Kragujevac Journal of Mathematics Volume 44(2) (2020), Pages 165–179.

ON THE ESTRADA INDEX OF POINT ATTACHING STRICT k-QUASI TREE GRAPHS

MOHAMMAD A. IRANMANESH¹ AND RAZIYEH NEJATI²

ABSTRACT. Let G=(V,E) be a finite and simple graph with $\lambda_1,\lambda_2,\ldots,\lambda_n$ as its eigenvalues. The Estrada index of G is $EE(G)=\sum_{i=1}^n e^{\lambda_i}$. For a positive integer k, a connected graph G is called strict k-quasi tree if there exists a set U of vertices of size k such that $G\setminus U$ is a tree and this is as small as possible with this property. In this paper, we define point attaching strict k-quasi tree graphs and obtain the graph with minimum Estrada index among point attaching strict k-quasi tree graphs with k even cycles.

1. Introduction

Let G = (V(G), E(G)) be a finite and simple graph of order n, where by V(G) and E(G) we denote the set of vertices and edges, respectively. Let A(G) be the adjacency matrix of G, and $\lambda_1, \lambda_2, \ldots, \lambda_n$ be its eigenvalues. The Estrada index of G is defined as

$$EE(G) = \sum_{i=1}^{n} e^{\lambda_i}.$$

which was first proposed by Estrada in 2000 [6]. We refer reader to [7, 8, 15, 16] for multiple applications of Estrada index in various fields, for example in network science and biochemistry. The results for trees can be found in [3, 10, 13, 19]. Gutman approximated the Estrada index of cycles and paths in [9]. The unicyclic graphs with maximum and minimum Estrada index have been determined in [5]. Recently, the Esrada index of the cactus graphs in which every block is a triangle, has been characterized in [11, 12].

A connected graph G is called *quasi tree* if there exists $v_0 \in V(G)$ such that $G \setminus \{v_0\}$ is a tree. Lu in [14] has determined the Randić index of quasi trees. The Harary index

 $\label{lem:keywords} \textit{Key words and phrases}. \ \ \text{Estrada Index}, \ \text{quasi tree graph}, \ \text{point attaching Strict k-quasi tree graph}. \\ 2010 \ \textit{Mathematics Subject Classification}. \ \ \text{Primary: } 05\text{C35}. \ \ \text{Secondary: } 05\text{C50}. \\$

DOI 10.46793/KgJMat2002.165I

Received: February 20, 2018. Accepted: March 14, 2018. of quasi tree graphs and generalized quasi tree graphs are presented in [18]. A strict k-quasi tree graph G is a connected graph which is not a tree, and k is the smallest positive integer such that there exists a k-element subset U of vertices for which $G \setminus U$ is a tree.

Let G be a connected graph constructed from pairwise disjoint connected graphs G_1, G_2, \ldots, G_d as follows: select a vertex of G_1 ,, a vertex of G_2 ,, and identify these two vertices. Then continue in this manner inductively. More precisely, suppose that we have already used G_1, G_2, \ldots, G_i in the construction, where $2 \le i \le d - 1$. Then select a vertex in the already constructed graph (which may in particular be one of the already selected vertices) and a vertex G_{i+1} ; and identify these two vertices. Note that the graph G constructed in this way has a tree-like structure, the G_i 's being its building stones. We will briefly say that G is obtained by point attaching from G_1, G_2, \ldots, G_d and that G_i 's are the primary subgraphs of G [4].

A graph G is said to be point attaching strict k-quasi, if it is constructed from primary subgraphs G_1, G_2, \ldots, G_d where each primary subgraph G_i is a strict k_i -quasi tree graph for each $1 \le i \le d$, and $k = \sum_{i=1}^{d} k_i$.

In this paper we study the Estrada index of point attaching strict k-quasi graphs.

2. Preliminaries

For $\ell \in \mathbb{N} \cup \{0\}$, let $S_{\ell}(G) = \sum_{i=1}^{n} \lambda_{i}^{\ell}$ be the ℓ^{th} spectral moment of G, which is equal to the number of closed walks of length ℓ in G [2]. For every graph G, we have $S_{0}(G) = n, S_{1}(G) = \mathbf{C}, S_{2}(G) = 2m, S_{3}(G) = 6\mathbf{D}$, and $S_{4}(G) = 2\sum_{i=1}^{n} d_{i}^{2} - 2m + 8\mathbf{Q}$, where $n, \mathbf{C}, m, \mathbf{D}, \mathbf{Q}$ denote the number of vertices, the number of loops, the number of edges, the number of triangles and the number of quadrangles in G, respectively and $d_{i} = d_{i}(G)$ is the degree of vertex v_{i} in G [2]. Bearing in mind the Taylor expansion of e^{x} , we have the following equation for the Estrada index of graph G,

(2.1)
$$EE(G) = \sum_{i=1}^{n} e^{\lambda_i} = \sum_{i=1}^{n} \sum_{\ell=0}^{\infty} \frac{\lambda_i^{\ell}}{\ell!} = \sum_{\ell=0}^{\infty} \frac{S_{\ell}(G)}{\ell!}.$$

It follows from Equation 2.1 that EE(G) is a strictly monotonously increasing function of $S_{\ell}(G)$. Let G_1 and G_2 be two graphs. If $S_{\ell}(G_1) \leq S_{\ell}(G_2)$ holds for all positive integer ℓ , then $EE(G_1) \leq EE(G_2)$. Moreover, if the strict inequality $S_{\ell}(G_1) < S_{\ell}(G_2)$ holds for at least one value $\ell_0 \geq 0$, then $EE(G_1) < EE(G_2)$.

Recall that a sequence a_0, a_1, \ldots, a_n of numbers is said to be unimodal if for some $0 \le i \le n$ we have $a_0 \le a_1 \le \cdots \le a_i \ge a_{i+1} \ge \cdots \ge a_n$, and this sequence is called symmetric if $a_i = a_{n-i}$ for $0 \le i \le n$ [17]. Thus a symmetric unimodal sequence a_0, a_1, \ldots, a_n has its maximum at the middle term (n even) or middle two terms (n odd). Let A be the adjacency matrix of the graph G. It is well-known that the entry $(A^{\ell})_{i,j}$ represents the number of walks of length ℓ from vertex v_i to vertex v_j [1]. Obviously, $(A^{\ell})_{i,j} = (A^{\ell})_{j,i}$ for undirected graphs.

