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ON THE LOCAL VERSION OF THE CHERN CONJECTURE: CMC

HYPERSURFACES WITH CONSTANT SCALAR CURVATURE IN
Sn+1

S. C. DE ALMEIDA!, F. G. B. BRITO? M. SCHERFNER?, AND S. WEISS*

ABSTRACT. After nearly 50 years of research the Chern conjecture for isoparametric
hypersurfaces in spheres is still an unsolved and important problem and in particular
its local version is of great interest, since here one loses the power of Stokes’ Theorem
as a method for proving it. Here we present a related result for CMC hypersurfaces
in S**! with constant scalar curvature and three distinct principal curvatures.

1. INTRODUCTION

The Chern conjecture for isoparametric hypersurfaces in spheres can be stated as
follows. Let M be a closed, minimally immersed hypersurface of the (n + 1)-dimensi-
onal sphere S"* with constant scalar curvature. Then M is isoparametric.

One obvious generalization is that on non-closed manifolds, i.e., a local version of
the conjecture. This has in particular been proposed by Bryant for the case n = 3.

Let M C S* be a minimal hypersurface with constant scalar curvature. Then M is
1soparametric.

For more details, a short history and an overview of results we would like to refer
to the review article [3] by Scherfner, Weiss and Yau.

Here we will give a result related to the local version.

Let n > 3 and M C S™! be a hypersurface with constant mean and scalar cur-
vatures which has three pairwise distinct principal curvatures everywhere, then M is
1soparametric.
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2. PRELIMINARIES

Let M be an n-dimensional hypersurface in a unit sphere S"*!(1). We choose a local
orthonormal frame field {ei,...,e,11} in S""1(1), so that restricted to M, ey, ..., e,
are tangent to M. Let wy,...,w, 1 denote the dual co-frame field in S"™!(1). We use
the following convention for the indices: A, B, C, D range from 1 ton+ 1 and ¢, 7, k
from 1 to n. The structure equations of S"™!(1) as a hypersurface of the Euclidean
space R"*2 are given by

dwa=—) wapAwp, wap+wpa =0,
B
1
dwap ==Y wac Awep + 3 > Rapcpwe A wp,
c C.D

where R is the Riemannian curvature tensor

RABCD = 5AC5BD - 5ADéBC-

The contractions Rac = >B Rupcp and R = Y AB Rupap are the Ricci curvature
tensor and the scalar curvature of S"**(1), respectively. Next, we restrict all the
tensors to M. First of all, since wy41 = 0 on M, 3, wpt1, Aw; = dwpyr = 0. By
Cartan’s lemma we can write

(2.1) Wniri = Y higwi, i = hyi.
J

Here h = 37, ; hijjw;w; denotes the second fundamental form of M and the principal
curvatures \; are the eigenvalues of the matrix (h;;). Furthermore the mean curvature
is given by H = %Zi hi; = %Zi Ai and K = det(h;;) = [I; i is the Gauss-Kronecker
curvature. We also define

(2.2) Si=1[h* =3 hiy =3 N
0, A
and for r > 3

2.3) fri=tr((hy)).

Independently of the choice of the e; we have

(2.4) f3 = hijhjihi = Z AL =Y hihkhghy = Z A

ihj?k i7j7k7l
and so on.
On M we have
(25) dwi = — Zwij VAN Wi, Wi + Wi = 0,
J

1
(26) dwij = — Zw,;k A Wkj + 5 Z Rijklwk N Wi,
k k,l
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where R is the Riemannian curvature tensor on M with components satisfying
0 = Rijm + Rijik-
These structure equations imply the following integrability condition (Gauss equation):
(2.7) Rijii = (01050 — 0u0jx) + (highji — hihj).
For the scalar curvature we have
k=n(n—1)+n*H*-S.

If we consider minimal hypersurfaces, the Ricci curvature and scalar curvature are
given by, respectively,

(2.8) R;; =(n — 1)5ij - Z hirhjg,
(2.9) k=n(n—1)—S5.

It follows from (2.9) that x is constant if and only if S is constant. The covariant
derivative VI with components h;;j, is given by

(210) Z hijkwk = dhw + Z hjkwik + Z hikwjk.
k k k

Then the exterior derivative of (2.8) together with the structure equations yields
the following Codazzi equation

(2.11) hiji = hik; = Rjig.

In addition we have

(2.12) hijie =(hij)k + zl: hjwal(er) + ZI: hawii(ex),

(2.13) higet =(Pigie)t + D Pmjeim (€1) + Y Pimiwjm(€r) + Y hijm@rm(er),
(2.14) Rijit =hijie + D Ponj Rt + Y i R

(2.15) > h?jk =(S —n)S —nHf;+n*H>.

We will use the following result by Otsuki given in [2].

