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SPECTRAL PROPERTIES OF NC-GRAPHS

M. GHORBANI1 AND Z. GHARAVI-ALKHANSARI1

Abstract. Let G be a non-abelian group and Z(G) be the center of G. The non-
commuting graph (NC-graph) Γ(G) of the group G is a graph with the vertex set
G \ Z(G) and two distinct vertices x and y are adjacent whenever xy 6= yx. The
aim of this paper is to prove that for given group G, G

Z(G)
∼= Zp × Zp if and only if

Γ(G) is a regular (p + 1)-partite graph. Also we consider the isomorphism of the
non-commuting graph with some special graphs.

1. Introduction

All graphs considered in this paper are simple and finite, also all groups are finite.
There are a number of constructions of graphs from groups or semi-groups in the
literature. Let G be a non-abelian group with the center Z(G). The non-commuting
graph (NC-graph) Γ(G) is a simple and undirected graph with the vertex set G\Z(G)
and two vertices x, y ∈ G \ Z(G) are adjacent whenever xy 6= yx. The concept of
NC-graphs was first considered by Paul Erdős to answer a question on the size of the
cliques of a graph in 1975, see [14]. For background materials about NC-graphs, we
encourage the reader to see references [1, 3, 7, 10, 12,13].

Here, in the next section, we give necessary definitions and some preliminary results
and the third section contains the main results on complete multipartite NC-graphs.
Finally, in Section 4, we determine which graphs are NC-graph.

2. Definitions and Preliminaries

Our notation is standard and mainly taken from standard books such as [6, 15].
The vertex and edge sets of graph Γ are denoted by V (Γ) and E(Γ), respectively. The
degree degΓ(v) of a vertex v in Γ is the number of edges incident to v. A graph Γ
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is regular if the degrees of all vertices of Γ are the same. The length of the shortest
cycle in a graph Γ is called the girth of Γ. The largest distance between all pairs of
vertices of Γ is called the diameter of Γ. A graph which has a cycle that contains
every vertex of Γ, is called a Hamiltonian graph. An Eulerian graph is a graph whose
all vertices have even degree.

An independent set is a set of vertices in which none of them are adjacent. A
k-partite graph is a graph whose vertices are partitioned into k disjoint sets V =
V1 ∪ · · · ∪ Vk, where Vi, 1 ≤ i ≤ k, are independent sets. In other words, the graph
for which the endpoints of every edge are in different sets is called k-partite graph. A
graph consisting of two rows of s paired vertices in which all vertices but the paired
ones are connected with an edge is called a hyperoctahedral graph or cocktail-party
graph, denoted by CP (s).

The lexicographic product or graph composition Γ1 ◦ Γ2 of two graphs Γ1 and Γ2
is a graph with the vertex set V (Γ1) × V (Γ2) and any two vertices (u, v) and (x, y)
are adjacent in Γ1 ◦ Γ2 if and only if either u is adjacent with x in Γ1 or u = x and
v is adjacent with y in Γ2.

Let Γ be a connected graph of order n, the vertex x ∈ V (Γ) is called well-connected
if degΓ(x) = n− 1. In other words, the well-connected vertex is adjacent to all other
vertices. Let S ⊆ V (Γ) be a non-empty set, then NΓ[S] is the set of vertices in Γ
which are in S or adjacent to a vertex in S. If NΓ[S] = V (Γ), then S is said to be a
dominating set of vertices in Γ. The domination number of a graph Γ denoted by
γ(Γ) is the minimum size of a dominating set of vertices in Γ. In [1, Proposition 2.12],
it is proved that if {x} is a dominating set for Γ(G), then Z(G) = 1 and CG(x) = 〈x〉,
where x2 = 1.

A p-group is a group that the order of every element is a power of p. Let G, H be
two groups with group homomorphism ϕ : H → Aut(G). A semi-direct product of
G and H with respect to ϕ denoted by G oϕ H (or simply G o H) is a new group
with set G×H and multiplication operation (g1;h1)(g2;h2) = (g1ϕh1(g2), h1h2). For
a group G, we recall that Cent(G) = {CG(x) | x ∈ G}, where CG(x) is the centralizer
of the element x in G, see [2, 4, 5]. A group G is called an AC-group, if for each
x ∈ G \ Z(G), CG(x) is abelian, see [1, 4].