Throughout this paper, $\Gamma(k)$ is a point attaching strict k-quasi tree graph with k even cycles (see Figure 1) and $M_{\ell}(G)$ denotes the set of closed walks of length ℓ in G,

and we show that among all point attaching strict k-quasi tree graphs with k even cycles, $\Gamma(k)$ is the graph with minimum Estrada index.

3. The Number of Closed Walks of Length ℓ in $\Gamma(k)$

Let $M_{\ell}(k(c-1),i)$ denote the set of closed walks of length ℓ starting at the vertex v_i in $\Gamma(k)$ with k even cycles of length c and $|M_{\ell}(k(c-1),i)| = S_{\ell}(k(c-1),i)$ denote the number of closed walks of length ℓ starting at the vertex v_i in $\Gamma(k)$ (see Figure 1).

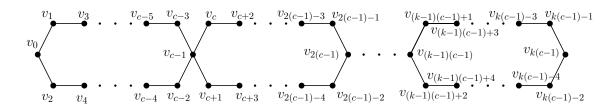


FIGURE 1. The graph $\Gamma(k)$.

Lemma 3.1. The map $\varphi: V(\Gamma(k)) \longrightarrow V(\Gamma(k))$, given by $\varphi(v_i) = v_{k(c-1)-i}$ is an automorphism.

Proof. One can easily see that φ is bijective. Let vertices v_i and v_j be adjacent. Then by definition of φ , we have the following cases.

- (i) $\varphi(v_0) = v_{k(c-1)}$ and $\varphi(v_{k(c-1)}) = v_0$.
- (ii) i = t(c-1), 0 < t < k. In this case $v_j \in \{v_{i-1}, v_{i-2}, v_{i+1}, v_{i+2}\}$. Hence, k(c-1) i = k(c-1) t(c-1) = (k-t)(c-1). This implies that $\varphi(v_i) = v_{(k-t)(c-1)}$.

We will only prove the case $v_j = v_{i-1}$. A similar argument can be used for other cases. If $v_j = v_{i-1}$, then k(c-1) - j = k(c-1) - t(c-1) + 1 = (k-t)(c-1) + 1. Hence $\varphi(v_j) = v_{(k-t)(c-1)+1}$ which is adjacent to $\varphi(v_i)$.

(iii) i = t(c-1) + s, $0 < t \le k-1$, $1 \le s \le c-2$. In this case $v_j \in \{v_{i-2}, v_{i+2}\}$. Hence, k(c-1) - j = k(c-1) - t(c-1) - s = (k-t)(c-1) - s. This implies that $\varphi(v_i) = v_{(k-t)(c-1)-s}$.

If $v_j = v_{i-2}$, then k(c-1) - t(c-1) - s + 2 = (k-t)(c-1) - s + 2. Hence, $\varphi(v_j) = v_{(k-t)(c-1)-s+2}$ which is adjacent to $\varphi(v_i)$. The proof for case $v_j = v_{i+2}$ is similar.

Corollary 3.1. Let A be the adjacency matrix of the point attaching strict k-quasi tree graph $\Gamma(k)$. Then $(A^{\ell})_{i,j} = (A^{\ell})_{k(c-1)-i,k(c-1)-j}$ for $0 \le i,j \le k(c-1)$.

Proof. This is an immediate consequence of Lemma 3.1.

Lemma 3.2. If $k \ge 2$ and t are integers and $0 \le t \le c - 2$, then:

$$S_{\ell}(k(c-1),t) \leq S_{\ell}(k(c-1),t+(c-1))$$

$$\leq \dots \leq S_{\ell}\left(k(c-1),t+\left(\left[\frac{k}{2}\right]-1\right)(c-1)\right)$$

$$\leq S_{\ell}\left(k(c-1),t+\left[\frac{k}{2}\right](c-1)\right),$$

where $\ell \geq c-1$. If $\ell \geq \lfloor \frac{k}{2} \rfloor$, then strict inequalities hold.

Proof. We prove every diagonal and the main diagonal of the matrix A^{ℓ} are unimodal. By Lemma 3.1, $(A^{\ell})_{t,j} = (A^{\ell})_{k(c-1)-t,k(c-1)-j}$. So we only need to show that the diagonals paralleling to the main diagonal increase for $t+j \leq k(c-1)$.

By induction on integer ℓ , we will show that for every $j \leq k(c-1)$ where $t+j+2c-2 \leq k(c-1)$, we have:

$$(A^{\ell})_{t+c-1,j+c-1} \geqslant (A^{\ell})_{t,j}.$$

By the definition of $\Gamma(k)$ we have $A_{t,j}=1$ if and only if $A_{t+c-1,j+c-1}=1$. Therefore, the result is hold for $\ell=1$. Assume that the result holds for integer ℓ . There are four cases as follows.

Case 1:
$$t, j \equiv 0 \pmod{(c-1)}$$
.

Since the set of walks of length $\ell + 1$ from v_t to v_j is in bijective correspondence with the set of walks of length ℓ from v_t to v_h adjacent to v_j , so

$$(A^{\ell+1})_{t+c-1,j+c-1} = (A^{\ell})_{t+c-1,j+c-2} + (A^{\ell})_{t+c-1,j+c-3} + (A^{\ell})_{t+c-1,j+c} + (A^{\ell})_{t+c-1,j+c+1},$$

$$(A^{\ell+1})_{t,j} = (A^{\ell})_{t,j-1} + (A^{\ell})_{t,j-2} + (A^{\ell})_{t,j+1} + (A^{\ell})_{t,j+2}.$$

By the induction hypothesis, we have the following results:

$$(A^{\ell})_{t+c-1,j+c-2} \ge (A^{\ell})_{t,j-1},$$

$$(A^{\ell})_{t+c-1,j+c} \ge (A^{\ell})_{t,j+1}, \quad \text{for } t+j+2 \le k(c-1),$$

$$(A^{\ell})_{t+c-1,j+c-3} \ge (A^{\ell})_{t,j-2},$$

$$(A^{\ell})_{t+c-1,j+c+1} \ge (A^{\ell})_{t,j+2}, \quad \text{for } t+j+2 \le k(c-1).$$

Hence, we have $(A^{\ell+1})_{t+c-1,j+c-1} \geq (A^{\ell+1})_{t,j}$. In addition we will show that for $\ell \geq [k(c-1)/2]$ the strict inequalities hold.

