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PROXIMATE GROUPS OF HIGHER ORDER

ANETA VELKOSKA1, NIKITA SHEKUTKOVSKI2, AND ZORAN MISAJLESKI3

Abstract. Using the intrinsic definition of shape based on proximate sequences
for compact and all topological spaces based on proximate nets indexed by open
coverings in the paper Shekutkovski [5] we define proximate fundamental group. In
this paper will be introduced proximate groups of higher order and it will be shown
that these groups are invariants of pointed intrinsic shape.

1. Introduction

The intrinsic definition of a shape of compact metric spaces by using near continuous
functions given in [2] is generalized to paracompact spaces in [1]. More detailed
description of this approach for pointed shape, is given in [6]. Using the concept of
continuity over a covering introduced in [2], which was more developed in [1], a new
approach to the intrinsic definition of a shape of compacta was presented in [3] by
introducing the proximate sequences and corresponding homotopy. In this paper we
will combine that approach and continuity over a covering to make generalization
of intrinsic definition of pointed shape category on paracompact topological spaces.
After determining one dimensional proximate fundamental group in a paper [5] in this
paper we achieve to define proximate group of higher order and furthermore we prove
that it is an invariant of pointed shape of a space.

First in the paper are introduced pointed continuous functions over a covering
and homotopy over a covering that connects these functions. We define pointed
proximate nets, pointed over a covering homotopy and category of intrinsic shape in
Section 2. In the Section 3 we determine higher order proximate loop at a point over
a covering, homotopy relatively endpoints that connects higher order proximate loops
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at a point and prove that the set of all homotopy classes of higher order proximate
loops at a point is a commutative group for all orders greater than two. In the
last Section 4 we associate induced function to a pointed proximate net and prove
that it is a homomorphism between correspondent proximate groups of higher order.
Furthermore, associating proximate group of higher order to a pointed paracompact
topological space and associating to a pointed proximate net an induced function
we obtain a functor from category of pointed intrinsic shape to category of groups.
Therefore, we show that if two pointed paracompact topological spaces have same
pointed intrinsic shape, then their proximate groups of higher order are isomorphic.

2. Pointed Homotopy Over a Covering

Let consider two topological spaces X and Y , x0 ∈ X, y0 ∈ Y . All coverings of
the spaces will be open. The coverings of the topological spaces will be chosen from
a fixed subset of coverings, which is cofinal in the set of all coverings, denoted as
CovX, for topological space X. If X and Y are paracompact, it is enough to take
the coverings to be locally finite coverings, since locally finite coverings are cofinal in
the set of all coverings. So, let consider two paracompact topological spaces X and
Y and V ∈ Cov Y .

First we will recall the definition of V-continuous function and homotopy over a
covering (see [3] and [4]).

Definition 2.1. Let V be a covering of Y . A function f : X → Y is V-continuous at
point x ∈ X if there exists a neighborhood Ux of x and V ∈ V such that f(Ux) ⊆ V .

A function f : X → Y is V-continuous on X if it is V-continuous at every point
x ∈ X. In this case, the family of all Ux form a covering U of X. By this, f : X → Y
is V-continuous on X if there exists a covering U of X such that for any x ∈ X, there
exists a neighborhood Ux ∈ U of x and V ∈ V such that f (Ux) ⊆ V . We denote:
there exists U ∈ CovX, such that f (U) ≺ V .

Definition 2.2. Let V be a covering of Y . A star of M ⊆ Y over the covering V,
denoted by st(M) is the union of all W ∈ V such that M ∩W 6= ∅, i.e.,

st(M) = ∪{W ∈ V |M ∩W 6= ∅}.

Let X and Y be topological spaces, x0 ∈ X, y0 ∈ Y and V is a covering of Y , i.e.,
V ∈ Cov Y . We form new covering of Y as st(V) = {st(V ) | V ∈ V}. Now, we will
define pointed V-homotopy.

Definition 2.3. Let f, g : (X, x0) → (Y, y0) be V-continuous functions on paracom-
pact spaces X and Y and f (x0) = g (x0) = y0. The functions f and g are pointed
V-homotopic functions if there exists a function F : (X × I, x0 × I)→ (Y, y0) such
that:

(a) F is st(V)-continuous, which is V-continuous on X × ∂I, ∂I = {0, 1};
(b) F (x, 0) = f (x) and F (x, 1) = g (x) for all points x ∈ X;
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(c) F (x0, s) = f (x0) = g (x0) = y0 for all points s ∈ I.

When two V-continuous functions f and g are pointed V-homotopic we denote as
f∼
V
g (rel {x0}).

Theorem 2.1. The relation of pointed V-homotopy f∼
V
g (rel {x0}) of V-continuous

functions is an equivalence relation.

Proof. The proof is similar as the proof of the Proposition 2.4 in [3] about unpointed
homotopy. �

Theorem 2.2. Let X, Y , Z be paracompact topological spaces, x0 ∈ X, y0 ∈ Y ,
z0 ∈ Z and g : (Y, y0) → (Z, z0) is W-continuous function. If V is a covering such
that g (V) ≺ W, then for any two V-continuous functions f1, f2 : (X, x0) → (Y, y0)
such that f1∼V f2 (rel {x0}), it follows that g ◦ f1∼Wg ◦ f2 (rel {x0}).

Proof. By the conditions of the proposition, it follows that the compositions g ◦ f1,
g ◦ f2 are also W-continuous functions.

Since f1, f2 : (X, x0)→ (Y, y0) are pointed V-homotopic, then there exists a function
F : (X × I, x0 × I)→ (Y, y0) such that:

(a) F is st (V)-continuous, which is V-continuous on X × ∂I;
(b) F (x, 0) = f1 (x) and F (x, 1) = f2 (x) for all points x ∈ X;
(c) F (x0, s) = f1 (x0) = f2 (x0) = y0 for all points s ∈ I.
Let consider function K : (X × I, x0 × I) → (Z, z0) defined by K (x, s) =

(g ◦ F ) (x, s). Since g(V) ≺ W implies g (st(V)) ≺ st(W) and F is st(V)-continuous
there exists an open covering U , such that F (U) ≺ st(V), we conclude that

(g ◦ F ) (U) = g (F (U)) ≺ g (st(V)) ≺ st(W).
Therefore, the function K is st(W)-continuous.

