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CONSERVATION LAWS OF THE TIME-FRACTIONAL
ZAKHAROV-KUZNETSOV-BURGERS EQUATION

AZADEH NADERIFARD!, S. REZA HEJAZI?, AND ELHAM DASTRANJ?

ABSTRACT. An important application of Lie group theory of differential equations
is applied to study conservation laws of time-fractional Zakharov-Kuznetsov-Burgers
(ZKB) equation with Riemann-Liouville and Caputo derivatives. This analysis is
based on a modified version of Noether’s theorem provided by Ibragimov to construct
the conserved vectors of the equation. This is done by non-linearly self-adjointness
of the equation which will be stated via a formal Lagrangian in the sequel.

1. INTRODUCTION

Fractional order differential equations (FDEs) are important concepts in physic,
mathematics and engineering. The theory of derivatives and integrals of fractional
order illustrate the previous time history in the mathematical models of natural
phenomena.

In the recent years, FDEs have been widely used and have numerous applications in
various fields of sciences, as example probability and statistics, engineering, chemistry,
electro-chemistry, biology, economics, modeling, astrophysics, electronics, dynamics,
thermodynamics, vibration, viscoelasticity, control theory, electromagnetic theory,
signal processing, arheology, geology, polymer and systems identification [2,6,9-14,
16-19,25-27,29,30] and [37].

Conservation laws can be used in the analysis of the essential properties of the
solutions, particularly, investigation of existence, uniqueness and stability of the
solutions [22]. There are some methods for constructing of conservation laws for
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PDEs, for example the Noether’s theorem [20] and Ibragimov’s theorem [7]. Almost
all of these methods can be used for differential equations with fractional derivatives.

Lukashchuk, considered the fractional generalizations of the Noether’s operators
without Lagrangian and derived conservation laws for an arbitrary time-fractional
FPDEs by formal Lagrangian [15].

One of the most important PDE which has a vast application in solitary wave’s
theory is the ZKB equation, also it makes an important role in electromagnetic and
describes the propagation of Langmuir waves in an ionized plasma. Some of its
modified forms illustrate the interactions of small amplitude, high frequency waves
with acoustic waves. There are useful articles for finding the solitary waves solutions
(specially for ZKB equation), see [5,32,34-36]. In this article, we focus on the time-
fractional ZKB equation by omitting the details of derivation in the following form:

(1.1) Ofu + auuy + by, + Clgyy — dugy — ey, =0,

where O0fu is the fractional derivative of order a and « (1 < v < 2) is the order of
the time-fractional. Taking o = 1, Zakharov and Kuznetsov established non-linear
evolution equation which is related to nonlinear ion-acoustic waves in magnetized
plasma including cold ions and hot isothermal electrons. We can see some useful
papers in the literature to study the applications of this equation, see [33,38] for more
details. This equation by omitting the details of derivatives can be written as

(12) U + auu, + bumcm + Clgyy — dumﬁ — CUyy = 07

where a, b, ¢, d and e are constant quantities which involve the physical quantities and
x,y,t are independent variables where u(t, x, y) is the dependent variable indicates the
wave profile. El-Bedwehy and Moslem acquired the ZKB equation from an electron-
positron-ion plasma [1].

This paper is organized as follows. Section 2 describes some basic properties of time-
fractional derivatives and four particular cases of time-fractional of ZKB equation.
In Section 3 Lie symmetry analysis of the fractional ZKB equation is investigated.
In Section 4, the concept of non-linear self-adjointness of ZKB equation is studied
and conservation laws of (1.1) are obtained by using the Noether’s operators. Some
conclusions are given in the last section.

2. NOTATIONS OF TIME-FRACTIONAL GENERALIZATIONS

There are several types of definitions for fractional derivatives, such as Riemann-
Liouville derivative, Caputo derivative, the modified Riemann-Liouville derivative,
Riesz derivative and etc. [28,31].

Functions that have no first-order derivative could have Riemann-Liouville deriva-
tive but could not have Caputo fractional derivative and on the other hand Caputo
fractional derivative is related to physical models.

