ b

]

= C2 · h

[
a+ 2

n−1∑
k=1

a+ 2
b− a
n

n−1∑
k=1

k + b

]

= C2 ·
b− a
n

[
a+ 2 (n− 1) a+ 2

b− a
n
· n (n− 1)

2
+ b

]
= C2 · (b− a) (a+ b) .

It follows that 1
2
≤ C2, i.e., 1

2
is the best possible constant in the right-hand side of

(2.1).
For the left-hand side, we have

b2 − a2

2
≥ C1 · h

n∑
k=1

xk−1 + xk
2

= C1 · h
n∑

k=1

{
a+ (2k − 1)

b− a
2n

}
.

= C1 ·
b− a
n
·
[
na+

b− a
2n

(
2 · n (n+ 1)

2
− n

)]
= C1 ·

b2 − a2

2
,

which means that 1 ≥ C1, and thus 1 is the best possible constant in the left-hand
side of (2.1). Thus the proof of Theorem 2.1 is completely finished. �

Remark 2.1. In Theorem 2.1, if we take n = 1, then we refer to the original Hermite-
Hadamard inequality (1.1).

In viewing of (2.1), next we give direct sharp refinements of Hermite-Hadamard’s
type inequalities for convex functions defined on a real interval [a, b], according to the
number of division ‘n’ (in our case n = 1, 2, 3, 4) in Theorem 2.1.

Corollary 2.1. In Theorem 2.1, we have
(a) if n = 1, then

(b− a) f
(
a+ b

2

)
≤
∫ b

a

f (t) dt ≤ (b− a) f (a) + f (b)

2
;
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(b) if n = 2, then
(b− a)

2

[
f

(
3a+ b

4

)
+ f

(
a+ 3b

4

)]
≤
∫ b

a

f (t) dt

≤ (b− a)
4

[
f (a) + 2f

(
a+ b

2

)
+ f (b)

]
;

(c) if n = 3, then
(b− a)

3

[
f

(
5a+ b

6

)
+ f

(
a+ b

2

)
+ f

(
a+ 5b

6

)]
≤
∫ b

a

f (t) dt

≤ (b− a)
6

[
f (a) + 2f

(
2a+ b

3

)
+ 2f

(
a+ 2b

3

)
+ f (b)

]
;

(d) if n = 4, then
(b− a)

4

[
f

(
7a+ b

8

)
+ f

(
5a+ 3b

8

)
+ f

(
3a+ 5b

8

)
+ f

(
a+ 7b

8

)]
≤
∫ b

a

f (t) dt

≤ (b− a)
12

[
f (a) + 2f

(
3a+ b

4

)
+ 2f

(
a+ b

2

)
+ 2f

(
a+ 3b

4

)
+ f (b)

]
.

Now, let f : [a.b] → R be a convex function on [a, b]. Define the mappings
Hj, Fj : [0, 1]→ R, given by

(2.10) Hj (t) =
1

h

∫ xj

xj−1

f

(
tu+ (1− t) xj−1 + xj

2

)
du, u ∈ [xj−1, xj],

and

(2.11) Fj (t) =
1

h

∫ xj

xj−1

[
f

(
1 + t

2
xj−1 +

1− t
2

u

)
+ f

(
1 + t

2
xj +

1− t
2

u

)]
du,

where u ∈ [xj−1, xj].
Applying Theorems 1.1 and 1.2, for f : [xj−1, xj] → R, j = 1, 2, . . . , n. Then the

following statements hold:
(a) Hj(t) and Fj(t) are convex for all t ∈ [0, 1] and u ∈ [xj−1, xj];
(b) Hj(t) and Fj(t) are monotonic nondecreasing for all t ∈ [0, 1] and u ∈ [xj−1, xj].
(c) we have the following bounds for Hj(t)

(2.12)
1

h

∫ xj

xj−1

f (u) du = Hj (1) ,



320 M. W. ALOMARI

and

(2.13) f

(
xk−1 + xk

2

)
= Hj (0) .

and the following bounds for Fj(t)

(2.14)
f (xj−1) + f (xj)

2
= Fj (1) ,

and

(2.15)
1

h

∫ xj

xj−1

f (u) du = Fj (0) .

