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SUPER MEAN LABELING OF SOME SUBDIVISION GRAPHS

R. VASUKI, P. SUGIRTHA AND J. VENKATESWARI

Abstract. Let G be a graph and f : V (G) → {1, 2, 3, . . . , p + q} be an injection.
For each edge e = uv, the induced edge labeling f∗ is defined as follows:

f∗(e) =

{
f(u)+f(v)

2 , if f(u) + f(v) is even,
f(u)+f(v)+1

2 , if f(u) + f(v) is odd.

Then f is called super mean labeling if f(V (G)) ∪ {f∗(e) : e ∈ E(G)} =
{1, 2, 3, . . . , p + q}. A graph that admits a super mean labeling is called super
mean graph. In this paper, we have studied the super meanness property of the
subdivision of the H-graph Hn, Hn�K1, Hn�S2, slanting ladder, Tn�K1, Cn�K1

and Cn@Cm.

1. Introduction

Throughout this paper, by a graph we mean a finite, undirected and simple graph.
Let G(V,E) be a graph with p vertices and q edges. For notations and terminology
we follow [2].

The path on n vertices is denoted by Pn and a cycle on n vertices is denoted by
Cn. A triangular snake is obtained from a path by identifying each edge of the path
with an edge of the cycle C3. The graph Cm@Cn is obtained by identifying an edge
of Cm with an edge of Cn. The slanting ladder SLn is a graph obtained from two
paths u1u2 . . . un and v1v2 . . . vn by joining each ui with vi+1, 1 ≤ i ≤ n − 1. The
H-graph of a path Pn, denoted by Hn is the graph obtained from two copies of Pn with
vertices v1, v2, . . . , vn and u1, u2, . . . , un by joining the vertices vn+1

2
and un+1

2
if n is

odd and the vertices vn
2
+1 and un

2
if n is even. The corona of a graph G on p vertices

v1, v2, . . . , vp is the graph obtained from G by adding p new vertices u1, u2, . . . , up
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and the new edges uivi for 1 ≤ i ≤ p. The corona of G is denoted by G �K1. The
2-corona of a graph G, denoted by G� S2 is a graph obtained from G by identifying
the center vertex of the star S2 at each vertex of G. A graph which can be obtained
from a given graph by breaking up each edge into one or more segments by inserting
intermediate vertices between its two ends. If each edge of a graph G is broken into
two by exactly one vertex, then the resultant graph is taken as S(G).

A vertex labeling of G is an assignment f : V (G)→ {1, 2, . . . , p+q} be an injection.
For a vertex labeling f , the induced edge labeling f ∗(e = uv) is defined by

f ∗(e) =

{
f(u)+f(v)

2
, if f(u) + f(v) is even,

f(u)+f(v)+1
2

, if f(u) + f(v) is odd.

Then f is called super mean labeling if

f(V (G)) ∪ {f ∗(e) : e ∈ E(G)} = {1, 2, 3, . . . , p+ q}.
Clearly f ∗ is injective. A graph that admits a super mean labeling is called super
mean graph.

A super mean labeling of the graph P 2
7 is shown in Figure 1.

1 2 3 5 7 8 9 11 13 14 15 17 18

4 6 10 12 16

Figure 1

The concept of mean labeling was introduced and studied by S. Somasundaram
and R. Ponraj [5]. Some new families of mean graphs are discussed in [10,11].

The concept of super mean labeling was introduced and studied by D. Ramya et
al. [4]. Further some more results on super mean graphs are discussed in [1, 3, 6–9].

In this paper, we have studied the super meanness of the subdivision of the graphs
H-graph Hn, Hn �K1, Hn � S2, slanting ladder, Tn �K1, Cn �K1 and Cn@Cm.

2. Super Mean Graphs

Theorem 2.1. The graph S(Hn) is a super mean graph, for n ≥ 3.

Proof. Let u1, u2, . . . , un and v1, v2, . . . , vn be the vertices of the paths of length n− 1.
Each edge uiui+1 is subdivided by a vertex xi, 1 ≤ i ≤ n− 1 and each edge vivi+1 is
subdivided by a vertex yi, 1 ≤ i ≤ n− 1. The edge un+1

2
vn+1

2
is divided by a vertex z

when n is odd. The edge un+2
2
vn

2
is divided by a vertex z when n is even. The graph

S(Hn) has 4n− 1 vertices and 4n− 2 edges.
Define f : V (S(Hn))→ {1, 2, 3, . . . , p+ q = 8n− 3} as follows:

f(ui) = 4i− 3, 1 ≤ i ≤ n,
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f(vi) =

{
4(n+ i)− 5, 1 ≤ i ≤

⌊
n−1
2

⌋
,

4(n+ i)− 3,
⌊
n+1
2

⌋
≤ i ≤ n,

f(xi) = 4i− 1, 1 ≤ i ≤ n− 1,

f(yi) =

{
4(n+ i)− 3, 1 ≤ i ≤

⌊
n−1
2

⌋
,

4(n+ i)− 1,
⌊
n+1
2

⌋
≤ i ≤ n− 1,

and f(z) =

{
6n− 4, if n is odd,
6n− 6, if n is even.