Here, in the following examples, we determine the structures of NC-graphs of two
groups S3 and U6n.

Example 2.1. Consider the symmetric group S3 by the following presentation:

S3 = 〈a, b | a2 = 1, b3 = 1, a−1ba = b−1〉.

This group is the smallest non-abelian group and its order is 6. The center of this
group is trivial and so S3 \ Z(S3) = {a, b, b2, ab, ab2}. Since, only b commutes with b2,
we have Γ(S3) ∼= K5− e, where Kn− e denotes the graph obtained from the complete
graph Kn by deleting an edge.
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Example 2.2. The group U6n has the following presentation:
U6n = 〈a, b | a2n = 1, b3 = 1, a−1ba = b−1〉.

The elements of this group are
{1, a, . . . , a2n−1, b, ba, . . . , ba2n−1, b2, b2a, . . . , b2a2n−1}.

One can see that Z(U6n) = 〈a2〉 and so |Z(U6n)| = n. This implies that
|V (Γ(U6n))| = |U6n| − |Z(U6n)| = 5n.

Let i, j be odd, then
(aib)(ajb) = (aib)a(aj−1b) = ai(ba)aj−1b = ai+j = (ajb)(aib).

Hence, {ab, a3b, . . . , a2n−1b} is an independent set. By a similar way, we can prove
that if i, j are odd, then (aib2)(ajb2) = (ajb2)(aib2) and so {ab2, . . . , a2n−1b2} is an
independent set. Now, we can easily prove that the following sets are independent:

{a, a3, . . . , a2n−1}, {ab, a3b, . . . , a2n−1b}, {ab2, a3b2, . . . , a2n−1b2},
{b, b2, a2b, a2b2, . . . , a2n−2b, a2n−2b2}.

This implies that Γ(U6n) is a 4-partite graph.

3. Main Results

In [9], it is proved that there is no regular NC-graph of valency pn, where p is an
odd prime number and n is a positive integer. In general, we have the following result.

Theorem 3.1. ([9, Theorem 3.4]). Let G be a finite non-abelian group such that Γ(G)
is 2s-regular, for some positive integer s. Then G is a 2-group.

Theorem 3.2. Let G be a finite non-abelian group such that Γ(G) is a regular graph.
Then Γ(G) is Eulerian.

Proof. Let Γ(G) be a k-regular graph. It is sufficient to prove that k is even. On the
contrary, suppose that k is odd. Then, for any non-central element x ∈ G,

k = |G| − |CG(x)| = |CG(x)|(|G : CG(x)| − 1),
from which we deduce that |CG(x)| is odd and that |G \Z(G)| is even. Since |CG(x)|
is odd for all non-central elements x ∈ G, all non-central elements of G have odd
order as does Z(G). This contradicts the fact that |G \ Z(G)| is even. �

Theorem 3.3. There is no 2-regular NC-graph.

Proof. Let G be a finite non-abelian group such that Γ(G) is a 2-regular graph. Then
for each non-central element x ∈ G, we have

2 = |G| − |CG(x)| = |CG(x)|(|G : CG(x)| − 1).
Since x is a non-central element, |CG(x)| = 2 and |G : CG(x)| − 1 = 1. Hence,
|G| = |CG(x)|+ 2 = 4. Therefore, G is abelian, which is a contradiction. �
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Theorem 3.4. Let p be a prime number. If [G : Z(G)] = p2, then Γ(G) is a regular
graph. In particular, Γ(G) is Eulerian.

Proof. Since [G : Z(G)] = p2, for every x ∈ G, we have
[G : Z(G)] = [G : CG(x)][CG(x) : Z(G)] = p2.

If x ∈ G \ Z(G), then we claim that [G : CG(x)] = p and so [CG(x) : Z(G)] = p. If
[G : CG(x)] = 1, then clearly x ∈ CG(x) = Z(G), a contradiction. If [G : CG(x)] = p2

and [CG(x) : Z(G)] = 1, then deg(x) = |G| − |CG(x)| = |G| − |Z(G)| = |V (Γ(G)|,
i.e., the vertex x has a loop, a contradiction. Thus for every x ∈ G \ Z(G), we have
[G : CG(x)] = p and therefore deg(x) = |G| − |CG(x)| = |G| − |G|/p = (p−1)|G|

p
. This

implies that Γ(G) is a regular graph. �

Theorem 3.5 ([5]). Let G be a finite non-abelian group, then |Cent(G)| = 4 if and
only if G/Z(G) ∼= Z2 × Z2.