Lemma 2.1. Let M be a hypersurface in a (n+1)-dimensional Riemannian manifold
of constant curvature such that the multiplicities of the principal curvatures are all
constant. Then the distribution of the space of principal vectors corresponding to each
principal curvature is completely integrable. If the multiplicity of a principal curvature
is greater than 1, then this principal curvature is constant on each integral submanifold
of the corresponding distribution of the space of principal vectors.
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3. PROOF OF THE THEOREM

Theorem 3.1. Let n > 3 and M C S™ be a hypersurface with constant mean and
scalar curvatures which has three pairwise distinct principal curvatures everywhere,
then M 1is isoparametric.

Proof. Let A, p und v be the distinct principal curvatures with corresponding multi-
plicities r1, ro and r3. From r; 4+ ro + r3 = n and the definitions of H and S one has
a system of equations with continuous coefficients which the r; solve uniquely. Thus
the r; are continuous functions and therefore constant.

Locally we choose the e; such that A is diagonal in every point. For the directional
derivatives of the principal curvatures one has

(3.1) T1 Ak + ol + T3k = T1ANg + Poppiy + r3vyg = 0.

Let the principal curvature directions corresponding to the three principal curvatures
be called ey, e, and e,. Then (2.12) implies

for \; = A\; and

1
(3.3) Wz‘j(ek) = mhijk,
for )‘z 7é /\j'

We consider different cases for the multiplicities of the principal curvatures. Without
loss of generality, let ry > ry > rs3.
Case 1: 11,719,753 > 1. Then Lemma 2.1 implies Ay = p, = v, = 0, and with (3.1) it
follows that all derivatives of the principal curvatures vanish.
Case 2: r1,79 > 1, r3 = 1. Without loss of generality let & = n. Then Lemma 2.1
and (3.1) imply that the derivatives of the principal curvatures in directions e4 and
e, vanish. From (3.2), (3.3) and (2.13) one has

hAaBa :(hAaB)a + Z hmanAm(ea) + Z hAmbam(ea) + Z hAamme(ea)

2 A fhn
= haAnhaBn + 5AB a >
v—A v— L

2 Anfhn
hAaaB = haAnhaBn + 5AB a .
vV— v—A

From (2.14) one has
hAaBa - hAaaB = ()\ - M)RAaBa = 5,43()\ — ,u)(l + [L)\)

and thus
(3.4) hoanhapn = %51437
where

21 = (V - A)(V - N)(l + Al’d) + At
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Let v, be the column vector of the h,4, for a given a, then this can be expressed in
the matrix equation
t 21 .
vV, = gzd.
Since the left hand side can only have rank 0 or 1, it follows that z; = 0 and therefore
hoan = 0 for all @ und A. From (3.1) it follows that
lv—p lv—2A

Vn, n — Un
a To A — b

A = —
T — A

and thus
Z hz2]k =3 Z h124An +3 Z hian + hgmn = 37’1)\3 + STQIUEL + V72L
ijk A a
3 — 1)? 3 —\)?
_ ( (v M)2 7(1/ )2 + 1) %
(=22 r2(A—p)
1 1 9

_ 2 —)\)? A=) ——— 2
(3ra(v = p)” 431 (v = A)" + rira(A — ) )7‘17“2 ()\—M)Qyn

On the other hand, z; = 0 implies

]_ ]. 2 An,un
77”77, = — - 1 + )\
rira Oh — 1)’ = —N :

and one has
1
ro(v — p)? + 1 (v— N2+ (N — p)? =3 > (N — X)) =nS—n*H>
ij
Then (2.15) is of the form
(3.5) (S —n)S+n?H? = (1 4+ M) (3nS — 3n*H? — 2riro(X — p)?) + nH fs.
From
P+ rop+v=nH, r\N+ru®+ri=25,
one has
ri(L+r)A2 +ro(1 +ro)p? +n*H? — 2nHri A — 2nHrop + 2rirodp — S = 0.

Solving for A yields
~nH —ryp

1+’I"1

A + w,

where

v iJ —nropu? + 2nroHp + (1 4+ 1r1)S — n2H?
' ri(1+7)? '
If w = 0 on an open set, then p and consequently A and v are constant there. Therefore
it is sufficient to show the proposition under the assumption that the sign of w remains
the same. One calculates
nHpy — ryp®

1+ A= L

+ 14 wp,
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2

H—p
J— 2:
H—p 2

2_92H H?
—n2t pt + 2n w4+ w
(1 +7’1)2 1 —|—T1
n’ry —nr 2nH(ry — nr S
_nn 3#2 (g 21)M+
ri(l+m) ri(147r) ri(1+m)
2H? —1 H —
LT S G ) + 2n H
T1(1+7’1)2 1—|—T‘1
fa =r\3 +rop® + 07
=r (1 — )N+ (1 — r3)p® + nPH? — 3n>H?r X\ — 3n>H?rop
+ 3nHTf)\2 + 37”LH7“§,LL2 — 37“%7“2)\% — 3r17’§)\u2 + 6nHriro A\