For the vertex labeling f , the induced edge labeling is given as follows:

f ∗(uixi) = 4i− 2, 1 ≤ i ≤ n− 1,

f ∗(xiui+1) = 4i, 1 ≤ i ≤ n− 1,

f ∗(viyi) =

{
4(n+ i)− 4, 1 ≤ i ≤

⌊
n−1
2

⌋
,

4(n+ i)− 2,
⌊
n+1
2

⌋
≤ i ≤ n− 1,

f ∗(yivi+1) =


4(n+ i)− 2, 1 ≤ i ≤

⌊
n−3
2

⌋
,

6n− 3, i = n−1
2

and n is odd,
6n− 5, i = n−2

2
and n is even,

4(n+ i),
⌊
n+1
2

⌋
≤ i ≤ n− 1,

f ∗
(
un+1

2
z
)
= 4n− 2, if n rm is odd,

f ∗
(
zvn+1

2

)
= 6n− 2, if n is odd,

f ∗
(
un+2

2
z
)
= 4n− 2, if n is even,

and f ∗
(
zvn

2

)
= 6n− 4, if n is even.

Thus, f is a super mean labeling and hence S(Hn) is a super mean graph.
For example, a super mean labeling of S(H7) and S(H8) are shown in Figure 2. �

Theorem 2.2. The graph S(Hn �K1) is a super mean graph, for n ≥ 3.

Proof. Let u1, u2, . . . , un and v1, v2, . . . , vn be the vertices of the paths of length n− 1.
Let a1,ia2,iui be the path attached at each ui, 1 ≤ i ≤ n and b1,ib2,ivi be the path
attached at each vi, 1 ≤ i ≤ n. Each edge uiui+1 is subdivided by a vertex xi,
1 ≤ i ≤ n− 1 and each edge vivi+1 is subdivided by a vertex yi, 1 ≤ i ≤ n− 1. The
edge un+1

2
vn+1

2
is divided by a vertex z when n is odd. The edge un+2

2
vn

2
is divided

by a vertex z when n is even. The graph S(Hn �K1) has 8n− 1 vertices and 8n− 2
edges.
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(a) S(H7)
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(b) S(H8)

Figure 2

Define f : V (S(Hn �K1))→ {1, 2, 3, . . . , p+ q = 16n− 3} as follows:

f(ui) =

{
5, i = 1,

8i− 7, 2 ≤ i ≤ n,

f(vi) =


8n+ 3, i = 1,

8(n+ i)− 9, 2 ≤ i ≤
⌊
n−1
2

⌋
,

8(n+ i)− 7,
⌊
n+1
2

⌋
≤ i ≤ n,

f(a1,i) =

{
1, i = 1,

8i− 2, 2 ≤ i ≤ n,

f(a2,i) = 8i− 5, 1 ≤ i ≤ n.
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f(b1,i) =


8n− 1, i = 1,

8(n+ i)− 4, 2 ≤ i ≤
⌊
n−1
2

⌋
,

8(n+ i)− 2,
⌊
n+1
2

⌋
≤ i ≤ n− 1,

16n− 3, i = n,

f(b2,i) =

{
8(n+ i)− 7, 1 ≤ i ≤

⌊
n−1
2

⌋
,

8(n+ i)− 5,
⌊
n+1
2

⌋
≤ i ≤ n,

f(xi) = 8i− 1, 1 ≤ i ≤ n− 1,

f(yi) =

{
8(n+ i)− 3, 1 ≤ i ≤

⌊
n−1
2

⌋
,

8(n+ i)− 1,
⌊
n+1
2

⌋
≤ i ≤ n− 1,

and f(z) =

{
12n− 6, if n is odd,
12n− 10, if n is even.

The induced edge labeling is obtained as follows:

f ∗(uixi) =

{
6, i = 1,

8i− 4, 2 ≤ i ≤ n− 1,

f ∗(xiui+1) = 8i, 1 ≤ i ≤ n− 1,

f ∗(viyi) =


8n+ 4, i = 1,

8(n+ i)− 6, 2 ≤ i ≤
⌊
n−1
2

⌋
,

8(n+ i)− 4,
⌊
n+1
2

⌋
≤ i ≤ n− 1,

f ∗(yivi+1) =


8(n+ i)− 2, 1 ≤ i ≤

⌊
n−3
2

⌋
,

12n− 5, i = n−1
2

and n is odd,
12n− 9 i = n−2

2
and n is even,

8(n+ i),
⌊
n+1
2

⌋
≤ i ≤ n− 1,

f ∗(a1,ia2,i) =

{
2, i = 1,

8i− 3, 2 ≤ i ≤ n,

f ∗(a2,iui) =

{
4, i = 1,

8i− 6, 2 ≤ i ≤ n,

f ∗(b1,ib2,i) =


8n, i = 1

8(n+ i)− 5, 2 ≤ i ≤
⌊
n−1
2

⌋
,

8(n+ i)− 3,
⌊
n+1
2

⌋
≤ i ≤ n− 1,

16n− 4, i = n,
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f ∗(b2,ivi) =