For the strict inequality, let $1 \le r \le k$ be a fixed number, we consider two rows r(c-1) and (r-1)(c-1), $j \le k(c-1)$. Then

$$(A^{\ell+1})_{r(c-1),c-1} = (A^{\ell})_{r(c-1),c-2} + (A^{\ell})_{r(c-1),c-3} + (A^{\ell})_{r(c-1),c} + (A^{\ell})_{r(c-1),c+1}$$

and

$$(A^{\ell+1})_{(r-1)(c-1),0} = (A^{\ell})_{(r-1)(c-1),1} + (A^{\ell})_{(r-1)(c-1),2}.$$

Note that, since $\Gamma(k)$ is symmetric we have,

$$(A^{\ell})_{r(c-1),c-2} = (A^{\ell})_{r(c-1),c-3} > 0,$$

$$(A^{\ell})_{r(c-1),c} = (A^{\ell})_{r(c-1),c+1} > 0,$$

$$(A^{\ell})_{r(c-1),1} = (A^{\ell})_{r(c-1),2} > 0,$$

for $\ell \ge r(c-1)$. So,

$$(A^{\ell+1})_{r(c-1),c-1} = 2(A^{\ell})_{r(c-1),c-2} + 2(A^{\ell})_{r(c-1),c+1}$$

and

$$(A^{\ell+1})_{(r-1)(c-1),0} = 2(A^{\ell})_{(r-1)(c-1),2}.$$

By the induction hypothesis, the following inequality holds:

$$(A^{\ell})_{r(c-1),c+1} \ge (A^{\ell})_{(r-1)(c-1),2}.$$

Thus, we have the strict inequality $(A^{\ell+1})_{r(c-1),c-1} > (A^{\ell+1})_{(r-1)(c-1),0}$. This causes the chain of strict inequalities

$$(A^{\ell+2})_{r(c-1),2(c-1)} > (A^{\ell+2})_{(r-1)(c-1),c-1},$$

 $(A^{\ell+3})_{r(c-1),3(c-1)} > (A^{\ell+3})_{(r-1)(c-1),2(c-1)}.$

Finally, we have

$$(A^{\ell+(k-r+1)})_{r(c-1),(k-r+1)(c-1)} > (A^{\ell+(k-r+1)})_{(r-1)(c-1),(k-r)(c-1)}.$$

Case 2: $t \equiv 0 \pmod{(c-1)}$ and $j \not\equiv 0 \pmod{(c-1)}$. Let $j \equiv 1 \pmod{(c-1)}$. Then

$$(A^{\ell+1})_{t+c-1,j+c-1} = (A^{\ell})_{t+c-1,j+c-2} + (A^{\ell})_{t+c-1,j+c+1},$$

$$(A^{\ell+1})_{t,j} = (A^{\ell})_{t,j-1} + (A^{\ell})_{t,j+2}.$$

Similarly, by the induction hypothesis, we have

$$(A^{\ell})_{t+c-1,j+c-2} \ge (A^{\ell})_{t,j-1},$$

 $(A^{\ell})_{t+c-1,j+c+1} \ge (A^{\ell})_{t,j+2}, \text{ for } t+j+2 \le k(c-1).$

Hence, we have $(A^{\ell+1})_{t+c-1,j+c-1} \ge (A^{\ell+1})_{t,j}$.

In addition for the strict inequality, let $1 \le r \le k$ be a fixed number, we consider two rows r(c-1) and (r-1)(c-1). Then

$$(A^{\ell+1})_{r(c-1),c} = (A^{\ell})_{r(c-1),c-1} + (A^{\ell})_{r(c-1),c+2} = (A^{\ell-1})_{r(c-1),c-2}$$

$$+ (A^{\ell-1})_{r(c-1),c-3} + (A^{\ell-1})_{r(c-1),c} + (A^{\ell-1})_{r(c-1),c+1} + (A^{\ell})_{r(c-1),c+2}$$

and

$$(A^{\ell+1})_{(r-1)(c-1),1} = (A^{\ell})_{(r-1)(c-1),0} + (A^{\ell})_{(r-1)(c-1),3}$$

$$= (A^{\ell-1})_{(r-1)(c-1),1} + (A^{\ell-1})_{(r-1)(c-1),2} + (A^{\ell})_{(r-1)(c-1),3}.$$

Note that, since $\Gamma(k)$ is symmetric we have,

$$(A^{\ell-1})_{r(c-1),c-2} = (A^{\ell-1})_{r(c-1),c-3} > 0,$$

$$(A^{\ell-1})_{r(c-1),c} = (A^{\ell-1})_{r(c-1),c+1} > 0,$$

$$(A^{\ell-1})_{r(c-1),1} = (A^{\ell-1})_{r(c-1),2} > 0,$$

for
$$\ell \ge r(c-1)$$
.
So,

$$(A^{\ell+1})_{r(c-1),c} = 2(A^{\ell-1})_{r(c-1),c-2} + 2(A^{\ell-1})_{r(c-1),c} + (A^{\ell})_{r(c-1),c+2}$$

and

$$(A^{\ell+1})_{(r-1)(c-1),1} = 2(A^{\ell-1})_{(r-1)(c-1),1} + (A^{\ell})_{(r-1)(c-1),3}.$$

By the induction hypothesis, the following inequalities hold:

$$(A^{\ell-1})_{r(c-1),c} \ge (A^{\ell-1})_{(r-1)(c-1),1}, \ (A^{\ell})_{r(c-1),c+2} \ge (A^{\ell})_{(r-1)(c-1),3}.$$

Thus, we have the strict inequality $(A^{\ell+1})_{r(c-1),c} > (A^{\ell+1})_{(r-1)(c-1),1}$. This causes the chain of strict inequalities

$$(A^{\ell+2})_{r(c-1),2(c-1)+1} > (A^{\ell+2})_{(r-1)(c-1),c},$$

$$(A^{\ell+3})_{r(c-1),3(c-1)+1} > (A^{\ell+3})_{(r-1)(c-1),2(c-1)+1}.$$

Finally, we have

$$(A^{\ell+k-r})_{r(c-1),(k-r+1)(c-1)+1} > (A^{\ell+k-r})_{(r-1)(c-1),(k-r)(c-1)+1}.$$