Theorem 3.6 ([5]). Let G be a finite non-abelian group and p be a prime. If
G/Z(G) ∼= Zp × Zp then |Cent(G)| = p+ 2.

Theorem 3.7. Let G be a finite non-abelian group. Then G/Z(G) ∼= Z2 × Z2 if and
only if Γ(G) is a complete tripartite graph.

Proof. Suppose that G/Z(G) ∼= Z2 × Z2. By Theorem 3.5, |Cent(G)| = 4 and hence
G = CG(x1) ∪ CG(x2) ∪ CG(x3), where x1, x2, x3 ∈ G \ Z(G). According to the proof
of [5, Theorem 2] all CG(xi)’s are abelian. Set Xi := CG(xi) \ Z(G). Clearly the sets
X1, X2, X3 are independent sets and thus are the all three parts of Γ(G). According
to Theorem 3.4, Γ(G) is regular, so |CG(xi)| = |CG(xj)|, 1 ≤ i, j ≤ 3, and thus
|Xi| = |Xj|. Since every proper centralizer of G is abelian, by [2, Remark 2.1], we
conclude that Xi’s are disjoint sets with G\Z(G) = X1∪X2∪X3. On the other hand,
for every pair of vertices x ∈ Xi, y ∈ Xj, i 6= j, xy 6= yx and so x and y are adjacent.
Hence Γ(G) is a complete tripartite graph with parts X1, X2, X3. Conversely, assume
that Γ(G) is a complete tripartite graph with parts X1, X2, X3. Thus each part Xi of
Γ(G) is abelian. For every vertex x ∈ Xi, x commutes with all other elements of Xi

and does not commute with elements of Xj, j 6= i. For every vertex xi ∈ Xi, we have
Xi = CG(xi) \ Z(G) and thus

V (Γ(G)) = X1 ∪X2 ∪X3 = (CG(x1) ∪ CG(x2) ∪ CG(x3)) \ Z(G).
This implies that G = CG(x1) ∪ CG(x2) ∪ CG(x3) and so |Cent(G)| = 4. Therefore

by Theorem 3.5, G/Z(G) ∼= Z2 × Z2 and this completes the proof. �

Theorem 3.8. Let G be a finite non-abelian group and p be a prime number. If
G/Z(G) ∼= Zp ×Zp, then Γ(G) is a complete (p+ 1)-partite graph such that each part
has cardinality (p− 1)|Z(G)|.

Proof. By Theorem 3.6, |Cent(G)| = p+ 2. Let
Cent(G) = {G,CG(x1), . . . , CG(xp+1)}.
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According to the proof of [5, Theorem 5] all of these proper centralizers of G, i.e.,
CG(xi)’s are abelian. By [2, Remark 2.1], the set {CG(x)|x ∈ G \Z(G)} is a partition
for G and has Z(G) as its kernel. Hence CG(xi) \ Z(G), 1 ≤ i ≤ p+ 1, are the parts
of the graph Γ(G). Therefore Γ(G) is a complete (p+ 1)-partite graph. Now let x be
the cardinality of each part of the graph Γ(G). Then the number of vertices of the
graph is (p+ 1)x. Thus |G| − |Z(G)| = (p+ 1)x. Therefore,

x = |G| − |Z(G)|
p+ 1 = (p2 − 1)|Z(G)|

p+ 1 = (p− 1)|Z(G)|.

Hence, the proof is complate. �

Remark 3.1. Let G ∼= P×Zq where p, q are prime numbers and P be a p-group. Hence
we have G/Z(G) ∼= P/Z(P ). Thus, P/Z(P ) ∼= Zp × Zp if and only if G/Z(G) ∼=
Zp × Zp.

Proposition 3.1 ([1]). Let G be a finite non-abelian group such that Γ(G) is a regular
graph. Then G is nilpotent of class at most 3 and G = P × A, where A is an abelian
group, P is a p-group (p is a prime) and furthermore Γ(P ) is a regular graph.

Proposition 3.2. Let p, q be prime numbers and P be a p-group. Then Γ(P ) is
k-regular if and only if Γ(P × Zq) is kq-regular.