Hence, we may establish two related mappings for the inequality (2.1).

Proposition 2.1. Let f be as in Theorem 2.1, define the mappings H,F : [0, 1]→ R,
given by

H (t) =
n∑

j=1

Hj (t) and F (t) =
n∑

j=1

Fj (t),

where Hj(t) and Fj(t) are defined in (2.10) and (2.11), respectively; then the following
statements hold:

(a) H(t) and F (t) are convex for all t ∈ [0, 1] and u ∈ [a, b];
(b) H(t) and F (t) are monotonic nondecreasing for all t ∈ [0, 1] and u ∈ [a, b];
(c) We have the following bounds for H(t)

sup
t∈[0,1]

H (t) =
1

h

∫ b

a

f (u) du = H (1) ,

and

inf
t∈[0,1]

H (t) =
n∑

k=1

f

(
xk−1 + xk

2

)
= H (0) ,

and the following bounds for F (t)

sup
t∈[0,1]

F (t) =
1

2

[
f (a) + 2

n−1∑
k=1

f (xk) + f (b)

]
= F (1) ,

and

inf
t∈[0,1]

F (t) =
1

h

∫ b

a

f (u) du = F (0) .

Proof. Taking the sum over j from 1 to n, in (2.12)–(2.15) we get the required results,
and we shall omit the details. �

Remark 2.2. The inequality (2.1) may written in a convenient way as follows:
n∑

k=1

f

(
xk−1 + xk

2

)
−

n−1∑
k=1

f (xk) ≤
1

h

∫ b

a

f (t) dt−
n−1∑
k=1

f (xk) ≤
f (a) + f (b)

2
,
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which is of Ostrowski’s type.

Some sharps Ostrowski’s type inequalities for convex functions defined on a real
interval [a, b], are proposed in the next theorems.

Theorem 2.2. Let f : [a, b]→ R+ be a convex function on [a, b], then the inequality

∫ b

a

f (x) dx− (b− a) f (y) ≤ h

2

[
f (a) + 2

n−1∑
k=1

f (xk) + f (b)

]
,(2.16)

holds for all y ∈ [a, b]. where, xk = a+ k b−a
n
, k = 0, 1, 2, . . . , n; with h = b−a

n
, n ∈ N.

The constant 1
2
in the right-hand side is the best possible, in the sense that it cannot be

replaced by a smaller one for all n ∈ N. If f is concave then the inequality is reversed.

Proof. Fix y ∈ [xj−1, xj], j = 1, . . . , n. Since f is convex on [a, b], then f so is on each
subinterval [xj−1, xj], in particular on [xj−1, y], then for all t ∈ [0, 1], we have

(2.17) f (txj−1 + (1− t) y) ≤ tf (xj−1) + (1− t) f (y) , j = 1, . . . , n.

Integrating (2.17) with respect to t on [0, 1] we get

(2.18)
∫ 1

0

f (txj−1 + (1− t) y) dt ≤ f (xj−1) + f (y)

2
.

Substituting u = txj−1 + (1− t) y, in the left hand side of (2.18), we get

(2.19)
∫ y

xj−1

f (u) du ≤ y − xj−1
2

(f (xj−1) + f (y)) .

Now, we do similarly for the interval [y, xj], we therefore have

f (ty + (1− t)xj) ≤ tf (y) + (1− t) f (xj) , j = 1, . . . , n.(2.20)

Integrating (2.20) with respect to t on [0, 1] we get

(2.21)
∫ 1

0

f (ty + (1− t)xj) dt ≤
f (y) + f (xj)

2
.