A similar argument can be used for the cases $j \equiv \{2, 3, ..., c-2\} \pmod{(c-1)}$. Case 3: $t \not\equiv 0 \pmod{(c-1)}$ and $j \equiv 0 \pmod{(c-1)}$. Let $t \equiv 1 \pmod{(c-1)}$. Then

$$(A^{\ell+1})_{t+c-1,j+c-1} = (A^{\ell})_{t+c-1,j+c-2} + (A^{\ell})_{t+c-1,j+c-3} + (A^{\ell})_{t+c-1,j+c} + (A^{\ell})_{t+c-1,j+c+1},$$

$$(A^{\ell+1})_{t,j} = (A^{\ell})_{t,j-1} + (A^{\ell})_{t,j-2} + (A^{\ell})_{t,j+1} + (A^{\ell})_{t,j+2}.$$

By the induction hypothesis, we have:

$$(A^{\ell})_{t+c-1,j+c-2} \ge (A^{\ell})_{t,j-1},$$

$$(A^{\ell})_{t+c-1,j+c} \ge (A^{\ell})_{t,j+1}, \quad \text{for } t+j+1 \le k(c-1),$$

$$(A^{\ell})_{t+c-1,j+c-3} \ge (A^{\ell})_{t,j-2},$$

$$(A^{\ell})_{t+c-1,j+c+1} \ge (A^{\ell})_{t,j+2}, \quad \text{for } t+j+2 \le k(c-1).$$

Hence, we have $(A^{\ell+1})_{t+c-1,j+c-1} \ge (A^{\ell+1})_{t,j}$.

For the strict inequality, let $1 \le r \le k$ be a fixed number, for two rows r(c-1)+1 and (r-1)(c-1)+1 we have

$$(A^{\ell+1})_{r(c-1)+1,c-1} = (A^{\ell})_{r(c-1)+1,c-2} + (A^{\ell})_{r(c-1)+1,c-3} + (A^{\ell})_{r(c-1)+1,c} + (A^{\ell})_{r(c-1)+1,c+1}$$
 and

$$(A^{\ell+1})_{(r-1)(c-1)+1,0} = (A^{\ell})_{(r-1)(c-1)+1,1} + (A^{\ell})_{(r-1)(c-1)+1,2}.$$

Note that since $\Gamma(k)$ is symmetric we have

$$(A^{\ell})_{r(c-1)+1,c-2} = (A^{\ell})_{r(c-1)+1,c-3} > 0,$$

$$(A^{\ell})_{r(c-1)+1,c} = (A^{\ell})_{r(c-1)+1,c+1} > 0,$$

$$(A^{\ell})_{r(c-1)+1,1} = (A^{\ell})_{r(c-1)+1,2} > 0,$$

for $\ell \geq r(c-1)$. So,

$$(A^{\ell+1})_{r(c-1)+1,c-1} = 2(A^{\ell})_{r(c-1)+1,c-2} + 2(A^{\ell})_{r(c-1)+1,c+1}$$

and

$$(A^{\ell+1})_{(r-1)(c-1)+1,0} = 2(A^{\ell})_{(r-1)(c-1)+1,2}.$$

By the induction hypothesis, the following inequality holds:

$$(A^{\ell})_{r(c-1)+1,c+1} \ge (A^{\ell})_{(r-1)(c-1)+1,2}.$$

Thus, we have the strict inequality $(A^{\ell+1})_{r(c-1)+1,c-1} > (A^{\ell+1})_{(r-1)(c-1)+1,0}$. causes the chain of strict inequalities

$$(A^{\ell+2})_{r(c-1)+1,2(c-1)} > (A^{\ell+2})_{(r-1)(c-1)+1,c-1},$$

 $(A^{\ell+3})_{r(c-1)+1,3(c-1)} > (A^{\ell+3})_{(r-1)(c-1)+1,2(c-1)}.$

Finally, we have:

$$(A^{\ell+(k-r+1)})_{r(c-1)+1,(k-r+1)(c-1)-1} > (A^{\ell+(k-r+1)})_{(r-1)(c-1)+1,(k-r)(c-1)-1}.$$

A similar argument can be used for the cases $t \equiv \{2, 3, \dots, c-2\} \pmod{(c-1)}$.

Case 4: $t \not\equiv 0 \pmod{(c-1)}$ and $j \equiv 1 \pmod{(c-1)}$. Let $t \equiv 1 \pmod{(c-1)}$, we have

$$(A^{\ell+1})_{t+c-1,j+c-1} = (A^{\ell})_{t+c-1,j+c-2} + (A^{\ell})_{t+c-1,j+c+1},$$

$$(A^{\ell+1})_{t,j} = (A^{\ell})_{t,j-1} + (A^{\ell})_{t,j+2}.$$

By the induction hypothesis, the following inequality holds:

$$(A^{\ell})_{t+c-1,i+c-2} \ge (A^{\ell})_{t,i-1}, \quad (A^{\ell})_{t+c-1,i+c+1} \ge (A^{\ell})_{t,i+2}.$$

Hence, we have $(A^{\ell})_{t+c-1,j+c-1} \geq (A^{\ell})_{t,j}$. For the strict inequality, let $1 \leq r \leq k$ be a fixed number, we consider two rows r(c-1)+1 and (r-1)(c-1)+1. Then

$$(A^{\ell+1})_{r(c-1)+1,c} = (A^{\ell})_{r(c-1)+1,c-1} + (A^{\ell})_{r(c-1)+1,c+2}$$

$$= (A^{\ell-1})_{r(c-1)+1,c-2} + (A^{\ell-1})_{r(c-1)+1,c-3} + (A^{\ell-1})_{r(c-1)+1,c}$$

$$+ (A^{\ell-1})_{r(c-1)+1,c+1} + (A^{\ell})_{r(c-1)+1,c+2}$$

and

$$(A^{\ell+1})_{(r-1)(c-1)+1,1} = (A^{\ell})_{(r-1)(c-1)+1,0} + (A^{\ell})_{(r-1)(c-1)+1,3}$$

$$= (A^{\ell-1})_{(r-1)(c-1)+1,1} + (A^{\ell-1})_{(r-1)(c-1)+1,2} + (A^{\ell})_{(r-1)(c-1)+1,3}$$