= e dwp( ),

w,

that is
(14+ M) (3nS — 3H? — 2ryro(\ — p)?) +nH fs = Pi(p) + Po(p)w,
where P, and P, are polynomials of constant coefficients. For P, one has
B dnriroH
1 + ™ ’

therefore, it is not identically zero if H # 0. For the case H = 0 the same follows
from

Pt)=... 24+ . 2+ ...t

(3n + 3nry — 2r9)S + 4nr1r2t
1 -+ T1

Py(t)=...t° +

with
3n+3nry —2ry > 3n— 2ry > n > 0.
It follows that w — R(u) = 0 for a rational function R. The function

—nrot? + 2nroHt + (1 4+ 1r1)S — n?H? B
7“1(1 +T1)2

F(t) = iJ R(t)
is analytical and not constant. F'(x) = 0 then implies that p is constant. Consequently
A and v are also constant and the proposition follows.
Case 8: ri=:r=n—2>1,rpy=r3=1.

Without loss of generality let @ = 1 and @ = n. Then the derivatives of the principal
curvatures in e direction vanish, and analogously to case 2 one has

AV 2
hAan :5AB (Ann + Bt ) + )\hlAnhana

W—v
I/1>\1 4 Vn)\n I 2)\%
W—A v—A A—v

2
hAnnB :5AB < ) + I VhlAnhan
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and thus
z
(36) hlAnhan - 525AB7
where
- A -V /\nVn 2)‘3
222:)\1V1+('u )\)_(/lj“/ )(()\_y)(1+)\y)—)\nn+y_)\+>\_y>
As in case 2 it follows that hya, = 0 for all A. From z5 = 0 one has
AV 202 A—vU
An =(A=1v)(1+ A rr " A
( V)( + V)+V—)\+/\—V+<M—)\)(M—]/) 11
A—v (n+1pu—v—nH ,
3.7 =A=v)1+ M) —(n—-2 A AL

and in the same way it follows that

(n+1)v—p—nH

A=) —p) (v —p)> "
From hg1an — haing = 0 one has
_ 2 _ 2 _ _ 1 _ 2 _ H
59) o BTAOZWPO D) bl D=0 H)
(n=v)?(A=p)A =)
and again the same holds true for reversed indices:
_ 2 _ 2 _ _ 1 _ 2 _ H

(1 =12 (A =) (A =v)
(2.15) is of the form

|Vh|? =3(n — 2)A2 + 12 + 30 +3(n — 2)A2 + 32 + 12

_ n— " — 2()‘_’/)2 " — 2(/\_,“)2 2
—(3( 2) + ( 2) (V—u)2+3( 2) (M—V)2>)\1
_ n— 2(>\_’/)2 n— 2()\—#)2 2
+<3(n 2) 4+ 3( 2) (V—M)2+( 2) (,u—l/)2>)\”’

that is
(v = w*| VA =(3(n — 2)(nS — H?) = 2(n — 2)*(A — v)*)A]
(3.11) + (3(n —2)(nS — H?) —2(n — 2)*(A — pn)*)\2.
If Ay = 0 on an open set, (3.8) and (3.11) imply
|VR|?> = (3nS — 3H? — 2(n — 2)(\ — u)?)(1 + M)

and as in case 2 it follows that the principal curvatures are constant. The same holds
true for A, = 0, therefore we can presume in the following that A\; # 0 and A\, # 0.
Deriving (3.11) in direction e; yields

2(v — ) (1 — ) [VA* + (v — p)*(IVA|*)
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(nS — H?) — 2(n —2)2(A — 1))\ A

+2(3(n —2)(nS — H2) — 2( — 22N — 1)) A A
and with

(VA )1 = —nH(f3)1 = =3n(n —2)H(\ — p)(A = v)\

one has

AIVHP(H = 3) = S H (= )= )3~ )

A—v A—p
=—2n(n—2)(u—H A —oamn—2)v—H 22
nln = 2)(0 = H)Z— N = 2n(n = 2)(v = H)J— X,

+ (3nS — 3H? = 2(n — 2)(A — v)H) A1,
(3.12) + (3nS — 3H? — 2(n — 2)(\ — u)Z)i”Anl.