Proof. Suppose that Γ(P ) is k-regular and let G = P ×Zq. Then for every vertex x ∈
P \ Z(P ), we have degΓ(P )(x) = |P | − |CP (x)| = k. Thus for every (x, y) ∈ G \ Z(G),

degΓ(G)(x, y) = degΓ(P )(x)|Zq|
=|P ||Zq| − |CP (x)||Zq|
=(|P | − |CP (x)|)q = kq.

Conversely, if G = P ×Zq and Γ(G) is kq-regular, then degΓ(G)(x, y) = degΓ(P )(x).q
and so

degΓ(P )(x) =
degΓ(P×Zq)(x, y)

q
= kq

q
= k.

Thus the proof is complete. �

In the following, by Kn we mean the complement of graph Kn.

Remark 3.2. Let p be a prime number, P be a p-group and G = P ×A, where A is an
abelian group. Then the graph Γ(G) is lexicographic product of Γ(P ) around K |A|,
i.e., Γ(G) ∼= Γ(P ) ◦ K |A|.

Theorem 3.9. Let p be a prime number and P be a non-abelian p-group. Then
P/Z(P ) ∼= Zp × Zp if and only if Γ(P ) is a regular complete (p+ 1)-partite graph.

Proof. If P/Z(P ) ∼= Zp × Zp, then according to Theorem 3.8, Γ(P ) is a regular
complete (p+ 1)-partite graph. Conversely, assume that Γ(P ) is a regular complete
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(p+ 1)-partite graph and let n = |P |− |Z(P )| = pt− pk, for some t, k ∈ N. This yields
that the size of each part is n

p+1 . Hence for every x ∈ P \ Z(P ), we have
n

p+ 1 = |CP (x)| − |Z(P )| = pu − pk, u ∈ N.

This implies that pt−pk

p+1 = pu− pk and so pt−k− 1 = pu−k+1− p+ pu−k− 1. Since u < t,
we deduce that t− k = u− k + 1 and u− k = 1. Consequently, t = k + 2, u = k + 1
and thus |P |/|Z(P )| = pt/pk = p2. But as P/Z(P ) is non-abelian, it can not be cyclic.
Hence, P/Z(P ) ∼= Zp × Zp and the proof is complete. �

Corollary 3.1. Let G be a finite group and p be a prime number. Then G/Z(G) ∼=
Zp × Zp if and only if Γ(G) is a regular complete (p+ 1)-partite graph.

Proof. By Theorem 3.8, if G/Z(G) ∼= Zp×Zp, then Γ(G) is a regular complete (p+1)-
partite graph. Conversely, assume that Γ(G) is a k-regular complete (p+ 1)-partite
graph. By Proposition 3.1, G = P × A, where A is abelian and P is a non-abelian
p-group for some prime p. Clearly G/Z(G) ∼= P/Z(P ). Since Γ(G) is a k-regular
and (p+ 1)-partite graph, Γ(P ) is a k

|A| -regular and (p+ 1)-partite graph. Hence, by
Theorem 3.9, P/Z(P ) ∼= Zp × Zp and the proof is complete. �

Notice that, the regularity of Γ(G) in Corollary 3.1 is necessary. For example, the
center of group U6n introduced in Example 2.2 is of order n. Hence |U6n/Z(U6n)| = 6.
Since, U6n is non-abelian, U6n/Z(U6n) is isomorphic with symmetric group S3. In
other words, Γ(U6n) is a 4-partite graph while U6n/Z(U6n) � Z3 × Z3.

Lemma 3.1. Let G be a non-abelian group and |Cent(G)| = n + 1, where n is a
positive integer. Then G is an AC-group if and only if Γ(G) is a complete n-partite
graph.

Proof. Let G be an AC-group. Thus, for all x ∈ G \ Z(G), CG(x) is abelian. [2,
Remark 2.1] implies that for all x ∈ G \ Z(G), CG(x) \ Z(G) is a part of the graph
Γ(G). Therefore for two distinct parts such as V1 and V2, all vertices of V1 are adjacent
with all vertices of V2. Hence Γ(G) is a complete n-partite graph. Conversely, let
Γ(G) be a complete n-partite graph with parts Vi, i = 1, . . . , n. If x ∈ Vi then x
is not adjacent with other vertices of Vi and so x commutes with them. Therefore
Vi = CG(x) \ Z(G). On the other hand, since Vi is an independent set, all of its
elemnts commute with each other and therefore CG(x) is abelian. This yeilds that G
is an AC-group. �

Theorem 3.10. Let p be the smallest prime dividing |G|. If [G : Z(G)] = p3, then
Γ(G) is a complete (p2 + 1) or (p2 + p+ 1)-partite graph.