Note that since $\Gamma(k)$ is symmetric, $(A^{\ell-1})_{r(c-1)+1,c-2} = (A^{\ell-1})_{r(c-1)+1,c-3} > 0$, $(A^{\ell-1})_{r(c-1)+1,c} = (A^{\ell-1})_{r(c-1)+1,c+1} > 0$ and $(A^{\ell-1})_{r(c-1)+1,1} = (A^{\ell-1})_{r(c-1)+1,2} > 0$, for $\ell \geq r(c-1)$. So,

$$(A^{\ell+1})_{r(c-1)+1,c} = 2(A^{\ell-1})_{r(c-1)+1,c-2} + 2(A^{\ell-1})_{r(c-1)+1,c} + (A^{\ell})_{r(c-1)+1,c+2}$$

and

$$(A^{\ell+1})_{(r-1)(c-1)+1,1} = 2(A^{\ell-1})_{(r-1)(c-1)+1,1} + (A^{\ell})_{(r-1)(c-1)+1,3}.$$

By the induction hypothesis, the following inequalities hold:

$$(A^{\ell-1})_{r(c-1)+1,c} \geqslant (A^{\ell-1})_{(r-1)(c-1)+1,1}, \ (A^{\ell})_{r(c-1)+1,c+2} \geqslant (A^{\ell})_{(r-1)(c-1)+1,3}.$$

Thus, we have the strict inequality $(A^{\ell+1})_{r(c-1)+1,c} > (A^{\ell+1})_{(r-1)(c-1)+1,1}$. This causes the chain of strict inequalities

$$(A^{\ell+2})_{r(c-1)+1,2(c-1)+1} > (A^{\ell+2})_{(r-1)(c-1)+1,c},$$

$$(A^{\ell+3})_{r(c-1)+1,3(c-1)+1} > (A^{\ell+3})_{(r-1)(c-1)+1,2(c-1)+1}.$$

Finally,

$$(A^{\ell+k-r})_{r(c-1)+1,(k-r+1)(c-1)+1} > (A^{\ell+k-r})_{(r-1)(c-1)+1,(k-r)(c-1)+1}.$$

A similar argument can be used for $t \equiv r \in \{2, 3, \dots, c-2\} \pmod{(c-1)}$.

The number of closed walks of length ℓ starting at the vertex v_t is equal to the entry (t,t) in matrix A^{ℓ} . Therefore,

$$S_{\ell}(k(c-1), t+(c-1)) = (A^{\ell})_{t+(c-1),t+(c-1)}.$$

By the induction hypothesis, we conclude that $S_{\ell}(k(c-1), t+(r-1)(c-1)) \leq S_{\ell}(k(c-1), t+r(c-1))$ for all $0 \leq t \leq c-1$ and $r \leq [\frac{k}{2}](c-1)$. Hence the strict inequality holds when $\ell \geq [\frac{k}{2}]$.

4. The Minimum Estrada Index of $\Gamma(k)$

Let G' be a point attaching strict k_1 -quasi tree graph of even length c and $\delta \in V(G')$. For $k - k_1 = k_2$, let $G'(\lfloor \frac{k_2}{2} \rfloor, \lceil \frac{k_2}{2} \rceil)$ be the graph obtained from G' by attaching two graphs $\Gamma(\lfloor \frac{k_2}{2} \rfloor)$ and $\Gamma(\lceil \frac{k_2}{2} \rceil)$ at δ .

Let $N_{\ell}(G'(\lfloor \frac{k_2}{2} \rfloor(c-1), \lceil \frac{k_2}{2} \rceil(c-1); \delta)$ (respectively, $N_{\ell}(G'(\lfloor \frac{k_2}{2} \rfloor(c-1)+c-1, \lceil \frac{k_2}{2} \rceil(c-1)-c+1); \delta)$ be the set of (δ, δ) -walks of length ℓ in $G'(\lfloor \frac{k_2}{2} \rfloor(c-1), \lceil \frac{k_2}{2} \rceil(c-1))$ (respectively, $G'(\lfloor \frac{k_2}{2} \rfloor(c-1)+c-1, \lceil \frac{k_2}{2} \rceil(c-1)-c+1)$ starting and ending at the edges or only one edge in G' and let $N'_{\ell}(G'(\lfloor \frac{k_2}{2} \rfloor(c-1), \lceil \frac{k_2}{2} \rceil(c-1)); \delta)$ (respectively, $N'_{\ell}(G'(\lfloor \frac{k_2}{2} \rfloor(c-1)+c-1, \lceil \frac{k_2}{2} \rceil(c-1)-c+1); \delta)$) be the set of (δ, δ) -walks of length ℓ in $G'(\lfloor \frac{k_2}{2} \rfloor(c-1), \lceil \frac{k_2}{2} \rceil(c-1))$ (respectively, $G'(\lfloor \frac{k_2}{2} \rfloor(c-1)+c-1, \lceil \frac{k_2}{2} \rceil(c-1)-c+1)$ starting and ending at the edges or only one edge in union $\Gamma(\lfloor \frac{k_2}{2} \rfloor) \cup \Gamma(\lceil \frac{k_2}{2} \rceil)$ (respectively, $\Gamma(\lfloor \frac{k_2}{2} \rfloor + 1) \cup \Gamma(\lceil \frac{k_2}{2} \rceil - 1)$).

In the following let $G'(\lfloor \frac{k_2}{2} \rfloor(c-1), \lceil \frac{k_2}{2} \rceil(c-1)) := G(1)$ and let $G'(\lfloor \frac{k_2}{2} \rfloor(c-1)+c-1, \lceil \frac{k_2}{2} \rceil(c-1)-c+1) := G(2)$. By our definition, both graphs $\Gamma(\lfloor \frac{k_2}{2} \rfloor) \cup \Gamma(\lceil \frac{k_2}{2} \rceil)$ and $\Gamma(\lfloor \frac{k_2}{2} \rfloor + 1) \cup \Gamma(\lceil \frac{k_2}{2} \rceil - 1)$ are isomorphic to $\Gamma(k_2)$, so they are denoted by $\Gamma(k_2)$.

Lemma 4.1. If $\lfloor \frac{k_2}{2} \rfloor \geq 1$, then for positive integer ℓ ,

- (i) $|N_{\ell}(G'(2); \delta)| \le |N_{\ell}(G'(1)); \delta)|;$
- (ii) $|N'_{\ell}(G'(2); \delta)| \leq |N'_{\ell}(G'(1)); \delta|$.

Proof. Let $\omega \in N_{\ell}(G'(2); \delta)$, we may decompose ω into maximal sections in union $\Gamma(\lfloor \frac{k_2}{2} \rfloor + 1) \cup \Gamma(\lceil \frac{k_2}{2} \rceil - 1)$ or in G'. Each of them is one of the following types.