In this paper we adopt the fractional derivatives in Riemann-Liouville derivatives
as D¢ and Caputo derivative as “D.
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Definition 2.1. Let f(t) € L'(a,b), be the set of all integrable functions, the time-
fractional integrals and left-sided and right-sided time-fractional integrals of order «
are defined respectively as follow:

(6% . 1 ¢ a—
T =g [, FE =)
o f (%) Fl/ )t —7)* T,
(2.1) JEF(D) Fl/ )eldr,

where ¢t > 0 and J2f(t) = f(¢).
Definition 2.2. For o > 0, the Riemann-Liouville time-fractional is defined as

1 8”/t - f(& x)

mat" 0 _§)a+1—nd57 n—1<a<n,

D?f(tvx) =

dt”f<) a=necN.

Definition 2.3. The Caputo derivative of order « is defined as

1 t 1 I"f(€ @)
F(n—a)/o (= garin  gen d¢, n—1<a<n,
“Dpf(t,x) =
dt”f( ), a=n¢cN.
Now we should introduce some notations. Let

(M) +g(t) = AP () + I g(t),

T (TP F@) = T () = T f o),

Dpf(t) =Dy (J~f(t)) = Df (D7 "™ f(1))
(2.2) Dy (D f (1)) = £(1),

CDf‘c =0, cis constant,

“DYDf(E) = f(1),

where a € R such that n — 1 < o < n and n € N. The classical ZKB equation can be
written as follows: u; = Clu],

C[U] = —aUUy — buw:px — Clygyy + duwx + EUyy-
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In this paper we consider four forms of time-fractional generalization of ZKB equation

(2.3) ur = JPClul,
(2.4) uy = D} Clul,
(2.5) uy = CJ1 /],
(2.6) uy = C[D}~“ul,

where D;™® and J are left-sided fractional Riemann-Liouville derivative of order
1 — a and Riemann-Liouville integral of order «, respectively.

One can rewrite (2.3)-(2.6), so that their right-hand sides are exactly the right-hand
side of (1.1). For this, we act on each of (2.3)-(2.6) by different operators.

Now, by acting the operator D on (2.3) and denoting the dependent variable u by
v, and using formula (2.2), we can rewrite (2.3) as:

(2.7) Di'vy = —avv, — DUy — CUyy + AUy + €0y
By actting classical integral operator on (2.4) with respect to ¢, we have
u(t, z) — u(0,2) = J (—auuy — Dlgyy — Clgyy + dig, + ety,) .

Now we act the operator “ D¢ on the above equation and denote the dependent
variable u by v. We get

(2.8) D = —avvy — buggy — CUgyy + AUgy + vy,

In (2.5), we denote a new non-local dependent variable v by J2u, then we have
u = Djv. Hence this equation can be rewritten as

(2.9) DIy = —avvy — DUppy — CUgyy + AUy + €Vy,,.
In (2.6), by taking u = J}~*v, we obtain u, = J}! “v, and other expressions. Finally

this equation can be rewritten as:
(2.10) Di'v = —avvy — bUggy — CUzyy + AUy + €Uy,

Thus, four different time-fractional (2.7)-(2.10) are different forms of time-fractional
generalization of ZKB equation. After replacing v by u, we can formally rewrite the
(2.7)-(2.10) as

2.11 Diuy = —auty, — Digpy — Clgyy + AUy + €Uy,
t Yy Yy
(2.12) CDfu = —aUully — Dlypy — ClUyyy + dUyy + ey,
(2.13) Dy = —auny — Wigpy — Clgyy + diig, + ety
2.14 Diu = —autly — bigyy — Clgyy + AUy, + €Uyy.
t vy yy

Clearly these equations coincide with the classical ZKB (1.2) in the limiting case of
a = 1. In this paper, the order of time-fractional differential, in all of equations
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belongs to (1,2). So 1 < a < 2. By using of summary mode of (2.11)-(2.14), we have
(2.15)  F(t,z,y,u, Df( )u, Uy, oy Ugyy) = —AQUUy — Dllggy — Clgyy + AUy, + €Uy,

where D* denotes Riemann-Liouville operator or Caputo operator in (2.11)-(2.14).