1
To simplify notation, we set
Ai(z,y) = 3(nS — H?) = 2(n - 2)(x — y)*.
Putting (3.8) and (3.10) into (3.12) we have
3n
n|VA[(H — \) - 7H(u VO = 1) = v) = A 0) (A — p)(1+ M)

_ A— V(n—l-l)l/—lu—n[—[ 9

<2n(n 2)(1 — H)M (e )A

—<2n(V—H))\_M+3n3_3H2+2(n_2)()‘_M)()\—V)
v— —v

_ nn=1)(A—H)

(n—2)A— ) (A —v)

Analogously we have

(3.13) Al(A,u)> (n —2)\2.

nIVHP(H = 3) = 2 H = 0200~ ) =) = AL )8~ ) (14 )

= —-2n(n—-2)(v— A—p (n+1p—v—nHY\
_< 2n(n - Dl — )32 4 a0 T )xn
B <2n(M_H))\—V+3nS—3H 1 2(n —2)(\ — 1) (A — )
m—= V—U
__n(rn=1)(A—H) AT
(3.14) (n—2)()\—,u)()\—y)A1<)\’ ))( 2)A2.
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From (3.11) one has
(v = w?IVh? _ (n—2)e(v)

A2
Al(/\nu) Al()‘nu) !

(3.15) (n—2)A2 =

As in case 2
(n—2)A+pu+v=nH, (n—-2)N+p*+v°=25,

yield
1 1 1
(3.16) /\:n_l(nH—V)—mw, u—n_l(nH—V)+w,
with
vn—2
(3.17) w =Y \/—nu2 +2nHv + (n—1)S —n?H?,

n—1
where again the sign of w can be assumed to remain the same. We set

EO0p ) = A1 1) As (O 1, ) Ag (A 1, ) + Ay 2) A3 (N, v, 1) A (A, ),
where A; was already defined by
Ay(z,y) :==3nS — 3H? — 2(n — 2)(z — y)?,
and Ay and Az given by
As(x,y,2) =y — 2)(w — 2) (n(n = 2)|VAP(x — H)(z — y)Ai (w, 2)
+ gn(n —2)H(y — 2)*(z — y)*(x — 2)Ai(z, 2)
+(n = 2)(1 +zy)(z — y)*Ai (7, 2)?
+2n(n = 2)|Vh[*(y — H)(z — y)(z — 2)(z —y)
+HVAP((n+1)2 =y —nH)(z = y)Ai(z,2)),
As(w,y,2) === 2(n = 2)"n(y — H)(z — y)(z — 2)*As(2, y)
+ (n—2)*(z — y)(z — 2)(3nS — 3H* +2(n — 2)(z — y)(z — 2)) A1 (z,9)
+n(n—1)n—2)(z— H)(y — 2)A1(z,y)A1(z, 2)
—2n(n —2)*(z — H)(z — y)*(x — 2)Ai(z, 2)
—n=2)x—y)((n+1)y—2z—nH)A (x,y)Ai(z,2).
From (3.13), (3.14) and (3.15) one has the following condition for A\, x and v:
(3.18) e\, i, v) = |[Vh[*(u — v)? As(\, p, v) Az(\, v, o).
Using (3.16) and (3.17) the terms in (3.18) can be written as polynomials in v and w
whose leading coefficients are given by
Ay(\ p) =2nv* — dnHv + (n + 2)S + (2n® — 3)H?,

n—2n%—n An
M) =20 (Y,
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A0 i) = — 8n*(Tn® — 42n° + 57n* + 44n® — T9n? — 18n — 1) 10

(n—2)(n—1)8
8n*(n® — 6n° — In* + 68n® — 41n? — 46n + 1)
+ VoA Jw,
(n—=2)(n—-1)7
8n'(3n% — 6n + 1) 8nt(n? — 2n + 3)
Ao( A\ = 104 ... 94 ...
2( 7V7N) (TL—]_>4 v + + (n_1)3 Ve + w,
2(n —2)n3(Tn® —1Tn?* — 19n + 1)
A —_
3()‘7#7 V) (n_ 1)3 v+
2n?(12n* — 20n* + 3n +1)
_ + w,
(n—1)?
8(n —2)n3(nt —4n3 — 2n* + 12n + 1)
A3(>\aV7H): (n_1)4 V6+
4n3(6n* — 9n® — 256n% + 29n + 15)
+ VPt | w.
(n—1)?

(3.18) is then of the form

(3.19) Q1(v) + Qa2(v)w = 0,

for polynomials ()7 and ()2 with constant coefficients. The leading coefficient of @)y is

given by

~32(n—2)n®

- (n—11
— 1089n* — 6461n® 4 1048n* + 134n — 4)t*® + - ..

Q:1(t) (730" — 709n° + 2273n° — 12550 — 7101n° + 12067n°

)

therefore, ); is not identically zero. One then has from (3.19) that w = R(v) for a
rational function R or that Q;(v) = 0; in both cases the proposition follows. U
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