(Type 1): a $(\delta, \bar{\delta})$ - walk in union $\Gamma(\lfloor \frac{k_2}{2} \rfloor + 1) \cup \Gamma(\lceil \frac{k_2}{2} \rceil - 1)$.

(Type 2): a walk in G'(2) with all edges in G'.

Similarly, we may decompose any $\omega \in N_{\ell}(G'(1); \delta)$ into maximal sections in G' or in union $\Gamma(\lfloor \frac{k_2}{2} \rfloor) \cup \Gamma(\lceil \frac{k_2}{2} \rceil)$. Each of them is one of the following types.

(Type 3): a (δ, δ) - walk in union $\Gamma(\lfloor \frac{k_2}{2} \rfloor) \cup \Gamma(\lceil \frac{k_2}{2} \rceil)$.

(Type 4): a walk in G'(1) with all edges in G'.

Next, for any $\omega \in N_{\ell}(G'(2); \delta)$, we can replace the even indices by the odd indices that are in front of each other see Figure 2. Hence, from now on, ω is a (δ, δ) - walk with

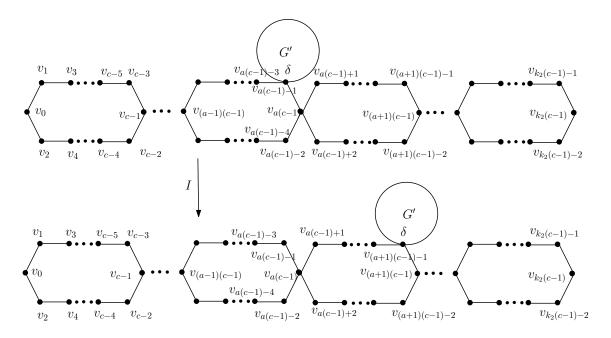


FIGURE 2. Transformation I.

only odd or even indices. So ω is a (δ, δ) - walk with odd indices. By Lemma 3.2 there is an injection mapping $\xi_{s'}^1$ that is a (δ, δ) - walk of length s' in $\Gamma(\lfloor \frac{k_2}{2} \rfloor + 1) \cup \Gamma(\lceil \frac{k_2}{2} \rceil - 1)$ into a (δ, δ) - walk of length s' in $\Gamma(\lfloor \frac{k_2}{2} \rfloor) \cup \Gamma(\lceil \frac{k_2}{2} \rceil)$.

Let $\omega' = \omega_1 \omega_2 \omega_3 \cdots \in N_{\ell}(\Gamma(k_2))$, where ω_i is a walk of length s_i' of type (1) or (2) for $i \geq 1$. Let $\xi^*(\omega') = \xi^*(\omega_1)\xi^*(\omega_2)\cdots$, where $\xi^*(\omega_i) = \xi_{s_i'}^1(\omega_i)$ and $\xi^*(\omega_i) = \omega_i$ if ω_i

is of type 2 so $\xi^*(\omega_i)$ for $i \geq 1$ is of type 3 or 4 and thus $\xi^*(\omega') \in N_{\ell}(G'(1))$. Thus $|N_{\ell}(G'(2);\delta)| \leq |N_{\ell}(G'(1);\delta)|$. This prove (i). The proof for (ii) is similar.

Theorem 4.1. If $\lfloor \frac{k_2}{2} \rfloor \geq 1$, then $S_{\ell}(G'(2)) \leq S_{\ell}(G'(1))$. For $\ell \geq \lfloor \frac{k_2}{2} \rfloor (c-1)$, the strict inequality holds.

Proof. Let B_1 and B_2 be the sets of closed walks of length ℓ in G'(1) and G'(2) respectively, containing some edges in G'. Then $S_{\ell}(G'(2)) = S_{\ell}(\Gamma(\lfloor \frac{k_2}{2} \rfloor + 1) \cup \Gamma(\lceil \frac{k_2}{2} \rceil - 1)) + |B_2|$ and $S_{\ell}(G'(1)) = S_{\ell}(\Gamma(\lfloor \frac{k_2}{2} \rfloor) \cup \Gamma(\lceil \frac{k_2}{2} \rceil)) + |B_1|$. Since $\Gamma(\lfloor \frac{k_2}{2} \rfloor + 1) \cup \Gamma(\lceil \frac{k_2}{2} \rceil - 1)$ and $\Gamma(\lfloor \frac{k_2}{2} \rfloor) \cup \Gamma(\lceil \frac{k_2}{2} \rceil)$ are isomorphic to $\Gamma(k_2)$, we only need to prove that $|B_2| \leq |B_1|$ for all $\ell \geq 0$. Let B_{21} and B_{22} be two subsets of B_2 for which every closed walk starts at a vertex in $V(\Gamma(\lfloor \frac{k_2}{2} \rfloor + 1) \cup \Gamma(\lceil \frac{k_2}{2} \rceil - 1))$ and $V(G') - \{\delta\}$, respectively. Then $|B_2| = |B_{21}| + |B_{22}|$. Let B_{11} and B_{12} be two subsets of B_1 for which every closed walk starts at a vertex in $V(\Gamma(\lfloor \frac{k_2}{2} \rfloor) \cup \Gamma(\lceil \frac{k_2}{2} \rceil))$ and $V(G') - \{\delta\}$, respectively. Then $|B_1| = |B_{11}| + |B_{12}|$.

We may decompose any $\omega \in B_{21}$ into three parts $\omega_1 \omega_2 \omega_3$, where ω_1, ω_3 are walks in $\Gamma(\lfloor \frac{k_2}{2} \rfloor + 1) \cup \Gamma(\lceil \frac{k_2}{2} \rceil - 1)$ and ω_2 is the longest walk of ω in G'(2) starting and ending at the edges or only one edge in G'. By the choice of ω_2 , we have that ω_2 is a (δ, δ) -walk. Let $B_{21}(\omega, \ell) = \{\omega \in B_{21} : \omega_2 \text{ is a } (\delta, \delta)\text{-walk}\}$. Thus $|B_{21}| = |B_{21}(\omega, \ell)|$. Let $B_{11}(\omega, \ell) = \{\omega \in B_{11} : \omega_2 \text{ is a } (\delta, \delta)\text{-walk}\}$. So $|B_{11}| = |B_{11}(\omega, \ell)|$.