8n+ 2, i = 1,

8(n+ i)− 8, 2 ≤ i ≤
⌊
n−1
2

⌋
,

8(n+ i)− 6,
⌊
n+1
2

⌋
≤ i ≤ n,

f ∗
(
un+1

2
z
)
= 8n− 4, if n is odd,

f ∗
(
zvn+1

2

)
= 12n− 4, if n is odd.

f ∗
(
un+2

2
z
)
= 8n− 4, if n is even,

f ∗
(
zvn

2

)
= 12n− 8, if n is even.

Thus, f is a super mean labeling and hence S(Hn �K1) is a super mean graph.
For example, a super mean labeling of S(H9 �K1) and S(H10 �K1) are shown in

Figure 3. �

Theorem 2.3. The graph S(Hn � S2) is a super mean graph, for n ≥ 3.

Proof. Let u1, u2, . . . , un and v1, v2, . . . , vn be the vertices of the paths of length n− 1.
Let a1,ia2,iui and a3,ia4,iui be the paths attached at each ui, 1 ≤ i ≤ n and b1,ib2,ivi and
b3,ib4,ivi be the paths attached at each vi, 1 ≤ i ≤ n. Each edge uiui+1 is subdivided
by a vertex xi, 1 ≤ i ≤ n − 1 and each edge vivi+1 is subdivided by a vertex yi,
1 ≤ i ≤ n− 1. The edge un+1

2
vn+1

2
is divided by a vertex z when n is odd. The edge

un+2
2
vn

2
is divided by a vertex z when n is even. The graph S(Hn � S2) has 12n− 1

vertices and 12n− 2 edges.
Define f : V (S(Hn � S2))→ {1, 2, 3, . . . , p+ q = 24n− 3} as follows:

f(ui) = 12i− 7, 1 ≤ i ≤ n,

f(vi) =

{
12(n+ i)− 9, 1 ≤ i ≤

⌊
n−1
2

⌋
,

12(n+ i)− 7,
⌊
n+1
2

⌋
≤ i ≤ n,

f(a1,i) =

{
1, i = 1,

12i− 13, 2 ≤ i ≤ n,

f(a2,i) =

{
3, i = 1,

12i− 11, 2 ≤ i ≤ n,

f(a3,i) = 12i− 3, 1 ≤ i ≤ n,

f(a4,i) = 12i− 5, 1 ≤ i ≤ n,

f(xi) = 12i+ 2, 1 ≤ i ≤ n− 1,
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(a) S(H9 �K1)
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(b) S(H10�K1)

Figure 3

f(b1,i) =



12n− 1, i = 1,

12(n+ i)− 15, 2 ≤ i ≤
⌊
n−1
2

⌋
,

18n− 8, i = n+1
2

and n is odd,
18n− 14, i = n

2
and n is even,

12(n+ i)− 13,
⌊
n+3
2

⌋
≤ i ≤ n,
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f(b2,i) =



12n+ 1, i = 1,

12(n+ i)− 13, 2 ≤ i ≤
⌊
n−1
2

⌋
,

18n− 6, i = n+1
2

and n is odd,
18n− 12, i = n

2
and n is even,

12(n+ i)− 11,
⌊
n+3
2

⌋
≤ i ≤ n,

f(b3,i) =


12(n+ i)− 5, 1 ≤ i ≤

⌊
n−3
2

⌋
,

18n− 10, i = n−1
2

and n is odd,
18n− 16, i = n−2

2
and n is even,

12(n+ i)− 3,
⌊
n+1
2

⌋
≤ i ≤ n,

f(b4,i) =

{
12(n+ i)− 7, 1 ≤ i ≤

⌊
n−1
2

⌋
,

12(n+ i)− 5,
⌊
n+1
2

⌋
≤ i ≤ n,

f(z) =

{
18n− 4, if n is odd,
18n− 10, if n is even,

and f(yi) =


12(n+ i), 1 ≤ i ≤

⌊
n−3
2

⌋
,

18n− 9, i = n−1
2

and n is odd,
18n− 15, i = n−2

2
and n is even,

12(n+ i) + 2,
⌊
n+1
2

⌋
≤ i ≤ n− 1.