3. LIE SYMMETRY ANALYSIS OF THE TIME-FRACTIONAL GENERALIZED ZKB
EQuATION

In this paper we consider Lie symmetry method in order to find conservation laws
of the ZKB equation [4,22,23,39]. Consider one-parameter Lie group of infinitesimal
transformations for that (2.15)

t=t+er(t,z,y,u) + O(),

T =z +e&(t,z,y,u) + O(e?),

y =y +ep(t,x,y,u) + O(?),

@ =u+ enlt, z, y,u) + O(2),
a3 =uf + en(t, .y, u) + O(2),
Uz =Uy + 677w(ta$7yvu) +0(),

— Txrxr
Uzzzs =Ugazz + EN (

Ugy =y, + en??(t, x,y,u) + O(e?),
(31) agjgi =Uyyz + 8nyy2¢<t7 T, Y, u) + 0(52)7

where ¢ is the group parameter, then the associated Lie algebra of symmetries is the
set of vector fields of the form

L,x,y,u

0 0 0 0

(32) X - T(tv x,Y, U)a + £(t7 X, Y, U)% + p<t7 x,Y, u)aiy + n(t7 x,Y, U)%,
where

dt dz

= =1 = =¢

dE o T( 71’7 y7 u)? dE o §< 7"’E7 y? u)7

dy du

=t = = .

ie| plt 2,y u), B n(t,z,y, u)
The third order prolongation of (3.2) leaves invariant (2.15). In other words
(3.3) X (F(t,2,y,u, D, v, - tayy)) (r=0)= 0,

satisfied on solutions of (2.15), where X (*3) is the third prolongation of the generator
(3.2). By keeping the essential terms we have

0 0 0 0 0

TTX Yy yyx Q&
o gy o My i Dty i Oy R oug’

(3.4) X@3) =X 49 88
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Expanding the invariance condition (3.3) yields
(3.5) Ny + anu, + aun® + ™ + et — dn** — en”” = 0.
The prolongation coefficients are
i =D (1 — Tur = §ua — puy) + 7DF (ur) + EDF (ua) + pDf (uy),
1 = D (0 — Tt — Etly — piiy) + Tty + Ets + Py,
0" = Dy (n — T — §Up — pUy) + TUize + Ellaze + PUyas,
1" = Daga (N — Tt — §Ua — plly) + Tligze + Elazae + Plysaa,
" = Dy, (n — Tu; — §ux PUy) + Ty + EUgyy + Plyyy,
n™Y = Dyye (n — T — §uy — pUly) + TUsyye + Elyyas + Plyyys-

By using the generalized chain rule for a composite function and the generalized
Leibnitz rule, we have the explicit form of ng* (see [18,21,24]),

S o' !
o m _ Dn+1 a—n - le'
U ngl Kn) Oy (n 4 1) t (7—)] Oy "u+ ' — ud;n,

-5 (%) or@ ) + (1. - @D -+

where p is

n okl By e PN e
=S 535 () () () ey G g

n=2m=2 k=2 [=0

After substituting the values of n*, n™ n*™* n¥¥ n™¥ and n;* into (3.5) and equating
the coefficients of derivatives u to zero, the determining equations are obtained.
The solutions of this system are

52017 p2027 7—2037

where C;, © = 1,2, 3, are arbitrary constants.

The lower limit of the integral in Riemann-Liouville derivative and Caputo derivative
is fixed. So the condition ¢ = 0 should be invariant with respect to transformation
(3.1) and therefore we have 7(t,z,u) |—o= 0. So for C5 = 0 vector field £, is not a
symmetry for (2.15).

Consequently, (2.15) admits two Lie point symmetries:

0

X1 = g and X2 = <.
Ay

ox

4. CONSERVATION LAwWS

The theory of finding conservation laws for PDEs have a lot applications. This
theory can describe some physically measures. Until three decades ago, all paper
about conservation laws refer to problems with integer derivatives.
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Let us define components of a conservation law C' = (C*, C*, CY) for (2.15) in the
same manner that is defined for PDEs. Let

Ct=C"(t,x,y,u,...),
c* =C*(t,x,y,u,...),
CY =CY (t,z,y,u,...).
These components satisfy in
(4.1) D,C"'+D,C* +D,CY =0,

on all solutions of (2.15).

