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ON THE LOCAL VERSION OF THE CHERN CONJECTURE: CMC
HYPERSURFACES WITH CONSTANT SCALAR CURVATURE IN

Sn+1

S. C. DE ALMEIDA1, F. G. B. BRITO2, M. SCHERFNER3, AND S. WEISS4

Abstract. After nearly 50 years of research the Chern conjecture for isoparametric
hypersurfaces in spheres is still an unsolved and important problem and in particular
its local version is of great interest, since here one loses the power of Stokes’ Theorem
as a method for proving it. Here we present a related result for CMC hypersurfaces
in Sn+1 with constant scalar curvature and three distinct principal curvatures.

1. Introduction

The Chern conjecture for isoparametric hypersurfaces in spheres can be stated as
follows. Let M be a closed, minimally immersed hypersurface of the (n+ 1)-dimensi-
onal sphere Sn+1 with constant scalar curvature. Then M is isoparametric.

One obvious generalization is that on non-closed manifolds, i.e., a local version of
the conjecture. This has in particular been proposed by Bryant for the case n = 3.

Let M ⊂ S4 be a minimal hypersurface with constant scalar curvature. Then M is
isoparametric.

For more details, a short history and an overview of results we would like to refer
to the review article [3] by Scherfner, Weiss and Yau.

Here we will give a result related to the local version.
Let n > 3 and M ⊂ Sn+1 be a hypersurface with constant mean and scalar cur-

vatures which has three pairwise distinct principal curvatures everywhere, then M is
isoparametric.

Key words and phrases. Constant mean and scalar curvature, isoparametric hypersurfaces, Chern
conjecture.
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2. Preliminaries

LetM be an n-dimensional hypersurface in a unit sphere Sn+1(1). We choose a local
orthonormal frame field {e1, . . . , en+1} in Sn+1(1), so that restricted to M , e1, . . . , en
are tangent to M . Let ω1, . . . , ωn+1 denote the dual co-frame field in Sn+1(1). We use
the following convention for the indices: A,B,C,D range from 1 to n+ 1 and i, j, k
from 1 to n. The structure equations of Sn+1(1) as a hypersurface of the Euclidean
space Rn+2 are given by

dωA =−
∑
B

ωAB ∧ ωB, ωAB + ωBA = 0,

d ωAB =−
∑
C

ωAC ∧ ωCB + 1
2
∑
C,D

R̄ABCDωC ∧ ωD,

where R̄ is the Riemannian curvature tensor

R̄ABCD = δACδBD − δADδBC .

The contractions R̄AC = ∑
B R̄ABCB and R̄ = ∑

A,B R̄ABAB are the Ricci curvature
tensor and the scalar curvature of Sn+1(1), respectively. Next, we restrict all the
tensors to M . First of all, since ωn+1 = 0 on M , ∑i ωn+1,i ∧ ωi = dωn+1 = 0. By
Cartan’s lemma we can write

(2.1) ωn+1,i =
∑
j

hijωi, hij = hji.

Here h = ∑
i,j hijωiωj denotes the second fundamental form of M and the principal

curvatures λi are the eigenvalues of the matrix (hij). Furthermore the mean curvature
is given by H = 1

n

∑
i hii = 1

n

∑
i λi and K = det(hij) = ∏

i λi is the Gauss-Kronecker
curvature. We also define

(2.2) S := |h|2 =
∑
i,j

h2
ij =

∑
i

λ2
i

and for r ≥ 3

(2.3) fr := tr ((hij)r) .

Independently of the choice of the ei we have

(2.4) f3 =
∑
i,j,k

hijhjkhki =
∑
i

λ3
i , f4 =

∑
i,j,k,l

hijhjkhklhli =
∑
i

λ4
i ,

and so on.
On M we have

dωi =−
∑
j

ωij ∧ ωj, ωij + ωji = 0,(2.5)

dωij =−
∑
k

ωik ∧ ωkj + 1
2
∑
k,l

Rijklωk ∧ ωl,(2.6)
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where R is the Riemannian curvature tensor on M with components satisfying

0 = Rijkl +Rijlk.

These structure equations imply the following integrability condition (Gauss equation):

(2.7) Rijkl = (δikδjl − δilδjk) + (hikhjl − hilhjk).

For the scalar curvature we have

κ = n(n− 1) + n2H2 − S.

If we consider minimal hypersurfaces, the Ricci curvature and scalar curvature are
given by, respectively,

Rij =(n− 1)δij −
∑
k

hikhjk,(2.8)

κ =n(n− 1)− S.(2.9)

It follows from (2.9) that κ is constant if and only if S is constant. The covariant
derivative ∇h with components hijk is given by

(2.10)
∑
k

hijkωk = dhij +
∑
k

hjkωik +
∑
k

hikωjk.