Let $V(\Gamma(\lfloor \frac{k_2}{2} \rfloor + 1) \cup \Gamma(\lceil \frac{k_2}{2} \rceil - 1)) := V(2)$. Then

$$|B_{21}(\omega,\ell)| = \sum_{\substack{\ell_1+\ell_2+\ell_3=\ell\\\ell_1,\ell_3\geq 0,\ell_2\geq 2}} \sum_{\beta\in V(2)} S_{\ell_1} \left(\Gamma\left(\left\lfloor\frac{k_2}{2}\right\rfloor + 1\right) \cup \Gamma\left(\left\lceil\frac{k_2}{2}\right\rceil - 1\right); \beta, \delta\right) \\ \times |N_{\ell_2}(G'(2);\delta)| S_{\ell_3} \left(\Gamma\left(\left\lfloor\frac{k_2}{2}\right\rfloor + 1\right) \cup \Gamma\left(\left\lceil\frac{k_2}{2}\right\rceil - 1\right); \delta, \beta\right) \\ = \sum_{\substack{\ell_1+\ell_2+\ell_3=\ell\\\ell_1,\ell_3\geqslant 0,\ell_2\geqslant 2}} |N_{\ell_2}(G'(2);\delta)| \\ \times \sum_{\beta\in V(2)} S_{\ell_1} \left(\Gamma\left(\left\lfloor\frac{k_2}{2}\right\rfloor + 1\right) \cup \Gamma\left(\left\lceil\frac{k_2}{2}\right\rceil - 1\right); \beta, \delta\right) \\ \times S_{\ell_3} \left(\Gamma\left(\left\lfloor\frac{k_2}{2}\right\rfloor + 1\right) \cup \Gamma\left(\left\lceil\frac{k_2}{2}\right\rceil - 1\right); \delta, \beta\right) \\ = \sum_{\substack{\ell_1+\ell_2+\ell_3=\ell\\\ell_1,\ell_3\geq 0,\ell_2\geq 2}} |N_{\ell_2}(G'(2);\delta)|.S_{\ell_1+\ell_3} \left(\Gamma\left(\left\lfloor\frac{k_2}{2}\right\rfloor + 1\right) \cup \Gamma\left(\left\lceil\frac{k_2}{2}\right\rceil - 1\right); \delta\right).$$

Similarly,

$$|B_{21}(\omega,\ell)| = \sum_{\substack{\ell_1 + \ell_2 + \ell_3 = \ell \\ \ell_1, \ell_3 \geqslant 0, \ell_2 \geqslant 2}} |N_{\ell_2}(G'(1);\delta)| S_{\ell_1 + \ell_3} \left(\Gamma\left(\left\lfloor \frac{k_2}{2} \right\rfloor + 1\right) \cup \Gamma\left(\left\lceil \frac{k_2}{2} \right\rceil - 1\right); \delta \right).$$

By Lemma 4.1, we have $|N_{\ell_2}(G'(2);\delta)| \leq |N_{\ell_2}(G'(1);\delta)|$ for all positive integers ℓ_2 and by Lemma 3.2, we have $S_t(\Gamma(\lfloor \frac{k_2}{2} \rfloor + 1) \cup \Gamma(\lceil \frac{k_2}{2} \rceil - 1)); \delta) \leq S_t(\Gamma(\lfloor \frac{k_2}{2} \rfloor) \cup \Gamma(\lceil \frac{k_2}{2} \rceil); \delta)$ for all positive integers t. Thus $|B_{21}(\omega,\ell)| \leq |B_{11}(\omega,\ell)|$. Note that this inequality is strict for some positive integer $\ell_0 = t_0 + c - 1$ where $t_0 \geq \frac{k_2}{2}$. Also $|B_{21}| \leq |B_{11}|$ for all positive integers ℓ , and it is strict for some positive integer ℓ_0 .

By a similar argument as above, we can prove that $|B_{22}| \leq |B_{12}|$. Thus $|B_2| \leq |B_1|$ for all positive integers ℓ , and it is strict for some positive integer ℓ_0 . П

Lemma 4.2. For all integer $\ell > c$, $k \geq 2$, we have

$$S_{\ell}(k(c-1),2) < S_{\ell}(k(c-1),4) < \cdots < S_{\ell}(k(c-1),c/2-2), S_{\ell}(k(c-1),c/2).$$

Proof. First, we show that every diagonal parallel to the main diagonal and the main diagonal are unimodal. Let H be the subgraph of $\Gamma(k)$ with vertex set $\{v_0, v_1, \dots, v_c - 1\}$. By Lemma 3.1, we only need to show that the diagonals parallel to the main diagonal increase for $s+j \leq c-1$. Let s be an even integer. For the odd integer the proof is similar. Using induction on integer ℓ , we will prove that $(A^{\ell})_{s+2,j+2} \ge (A^{\ell})_{s,j}$ for all $0 \le s, j \le c-2$ with $s+j \le c-1$.

Note that by the definition of $\Gamma(k)$, two vertices v_s and v_i are adjacent if and only if v_{s+2} and v_{j+2} are adjacent.

We have the following cases.

Case 1: $j \equiv 0 \pmod{2}$ and $j \neq 0$. Then

$$(A^{\ell+1})_{s+2,j+2} = (A^{\ell})_{s+2,j} + (A^{\ell})_{s+2,j+4},$$

$$(A^{\ell+1})_{s,j} = (A^{\ell})_{s,j-2} + (A^{\ell})_{s,j+2}.$$

By the induction hypothesis, we have the following results:

$$(A^{\ell})_{s+2,j} \ge (A^{\ell})_{s,j-2},$$

 $(A^{\ell})_{s+2,j+4} \ge (A^{\ell})_{s,j+2}, \text{ for } s+j+4 \le c-1.$

Hence, we have $(A^{\ell})_{s+2,j+2} \geq (A^{\ell})_{s,j}$. Since, there is a closed walk of length c starting from v_0 which is not including the edge $v_c v_{c+1}$, the inequality is strict for $\ell > c$.

Case 2: $j \equiv 1 \pmod{2}$. The proof is similar to Case 1.

The number of closed walks of length ℓ starting at the even vertex v_s is equal to the entry (s, s) in matrix A^{ℓ} ,

$$S_{\ell}(c-1,s) = (A^{\ell})_{s,s}.$$

By induction hypothesis, we can conclude that $S_{\ell}(c-1,s) \leq S_{\ell}(c-1,s+2)$ for every 0 < s < c - 1. Note that the strict inequality holds when $\ell \ge \frac{c}{2}$.