Since F is V-continuous on X × ∂I, g(V) ≺ W and g is W-continuous function
then it follows that K = g ◦ F is W-continuous on X × ∂I.

If x ∈ X is an arbitrary point, then
K (x, 0) = (g ◦ F ) (x, 0) = g (F (x, 0)) = g (f1 (x)) = (g ◦ f1) (x) ,
K (x, 1) = (g ◦ F ) (x, 1) = g (F (x, 1)) = g (f2 (x)) = (g ◦ f2) (x) .

Let s ∈ I be an arbitrary point, then
K (x0, s) = (g ◦ F ) (x0, s) = g (F (x0, s)) = g (f1 (x0)) = (g ◦ f1) (x0)

=z0 = (g ◦ f2) (x0).
Therefore, we showed that the functions g ◦ f1, g ◦ f2 are pointed W-homotopic,

i.e., g ◦ f1∼Wg ◦ f2 (rel {x0}). �

Theorem 2.3. Let G : (Y × I, y0 × I) → (Z, z0) be a st(W)-continuous function,
W-continuous on Y × ∂I.
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Then there exists a covering V of Y such that for each V-continuous function
f : (X, x0) → (Y, y0) the function G (f × id) : (X × I, x0 × I) → (Z, z0) is st(W)-
continuous and the function G (f × id) is W-continuous on X × ∂I.

Proof. The unpointed version of this theorem is proved for compact metric case, in
[3, Theorem 3.0.5] and in paracompact case in more general situation is proved in [4,
Theorem 2.2]. �

3. Pointed Proximate Nets. Pointed Over a Covering Homotopy

Let consider two paracompact topological spaces X and Y , x0 ∈ X, y0 ∈ Y . Now,
we will define pointed proximate net from (X, x0) to (Y, y0).

Definition 3.1. A pointed proximate net from (X, x0) to (Y, y0) is a family
f = (fV | V ∈ Cov Y ) of V-continuous functions fV : (X, x0) → (Y, y0) such that
fW∼V fV (rel {x0}) whenever W ≺ V .

Definition 3.2. Two pointed proximate nets f and g from the pair (X, x0) to the
pair (Y, y0) are pointed homotopic if fV∼V gV (rel {x0}) for all coverings V ∈ Cov Y .
We denote by f ∼ g (rel {x0}).

Theorem 3.1. The relation of pointed homotopy of pointed proximate nets is an
equivalence relation.

The pointed homotopy class of proximate net f from the pair (X, x0) to the pair
(Y, y0) we will denote by

[
f
]

x0
.

Now, let introduce a notion of composition of pointed proximate nets f : (X, x0)→
(Y, y0) and g : (Y, y0)→ (Z, z0).

Let f = {fV | V ∈ Cov Y } and g = {gW | W ∈ CovZ}.
Because gW is W-continuous, then, by the definition, there exists an open covering
V of Y such that gW(V) ≺ W .

We define hW = gW ◦ fV : (X, x0) → (Z, z0). This function is W-continuous. Al-
though the definition depends on the choice of V , the next lemma shows that for two
coverings V ,V ′ ∈ Cov Y such that gW(V), gW (V ′) ≺ W is true that
gW ◦ fV∼WgW ◦ fV ′ (rel {x0}).

Lemma 3.1. If f is pointed proximate net and V ,V ′ ∈ Cov Y such that

gW(V), gW (V ′) ≺ W , W ∈ CovZ,
then gW ◦ fV∼WgW ◦ fV ′ (rel {x0}).

Proof. Let V ′′ ∈ Cov Y be a common refinement of V and V ′, i.e., V ′′ ≺ V ,V ′. Since
f is pointed proximate net, by the definition, follows that fV ′′∼V fV (rel {x0}) and
fV ′′∼

V ′
fV ′ (rel {x0}). By Theorem 2.2 it follows that gW ◦ fV ′′∼WgW ◦ fV (rel {x0}) and
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gW ◦ fV ′′∼WgW ◦ fV ′ (rel {x0}). From the transitivity of the pointed homotopy we
conclude that gW ◦ fV∼WgW ◦ fV ′ (rel {x0}). �

Now, we will show that the function hW = gW ◦ fV : (X, x0) → (Z, z0) from the
above discussion generates a pointed proximate net from (X, x0) to (Z, z0), h =
{hW = gW ◦ fV | W ∈ CovZ}, i.e., we will show that for all W ′ ≺ W is true that
hW ′∼WhW (rel {x0}).

Let W ′ ≺ W and since g is a pointed proximate net then gW ′∼WgW (rel {y0}) by a
pointed homotopy G is a st(W)- continuous function and W-continuous on Y × ∂I.
By Theorem 2.3, there exists a V ′′ of Y , such that for each V ′′-continuous function
fV ′′ : (X, x0) → (Y, y0), the function G (fV ′′ × id) : (X × I, x0 × I) → (Z, z0) is
st(W)-continuous, and the function G (fV ′′ × id) is W-continuous on X × ∂I. It
follows gW ′ ◦ fV ′′∼WgW ◦ fV ′′ (rel {x0}).

Now, consider hW ′ = gW ′◦fV ′ and hW = gW◦fV for some V ′ ∈ Cov Y , gW ′ (V ′) ≺ W ′
and some V ∈ Cov Y , gW(V) ≺ W .