Then the exterior derivative of (2.8) together with the structure equations yields
the following Codazzi equation

(2.11) hijk = hikj = hjik.

In addition we have

hijk =(hij)k +
∑
l

hjlωil(ek) +
∑
l

hilωjl(ek),(2.12)

hijkl =(hijk)l +
∑
m

hmjkωim(el) +
∑
m

himkωjm(el) +
∑
m

hijmωkm(el),(2.13)

hijkl =hijlk +
∑
m

hmjRmikl +
∑
m

hmiRmjkl,(2.14) ∑
ijk

h2
ijk =(S − n)S − nHf3 + n2H2.(2.15)

We will use the following result by Otsuki given in [2].

Lemma 2.1. Let M be a hypersurface in a (n+1)-dimensional Riemannian manifold
of constant curvature such that the multiplicities of the principal curvatures are all
constant. Then the distribution of the space of principal vectors corresponding to each
principal curvature is completely integrable. If the multiplicity of a principal curvature
is greater than 1, then this principal curvature is constant on each integral submanifold
of the corresponding distribution of the space of principal vectors.
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3. Proof of the Theorem

Theorem 3.1. Let n > 3 and M ⊂ Sn+1 be a hypersurface with constant mean and
scalar curvatures which has three pairwise distinct principal curvatures everywhere,
then M is isoparametric.
Proof. Let λ, µ und ν be the distinct principal curvatures with corresponding multi-
plicities r1, r2 and r3. From r1 + r2 + r3 = n and the definitions of H and S one has
a system of equations with continuous coefficients which the ri solve uniquely. Thus
the ri are continuous functions and therefore constant.

Locally we choose the ei such that h is diagonal in every point. For the directional
derivatives of the principal curvatures one has

r1λk + r2µk + r3νk = r1λλk + r2µµk + r3ννk = 0.(3.1)
Let the principal curvature directions corresponding to the three principal curvatures
be called eA, ea and eα. Then (2.12) implies

hijk = δij(λi)k,(3.2)
for λi = λj and

ωij(ek) = 1
λj − λi

hijk,(3.3)

for λi 6= λj.
We consider different cases for the multiplicities of the principal curvatures. Without

loss of generality, let r1 ≥ r2 ≥ r3.
Case 1: r1, r2, r3 > 1. Then Lemma 2.1 implies λA = µa = να = 0, and with (3.1) it
follows that all derivatives of the principal curvatures vanish.
Case 2: r1, r2 > 1, r3 = 1. Without loss of generality let α = n. Then Lemma 2.1
and (3.1) imply that the derivatives of the principal curvatures in directions eA and
ea vanish. From (3.2), (3.3) and (2.13) one has

hAaBa =(hAaB)a +
∑
m

hmaBωAm(ea) +
∑
m

hAmBωam(ea) +
∑
m

hAamωBm(ea)

= 2
ν − λ

haAnhaBn + δAB
λnµn
ν − µ

,

hAaaB = 2
ν − µ

haAnhaBn + δAB
λnµn
ν − λ

.

From (2.14) one has
hAaBa − hAaaB = (λ− µ)RAaBa = δAB(λ− µ)(1 + µλ)

and thus
haAnhaBn = z1

2 δAB,(3.4)

where
z1 := (ν − λ)(ν − µ)(1 + λµ) + λnµn.
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Let va be the column vector of the haAn for a given a, then this can be expressed in
the matrix equation

vav
t
a = z1

2 id.
Since the left hand side can only have rank 0 or 1, it follows that z1 = 0 and therefore
haAn = 0 for all a und A. From (3.1) it follows that

λn = 1
r1

ν − µ
µ− λ

νn, µn = 1
r2

ν − λ
λ− µ

νn

and thus∑
ijk

h2
ijk =3

∑
A

h2
AAn + 3

∑
a

h2
aan + h2

nnn = 3r1λ
2
n + 3r2µ

2
n + ν2

n

=
(

3
r1

(ν − µ)2

(µ− λ)2 + 3
r2

(ν − λ)2

(λ− µ)2 + 1
)
ν2
n

=(3r2(ν − µ)2 + 3r1(ν − λ)2 + r1r2(λ− µ)2) 1
r1r2

1
(λ− µ)2ν

2
n.