For the vertex labeling f , the induced edge labels are obtained as follows:

f ∗(a1,ia2,i) =

{
2, i = 1,

12(i− 1), 2 ≤ i ≤ n,

f ∗(a2,iui) =

{
4, i = 1,

12i− 9, 2 ≤ i ≤ n,

f ∗(a3,ia4,i) = 12i− 4, 1 ≤ i ≤ n,

f ∗(a4,iui) = 12i− 6, 1 ≤ i ≤ n,

f ∗(uixi) = 12i− 2, 1 ≤ i ≤ n− 1,

f ∗(xiui+1) = 12i+ 4, 1 ≤ i ≤ n− 1,

f ∗(b1,ib2,i) =



12n, i = 1,

12(n+ i)− 14, 2 ≤ i ≤
⌊
n−1
2

⌋
,

18n− 7, i = n+1
2

and n is odd,
18n− 13, i = n

2
and n is even,

12(n+ i)− 12,
⌊
n+3
2

⌋
≤ i ≤ n,
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f ∗(b2,ivi) =


12n+ 2, i = 1,

12(n+ i)− 11, 2 ≤ i ≤
⌊
n−1
2

⌋
,

12(n+ i)− 9,
⌊
n+1
2

⌋
≤ i ≤ n,

f ∗(b3,ib4,i) =


12(n+ i)− 6, 1 ≤ i ≤

⌊
n−3
2

⌋
,

18n− 11, i = n−1
2

and n is odd,
18n− 17, i = n−2

2
and n is even,

12(n+ i)− 4,
⌊
n+1
2

⌋
≤ i ≤ n,

f ∗(b4,ivi) =

{
12(n+ i)− 8, 1 ≤ i ≤

⌊
n−1
2

⌋
,

12(n+ i)− 6,
⌊
n+1
2

⌋
≤ i ≤ n,

f ∗(viyi) =


12(n+ i)− 4, 1 ≤ i ≤

⌊
n−3
2

⌋
,

18n− 12, i = n−1
2

and n is odd,
18n− 18, i = n−2

2
and n is even,

12(n+ i)− 2,
⌊
n+1
2

⌋
≤ i ≤ n− 1,

f ∗(yivi+1) =


12(n+ i) + 2, 1 ≤ i ≤

⌊
n−3
2

⌋
,

18n− 5, i = n−1
2

and n is odd,
18n− 11, i = n−2

2
and n is even,

12(n+ i) + 4,
⌊
n+1
2

⌋
≤ i ≤ n− 1,

f ∗
(
un+1

2
z
)
= 12n− 2 if n is odd,

f ∗
(
zvn+1

2

)
= 18n− 2 if n is even,

f ∗
(
un+2

2
z
)
= 12n− 2 if n is odd,

and f ∗
(
zvn

2

)
= 18n− 8 if n is even.

Thus, f is a super mean labeling and hence S(Hn � S2) is a super mean graph.
For example, a super mean labeling of S(H7 � S2) and S(H8 � S2) are shown in

Figure 4. �

Theorem 2.4. The graph S(SLn) is a super mean graph, for n ≥ 2.

Proof. Let u1, u2, . . . , un and v1, v2, . . . , vn be the vertices on the paths of length
n− 1. Let xi, yi and zi be the vertices subdivided the edges uiui+1, vivi+1 and viui+1

respectively for each i, 1 ≤ i ≤ n − 1. The graph S(SLn) has 5n − 3 vertices and
6n− 6 edges.
Case (i): n is odd.
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Figure 4

Define f : V (S(SLn))→ {1, 2, . . . , p+ q = 11n− 9} as follows:

f(ui) =



1, i = 1,

5, i = 2,

13, i = 3,

11i− 13, 4 ≤ i ≤ n and i is even,
11i− 19, 4 ≤ i ≤ n and i is odd,

f(vi) =


11, i = 1,

11i− 2, 2 ≤ i ≤ n− 1 and i is even,
11i− 8, 2 ≤ i ≤ n− 1 and i is odd,
11n− 9, i = n,
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f(xi) =


3, i = 1,

10, i = 2,

11i− 5, 3 ≤ i ≤ n− 1 and i is odd,
11i− 10, 3 ≤ i ≤ n− 1 and i is even,

f(yi) =

{
11i+ 6, 1 ≤ i ≤ n− 2 and i is odd,
11i+ 1, 1 ≤ i ≤ n− 2 and i is even,

f(yn−1) = 11(n− 1),

f(zi) =

{
7, i = 1,

11i− 6, 2 ≤ i ≤ n− 1.