Proof. According to [4, Lemma 2.1], G is an AC-group. On the other hand, by [4,
Proposition 2.2], |Cent(G)| = p2 + 2 or p2 + p + 2. Now, by Lemma 3.1 the result
follows. �
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Remark 3.3. The graph considered in Theorem 3.10 is not necessarily regular. Notice
to the following example.

Example 3.1. Let G = SmallGroup(32, 9), by using GAP [8], one can see that |Z(G)| =
4 and so [G : Z(G)] = 23 = 8. Each vertex of Γ(G) is of degree 24 or 16. The number
of vertices of this graph is |G| − |Z(G)| = 32 − 4 = 28. According to Theorem 3.10,
this graph is 5 or 7-partite. We can see that every vertex of degree 24 commutes with
exactly four vertices and every vertex of degree 16 commutes with 12 vertices. This
implies that each part of graph Γ(G) is of order 4 or 12. The possible decompositions
of 28 into parts with 12 and 4 vertices are two partitions 28 = 4 + 4 + 4 + 4 + 12 and
28 = 12 + 12 + 4 which yields Γ(G) is a complete non-regular 5-partite graph.

Theorem 3.11. Let p ≥ q be prime numbers. If [G : Z(G)] = pq, then Γ(G) is a
complete (p+ 1)-partite graph.

Proof. By [4, Corollary 2.5], |Cent(G)| = p + 2 and for all x ∈ G \ Z(G), CG(x) is
abelian. Thus G is an AC-group. Now, by Lemma 3.1 the result follows. �

Example 3.2. Let G = SmallGroup(48, 4), then |Z(G)| = 8 and so [G : Z(G)] = 3× 2,
is a product of two primes. By using a GAP program, we can see that each vertex
of Γ(G) which is of degree 32 commutes with exactly 8 vertices and each vertex of
degree 24 commutes with 16 vertices. The only decomposition of 40 into parts with 8
and 16 vertices is 40 = 8 + 8 + 8 + 16. Thus Γ(G) is a complete 4-partite graph.

Consider the dihedral group D2n = 〈a, b | an = b2 = 1, b−1ab = a−1〉. This group
has 2n elements as {1, a, . . . , an−1, b, ba, . . . , ban−1}.

Theorem 3.12. If n is odd, then Γ(D2n) is a complete (n+ 1)-partite graph and if n
is even, then Γ(D2n) is a complete (n/2 + 1)-partite graph.

Proof. By [4, Corollary 2.4], if n is odd, then |Cent(D2n)| = n + 2 and if n is even,
then |Cent(D2n)| = n/2 + 2. On the other hand, by [4, Theorem 2.3] D2n is an
AC-group. Now, by Lemma 3.1 the result follows. �

Theorem 3.13. Let G be a finite nonabelian group.Then Γ(G) is a complete 6-partite
graph if and only if G/Z(G) ∼= Z5 × Z5, D10 or 〈x, y | x5 = y4 = 1, y−1xy = x3〉.

Proof. By [2, Theorem A], |Cent(G)| = 7 and G is an AC-group. Now, by Lemma
3.1 the result follows. �

Theorem 3.14. Let G be a finite nonabelian group. If Γ(G) is a complete 7-partite
graph, then G/Z(G) ∼= A4, D12 or Z2 × Z2 × Z2.

Proof. By [2, Theorem B], |Cent(G)| = 8 and G is an AC-group. Now, by Lemma
3.1 the result follows. �

Theorem 3.15. Let G be a finite non-abelian group of odd order. Then Γ(G) is a
complete 8-partite graph if and only if G/Z(G) ∼= Z7 × Z7 or Z7 o Z3.
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Proof. By [4, Theorem 3.3], |Cent(G)| = 9 and by [2, Lemma 2.6], G is an AC-group.
Now, by Lemma 3.1 the result follows. �

Theorem 3.16. Let G be a finite non-abelian group. If G/Z(G) ∼= Z2×Z2×Z2 then
Γ(G) is a complete 7-partite or 5-partite graph.