On the other hand, z1 = 0 implies
1
r1r2

1
(λ− µ)2ν

2
n = − λnµn

(ν − µ)(ν − λ) = 1 + λµ

and one has

r2(ν − µ)2 + r1(ν − λ)2 + r1r2(λ− µ)2 =1
2
∑
ij

(λi − λj)2 = nS − n2H2.

Then (2.15) is of the form
(S − n)S + n2H2 = (1 + λµ)(3nS − 3n2H2 − 2r1r2(λ− µ)2) + nHf3.(3.5)

From
r1λ+ r2µ+ ν = nH, r1λ

2 + r2µ
2 + ν2 = S,

one has
r1(1 + r1)λ2 + r2(1 + r2)µ2 + n2H2 − 2nHr1λ− 2nHr2µ+ 2r1r2λµ− S = 0.

Solving for λ yields
λ = nH − r2µ

1 + r1
+ w,

where

w := ±

√√√√−nr2µ2 + 2nr2Hµ+ (1 + r1)S − n2H2

r1(1 + r1)2 .

If w = 0 on an open set, then µ and consequently λ and ν are constant there. Therefore
it is sufficient to show the proposition under the assumption that the sign of w remains
the same. One calculates

1 + λµ =nHµ− r2µ
2

1 + r1
+ 1 + wµ,
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(λ− µ)2 =
(
n
H − µ
1 + r1

+ w
)2

=n2µ
2 − 2Hµ+H2

(1 + r1)2 + 2nH − µ1 + r1
w + w2

=n2r1 − nr2

r1(1 + r1)2µ
2 + 2nH(r2 − nr1)

r1(1 + r1)2 µ+ S

r1(1 + r1)

+ n2H2(r1 − 1)
r1(1 + r1)2 + 2nH − µ1 + r1

w,

f3 =r1λ
3 + r2µ

3 + ν3

=r1(1− r2
1)λ3 + r2(1− r2

2)µ3 + n3H3 − 3n2H2r1λ− 3n2H2r2µ

+ 3nHr2
1λ

2 + 3nHr2
2µ

2 − 3r2
1r2λ

2µ− 3r1r
2
2λµ

2 + 6nHr1r2λµ

= . . . µ3 + . . . µ2 + . . . µ+ · · ·+ wµ(. . . µ+ . . . ),
that is

(1 + λµ)(3nS − 3H2 − 2r1r2(λ− µ)2) + nHf3 = P1(µ) + P2(µ)w,
where P1 and P2 are polynomials of constant coefficients. For P2 one has

P2(t) = . . . t3 + . . . t2 + . . . t− 4nr1r2H

1 + r1
,

therefore, it is not identically zero if H 6= 0. For the case H = 0 the same follows
from

P2(t) = . . . t3 + (3n+ 3nr1 − 2r2)S + 4nr1r2

1 + r1
t,

with
3n+ 3nr1 − 2r2 ≥ 3n− 2r2 ≥ n > 0.

It follows that w −R(µ) = 0 for a rational function R. The function

F (t) := ±

√√√√−nr2t2 + 2nr2Ht+ (1 + r1)S − n2H2

r1(1 + r1)2 −R(t)

is analytical and not constant. F (µ) = 0 then implies that µ is constant. Consequently
λ and ν are also constant and the proposition follows.
Case 3: r1 =: r = n− 2 > 1, r2 = r3 = 1.

Without loss of generality let a = 1 and α = n. Then the derivatives of the principal
curvatures in eA direction vanish, and analogously to case 2 one has

hAnBn =δAB
(
λnn + λ1ν1

µ− ν

)
+ 2
µ− λ

h1Anh1Bn,

hAnnB =δAB
(
ν1λ1

µ− λ
+ νnλn
ν − λ

+ 2λ2
n

λ− ν

)
+ 2
µ− ν

h1Anh1Bn
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and thus
h1Anh1Bn = z2

2 δAB,(3.6)

where

z2 := λ1ν1 + (µ− λ)(µ− ν)
λ− ν

(
(λ− ν)(1 + λν)− λnn + λnνn

ν − λ
+ 2λ2

n

λ− ν

)
.

As in case 2 it follows that h1An = 0 for all A. From z2 = 0 one has

λnn =(λ− ν)(1 + λν) + λnνn
ν − λ

+ 2λ2
n

λ− ν
+ λ− ν

(µ− λ)(µ− ν)λ1ν1

=(λ− ν)(1 + λν)− (n− 2) λ− ν
(µ− ν)2λ

2
1 + (n+ 1)µ− ν − nH

(λ− ν)(µ− ν) λ2
n(3.7)

and in the same way it follows that

(3.8) λ11 = (λ− µ)(1 + λµ) + (n+ 1)ν − µ− nH
(λ− µ)(ν − µ) λ2

1 − (n− 2) λ− µ
(ν − µ)2λ

2
n.