For the vertex labeling f , the induced edge labeling f ∗ is given follows:

f ∗(uixi) =


2, i = 1,

8, i = 2,

11i− 12, 3 ≤ i ≤ n− 2 and i is odd,
11i− 11, 3 ≤ i ≤ n− 2 and i is even,

f ∗(xiui+1) =


4, i = 1,

12, i = 2,

11i− 3, 3 ≤ i ≤ n− 1 and i is odd,
11i− 9, 3 ≤ i ≤ n− 1 and i is even,

f ∗(viyi) =


14, i = 1,

11i, 2 ≤ i ≤ n− 2 and i is even,
11i− 1, 2 ≤ i ≤ n− 2 and i is odd,
11n− 12, i = n− 1,

f ∗(yivi+1) =


11i+ 8, 1 ≤ i ≤ n− 2 and i is odd,
11i+ 2, 1 ≤ i ≤ n− 2 and i is even,
11n− 10, i = n− 1,

f ∗(vizi) =


9, i = 1,

11i− 4, 2 ≤ i ≤ n− 1 and i is even,
11i− 6, 2 ≤ i ≤ n− 1 and i is odd,

f ∗(ziui+1) =


6, i = 1,

11i− 7, 2 ≤ i ≤ n− 1 and i is even,
11i− 4, 2 ≤ i ≤ n− 1 and i is odd.

Case (ii): n is even, n ≥ 4.
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Define f : V (S(SLn))→ {1, 2, . . . , p+ q = 11n− 9} as follows:

f(ui) =



1, i = 1,

5, i = 2,

13, i = 3,

11i− 13, 4 ≤ i ≤ n− 1 and i is even,
11i− 19, 4 ≤ i ≤ n− 1 and i is odd,
11n− 11, i = n,

f(vi) =


11, i = 1,

11i− 2, 2 ≤ i ≤ n− 1 and i is even,
11i− 8, 2 ≤ i ≤ n− 1 and i is odd.
11n− 9, i = n,

f(xi) =


3, i = 1,

10, i = 2,

11i− 5, 3 ≤ i ≤ n and i is odd,
11i− 10, 3 ≤ i ≤ n and i is even,

f(yi) =


11i+ 6, 1 ≤ i ≤ n− 2 and i is odd,
11i+ 1, 1 ≤ i ≤ n− 2 and i is even,
11n− 12, i = n− 1,

f(zi) =

{
7, i = 1,

11i− 6, 2 ≤ i ≤ n− 1.

The induced edge labeling is obtained as follows:

f ∗(uixi) =


2, i = 1,

8, i = 2,

11i− 12, 3 ≤ i ≤ n− 1 and i is odd,
11i− 10, 3 ≤ i ≤ n− 1 and i is even,

f ∗(xiui+1) =



4, i = 1,

12, i = 2,

11i− 3, 3 ≤ i ≤ n− 2 and i is odd,
11i− 9, 3 ≤ i ≤ n− 2 and i is even,
11n− 13, i = n− 1,

f ∗(viyi) =


14, i = 1,

11i, 2 ≤ i ≤ n− 2 and i is even,
11i− 1, 2 ≤ i ≤ n− 2 and i is odd,
11n− 15, i = n− 1,
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f ∗(yivi+1) =


11i+ 8, 1 ≤ i ≤ n− 2 and i is odd,
11i+ 2, 1 ≤ i ≤ n− 2 and i is even,
11n− 10, i = n− 1,

f ∗(vizi) =


9, i = 1,

11i− 4, 2 ≤ i ≤ n− 1 and i is even,
11i− 7, 2 ≤ i ≤ n− 1 and i is odd,

f ∗(ziui+1) =


6, i = 1,

11i− 7, 2 ≤ i ≤ n− 2 and i is even,
11i+ 7, 2 ≤ i ≤ n− 2 and i is odd,
11n− 14, i = n− 1.

Thus, f is a super mean labeling of S(SLn) and hence S(SLn) is a super mean graph.
For example, a super mean labeling of S(SL7) and S(SL8) are shown in Figure 5.

1 3 5
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10 13 28 31 34 36 50 53 56 58

16 27 38 49 60

11 17 20 23 25 39 42 45 47 61 64 66 68

(a) S(SL7)

1 3 5

7

10 13 28 31 34 36 50 53 56 58

16 27 38 49 60

11 17 20 23 25 39 42 45 47 61 64 67 69

72 77

76 79

71

(b) S(SL8)

Figure 5

When n = 2, a super mean labeling of the graph is shown in Figure 6. �

Theorem 2.5. The graph S(Tn �K1) is a super mean graph for any n.

Proof. Let u1, u2, . . . , un, un+1 be the vertices on the path of length n in Tn and let vi,
1 ≤ i ≤ n be the vertices of Tn in which vi is adjacent to ui and ui+1. Let v′iaivi be
the path attached at each vi, 1 ≤ i ≤ n and u′ibiui be the path attached at each ui,
1 ≤ i ≤ n+1. Let xi, yi and zi be the vertices which subdivided the edges uiui+1, uivi
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1 3 5

7

9 11 13

Figure 6

and viui+1 respectively for each i, 1 ≤ i ≤ n. The graph S(Tn � K1) has 9n + 3
vertices and 10n+ 2 edges.