Proof. By [2, Proposition 3.4], |Cent(G)| = 8 or 6. �

4. Which Graphs are NC-Graph?

In this section, we determine whether some special graphs can be NC-graphs of
some groups. In [9], it was shown that there is no regular NC-graph of odd valancy
and therefore there is not a group for which its NC-graph is the Petersen graph. By
Theorem 3.3, the cycle graph Cn cannot be a NC-graph. Also by [1, Proposition 2.2],
all NC-graphs are Hamiltonian, thus we do not consider non-Hamiltonian graphs. In
addition, if a regular graph Γ1 is not Eulerian, then there is no group G for which
Γ(G) ∼= Γ1. Hence, for a given regular graph Γ1, a necessary condition to exist a
group G with Γ(G1) ∼= Γ1 is that Γ1 be Eulerian.

Darafsheh in [7] proved that there is no group G for which Γ(G) is a complete graph
or a bipartite graph. Here, we continue his method for the graphs Kn − e, Kn − 2e
and Kn− 3e, where Kn− te denotes the graph obtained from the complete graph Kn

by deleting t edges and t ∈ N. In the following, the set of all Sylow p-subgroups of G
is denoted by Sylp(G).

Theorem 4.1. Let Γ(G) ∼= Kn − e for some n, then G is isomorphic with the
symmetric group S3.

Proof. Let x, y ∈ G \ Z(G) be two non-adjacent vertices of Γ(G), then xy = yx.
For every vertex u ∈ (G \ Z(G)) \ {x, y}, {u} is a dominating set for Γ(G). Hence,
according to [1, Proposition 2.12], Z(G) = 1 and we can consider two following cases.

Case 1. y 6= x−1, in this case every element w ∈ V (Γ(G)) has order 2, because
if o(w) ≥ 3, then w is not adjacent to w−1 which is impossible, since w is a well-
connected vertex. On the other hand, y 6= x yields that x = x−1 and y = y−1. Thus
for all w ∈ V (Γ(G)), we have o(w) = 2. In other words, o(x) = 2, o(y) = 2 and
o(xy) = 2. But x and y commute with non-central element xy which contradicts the
fact that only x and y are non-adjacent.

Case 2. y = x−1, similar to the last case, we can deduce that all vertices of
V (Γ(G)) \ {x, y} are of order two and o(x) ≥ 3, because if o(x) = 2, then x = x−1

which is a contradiction. If x has order k ≥ 4, then x commutes with both x2, x3

which contradicts the fact that x has only one non-adjacent vertex in Γ(G). Thus, x
has order 3 and y = x−1 does as well. In other words, G is a {2, 3}-group and so we
can verify that |G| = 2r.3s for some positive integers r and s. Let P ∈ Syl3(G) and
Q ∈ Syl2(G). Then P ∩ Q = 1 and G = PQ. There are only two elements of order
three and this means that P is a normal subgroup of G and thus G = P oQ. We have
|P | = 3, |Q| = 2r and we claim that r = 1. Suppose on the contrary that r ≥ 2, then
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there are two distinct elements such as a, b ∈ Q for which we have o(a) = o(b) = 2
and therefore o(ab) = 2 . So ab = b−1a−1 = ba and this means that a and b commute
with each other, a contradiction. So r = 1 and therefore G ∼= Z3oZ2. In other words,
up to isomorphism there is only one non-abelian group of order six, namely S3 and
so G ∼= S3. This completes the proof. �

Theorem 4.2. There is no group G such that Γ(G) ∼= Kn − 2e.

Proof. One of the two following cases hold.
Case 1. Two removed edges share a common vertex. Note that K3 − 2e is

disconnected, hence it cannot be a NC-graph. Thus, we may assume n ≥ 4, in which
case γ(G) = 1 and Z(G) = 1. Suppose two removed edges share the common vertex
y and x, z be two vertices non-adjacent to y. If y 6= x−1 and y 6= z−1, then similar
to the proof of Theorem 4.1, for every element u ∈ V (Γ(G)) we have o(u) = 2. Thus
x = x−1, y = y−1 and z = z−1. Since x commutes with y, it commutes with xy, too.
But xy 6= 1 and so xy 6∈ Z(G). Since y is the only vertex non-adjacent with x, we
come to a contradiction. Now assume that y 6= x−1 and y = z−1. So we conclude that
o(x) = 2 and x commutes with xy, a contradiction. Thus, this case does not hold.