By Lemma 3.1, since gW(V), gW (V ′′) ≺ W , then gW ◦ fV∼WgW ◦ fV ′′ (rel {x0}).
Now, consider V 1 ≺ V ′, V ′′. Since gW ′ (V 1) , gW ′ (V ′) ≺ W ′, by Lemma 3.1, follows

that gW ′◦fV 1∼W ′gW ′◦fV ′ (rel {x0}). BecauseW ′ ≺ W then gW ′◦fV ′∼WgW ′◦fV 1 (rel {x0}).
By Theorem 2.2, since f is a pointed proximate net, i.e., fV 1∼V ′′fV ′′ (rel {x0}) and
gW ′ (V ′′) ≺ W, then is true that gW ′ ◦ fV 1∼WgW ′ ◦ fV ′′ (rel {x0}). Therefore, gW ′ ◦
fV ′∼WgW ′ ◦ fV 1 (rel {x0})∼WgW ′ ◦ fV ′′ (rel {x0})∼WgW ◦ fV ′′ (rel {x0}), i.e., we showed
that hW ′∼WhW (rel {x0}).

Now, we will give the following definition.

Definition 3.3. Let
[
f
]

x0
and

[
g
]

y0
be two pointed homotopy classes of pointed

proximate nets. We define a composition of pointed homotopy classes
[
f
]

x0
and

[
g
]

y0

by
[
g
]

y0
◦
[
f
]

x0
=
[
g ◦ f

]
x0
.

From the discussion above in order to show that this composition is well defined
we have to show that if f ∼ f

′ (rel {x0}) and g ∼ g
′ (rel {x0}), then h ∼ h

′ (rel {x0}),
where h and h′ are the compositions of pointed proximate nets f and g, f ′ and g′ ,
respectively.

Since g ∼ g
′ (rel {y0}), then for every W ∈ CovZ is true that gW∼WgW

′ (rel {y0})
and, by Theorem 2.2, there exists a covering U ∈ Cov Y , gW (U) ≺W, g′W (U) ≺ W
such that U -continuous function fU : (X, x0)→ (Y, y0) is gW ◦ fU∼WgW

′ ◦ fU (rel {x0}).
From the definition of the composition of two pointed proximate nets there exist

coverings V and V ′ of Y such gW(V) ≺ W and gW
′ (V ′) ≺ W such hW = gW ◦ fV and

hW
′ = gW

′ ◦ fV ′
′ .
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Since f ∼ f
′ (rel {x0}), then fU∼U fU

′ (rel {x0}), so by this fact, Lemma 3.1 and
Theorem 2.2, we can conclude that
hW = gW ◦ fV∼WgW ◦ fU (rel {x0})∼WgW

′ ◦ fU (rel {x0})∼WgW
′ ◦ fV ′

′ (rel {x0}) = hW
′
,

i.e., hW∼WhW
′ (rel {x0}) for all W ∈ CovZ.

Therefore, h ∼ h
′ (rel {x0}).

By the definition of the composition of pointed proximate nets and U -continuous
function the following theorem is valid.

Theorem 3.2. Let
[
f
]

x0
,
[
g
]

y0
and [h]z0

be three pointed homotopy classes of pointed
proximate nets. Then

[h]z0
◦
([
g
]

y0
◦
[
f
]

x0

)
=
(

[h]z0
◦
[
g
]

y0

)
◦
[
f
]

x0
.

In this way we proved that the paracompact topological pointed spaces and pointed
homotopy classes of pointed proximate nets form category of pointed intrinsic shape.
We say that pointed paracompact topological spaces (X, x0) and (Y, y0) has same
pointed intrinsic shape if they are isomorphic in this category.

4. Proximate Group of Higher Order

Let X be a paracompact topological space and
In = [0, 1]n = {(t1, t2, . . . , tn) | 0 ≤ ti ≤ 1, i = 1, 2, . . . , n} .

In the discussion below we use the following notation: ∂0In = In, ∂nIn = (∂I)n and
for all i = 1, . . . , n− 1 we consider ∂iIn as: ∂In is a finite union of copies of In−1, i.e.,

∂In =
n⋃

i=1
{(t1, t2, . . . , tn) | ti = 0, 0 ≤ tj ≤ 1, j 6= i}

∪
n⋃

i=1
{(t1, t2, . . . , tn) | ti = 1, 0 ≤ tj ≤ 1, j 6= i} ,

∂2In is a finite union of copies of In−2, and for the others i = 3, . . . , n− 1, ∂iIn is a
finite union of copies of In−i.

For example, ∂I3 are all faces of a cube, that is a union of six copies of I2, ∂2I3 are
all edges of a cube, that is a union of twelve copies of I and ∂3I3 are all vertices of a
cube, that is a union of eight points,

st2(U) = st(st(U)) = {st(W ) | W ∈ st(U)}, . . . , stn(U) = st(stn−1)(U),
for all integers n > 1. Note, U ≺ st(U) ≺ st2(U) ≺ · · · ≺ stn(U) ≺ · · · .

Definition 4.1. Let U be a covering of X and x0 ∈ X is a fixed point. The function
kU : (In, ∂In) → (X, x0) such that is stn−i (U)-continuous on the set ∂iIn for all
i = 0, 1, . . . , n, and kU (∂In) = x0 is called n-dimensional U -loop at x0.
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Note, that a function kU : (In, ∂In) → (X, x0) is stn−i (U)-continuous on the set
∂iIn for all i = 1, . . . , n, if there exist open coverings Vn−i, i = 1, . . . , n, of the sets
∂iIn, respectively, such that kU(Vn−i) ≺ stn−i(U).

Definition 4.2. Let U ∈ CovX and kU , lU : (In, ∂In) → (X, x0) be n-dimensional
U -loops at x0. The n-dimensional U -loops kU and lU are U -homotopic loops relatively
endpoints, if there exists a function F : In × I → X such that

(I) F is stn+1−i (U)-continuous on ∂iIn+1 for all i = 0, 1, . . . , n, n+ 1, and satisfies
the usual conditions of homotopy relatively endpoints;

(II) F (t, 0) = kU (t) and F (t, 1) = lU (t) for all t ∈ In;
(III) F

(
t
′
, s
)

= kU
(
t
′
)

= lU
(
t
′
)

= x0 for all t′ ∈ ∂In and s ∈ I.
If two n-dimensional U -loops at x0, kU , lU are U -homotopic loops relatively end-

points we denote as kU∼U lU (rel ∂In).

Theorem 4.1. The relation of homotopy relatively endpoints of n-dimensional U-loops
at x0 is an equivalence relation.