Define f : V (S(Tn �K1))→ {1, 2, . . . , p+ q = 19n+ 5} as follows:

f(ui) = 19i− 14, 1 ≤ i ≤ n+ 1,

f(vi) = 19i− 8, 1 ≤ i ≤ n,

f(v′i) = 19i− 4, 1 ≤ i ≤ n,

f(ai) = 19i− 6, 1 ≤ i ≤ n,

f(u′i) =

{
1, i = 1,

19i− 20, 2 ≤ i ≤ n+ 1,

f(bi) =

{
3, i = 1,

19i− 18, 2 ≤ i ≤ n+ 1,

f(xi) = 19i− 9, 1 ≤ i ≤ n,

f(yi) = 19i− 12, 1 ≤ i ≤ n,

f(zi) = 19i+ 2, 1 ≤ i ≤ n.

The induced edge labeling is defined as follows:

f ∗(uixi) = 19i− 11, 1 ≤ i ≤ n,

f ∗(xiui+1) = 19i− 2, 1 ≤ i ≤ n,

f ∗(uiyi) = 19i− 13, 1 ≤ i ≤ n,

f ∗(yivi) = 19i− 10, 1 ≤ i ≤ n,

f ∗(vizi) = 19i− 3, 1 ≤ i ≤ n,

f ∗(ziui+1) = 19i+ 4, 1 ≤ i ≤ n,

f ∗(viai) = 19i− 7, 1 ≤ i ≤ n,

f ∗(aiv
′
i) = 19i− 5, 1 ≤ i ≤ n,

f ∗(uibi) =

{
4, i = 1,

19i− 16, 2 ≤ i ≤ n+ 1,



SUPER MEAN LABELING OF SOME SUBDIVISION GRAPHS 193

f ∗(biu
′
i) =

{
2, i = 1,

19(i− 1), 2 ≤ i ≤ n+ 1.

Thus, f is a super mean labeling of S(Tn �K1). �

For example, a super mean labeling of S(T6 �K1) is shown in Figure 7.
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Figure 7. S(T6 �K1)

Theorem 2.6. The graph S(Cn �K1) is a super mean graph, for n ≥ 3.

Proof. Let u1, u2, . . . , un be the vertices of the cycle Cn. Let viyiui be the path attached
at each ui, 1 ≤ i ≤ n. Each edge uiui+1 is subdivided by a vertex xi, 1 ≤ i ≤ n − 1
and the edge unu1 is subdivided by a vertex xn.
Case(i): n is odd.
Define f : V (S(Cn �K1))→ {1, 2, . . . , 8n} as follows:

f(ui) =


5, i = 1,

16i− 21, 2 ≤ i ≤ n+1
2
,

8n, i = n+3
2
,

16(n− i) + 22, n+5
2
≤ i ≤ n,

f(vi) =


1, i = 1,

16i− 17, 2 ≤ i ≤ n+1
2
,

16(n− i) + 18, n+3
2
≤ i ≤ n,

f(xi) =


16i− 9, 1 ≤ i ≤ n−1

2
,

8n− 3, i = n+1
2
,

16(n− i) + 10, n+3
2
≤ i ≤ n,
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f(yi) =


3, i = 1,

16i− 19, 2 ≤ i ≤ n+1
2
,

16(n− i) + 20, n+3
2
≤ i ≤ n.

The induced edge labeling is defined as follows:

f ∗(uixi) =



6, i = 1,

16i− 15, 2 ≤ i ≤ n−1
2
,

8(n− 1), i = n+1
2
,

8n− 7, i = n+3
2
,

16(n− i) + 16, n+5
2
≤ i ≤ n,

f ∗(xiui+1) =


16i− 7, 1 ≤ i ≤ n−1

2
,

8n− 1, i = n+1
2
,

16(n− i) + 8, n+3
2
≤ i ≤ n− 1,

f ∗(xnu1) = 8,

f ∗(viyi) =


2, i = 1,

16i− 18, 2 ≤ i ≤ n+1
2
,

16(n− i) + 19, n+3
2
≤ i ≤ n,

and f ∗(yiui) =


4, i = 1,

16i− 20, 2 ≤ i ≤ n+1
2
,

8n− 2, i = n+3
2
,

16(n− i) + 21, n+5
2
≤ i ≤ n.