Case 2. Two removed edges do not share a common vertex. Clearly, n ≥ 4. The
girth of K4− 2e is 4, thus it is not a NC-graph, see [1, Proposition 2.1]. Hence n ≥ 5,
which clearly implies Z(G) = 1 since every such graph has domination number 1.
Assume that the two removed edges from Kn are {x,w} and {y, z}. If x 6= w−1, since
x commutes with xw, then similar to the last discussion, we have a contradiction.
If y 6= z−1, then again we have a contradiction. Thus assume that x = w−1 and
y = z−1. Then necessarily o(x) = o(w) = 3, o(z) = o(y) = 3 and for every element
u ∈ V (Γ(G)) \ {x,w, y, z}, we have o(u) = 2. So, we may assume that |G| = 2t.3s,
where t, s ≥ 1. According to Sylow theorem |Syl3(G)| = 1 + 3k(k ≥ 0). On the other
hand, only the element x,w, y, z are of order three which is a contradiction. These
contradictions show that there is no group G with Γ(G) ∼= Kn − 2e and the proof is
complete. �

Theorem 4.3. If there is a group G such that Γ(G) ∼= Kn − 3e, then n = 6 and
G ∼= D8 or Q8.

Proof. Let Γ(G) ∼= Kn − 3e. Then there are five cases for the removed edges as the
following:

Case 1. Three removed edges share a common vertex, namely w and thus n ≥ 4.
Note that in this case, K4 − 3e is disconnected and hence it cannot be a NC-graph.
Thus, we may assume n ≥ 5, in which case γ(G) = 1 and Z(G) = 1. Suppose x1, x2
and x3 be the other end of these edges. Then w is the inverse of each of xi, i = 1, 2, 3,
which is a contradiction, since xi, i = 1, 2, 3, are distinct. Thus, this case does not
hold.

Case 2. Three removed edges make the complete graph K3. Hence, n ≥ 4 and
therefore Z(G) = 1. Let x, y and z be the vertices of the removed edges. Then the
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centralizer of x, y and z is the same and has cardinality 4. Thus, the order of x, y
and z is 2 or 4. But we know that the order of each element of V (Γ(G)) \ {x, y, z} is
2. Therefore G is a 2-group, which contradicts with Z(G) = 1. Thus, this case does
not hold.

Case 3. Let x1, x2, x3, w1, w2 be distinct vertices of the graph Kn and the edges
{x1, w1}, {x2, w1} and {x3, w2} are removed, thus n ≥ 5. If n ≥ 6, then Z(G) = 1
and therefore w1 is the inverse of both x1 and x2, which is a contradiction. If
n = 5, then CG(x1) = Z(G) ∪ {x1, w1} and CG(x1) ∩ CG(x2) = Z(G) ∪ {w1}. But
|CG(x1)∩CG(x2)| = |Z(G)|+ 1 which clearly is not a divisor of |CG(x1)| = |Z(G)|+ 2
and this is a contradiction. Thus, this case does not hold.

Case 4. Three removed edges make the path {x1, w1, x2, w2} and hence n ≥ 4. If
n = 4, then the gaph K4 − 3e is the path P4, which is not Hamiltonian. Thus n ≥ 5
and therefore Z(G) = 1. In this case, w1 = x−1

1 . On the other hand, w1 ∈ CG(x2)
and therefore x1 ∈ CG(x2), which contradicts with the adjacency of x1 and x2. Thus,
this case does not hold.

Case 5. Let x1, x2, x3, w1, w2, w3 be distinct vertices of Kn and the edges {x1, w1},
{x2, w2} and {x3, w3} are removed, thus n ≥ 6. If n = 6, then the degree of each
vertex in K6 − 3e is 4, which is a 4-regulr graph with 6 vertices and therefore by [12,
Corollary 4], G ∼= D8 or Q8. If n ≥ 7, then Z(G) = 1. In this case, the elements
x1, x2, x3, w1, w2, w3 have order 3 and the other vertices of Γ(G) have order 2. Thus,
G is a {2, 3}−group and therefore |G| = 2r3s, for some positive integers r and s. So
all Sylow 3-subgroups of G have order 3s. Since there are only 6 vertices of order
3, we have s = 1. It is easy to see that CG(x1), CG(x2) and CG(x3) are the only
Sylow 3-subgroups of G. But, if n3 is the number of Sylow 3-subgroups, then n3 ≡ 1
(mod 3), which contradicts n3 = 3 and this completes the proof. �

Theorem 4.4. Let Hs be the graph obtained by removing s disjoint edges from K2s.
If there is a group G such that Γ(G) ∼= Hs, then s = 3 and G ∼= D8 or Q8.