Substituting u = ty + (1− t)xj, in the left hand side of (2.21), we get

(2.22)
∫ xj

y

f (u) du ≤ xj − y
2

(f (y) + f (xj)) .
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Adding the inequalities (2.19) and (2.22), we get∫ y

xj−1

f (u) du+

∫ xj

y

f (u) du(2.23)

=

∫ xj

xj−1

f (u) du

≤ y − xj−1
2

(f (xj−1) + f (y)) +
xj − y

2
(f (y) + f (xj))

≤ y − xj−1
2

· f (xj−1) +
xj − y

2
· f (xj−1) + (xj − xj−1) f (y)

≤ xj − xj−1
2

(f (xj−1) + f (xj−1)) + hf (y) .

Taking the sum over j from 1 to n, we get

n∑
j=1

∫ xj

xj−1

f (u) du

=

∫ b

a

f (u) du

=
n∑

j=1

xj − xj−1
2

{f (xj−1) + f (xj)}+
n∑

j=1

hf (y)

≤ 1

2
max

j
{xj − xj−1} ·

n∑
j=1

(f (xj−1) + f (xj)) + (b− a) f (y)

=
h

2

[
f (x0) + f (x1) +

n−1∑
j=2

{f (xj−1) + f (xj)}+ f (xn−1) + f (xn)

]
+ (b− a) f (y)

=
h

2

[
f (a) + 2

n−1∑
j=1

f (xj) + f (b)

]
+ (b− a) f (y) ,

which gives that∫ b

a

f (u) du− (b− a) f (y) ≤ h

2

[
f (a) + 2

n−1∑
j=1

f (xj) + f (b)

]
,

for all y ∈ [xj−1, xj] ⊆ [a, b] for all j = 1, 2, . . . , n, which gives the desired result (2.16).
To prove the sharpness let (2.16) hold with another constants C > 0, which gives

(2.24)
∫ b

a

f (x) dx− (b− a) f (y) ≤ C · h

[
f (a) + 2

n−1∑
k=1

f (xk) + f (b)

]
.
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Let f : [0, 1] → R be the identity map f(x) = x, then the right-hand side of (2.24)
reduces to

1

2
− y ≤ C · 1

n

[
2

n−1∑
k=1

xk + 1

]

= C · 1
n

[
2
1

n
· n (n− 1)

2
+ 1

]
= C.

Choose y = 0, it follows that 1
2
≤ C, i.e., 1

2
is the best possible constant in the

right-hand side of (2.16). �

Theorem 2.3. Under the assumptions of Theorem 2.2, we have

∫ b

a

f (x) dx− (b− a) f (y)(2.25)

≤
[
h

2
+ max

1≤j≤n

∣∣∣∣y − xj−1 + xj
2

∣∣∣∣] ·
[
f (a) + 2

n−1∑
j=1

f (xj) + f (b)

]
,

for all y ∈ [a, b]. The constant 1
2
in the right-hand side is the best possible for all

n ∈ N. If f is concave then the inequality is reversed.
In particular, if n = 1 then

∫ b

a

f (x) dx− (b− a) f (y) ≤
[
b− a
2

+

∣∣∣∣y − a+ b

2

∣∣∣∣] · [f (a) + f (b)] ,

for all y ∈ [a, b].

Proof. Repeating the steps of the proof of Theorem 2.2, therefore by (2.23)

∫ xj

xj−1

f (u) du ≤ y − xj−1
2

· f (xj−1) +
xj − y

2
· f (xj−1) + hf (y)(2.26)

≤ max

{
y − xj−1

2
,
xj − y

2

}
· (f (xj−1) + f (xj−1)) + hf (y)

≤
[
xj − xj−1

2
+

∣∣∣∣y − xj−1 + xj
2

∣∣∣∣] · (f (xj−1) + f (xj−1))

+ hf (y)
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Taking the sum over j from 1 to n, we get∫ b

a

f (u) du

=
n∑

j=1

[
xj − xj−1

2
+

∣∣∣∣y − xj−1 + xj
2

∣∣∣∣] · {f (xj−1) + f (xj)}+
n∑

j=1

hf (y)