Many definitions and concepts for constructing conservation laws of FDEs as the
formal Lagrangian, the adjoint equation and Euler-Lagrangian operator are similar
to PDEs. Emmy Noether illustrated symmetry and conservation law are connected
for all linear and non-linear equations. Using Noether’s theorem, the equation must
be derived from the variational principle and have a Lagrangian in classical sense.
Finding Lagrangian is not easy. In the other hand, there are equations that do not
have classical Lagrangian.

In this paper, we construct the conservation laws of the ZKB fractional (2.15) via
Ibragimove’s method [3, §].

The formal Lagrangian can be written

L=vF(t z,y,u, Df(a)u, Ugy -y Ugyy),

where v is new dependent variable. We can define the formal Lagrangian for (2.15)
by:

(4.2) L= va(a) + avut, + bty + CVULy, — VU, — vy, v =0v(t,z,y).

The Euler-Lagrange operator with respect to u for a finite time interval ¢ € [0, T is

) 0 0 > 0
2 _ Y pHlays T -n"p, -..D. ——
(SU, au ( t ) 8(])#(‘1)) + Tngl( ) 21 im auih”,,im )

where (D)* will be adjoint operator of (D). The adjoint operator is different
for Riemann-Liouville derivative and Caputo fractional derivatives.

(Dg)* is adjoint operator for Riemman-Liouville derivative and (“D&)* is adjoint
operator for Caputo fractional derivatives that are defined as follows (see [15])

(0Dy)" = (=1)"Jp~(D}) = Dy,
(6D8)" = (=1)"D; (I ") = Dy,
where ;J7~* is the right-sided fractional integral (2.1), ;D% and ¢D% are the right-sided

Riemann-Liouville and Caputo fractional derivative of order a.
The adjoint operator F* of (2.15) is

oL
(4.3) F'=— = f(a))*v — AULU — DUggy — CUgyy — dUzy — €Uy,

ou



82 A. NADERIFARD, S. HEJAZI, AND E. DASTRANJ

Then adjoint operator (D"®)*, for each of (2.11)-(2.14) is

(4.4) for (2.11) (DMY)* = (DeD,)* =, DD,
(4.5) for (2.12) (D}) = (°Dp)" =D,
(4.6) for (2.13) (D) = (Dp*)" = ¢yt
(4.7) for (2.14) (DM®)* = (D) =Dy,

Similar to PDEs, the fractional (2.15) is non-linearly self-adjoint, if there exists
function v = v(t, z,y) that solve the adjoint (4.3) for all solutions u(z) of (2.15) and
v#£0][7].

Substituting v = v(t, z,y) = ¢(t)(x)n(y) into (4.3), yields:

(4.8) W (@)n(y)u+dy" (x)nly) + 0" (2)n(y) + e (x)n’ (y) + v’ (x)n (y) = 0,
(D) (p(t)) = 0.

The first equation in the above system is the second order PDE, which one of its
solution is: ¥ (x)n(y) = 1, where 1) # 0 and is constant functions.

The second equation in system (4.8) depends on the type of fractional differential
operator D"
(2.14).

For (2.11) we have (DyDy(P(t)))* = 0, so by (4.4): ®(t) = o1 (T — )™ + ¢, for
(2.12) we have (°D2(®(t)))* = 0, so by (4.5): ®(t) = ¢1(T — t), for Eq. (2.13) w
have (D¢H(®(1)))* = 0, so by (4.6): ®(t) = 11> + ot + ¢3, for (2.14) we have
(Dy(P(t)))* = 0, so by (4.7): ®(t) = ¢1t + ¢2, where ¢y, ¢o and ¢35 are arbitrary
constants. Note that for solving all of above equations we have used properties
Riemann-Liouville and Caputo time-fractional derivatives.