From ha1an − ha1na = 0 one has

λ1n = (n− 2)(λ− µ)2(λ− ν) + n(n− 1)(µ− ν)2(λ−H)
(µ− ν)2(λ− µ)(λ− ν) λ1λn(3.9)

and again the same holds true for reversed indices:

λn1 = (n− 2)(λ− ν)2(λ− µ) + n(n− 1)(µ− ν)2(λ−H)
(µ− ν)2(λ− µ)(λ− ν) λ1λn.(3.10)

(2.15) is of the form
|∇h|2 =3(n− 2)λ2

1 + µ2
1 + 3ν2

1 + 3(n− 2)λ2
n + 3µ2

n + ν2
n

=
(

3(n− 2) + (n− 2)2 (λ− ν)2

(ν − µ)2 + 3(n− 2)2 (λ− µ)2

(µ− ν)2

)
λ2

1

+
(

3(n− 2) + 3(n− 2)2 (λ− ν)2

(ν − µ)2 + (n− 2)2 (λ− µ)2

(µ− ν)2

)
λ2
n,

that is
(ν − µ)2|∇h|2 =(3(n− 2)(nS −H2)− 2(n− 2)2(λ− ν)2)λ2

1

+ (3(n− 2)(nS −H2)− 2(n− 2)2(λ− µ)2)λ2
n.(3.11)

If λ1 = 0 on an open set, (3.8) and (3.11) imply
|∇h|2 = (3nS − 3H2 − 2(n− 2)(λ− µ)2)(1 + λµ)

and as in case 2 it follows that the principal curvatures are constant. The same holds
true for λn = 0, therefore we can presume in the following that λ1 6= 0 and λn 6= 0.
Deriving (3.11) in direction e1 yields

2(ν − µ)(ν1 − µ1)|∇h|2 + (ν − µ)2(|∇h|2)1
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=− 4(n− 2)2(λ− ν)(λ1 − ν1)λ2
1

+ 2(3(n− 2)(nS −H2)− 2(n− 2)2(λ− ν)2)λ1λ11

− 4(n− 2)2(λ− µ)(λ1 − µ1)λ2
n

+ 2(3(n− 2)(nS −H2)− 2(n− 2)2(λ− µ)2)λnλn1

and with

ν1 − µ1 =n(n− 2)λ−H
µ− ν

λ1,

(|∇h|2)1 =− nH(f3)1 = −3n(n− 2)H(λ− µ)(λ− ν)λ1

one has

n|∇h|2(H − λ)− 3n
2 H(µ− ν)2(λ− µ)(λ− ν)

=− 2n(n− 2)(µ−H)λ− ν
µ− ν

λ2
1 − 2n(n− 2)(ν −H)λ− µ

ν − µ
λ2
n

+ (3nS − 3H2 − 2(n− 2)(λ− ν)2)λ11

+ (3nS − 3H2 − 2(n− 2)(λ− µ)2)λn
λ1
λn1.(3.12)

To simplify notation, we set
A1(x, y) = 3(nS −H2)− 2(n− 2)(x− y)2.

Putting (3.8) and (3.10) into (3.12) we have

n|∇h|2(H − λ)− 3n
2 H(µ− ν)2(λ− µ)(λ− ν)− A1(λ, ν)(λ− µ)(1 + λµ)

=
(
−2n(n− 2)(µ−H)λ− ν

µ− ν
+ A1(λ, ν)(n+ 1)ν − µ− nH

(λ− µ)(ν − µ)

)
λ2

1

−
(

2n(ν −H)λ− µ
ν − µ

+ 3nS − 3H2 + 2(n− 2)(λ− µ)(λ− ν)
µ− ν

− n(n− 1)(λ−H)
(n− 2)λ− µ)(λ− ν)A1(λ, µ)

)
(n− 2)λ2

n.(3.13)

Analogously we have

n|∇h|2(H − λ)− 3n
2 H(µ− ν)2(λ− µ)(λ− ν)− A1(λ, µ)(λ− ν)(1 + λν)

=
(
−2n(n− 2)(ν −H)λ− µ

ν − µ
+ A1(λ, µ)(n+ 1)µ− ν − nH

(λ− ν)(µ− ν)

)
λ2
n

−
(

2n(µ−H)λ− ν
µ− ν

+ 3nS − 3H2 + 2(n− 2)(λ− µ)(λ− ν)
ν − µ

− n(n− 1)(λ−H)
(n− 2)(λ− µ)(λ− ν)A1(λ, ν)

)
(n− 2)λ2

1.(3.14)
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From (3.11) one has

(3.15) (n− 2)λ2
n = (ν − µ)2|∇h|2

A1(λ, µ) − (n− 2)ε(ν)
A1(λ, µ) λ2

1.