The homotopy relatively endpoints class of n-dimensional U-loops at x0,
kU : (In, ∂In)→ (X, x0) we will denote by [kU ]x0

.

Proof. Reflexive property. Let kU : (In, ∂In)→ (X, x0) be a n-dimensional U -loop at
x0. We consider the following function F : In × I → X defined by

F (t, s) = kU(t), for all (t, s) ∈ In × I.

Since kU is stn−i (U)-continuous on the set ∂iIn for all i = 0, 1, . . . , n, so there exist
open coverings Vn−i, i = 1, . . . , n, of the sets ∂iIn, respectively, such that kU(Vn−i) ≺
stn−i(U). Let V be a covering of I, so Vn−i × V are coverings for ∂iIn+1, i = 0, . . . , n,
and F (Vn−i × V) = kU(Vn−i) ≺ stn−i(U) ≺ stn+1−i(U).

Now, let i = n+ 1. Then ∂iIn+1 =
n⋃

j=1
{(t1, t2, . . . , tn) | tj = 0, 1, j = 1, . . . , n+ 1},

i.e., ∂iIn+1 = ∂nIn×{0, 1}. We consider a covering V0×{0, 1} of ∂iIn+1, where V0 is a
covering of ∂nIn such that kU(V0) ≺ U since kU is stn−n(U) = U -continuous on the set
∂nIn. So, F (V0 × {0, 1}) = kU(V0) ≺ U = stn+1−(n+1)(U). Therefore, F is stn+1−i (U)-
continuous on ∂iIn+1 for all i = 0, 1, . . . , n, n + 1, and F (t, 0) = F (t, 1) = kU(t) for
all t ∈ In, F

(
t
′
, s
)

= kU
(
t
′
)

= x0 for all t′ ∈ ∂In and s ∈ I. So, F is a homotopy
relatively endpoints that connects the n-dimensional U -loop at x0, kU by itself and
therefore, the relation of homotopy relatively endpoints of n-dimensional U -loops at
x0 is reflexive.

Symmetric property. Let two n-dimensional U -loops at x0 kU , lU be U -homotopic.
So, there exists a homotopy relatively endpoints F : In × I → X that connects the
n-dimensional U -loops at x0 kU , lU . The function H : In × I → X defined by

H(t, s) = F (t, 1− s), for all (t, s) ∈ In × I,
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is a homotopy relatively endpoints that connects the n-dimensional U -loops at x0, lU
and kU . Therefore, the relation of homotopy relatively endpoints of n-dimensional
U -loops at x0 is symmetric.

Transitive property. Let kU , lU ,mU : (In, ∂In)→ (X, x0) be n-dimensional U -loops
at x0 such that kU∼U lU (rel∂In) and lU∼UmU (rel∂In). So, there exist homotopies
relatively endpoints F : In × I → X and K : In × I → X that connects the n-
dimensional U -loops at x0 kU and lU , lU and mU , respectively. Let consider a function
H : In × I → X defined for all t ∈ In by

H(t, s) =


F (t, 2s), 0 ≤ s ≤ 1

2 ,

K(t, 2s− 1), 1
2 ≤ s ≤ 1.

By [4, Theorem 2.2], the function H is well defined and stn+1−i (U)-continuous on
∂iIn+1 for i = 0, 1, . . . , n + 1. Since, H (t, 0) = F (t, 2 · 0) = kU (t), H (t, 1) =
K (t, 2 · 1− 1) = mU (t) for all t ∈ In and for all t′ ∈ ∂In

H(t′ , s) =


F (t′ , 2s) = kU(t′) = x0, 0 ≤ s ≤ 1

2 ,

K(t′ , 2s− 1) = mU(t′) = x0,
1
2 ≤ s ≤ 1,

the function H is a homotopy relatively endpoints that connects the n-dimensional
U -loops at x0 kU and mU . So, the relation of homotopy relatively endpoints of
n-dimensional U -loops at x0 is transitive and equivalence relation. �

Definition 4.3. Let consider two n-dimensional U -loops at x0, kU , lU : (In, ∂In) →
(X, x0) . The juxtaposition of these two n-dimensional U -loops at x0 is:

(k ∗ l)(t1, t2, . . . , tn) =


k(t1, t2, . . . , tn−1, 2tn), 0 ≤ tn ≤

1
2 ,

l(t1, t2, . . . , tn−1, 2tn − 1), 1
2 ≤ tn ≤ 1.

By [4, Theorem 2.2], juxtaposition is well defined and stn−i (U)-continuous on ∂iIn

for i = 0, 1, . . . , n. By the definition, kU ∗ lU (∂In) = x0.
Therefore, kU ∗ lU (∂In) = x0 is n-dimensional U -loop at x0.

Theorem 4.2. Let kU , kU
′ : (In, ∂In) → (X, x0), lU , lU

′ : (In, ∂In) → (X, x0) be
n-dimensional U-loops at x0 such that kU∼U kU

′ (rel ∂In), lU∼U lU
′ (rel ∂In) and the jux-

tapositions kU ∗ lU and kU
′ ∗ lU

′ are defined. Then kU ∗ lU∼U kU
′ ∗ lU

′ (rel ∂In).

Proof. Since kU∼U kU
′ (rel ∂In) and lU∼U lU

′ (rel ∂In), there are homotopies relatively
endpoints K : In × I → X and L : In × I → X that connect the n-dimensional
U -loops at x0, kU and kU

′ and lU and lU
′ , respectively.
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We define a function H : In × I → X by

H(t1, . . . , tn−1, tn, s) =


K(t1, . . . , tn−1, 2tn, s), 0 ≤ tn ≤

1
2 ,

L(t1, . . . , tn−1, 2tn − 1, s), 1
2 ≤ tn ≤ 1.

This function is well defined since for tn = 1
2 and all t1, t2, . . . , tn−1, s ∈ I is valid

K
(
t1, . . . , tn−1, 2 ·

1
2 , s

)
=K(t1, . . . , tn−1, 1, s)

(t1,...,tn−1,1)∈∂In

= = kU ((t1, . . . , tn−1, 1))

=x0 = lU ((t1, . . . , tn−1, 0)) (t1,...,tn−1,0)∈∂In

= L(t1, . . . , tn−1, 0, s)

=L
(
t1, . . . , tn−1, 2 ·

1
2 − 1, s

)
.