Proof. Let G be the group such that Γ(G) ∼= Hs. In fact, the graph Hs is a
hyperoctahedral graph or cocktail-party graph, CP (s). In this graph, for each
x ∈ V (Hs), deg(x) = 2s − 2 = |G| − |Z(G)| − 2. So, for each x ∈ G \ Z(G),
|CG(x)| = |Z(G)|+ 2. Thus, |Z(G)|([CG(x) : Z(G)]− 1) = 2 and therefore |Z(G)| = 1
or |Z(G)| = 2. On the other hand, x is not adjacent with only one vertex, say y and
hence CG(x) = {x, y}∪Z(G). If |Z(G)| = 1 then for every x ∈ G \Z(G), |CG(x)| = 3
and therefore, for every x ∈ G \ Z(G), the order of x is three. Hence G is a 3-group,
which contradicts the fact that Z(G) = 1. Thus, |Z(G)| = 2 and therefore, for every
x ∈ G \Z(G), |CG(x)| = 4. So each element of G has order 2 or 4, which implies that
G is a 2-group. By [11, Proposition 3.3], if G is a p-group and for each x ∈ G \ Z(G),
[G : CG(x)] = pa (a is a positive integer) and Z(G) is cyclic, then a = 1. Hence,
[G : CG(x)] = 2 and therefore |G| = 8. Hence G ∼= D8 or Q8 and Γ(G) is a complete
tripartite graph which yeilds that s = 3. �
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Now, in the following, we consider the general case, i.e., the graph Kn − te, where
t ≥ 4.

Let γ(Kn − te) = 1, t ≥ 4. In the following cases, we show that there is no group
G such that Γ(G) ∼= Kn − te. Let Γ(G) ∼= Kn − te. Then γ(Γ(G)) = 1 and therefore
Z(G) = 1 and |G| = n + 1. Let S be the induced subgraph of Kn by these t edges.
We divide the vertex set of the graph S into two sudivisions W and X in such a way
that W = {w1, . . . , wu} is a set of minmum order such that each edge of S has at
least one end in W i.e. the set W dominates all edges of S and has minimum size
with this property. Set X := V (S) \W . Thus, the vertices of X are exactly one end
of some edges of S and are not adjacent in S. We consider the following adjacency
cases in the graph S.

Case 1. There are at least two vertices like x1 and x2 in X such that they are
adjacent with exactly one vertex of W like wi. In this case, the order of x1 and x2 is
3 and wi is the inverse of both x1 and x2, which contradicts the fact that x1 and x2
are distinct.

Case 2. There is a vertex like wi in W such that it is adjacent with more than
one vertex of X and at least one of these vertices like xj has degree one in S. In this
case, wi = x−1

j . Now if xj′ be another vertex of X which is adjacent with wi, then if
degS(xj′) = 1, then by Case 1 we come into a contradiction. Thus, let degS(xj′) ≥ 2.
Then wi ∈ CG(xj′) and hence xj = w−1

i ∈ CG(xj′), which is a contradiction, since xj

and xj′ are adjacent in Kn − te.
Case 3. Suppose that there are at least two vertices in X such as xi and xj, which

differ in their l, l ≥ 0, neighbours in W . In other words, let
CG(xi) ={1, xi, wi1 , . . . , wir},
CG(xj) ={1, xj, wj1 , . . . , wjr′},

where l < 2+r
2 or l < 2+r′

2 and

CG(xi) ∩ CG(xj) = {1, wk1 , . . . , wkr′′}.
Then |CG(xi)∩CG(xj)| = 1+r′′ and 1+r′′ > 2+r

2 or 2+r′

2 . Therefore, |CG(xi)∩CG(xj)|
does not divide at least one of |CG(xi)| and |CG(xj)|, a contradiction.
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