≤ max
1≤j≤n

[
xj − xj−1

2
+

∣∣∣∣y − xj−1 + xj
2

∣∣∣∣] · n∑
j=1

(f (xj−1) + f (xj)) + (b− a) f (y)

≤
[
h

2
+ max

1≤j≤n

∣∣∣∣y − xj−1 + xj
2

∣∣∣∣]
×

[
f (x0) + f (x1) +

n−1∑
j=2

{f (xj−1) + f (xj)}+ f (xn−1) + f (xn)

]
+ (b− a) f (y)

=

[
h

2
+ max

1≤j≤n

∣∣∣∣y − xj−1 + xj
2

∣∣∣∣] ·
[
f (a) + 2

n−1∑
j=1

f (xj) + f (b)

]
+ (b− a) f (y) ,

which gives that∫ b

a

f (u) du− (b− a) f (y)

≤
[
h

2
+ max

1≤j≤n

∣∣∣∣y − xj−1 + xj
2

∣∣∣∣] ·
[
f (a) + 2

n−1∑
j=1

f (xj) + f (b)

]
m

for all y ∈ [xj−1, xj] ⊆ [a, b] for all j = 1, 2, . . . , n, which gives the desired result (2.25).
The proof of sharpness goes likewise the proof of the sharpness of Theorem 2.2 and
we shall omit the details. �

Corollary 2.2. Let αi ≥ 0, for all i = 0, 1, 2, . . . , n, be positive real numbers such
that

∑n
i=0 αi = 1, then under the assumptions of Theorem 2.3, we have∫ b

a

f (x) dx− (b− a) f

(
1

n+ 1

n∑
i=0

αixi

)

≤

[
h

2
+ max

1≤j≤n

∣∣∣∣∣ 1

n+ 1

n∑
i=0

αixi −
xj−1 + xj

2

∣∣∣∣∣
]
·

[
f (a) + 2

n−1∑
j=1

f (xj) + f (b)

]
,

for all y ∈ [a, b]. The constant 1
2
in the right-hand side is the best possible. If f is

concave then the inequality is reversed.

Theorem 2.4. Under the assumptions of Theorem 2.3, we have

(2.27)
1

b− a

∫ b

a

f (u) du− 1

n

n∑
j=1

f

(
xj−1 + xj

2

)
− 1

n

n−1∑
j=1

f (xj) ≤
f (a) + +f (b)

2n
,
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for all j = 1, 2, . . . , n. The constant 1
2
in the right-hand side is the best possible. If f

is concave then the inequality is reversed.

Proof. Repeating the steps of the proof of Theorem 2.3, (2.26) if we choose y =
xj−1+xj

2
,

then we get∫ xj

xj−1

f (u) du ≤ xj − xj−1
2

· (f (xj−1) + f (xj−1)) + hf

(
xj−1 + xj

2

)
.

Taking the sum over j from 1 to n, we get∫ b

a

f (u) du ≤
n∑

j=1

xj − xj−1
2

· {f (xj−1) + f (xj)}+
n∑

j=1

hf

(
xj−1 + xj

2

)

≤ h
2

n∑
j=1

{f (xj−1) + f (xj)}+ h

n∑
j=1

f

(
xj−1 + xj

2

)
,

which gives that∫ b

a

f (u) du− h
n∑

j=1

f

(
xj−1 + xj

2

)
≤ h

2

[
f (a) + 2

n−1∑
j=1

f (xj) + f (b)

]
,

for all j = 1, 2, . . . , n, which gives the desired result (2.27). The proof of sharpness goes
likewise the proof of the sharpness of Theorem 2.2 and we shall omit the details. �

Theorem 2.5. Let I ⊂ R be an open interval and a, b ∈ I, a < b. Let f : I → R+ be
an increasing convex function on [a, b], then the inequality