From this equation and the fact that the functions K and L are stn+1−i (U)-
continuous on ∂iIn+1 for all i = 0, 1, . . . , n, n + 1, by [4, Theorem 2.2], the function
H is stn+1−i (U)-continuous ∂iIn+1 for all i = 0, 1, . . . , n, n+ 1.

The usual conditions (II) and (III) from the Definition 4.2 are true by the definition
of the function H.

Therefore, k0
U ∗ l0U∼U k

1
U ∗ l1U (rel {0, 1}). �

Theorem 4.3. Let kU , lU , pU : (In, ∂In) → (X, x0) be n-dimensional U-loops in x0
and the juxtapositions kU ∗ lU , lU ∗ pU are defined. Then

(kU ∗ lU) ∗ pU∼U kU ∗ (lU ∗ pU) (rel∂In) .

Proof. First let represent the n + 1-dimensional cube In × I as union of the sets
In−1 × A, In−1 × B and In−1 × C, such that A =

{
(t, s) | s ∈ I, 0 ≤ t ≤ s+1

4

}
, B ={

(t, s) | s ∈ I, s+1
4 ≤ t ≤ s+2

4

}
and C =

{
(t, s) | s ∈ I, s+2

4 ≤ t ≤ 1
}
.

Let define functions a : A → I, b : B → I and c : C → I by a (t, s) = 4t
s+1 ,

b(t, s) = 4t− 1− s, c (t, s) = 4t−2−s
2−s

and function H : In × I → X by

H (t, s) =


kU (t1, . . . , tn−1, a (tn, s)) , (t1, . . . , tn−1, tn, s) ∈ In−1 × A,
lU(t1, . . . , tn−1, b (tn, s)), (t1, . . . , tn−1, tn, s) ∈ In−1 ×B,
pU (t1, . . . , tn−1, c (tn, s)) , (t1, . . . , tn−1, tn, s) ∈ In−1 × C.

If (t, s) ∈ (In−1 × A) ∩ (In−1 ×B) =
{(
t1, . . . , tn−1,

s+1
4 , s

)
| s ∈ I

}
, then

kU

(
t1, . . . , tn−1, a

(
s+ 1

4 , s
))

= x0 = lU

(
t1, . . . , tn−1, b

(
s+ 1

4 , s
))

.

If (t, s) ∈ (In−1 ×B) ∩ (In−1 × C) =
{(
t1, . . . , tn−1,

s+2
4 , s

)
| s ∈ I

}
, then

lU

(
t1, . . . , tn−1, b

(
s+ 2

4 , s
))

= x0 = pU

(
t1, . . . , tn−1, c

(
s+ 2

4 , s
))

.

So, the functions are equal on the intersections (In−1 × A) ∩ (In−1 ×B) and
(In−1 ×B) ∩ (In−1 × C).
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Since the n-dimensional U -loops kU , lU and pU at x0 are stn−i (U)-continuous on
∂iIn for all i = 0, 1, . . . , n, and the functions a, b and c are continuous on the sets A, B
and C, respectively, then, by Theorem 2.3, the functions kU (id× a) : In−1 ×A→ X,
lU (id× b) : In−1 × B → X and pU (id× c) : In−1 × C → X are stn−i (U) and so
stn+1−i (U)-continuous on ∂i (In−1 × A), ∂i (In−1 ×B) and ∂i (In−1 ×B), respectively,
for all i = 0, 1, . . . , n, and stn−i (U)-continuous on ∂i (∂In−1 × A) , ∂i (∂In−1 ×B) and
∂i (∂In−1 ×B), respectively for all i = 0, 1, . . . , n.

The function H is defined by three stn+1−i (U)-continuous functions on closed sets
for all i = 0, 1, . . . , n, which are equal on their intersection. Therefore, by [4, Theorem
2.2], the function H is stn+1−i (U)-continuous on ∂iIn+1 for all i = 0, 1, . . . , n, n+ 1.

The usual conditions (II) and (III) from the Definition 4.2 are true by the definition
of the function H.

So, the function H is a homotopy relatively endpoints that connects the n-dimensio-
nal U -loops (kU ∗ lU) ∗ pU and kU ∗ (lU ∗ pU) at x0, as required. �

Definition 4.4. Let X be a paracompact topological space and x0 ∈ X is fixed
point. The function cx0 : In → X, defined by cx0 (t) = x0, t ∈ In, is called constant
n-dimensional U-loop at x0.

Theorem 4.4. Let kU : In → X be a n-dimensional U-loop at x0. Then kU ∗
cx0∼U kU (rel ∂In) and cx0 ∗ kU∼U kU (rel ∂In).

Proof. First we will prove that kU ∗ cx0∼U kU (rel ∂In).
Let represent the n+ 1-dimensional cube In× I as union of the sets In−1×D1 and

In−1 × D2, such that D1 =
{
(t, s) | s ∈ I, 0 ≤ t ≤ s+1

2

}
and D2 ={

(t, s) | s ∈ I, s+1
2 ≤ t ≤ 1

}
.

Let define the function d : D1 → I by d (t, s) = 2t
s+1 for all (t, s) ∈ D1 and the

function H : In × I → X by

H (t, s) =
{
kU (t1, . . . , tn−1, d (tn, s)) , (t1, . . . , tn−1, tn, s) ∈ In−1 ×D1,
x0, (t1, . . . , tn−1, tn, s) ∈ In−1 ×D2.

If (t, s) ∈ (In−1 ×D1) ∩ (In−1 ×D2) =
{(
t1, . . . , tn−1,

s+1
2 , s

)
| s ∈ I

}
, then

kU

(
t1, . . . , tn−1, d

(
s+ 1

2 , s
))

= kU (t1, . . . , tn−1, 1) = x0.