In the Ibragimove’s method, the components of conserved vector are obtained with
effect the Noether’s operators on the Lagrangian. Noether operators can be found from
the fundamental operator identity, whose formula depends on the number of variables.
The fundamental identity for ZKB equation with three independent variables ¢, z,y
and a dependent variable u(t, z,y) can be written as follows:

u, then (2.15) must be solved separately via each of equations (2.11)-

(4.9) X + D7) + Do) + Dy(p)T = W(;L + DN+ DN + DN,

where X is prolongation operator (3.4), T is identity operator, % is the Euler-

Lagrangiane operator and W is characteristic for Lie point group generator (3.2),
W =n—1u; — {uy — puy,.

Finally N*, N* and NV are Noether operators. Because (2.15) do not have the
fractional derivatives with respect to x and y, definitions for them are exactly the
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same as general formula that are given for each of symmetries as follows (see [7]):

§I+W<a(z —DaimjLDDkaim )

(4.10) D;(W) ( T &iik ) + DD(W) ( &iik — . ) ,
Ny—pI+W<aiy ZﬁuszrDkaazzik_m)

(4.11) D;(W) (8% azm —) + D;Dr(W) (az% - ) ;

where ¢ and k are z or y.
Since (2.15) has fractional derivatives respect to ¢, Nother's operator N for the
case with the Riemann-Liouville time-fractional derivative is:

(12N = AT S DD s — (007 (WP e )

For the another case, with the Caputo time-fractional derivative N is

el d ?
t k a—1—k o n
(4.13) N _TI+k§:Oth (W)DS 55 J(Dt (W), 5 ?u)>'

In (4.12) and (4.13),
(fg //Tf}rl'y Iu’xy)d dr.
n—a —7' n-o

This integral has the following property:
DJ(f,9) = [+I7" "9 — 90T f.

The (2.15) is non-linearly self-adjoint, because there exists a non-unique function
v = v(t,z,y) such that (4.3) is satisfied for any solution of (2.15). We act on both
sides of (4.9) by formal Lagrangian (4.2). Because formal Lagrangian £ vanishes on
the solutions of (2.15), the left-hand side of equallity (4.9) is equal to zero:

XL+ DyT)I(L) + Do(E)Z(L) + Dy(p)Z(L) =XL + Di(7)L + Do (E)L + Dy(p) L
=0,

and by considering (4.9),

W§+Dt( 'L) + D, (N"L) + D, (NVL) = 0.

ou
Since for non-linearly self-adjoint equation this condition is valid, i.e., % =0, so

(4.14) Dy (N'L) + Ds (N*L) + D, (ML) = 0.

(2.15)



84 A. NADERIFARD, S. HEJAZI, AND E. DASTRANJ

By comparing (4.1) and (4.14), we have

C'=N'L), C"=N*L), CY=NYL).
In the sequel, conserved vectors associated with different symmetries and different
terms of (2.15) are constructed.

Now we will find the conservation laws of the (2.11). The formal Lagrangian for
(2.11) after substitution acceptable v is defined by

L= (T —t)* + o) (Df(a) + auty + buyyy + Clgyy — dtg, — euyy) .

In this case, using (4.10), (4.11) and (4.13), one can get the components of conserved
vectors:

C" =a (Y1 (T — )" + o) uW — d (vo1(T — )™ + b)) W,
+0 (W1 (T — 1) + o) Way + ¢ (W01 (T — 1) + Yp2) Wy,

CY =e (Y1 (T — )" + o) Wy + c (Vo1 (T — 1) + Ppa) Wy,

Ct =F = Wihon (T — 1) + FL " Witbepy + T~ (apepy (T — 1)°71) W
+J (W, anoepy (T — 1))

By applying above equations and considering W = —u, coordinate with X; the
following components are obtained:

C" = —auy (Y1 (T — 1) + Yd2) u + dugy (Vo1 (T — )" + o)
= bugy (Y1 (T — )" + V2) — gy (V1 (T — )" + Vo),
CY = — €Uy (YOr(T = 1)* + Ya) — Cligyy (Vo1 (T — )" + Yha),
C' = = T unthdr (T — 1) — T “uartppy — us L + 1)3hehy
+ iy (g, (T —)*7")
Similarly, by considering X5, the conserved vectors are:
C" = —auy (Vo1 (T — )" + o) u+ dugy (Y1 (T — )" + Peh2)
= Dtigay (Vo1 (T — )" + Pa) — cuyyy (Vo1 (T — 1) + Vo) ,
CY = — euyy (Vo1 (T — 1) + 2) — cuyyy (Vo1 (T — )" + ga)
C" = =y T 0n (T — )" = T uytbn — Tp* (atn (T — 1)* ")
= J (ugy, atppy (T — 1))

The corresponding conserved vectors for (2.12)-(2.14) are presented in Tables 1 and
2.
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TABLE 1. Components of conservation laws for (2.12) and (2.13)

X \ W; \ [oR R \ Components of conservation laws for (2.12)
c* —a (Vo1 (T —6)%) ugu + dug, (V1 (T — t)%)
—bUzza (1/@1 (T - t)a) — Clgyy (¢¢1 (T - t)a)
Xi | —uy cY —CUgy (1/}9751 (T - t)a) — ClUgyy (¢¢1 (T - t)a)
o —p1Yu (@) — Prbug D(a) (T —t) + ¢ J (uztt, (T - t)a’l)
c” —a (Vo1 (T — 1)) uyu + dugy (Vo1 (T —1)*)
—btugey (Y1(T — 1)) — cuyyy (Y1 (T — 1)%)
Xo | —uy | CY —etyy (Y1 (T — 1)) — cuyyy (Vo1 (T — 1)*)
¢ —¢1puy () — ¢19puy L () (T — 1) + dr9pJ (uyse, (T —1)*71)
X; [ W [Cmvt] Components of conservation laws for (2.13)

c* —a (V1% + ot + 1o3) upu + dugy (Vo112 + Yoot + ho3)
—bugsy (¢¢1t2 + hpat + ¢¢3) — ClUgyy (¢¢1t2 + Yoot + Wﬁs)

X1 | —ug cY —CUgy (1/}9751752 + Yot + ¢¢3) — ClUgyy (1/}¢1t2 + Yoot + "/’d’i’))

ct D (—uz) (Vprt? + Yoot + Yos) + D~ (ua) (2001t + o)
+J (um 2¢¢1)

c® —a (V1% + ot + Vo3) uyu + dugy (V112 + ot + Vs)
—bugey (Vo182 + ot + V3) — cuyyy (VP11% + Yot + hos3)

Xs —Uy cY —CUyy (¢¢1t2 + Yot + 'L/)QSS) — Clyyy (1/}¢1t2 + Yoot + ¢¢3)

ct D (—uy) (Vprt® + Yot + Yo3) + D~ (uy) (20t + o)
+J (uy7 2¢¢1)

85
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TABLE 2. Components of conservation laws for (2.14)

X; | W; | C®=%t | Component of conservation laws for (2.14)

ce —a (Y1t + Yd2) upu + dugy (Vo1t 4+ Pdo)
_bumxz (1/1¢1t + ¢¢2) — Clgyy (qp(blt + '(/qug)

X1 | —ugy | CY —€Ugy (VP1t + Vd2) — CUgyy (V1T + Vo)

Ct DY (—uy) (Y1t + Pd2) + Dy~ (uy) 19
ce —a (Y1t + d2) uyu + dugy (Yo1t + Vo)
—bugry (Vo1t + Vda) — cuyyy (Po1t + Pea)

Xo | —uy cv —eUy, (Y1t + o) — cuyyy (Yo1t + Peo)

ct D (—uy) (Y1t + Yd2) + Dy (uy) 19

5. CONCLUSION

In this paper the time-fractional generalizations of the Zakharov-Kuznetsov-Burgers

equation is studied. This is an important topic in investigation of nonlinear cold-ion-
acoustic waves and hot-isothermal electrons in magnetized plasma. The conservation
laws of the equation is found via a modified version of Noether’s theorem. This version
is provided by Ibragimov and stated by considering a formal Lagrangian for a given
PDE or FDE. Consequently, a generalized fractional version of Ibragomov’s theorem
between fractional symmetries and conservation laws are presented.
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