(2.28)
∫ b

a

f (t) dt− (b− a)
2

f (y) ≥ h

2

n∑
j=1

f

(
xj−1 + xj

2

)
≥ 0,

is valid for all y ∈ [a, b] ⊂ I. The constant 1
2
in the right-hand side is the best possible,

in the sense that it cannot be replaced by a greater one. If f is concave then the
inequality is reversed. In particular, if n = 1 then∫ b

a

f (t) dt− (b− a)
2

f (y) ≥ b− a
2

f

(
a+ b

2

)
≥ 0,

Proof. Let y ∈ [xj−1, xj] be an arbitrary point such that xj−1 < y−p ≤ y ≤ y+p < xj
for all j = 1, 2, . . . , n with p > 0.

It is well known that f is convex on I iff

f (y) ≤ 1

2p

∫ y+p

y−p
f (t) dt,

for every subinterval [y − p, y + p] ⊂ [a, b] ⊂ I for some p > 0. But since f increases
on [a, b], we also have

f (y) ≤ 1

2p

∫ y+p

y−p
f (t) dt ≤ 1

2p

∫ xj

xj−1

f (t) dt.
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Choosing p ≥ h
2
, (this choice is available since it is true for every subinterval in I),

therefore from the last inequality we get

f (y) ≤ 1

h

∫ y+p

y−p
f (t) dt ≤ 1

h

∫ xj

xj−1

f (t) dt.

Again by convexity we have

hf

(
xj−1 + xj

2

)
≤
∫ xj

xj−1

f (t) dt.

Adding the last two inequalities, we get

hf (y) + hf

(
xj−1 + xj

2

)
≤ 2

∫ xj

xj−1

f (t) dt,

or we write
hf

(
xj−1 + xj

2

)
≤ 2

∫ xj

xj−1

f (t) dt− hf (y) .

Taking the sum over j from 1 to n, we get

h
n∑

j=1

f

(
xj−1 + xj

2

)
≤ 2

n∑
j=1

∫ xj

xj−1

f (t) dt−
n∑

j=1

hf (y)

hence, ∫ b

a

f (t) dt− (b− a)
2

f (y) ≥ h

2

n∑
j=1

f

(
xj−1 + xj

2

)
≥ 0,

holds by positivity of f and this proves our assertion.
To prove the sharpness let (2.28) holds with another constant C > 0, which gives

(2.29)
∫ b

a

f (t) dt− (b− a)
2

f (y) ≥ C · h
n∑

j=1

f

(
xj−1 + xj

2

)
≥ 0.

Let f : [0, 1]→ R+ be the identity map f(x) = x, then the right-hand side of (2.29)
reduces to

1

2
− 1

2
y ≥ C · 1

n

n∑
j=1

2j − 1

2n

= C · 1
n

[
n∑

j=1

j

n
−

n∑
j=1

1

2n

]

= C · 1
n

[
1

n
· n(n+ 1)

2
− 1

2n
· n
]

=
1

2
C.

Choose y = 1
2
, it follows that 1

4
≥ 1

2
C which means that 1

2
≥ C, i.e., 1

2
is the best

possible constant in the right-hand side of (2.28). �
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Corollary 2.3. Let αi ≥ 0, for all i = 0, 1, 2, . . . , n, be positive real numbers such
that

∑n
i=0 αi = 1, then under the assumptions of Theorem 2.5, we have∫ b

a

f (t) dt− (b− a)
2

f

(
1

n+ 1

n∑
i=0

αixi

)
≥ h

2

n∑
j=1

f

(
xj−1 + xj

2

)
≥ 0.

The constant 1
2
in the right-hand side is the best possible. If f is concave then the

inequality is reversed. In particular case if n = 1, then∫ b

a

f (t) dt− (b− a)
2

f

(
αa+ (1− α) b

2

)
≥ b− a

2
f

(
a+ b

2

)
≥ 0,

for all α ∈ [0, 1].
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