Therefore, the function H is well defined.
Since kU and cx0 are n-dimensional U -loops at x0, they are stn−i (U)-continuous

on ∂iIn, i = 0, 1, . . . , n. Since d is continuous on D1, then, by Theorem 2.3, the
function kU (id× d) : In−1 × D1 → X is stn−i (U) and so stn+1−i (U)-continuous on
∂i (In−1 ×D1) for all i = 0, 1, . . . , n, and stn−i (U)-continuous on ∂i (∂In−1 ×D1) for
all i = 0, 1, . . . , n.
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The function H is defined by two stn+1−i (U)-continuous functions on closed sets
for all i = 0, 1, . . . , n ,which are equal at their intersection. So, by [4, Theorem 2.2],
the function H is stn+1−i (U)-continuous on ∂iIn+1 for all i = 0, 1, . . . , n, n+ 1.

The usual conditions (II) and (III) from the Definition 4.2 are true by the definition
of the function H.

Therefore, the function H is a homotopy relatively endpoints that connects the
n-dimensional U -loops kU ∗ cx0 and kU at x0, as required.

Similarly, is easy to verified that cx0 ∗ kU∼U kU (rel ∂In). �

Definition 4.5. Let X be a paracompact topological space and kU : (In, ∂In) →
(X, x0) is n-dimensional U -loop at x0. Inverse n-dimensional U-loop at x0, k−1

U :
(In, ∂In) → (X, x0) is defined by k−1

U (t1, . . . , tn) = kU (t1, . . . , tn−1, 1− tn) for all
elements t ∈ In. Notice (k−1

U )−1
U = kU .

Theorem 4.5. Let kU , lU : (In, ∂In) → (X, x0) be n-dimensional U-loops at x0. If
kU∼U lU (rel ∂In), then k−1

U ∼U l
−1
U (rel ∂In).

Proof. Since kU∼U lU (rel ∂In), there is homotopy relatively endpoints F : In × I → X

that connects the n-dimensional U -loops kU and lU at x0.
Let define a function H : In × I → X by H (t1, . . . , tn−1, tn, s) =

F (t1, . . . , tn−1, 1− tn, s).
Since the function H is a composition of continuous function and the function F ,

by [1, Proposition 1.3 (iv)], the function H is stn+1−i (U)-continuous on ∂iIn+1 for all
i = 0, 1, . . . , n, n+ 1.

The usual conditions (II) and (III) from the Definition 4.2 are true by the definition
of the function H.

Therefore, the function H is a homotopy relatively endpoints that connects the
n-dimensional U -loops k−1

U and l−1
U at x0, as required. �

Theorem 4.6. Let kU : (In, ∂In) → (X, x0) be a n-dimensional U-loop at x0. Then
kU ∗ k−1

U ∼U cx0 (rel ∂In) and k−1
U ∗ kU∼U cx0 (rel ∂In).

Proof. By the definition of the juxtaposition

(
kU ∗ k−1

U

)
(t) =


kU (t1, . . . , tn−1, 2tn) , 0 ≤ tn ≤

1
2 ,

k−1
U (t1, . . . , tn−1, 2tn − 1) , 1

2 ≤ tn ≤ 1,

=


kU (t1, . . . , tn−1, 2tn) , 0 ≤ tn ≤

1
2 ,

kU (t1, . . . , tn−1, 2− 2tn) , 1
2 ≤ tn ≤ 1.
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Let define a function H : In × I → X by

H (t, s) =


kU (t1, . . . , tn−1, 2tn (1− s)) , 0 ≤ tn ≤

1
2 ,

kU (t1, . . . , tn−1, (2− 2tn) (1− s)) , 1
2 ≤ tn ≤ 1.

It is well defined since for all tn = 1
2 and s ∈ I is true

H (t, s) = kU (t1, . . . , tn−1, (1− s)) = kU

(
t1, . . . , tn−1,

(
2− 2 · 12

)
(1− s)

)
.

Since the function H is defined by two stn−i (U)-continuous functions on the sets
∂i
(
In−1 ×

[
0, 1

2

]
× I

)
and ∂i

(
In−1 ×

[
1
2 , 1

]
× I

)
for all i = 0, 1, . . . , n, which are equal

at their intersection. So, by [4, Theorem 2.2], this function is stn+1−i (U)-continuous
on ∂iIn+1 for all i = 0, 1, . . . , n+ 1.

The usual conditions (II) and (III) from the Definition 4.2 are true by the definition
of the function H.

Therefore, the function H is a homotopy relatively endpoints that connects the
n-dimensional U -loops kU ∗ k−1

U and cx0 at x0, as required.
Similar, we can prove that k−1

U ∗ kU∼U cx0 (rel ∂In). �

Definition 4.6. A proximate n-dimensional loop at x0 (over CovX) is a family
k = {kU | U ∈ CovX} such that kV∼U kU (rel ∂In) for all V ≺ U .

Definition 4.7. Two proximate n-dimensional loops k and l at x0 are said to be
homotopic over a covering if kU∼U lU (rel∂In) for all U ∈ CovX, we denote that by
k ∼ l (rel ∂In).

Theorem 4.7. Homotopy relatively endpoints of proximate n-dimensional loop at x0
is an equivalence. The homotopy class of proximate n-dimensional loop k at x0 is
denoted by [k]x0

.

Proof. Since, from the Theorem 4.1, the relation of homotopy relatively endpoints
of n-dimensional U -loops at x0 is equivalence relation for any arbitrary covering
U ∈ CovX, then homotopy relatively endpoints of proximate n-dimensional loop at
x0 is an equivalence. �

Definition 4.8. Let k and l be two proximate n-dimensional loops at x0. Then
their juxtaposition is the proximate n-dimensional U -loop k ∗ l at x0 defined by
k ∗ l = (kU ∗ lU | U ∈ CovX).

In order to justify that the juxtaposition in Definition 4.8 is well defined we will
show that k ∗ l is a proximate n-dimensional at x0.