Case (ii): n is even.

f(ui) =


5, i = 1,

16i− 21, 2 ≤ i ≤ n
2
,

8n− 4, i = n+2
2
,

16(n− i) + 22, n+4
2
≤ i ≤ n,

f(vi) =


1, i = 1,

16i− 17, 2 ≤ i ≤ n
2
,

8n, i = n+2
2
,

16(n− i) + 18, n+4
2
≤ i ≤ n,

f(xi) =


16i− 9, 1 ≤ i ≤ n

2
,

8n− 7, i = n+2
2
,

16(n− i) + 10, n+4
2
≤ i ≤ n,



SUPER MEAN LABELING OF SOME SUBDIVISION GRAPHS 195

f(yi) =


3, i = 1,

16i− 19, 2 ≤ i ≤ n
2
,

8n− 2, i = n+2
2
,

16(n− i) + 20, n+4
2
≤ i ≤ n.

For the vertex labeling f , the induced edge labeling f ∗ is given as follows:

f ∗(uixi) =


6, i = 1,

16i− 15, 2 ≤ i ≤ n
2
,

8n− 5, i = n+2
2
,

16(n− i+ 1), n+4
2
≤ i ≤ n,

f ∗(xiui+1) =


16i− 7, 1 ≤ i ≤ n−2

2
,

8n− 6, i = n
2
,

16(n− i) + 8, n+2
2
≤ i ≤ n− 1,

f ∗(xnu1) = 8,

f ∗(viyi) =


2, i = 1,

16i− 18, 2 ≤ i ≤ n
2
,

8n− 1, i = n+2
2
,

16(n− i) + 19, n+4
2
≤ i ≤ n,

and f ∗(yiui) =


4, i = 1,

16i− 20, 2 ≤ i ≤ n
2
,

8n− 3, i = n+2
2
,

16(n− i) + 21, n+4
2
≤ i ≤ n.

Thus, f is a super mean labeling and hence S(Cn�K1) is a super mean graph. �

For example, a super mean labeling of S(C11 �K1) and S(C12 �K1) are shown in
Figure 8.

Theorem 2.7. The graph S(Cm@Cn) is a super mean graph for m,n ≥ 3.

Proof. Cm@Cn is a graph obtained by identifying an edge of two cycles Cm and Cn.
Cm@Cn has m + n − 2 vertices and m + n − 1 edges. In S(Cm@Cn), 2(m + n − 2)
vertices lies on the circle and one vertex lies on a chord. Then, the graph S(Cm@Cn)
has 2m+ 2n− 3 vertices and 2(m+ n− 1) edges.

Let us assume that m ≤ n.
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Figure 8

Case (i): m is odd and n is odd.
Let m = 2k+ 1, k ≥ 1 and n = 2l+ 1, l ≥ 1. We denote the vertices of S(Cm@Cn)

is shown in Figure 9.
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Define f : V (S(Cm@Cn))→ {1, 2, 3, . . . , p+ q = 4(m+ n)− 5} as follows:

f(ui) =



1, i = 1,

8i− 9, 2 ≤ i ≤ k,

4m− 6, i = k + 1,

8i, k + 2 ≤ i ≤ k + l,

8(m+ n− i)− 9, k + l + 1 ≤ i ≤ k + 2l − 1,

4m+ 5, i = k + 2l,

4m, i = k + 2l + 1,

8(m+ n− i)− 6, k + 2l + 2 ≤ i ≤ 2k + 2l,

f(xi) =



8i− 5, 1 ≤ i ≤ k,

8i+ 4, k + 1 ≤ i ≤ k + l − 1,

8(m+ n− i)− 13, k + l ≤ i ≤ k + 2l − 1,

4m+ 3, i = k + 2l,

4m− 5, i = k + 2l + 1,

8(m+ n− i)− 10, k + 2l + 2 ≤ i ≤ 2k + 2l,

and f(z) = 4m− 3.

The induced edge labeling f ∗ is obtained as follows:

f ∗(uixi) =



2, i = 1,

8i− 7, 2 ≤ i ≤ k,

4m+ 1, i = k + 1,

8i+ 2, k + 2 ≤ i ≤ k + l,

8(m+ n− i)− 11, k + l + 1 ≤ i ≤ k + 2l − 1,

4m+ 4, i = k + 2l,

4m− 2, i = k + 2l + 1,

8(m+ n− 1− i), k + 2l + 2 ≤ i ≤ 2k + 2l − 2,

f ∗(xiui+1) =



8i− 3, 1 ≤ i ≤ k,

8i+ 6, k + 1 ≤ i ≤ k + l − 1,

8(m+ n− i)− 15, k + l ≤ i ≤ k + 2l − 2,

4m+ 6, i = k + 2l − 1,

4m+ 2, i = k + 2l,

8(m+ n− i)− 12, k + 2l + 1 ≤ i ≤ 2k + 2l − 1,

f ∗(x2k+2lu1) = 4,

f ∗(uk+1z) = 4m− 4,

and f ∗(zuk+2l+1) = 4m− 1.
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Thus, f is a super mean labeling. A super mean labeling of S(C7@C9) is shown in
Figure 10.
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Case (ii): m is odd and n is even.
Let m = 2k + 1, k ≥ 1 and n = 2l, l ≥ 2.
Define f : V (S(Cm@Cn))→ {1, 2, 3, . . . , p+ q = 4(m+ n)− 5} as follows:

f(ui) =



1, i = 1,

8i− 9, 2 ≤ i ≤ k,

4m− 6, i = k + 1,

8i, k + 2 ≤ i ≤ k + l − 1,

8(m+ n− i)− 9, k + l ≤ i ≤ k + 2l − 2,

4m+ 5, i = k + 2l − 1,

4m, i = k + 2l,

8(m+ n− i)− 6, k + 2l + 1 ≤ i ≤ 2k + 2l − 1,

f(xi) =



8i− 5, 1 ≤ i ≤ k,

8i+ 4, k + 1 ≤ i ≤ k + l − 1,

8(m+ n− i)− 13, k + l ≤ i ≤ k + 2l − 2,

4m+ 3, i = k + 2l − 1,

4m− 5, i = k + 2l,

8(m+ n− i)− 10, k + 2l + 1 ≤ i ≤ 2k + 2l − 1,

and f(z) = 4m− 3.
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For the vertex labeling f , the induced edge labeling f ∗ is given as follows:

f ∗(uixi) =



2, i = 1,

8i− 7, 2 ≤ i ≤ k,

4m+ 1, i = k + 1,

8i+ 2, k + 2 ≤ i ≤ k + l − 1,

8(m+ n− i)− 11, k + l ≤ i ≤ k + 2l − 2,

4m+ 4, i = k + 2l − 1,

4m− 2, i = k + 2l,

8(m+ n− i)− 8, k + 2l + 1 ≤ i ≤ 2k + 2l − 1,

f ∗(xiui+1) =



8i− 3, 1 ≤ i ≤ k,

8i+ 6, k + 1 ≤ i ≤ k + l − 1,

8(m+ n− i)− 15, k + l ≤ i ≤ k + 2l − 3,

4m+ 6, i = k + 2l − 2,

4m+ 2, i = k + 2l − 1,

8(m+ n− i)− 12, k + 2l ≤ i ≤ 2k + 2l − 2,

f ∗(x2k+2l−1u1) = 4,

f ∗(uk+1z) = 4m− 4,

and f ∗(zuk+2l) = 4m− 1.

Thus, f is a super mean labeling. A super mean labeling of S(C7@C10) is shown
in Figure 11.
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Case (iii): m is even and n is even.
Let m = 2k, k ≥ 2 and n = 2l, l ≥ 2.
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Define f : V (S(Cm@Cn))→ {1, 2, 3, . . . , p+ q = 4(m+ n)− 5} as follows:

f(ui) =



1, i = 1,

8i− 9, 2 ≤ i ≤ k,

4m, i = k + 1,

4m+ 5, i = k + 2,

8i− 13, k + 3 ≤ i ≤ k + l + 1,

8(m+ n− i) + 4, k + l + 2 ≤ i ≤ k + 2l − 1,

8(m+ n− i)− 6, k + 2l ≤ i ≤ 2k + 2l − 2,

f(xi) =


8i− 5, 1 ≤ i ≤ k + 1,

8i− 9, k + 2 ≤ i ≤ k + l,

8(m+ n− i), k + l + 1 ≤ i ≤ k + 2l − 1,

8(m+ n− i)− 10, k + 2l ≤ i ≤ 2k + 2l − 2,

and f(z) = 4m− 3.

For the vertex labeling f , the induced edge labeling f ∗ is obtained as follows:

f ∗(uixi) =



2, i = 1,

8i− 7, 2 ≤ i ≤ k,

4m+ 2, i = k + 1,

4m+ 6, i = k + 2,

8i− 11, k + 3 ≤ i ≤ k + l,

8(m+ n− i) + 2, k + l + 1 ≤ i ≤ k + 2l − 1,

8(m+ n− i)− 8, k + 2l ≤ i ≤ 2k + 2l − 2,

f ∗(xiui+1) =



8i− 3, 1 ≤ i ≤ k − 1,

4m− 2, i = k,

4m+ 4, i = k + 1,

8i− 7, k + 2 ≤ i ≤ k + l,

8(m+ n− i)− 2, k + l + 1 ≤ i ≤ k + 2l − 2,

4m+ 1, i = k + 2l − 1,

8(m+ n− i)− 12, k + 2l ≤ i ≤ 2k + 2l − 3,

f ∗(x2k+2l−2u1) = 4,

f ∗(uk+1z) = 4m− 1,

and f ∗(zuk+2l) = 4m− 4.

Thus, f is a super mean labeling. A super mean labeling of S(C6@C8) is shown in
Figure 12.

Hence, the graph S(Cm@Cn) is a super mean graph for m,n ≥ 3. �
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