As in case 2
(n− 2)λ+ µ+ ν = nH, (n− 2)λ2 + µ2 + ν2 = S,

yield

(3.16) λ = 1
n− 1(nH − ν)− 1

n− 2w, µ = 1
n− 1(nH − ν) + w,

with

(3.17) w := ±
√
n− 2
n− 1

√
−nν2 + 2nHν + (n− 1)S − n2H2,

where again the sign of w can be assumed to remain the same. We set
ε(λ, µ, ν) = A1(λ, µ)A2(λ, µ, ν)A3(λ, µ, ν) + A1(λ, ν)A2(λ, ν, µ)A3(λ, ν, µ),

where A1 was already defined by
A1(x, y) := 3nS − 3H2 − 2(n− 2)(x− y)2,

and A2 and A3 given by
A2(x, y, z) :=(y − z)(x− z)

(
n(n− 2)|∇h|2(x−H)(x− y)A1(x, z)

+ 3
2n(n− 2)H(y − z)2(x− y)2(x− z)A1(x, z)

+ (n− 2)(1 + xy)(x− y)2A1(x, z)2

+ 2n(n− 2)|∇h|2(y −H)(x− y)(x− z)(z − y)

+|∇h|2((n+ 1)z − y − nH)(z − y)A1(x, z)
)
,

A3(x, y, z) :=− 2(n− 2)2n(y −H)(x− y)(x− z)2A1(x, y)
+ (n− 2)2(x− y)(x− z)(3nS − 3H2 + 2(n− 2)(x− y)(x− z))A1(x, y)
+ n(n− 1)(n− 2)(x−H)(y − z)A1(x, y)A1(x, z)
− 2n(n− 2)2(z −H)(x− y)2(x− z)A1(x, z)
− (n− 2)(x− y)((n+ 1)y − z − nH)A1(x, y)A1(x, z).

From (3.13), (3.14) and (3.15) one has the following condition for λ, µ and ν:
(3.18) ε(λ, µ, ν) = |∇h|2(µ− ν)2A3(λ, µ, ν)A3(λ, ν, µ).
Using (3.16) and (3.17) the terms in (3.18) can be written as polynomials in ν and w
whose leading coefficients are given by

A1(λ, µ) =2nν2 − 4nHν + (n+ 2)S + (2n2 − 3)H2,

A1(λ, ν) =− 2(n− 2)n2 − n
(n− 1)2 ν2 + · · · −

( 4n
n− 1ν + · · ·

)
w,
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A2(λ, µ, ν) =− 8n4(7n6 − 42n5 + 57n4 + 44n3 − 79n2 − 18n− 1)
(n− 2)(n− 1)8 ν10 + · · ·

+
(

8n4(n6 − 6n5 − 9n4 + 68n3 − 41n2 − 46n+ 1)
(n− 2)(n− 1)7 ν9 + · · ·

)
w,

A2(λ, ν, µ) =8n4(3n2 − 6n+ 1)
(n− 1)4 ν10 + · · ·+

(
8n4(n2 − 2n+ 3)

(n− 1)3 ν9 + · · ·
)
w,

A3(λ, µ, ν) =− 2(n− 2)n3(7n3 − 17n2 − 19n+ 1)
(n− 1)3 ν6 + · · ·

+
(
−2n2(12n3 − 20n2 + 3n+ 1)

(n− 1)2 ν5 + · · ·
)
w,

A3(λ, ν, µ) =8(n− 2)n3(n4 − 4n3 − 2n2 + 12n+ 1)
(n− 1)4 ν6 + · · ·

+
(

4n3(6n4 − 9n3 − 25n2 + 29n+ 15)
(n− 1)3 ν5 + · · ·

)
w.

(3.18) is then of the form

(3.19) Q1(ν) +Q2(ν)w = 0,

for polynomials Q1 and Q2 with constant coefficients. The leading coefficient of Q1 is
given by

Q1(t) =32(n− 2)n8

(n− 1)11 (73n10 − 709n9 + 2273n8 − 1255n7 − 7101n6 + 12067n5

− 1089n4 − 6461n3 + 1048n2 + 134n− 4)t18 + · · · ,

therefore, Q1 is not identically zero. One then has from (3.19) that w = R(ν) for a
rational function R or that Q1(ν) = 0; in both cases the proposition follows. �
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