By the definition of the n-dimensional loop at x0, the juxtaposition kU ∗ lU is n-
dimensional U -loop at x0 for all coverings U ∈ CovX. Let consider an arbitrary
covering V ≺ U . Since k and l are proximate n-dimensional loops at x0, then
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kV∼U kU (rel ∂In) and lV∼U lU (rel ∂In) for all coverings U ∈ CovX. By the Theorem
4.2, the following relation kV ∗ lV∼U kU ∗ lU (rel {0, 1}) is true. Therefore, k ∗ l is a
proximate n-dimensional at x0.

Now, let consider the following set:

prox πn (X, x0) =
{
[k]x0

| k is a proximate n-dimensional loop at x0
}
.

In this set we define the operation ∗ by [k]x0
∗ [l]x0

= [k ∗ l]x0
, where k ∗ l is defined

by the Definition 4.8.
This operation is well defined. Let k0, k1 ∈ [k]x0

and l0, l1 ∈ [l]x0
be proximate

n-dimensional loops at x0 from the homotopy classes of proximate n-dimensional
loops [k]x0

and [l]x0
, respectively. Then k0

U∼U k
1
U (rel ∂In) and l0U∼U l

1
U (rel ∂In) for all

coverings U ∈ CovX. By the Theorem 4.2, k0
U ∗ l0U∼U k

1
U ∗ l1U (rel ∂In) for all coverings

U ∈ CovX.
Therefore, proximate n-dimensional loops at x0, k0 ∗ l0 = {k0

U ∗ l0U | U ∈ CovX}
and k1 ∗ l1 = {k1

U ∗ l1U | U ∈ CovX} are homotopic over a covering, i.e.,

k0 ∗ l0, k1 ∗ l1 ∈ [k ∗ l]x0
.

So, the operation ∗ in the set prox πn (X, x0) is well defined.

Theorem 4.8. The set prox πn (X, x0) with the operation ∗ is a commutative group
for all n ≥ 2.

Proof. Since proximate n-dimensional loop is a pointed proximate net, then, by The-
orem 3.2, for all homotopy classes of proximate n-dimensional loops [k]x0 , [l]x0 and
[p]x0 at x0 is valid

(
[k]x0

∗ [l]x0

)
∗
[
p
]

x0
= [k]x0

∗
(

[l]x0
∗
[
p
]

x0

)
.

By Theorem 4.4, identity element is the homotopy class of constant proximate
n-dimensional loop

[
cx0

]
x0

at x0 defined by the constant U -loop cx0 at x0.
By Theorem 4.6, inverse element of the homotopy class of proximate n-dimensional

loop [k]x0 at x0 is the homotopy class of proximate n-dimensional loop [k−1]x0 defined
by the inverse proximate U -loop k−1

U at x0.
Therefore, prox πn (X, x0) is a group. We will show that the commutative law for

the group prox πn (X, x0) is valid for all n ≥ 2.
We should show that if there are two homotopy classes of proximate n-dimensional

loops [k]x0 and [l]x0 at x0, then

(4.1) [k]x0 ∗ [l]x0 = [l]x0 ∗ [k]x0 .

Since for the left side of the equality (4.1) is true

(4.2) [k]x0 ∗ [l]x0 = [k ∗ l]x0 ,

and for the right side of (4.1) is true

(4.3) [l]x0 ∗ [k]x0 = [l ∗ k]x0 ,
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in order to show that the equality (4.1) is true is enough to show [k ∗ l]x0 = [l ∗ k]x0 ,
i.e., that the proximate n-dimensional loops k ∗ l and l ∗ k at x0 are homotopic over a
covering. It means that we should show that kU ∗ lU∼U lU ∗ kU (rel ∂In) for all coverings
U ∈ CovX.

Let kU and lU be n-dimensional U -loops at x0 for all coverings U ∈ CovX.
We define functions F,G,H : In × I → X such that F (t, 1) = G (t, 0), G (t, 1) =

H (t, 0) and F (∂In × I) = G (∂In × I) = H (∂In × I) = {x0}.
Then we will show that the function K : In × I → X defined by

K (t, s) =



F (t, s) , 0 ≤ s ≤ 1
3 ,

G (t, 3s− 1) , 1
3 ≤ s ≤ 2

3 ,

H (t, 3s− 2) , 2
3 ≤ s ≤ 1,

is a homotopy relatively endpoints that connects n-dimensional U -loops kU ∗ lU and
lU ∗ kU at x0.

We define a function F : In × I → X by

F (t, s) =


kU

( 2t1
2− s, t2, . . . , tn−1, 2tn

)
, 0 ≤ tn ≤

1
2 , 0 ≤ t1 ≤

2− s
2 ,

lU

(2t1 − s
2− s , t2, . . . , tn−1, 2tn − 1

)
,

1
2 ≤ tn ≤ 1, s2 ≤ t1 ≤ 1,

x0, otherwise.

The function is well defined since for t1 = 2−s
2 is kU (1, t2, . . . , tn−1, 2tn) = x0 for

t1 = s
2 is lU (0, t2, . . . , tn−1, 2tn − 1) = x0 and for tn = 1

2 is

kU

( 2t1
2− s, t2, . . . , tn−1, 2 ·

1
2

)
= x0 = kU

(2t1 − s
2− s , t2, . . . , tn−1, 2 ·

1
2 − 1

)
.

By the definition of the function for all t ∈ In is F (t, 0) = (kU ∗ lU) (t).
We define a function G : In × I → X by

G (t, s) =


kU (2t1, t2, . . . , tn−1, 2tn − s) ,

s

2 ≤ tn ≤
s+ 1

2 , 0 ≤ t1 ≤
1
2 ,

lU (2t1 − 1, t2, . . . , tn−1, 2tn − 1 + s) , 1− s
2 ≤ tn ≤

2− s
2 ,

1
2 ≤ t1 ≤ 1,

x0, otherwise.

The function is well defined since for t1 = 1
2 is

kU (1, t2, . . . , tn−1, 2tn − s) = x0 = lU (0, t2, . . . , tn−1, 2tn − 1 + s) ,

for tn = s
2 is kU (t1, t2, . . . , tn−1, 0) = x0, for tn = s+1

2 is kU (t1, t2, . . . , tn−1, 1) = x0 and
analogues for all other points from the edge.
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We define a function H : In × I → X by

H (t, s) =


kU

( 2t1
1 + s

, t2, . . . , tn−1, 2tn − 1
)
,

1
2 ≤ tn ≤ 1, 0 ≤ t1 ≤

1 + s

2 ,

lU

(2t1 − 1 + s

1 + s
, t2, . . . , tn−1, 2tn

)
, 0 ≤ tn ≤

1
2 ,

1− s
2 ≤ t1 ≤ 1,

x0, otherwise,

The function is well defined since for tn = 1
2 is

kU

( 2t1
1 + s

, t2, . . . , tn−1, 0
)

= x0 = lU

(2t1 − 1 + s

1 + s
, t2, . . . , tn−1, 1

)
,

for t1 = s+1
2 is kU (1, t2, . . . , tn−1, 2tn − 1) = x0, and for t1 = 1−s

2 is

lU (0, t2, . . . , tn−1, 2tn) = x0.

By the definition of the function, for all t ∈ In is H (t, 1) = (lU ∗ kU) (t).
By the definitions of the functions F , G, H and [4, Theorem 2.2], the function

K is stn+1−i (U)-continuous on ∂iIn+1 for all i = 0, . . . , n + 1, i.e., it is a homotopy
relatively endpoints that connects the proximate n-dimensional U -loops kU ∗ lU and
lU ∗ kU at x0 for all coverings U ∈ CovX, as required.

Therefore, the set prox πn (X, x0) with the operation ∗ is a commutative group for
all n ≥ 2. �

5. Induced Function

Let X and Y be paracompact topological spaces, and f = {fV | V ∈ Cov Y } be a
pointed proximate net from (X, x0) to (Y, y0).

Definition 5.1. An induced function fprox : prox πn(X, x0)→ proxπn(Y, y0) asso-
ciated to a pointed proximate net f is defined as follows.

Let [k]x0 ∈ prox πn (X, x0), where k = {kU | U ∈ CovX} be a proximate n-dimen-
sional loop at x0. Then p = f ◦ k = {pV = fV ◦ kU | V ∈ Cov Y } is a proximate
n-dimensional loop at y0 and

fprox([k]x0) = [p]y0 .

We will show that this function is well defined.
Let k0 and k1 be proximate n-dimensional loops at x0 from the same homotopy

class of proximate loop [k]x0
. So there exists a homotopy K between the proximate

n-dimensional loops k0 and k1. Then the proximate n-dimensional loops f ◦ k0 and
f ◦ k1 are homotopic by a homotopy f ◦K. Therefore, the induced function fprox is
well defined.

Theorem 5.1. Let X and Y be paracompact topological spaces, f = {fV | V ∈ Cov Y }
is a pointed proximate net from (X, x0) to (Y, y0). Then the induced function fprox :
prox π1(X, x0)→ prox π1(Y, f (x0)) is homomorphism.
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Proof. Let [k]x0 , [l]x0 ∈ prox πn (X, x0). We should show that

fprox
(
[k]x0

∗ [l]x0

)
= fprox

(
[k]x0

)
∗ fprox

(
[l]x0

)
.

Because
fprox

(
[k]x0

∗ [l]x0

)
= fprox

(
[k ∗ l]x0

)
= fprox

[
(kU ∗ lU)U∈Cov X

]
x0

=
[
(fV (kU ∗ lU))V∈Cov Y

]
y0

and
fprox

(
[k]x0

)
∗ fprox

(
[l]x0

)
=
[
(fV ◦ kU)V∈Cov Y

]
y0
∗
[
(fV ◦ lU)V∈Cov Y

]
y0

=
[
((fV ◦ kU) ∗ (fV ◦ lU))V∈Cov Y

]
y0
,

we should show that[
(fV (kU ∗ lU))V∈Cov Y

]
y0

=
[
((fV ◦ kU) ∗ (fV ◦ lU))V∈Cov Y

]
y0
.

The equality follows since

((fV ◦ kU) ∗ (fV ◦ lU)) (t) =


(fV ◦ kU) (2t), 0 ≤ t ≤ 1

2 ,

(fV ◦ lU) (2t− 1), 1
2 ≤ t ≤ 1,

=


fV (kU(2t)) , 0 ≤ t ≤ 1

2 ,

fV (lU(2t− 1)) , 1
2 ≤ t ≤ 1,

=fV ((kU ∗ lU) (t)) . �

Since the proximate n-dimensional loop is a pointed proximate net, by Theorem
3.2, the following theorem is valid.

Theorem 5.2. Let f = {fV | V ∈ Cov Y } be a pointed proximate net from (X, x0) to
(Y, y0) and g = {gW | W ∈ CovZ}is a pointed proximate net from (Y, y0) to (Z, z0).
For any [k]x0

∈ prox πn (X, x0) is true that(
g ◦ f

)
prox

([k]x0) = gprox (fprox ([k]x0)) .

Theorem 5.3. Let f = {fV | V ∈ Cov Y } and f ′ = {f ′V | V ∈ Cov Y } be two pointed
proximate nets from (X, x0) to (Y, y0). For any proximate n-dimensional loop k at x0
if f and f ′ are homotopic, then proximate n-dimensional loop f ◦ k and f ′ ◦ k at y0
are homotopic.

Proof. The proof of this theorem is analogues to the proof of one dimensional case
given in [6]. �

By Theorem 5.1, 5.2 and 5.3, the following result is obtained.
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Theorem 5.4. Associating prox πn (X, x0) to a pointed paracompact topological space
(X, x0) and associating to a proximate net [f ]x0 the homomorphism

fprox : prox πn(X, x0)→ prox πn(Y, f (x0))
we obtain a functor from category of pointed intrinsic shape to category of groups.

By this theorem is proved that the proximate group of higher order prox πn (X, x0)
is an invariant of pointed intrinsic shape of a pointed paracompact space (X, x0) and
if (X, x0) and (Y, y0) have same pointed intrinsic shape, then their proximate groups
of higher order are isomorphic.
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