Let G be a point attaching strict k_1 -quasi tree graph of even length c and $\alpha \in V(G)$ and let C_c be the cycle H of $\Gamma(k)$ with k_2 cycles where $k_1 + k_2 = k$. We decompose C_c into two paths denote by $P_{\frac{c}{2}}$ and $Q_{\frac{c}{2}}$, having common vertices in initial and final. Let $G(\frac{c}{2}, \frac{c}{2})$ be the graph obtained from G by attaching $P_{\frac{c}{2}}$ and $Q_{\frac{c}{2}}$ at α in G.

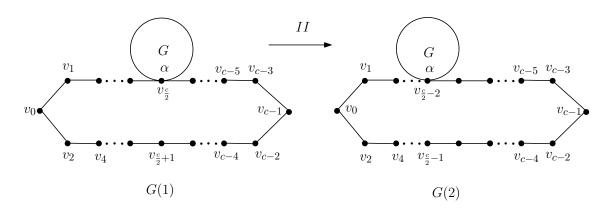


FIGURE 3. Transformation II.

Let $M_{\ell}(G(\frac{c}{2}, \frac{c}{2}); \alpha)$ (respectively $M_{\ell}(G(\frac{c}{2}+2, \frac{c}{2}-2); \alpha)$) be the set of (α, α) -walks of length ℓ in $G(\frac{c}{2}, \frac{c}{2})$ (respectively $G(\frac{c}{2}+2, \frac{c}{2}-2)$) starting and ending at the edges or only one edge in G and let $M'_{\ell}(G(\frac{c}{2}, \frac{c}{2}); \alpha)$ (respectively $M'_{\ell}(G(\frac{c}{2}+2, \frac{c}{2}-2); \alpha)$) be the set of (α, α) -walks of length ℓ in $G(\frac{c}{2}, \frac{c}{2})$ (respectively $G(\frac{c}{2}+2, \frac{c}{2}-2)$), starting and ending at the edges or only one edge in $P_{\frac{c}{2}} \cup Q_{\frac{c}{2}}$ (respectively $P_{\frac{c}{2}+1} \cup Q_{\frac{c}{2}-1}$). In the following let $G(\frac{c}{2}, \frac{c}{2}) := G(1)$ and $G(\frac{c}{2}+2, \frac{c}{2}-2) := G(2)$. By definition $P_{\frac{c}{2}} \cup Q_{\frac{c}{2}}$ and $P_{\frac{c}{2}+1} \cup Q_{\frac{c}{2}-1}$ are isomorphic to C_1 , so we denoted them by C_1 .

Lemma 4.3. Let c be an even integer. If $\ell \geq \frac{c}{2}$, then

- (i) $|M_{\ell}(G(2); \alpha)| \leq |M_{\ell}(G(1)); \alpha)|$;
- (ii) $|M'_{\ell}(G(2); \alpha)| \leq |M'_{\ell}(G(1); \alpha)|$.

Proof. Let $\omega \in M_{\ell}(G(2); \alpha)$, we may decompose ω into maximal sections in union $P_{\frac{c}{2}+1} \cup Q_{\frac{c}{2}-1}$ or in G. Each of them is one of the following types.

- (1) a (α, α) walk in union $P_{\frac{c}{2}+1} \cup Q_{\frac{c}{2}-1}$.
- (2) a walk in G(2) with all edges in G.

Similarly, we may decompose any $\omega \in M_{\ell}(G(1); \alpha)$ into maximal sections in union $P_{\frac{c}{2}} \cup Q_{\frac{c}{2}}$ or in G. Each of these maximal sections has one of the following types.

- (3) a (α, α) -walk in union $P_{\frac{c}{2}} \cup Q_{\frac{c}{2}}$.
- (4) a walk in G(1) with all edges in G.

Next, since $\Gamma(k)$ is symmetric, for any $\omega \in M_{\ell}(G(2); \alpha)$, we can replace the even indices with the odd indices that are in front of each other see Figure 3. Hence, from now on, ω is a (α, α) - walk with only odd or even indices. So without loss of generality ω is a (α, α) -walk with only odd indices. By definition, two unions $P_{\frac{c}{2}} \cup Q_{\frac{c}{2}}$ and $P_{\frac{c}{2}+1} \cup Q_{\frac{c}{2}-1}$ are isomorphic to C_1 and by Lemma 4.2 there exists an injection mapping η_{ℓ}^1 from a (α, α) -walk of length ℓ in $P_{\frac{c}{2}+1} \cup Q_{\frac{c}{2}-1}$ into a (α, α) - walk of length ℓ in $P_{\frac{c}{2}} \cup Q_{\frac{c}{2}}$. Let $\omega = \omega_1 \omega_2 \omega_3 \cdots \in M_{\ell}(P_{\frac{c}{2}+1} \cup Q_{\frac{c}{2}-1})$, where ω_i is a walk of length ℓ_i of type (1) or (2) for $i \geq 1$. Let $\eta^*(\omega) = \eta^*(\omega_1)\eta^*(\omega_2)\ldots$ where $\eta^*(\omega_i) = \eta^1_{\ell_i}(\omega_i)$ and $\eta^*(\omega_i) = \omega_i$ if ω_i is type (2) so $\eta^*(\omega_i)$ for $i \geq 1$ is of type (3) or (4) and thus

 $\eta^*(\omega) \in M_{\ell}(G(1))$. Thus, $|M_{\ell}(G(2);\alpha)| \leq |M_{\ell}(G(1);\alpha)|$. This prove (i). The proof of (ii) is similar.

Theorem 4.2. Let c be an even integer. If $\frac{c}{2} \geq 3$, then $S_{\ell}(G(2)) \leq S_{\ell}(G(1))$. For $\ell > \frac{c}{2}$, the strict inequality holds.

Proof. Let A_1 and A_2 be two sets of closed walks of length ℓ in G(1) and G(2), respectively, containing some edges in G. Then $S_{\ell}(G(2)) = S_{\ell}(P_{\frac{c}{2}+1} \cup Q_{\frac{c}{2}-1}) + |A_2|$ and $S_{\ell}(G(1)) = S_{\ell}(P_{\frac{c}{2}} \cup Q_{\frac{c}{2}}) + |A_1|$.

By our definition, $P_{\frac{c}{2}} \cup Q_{\frac{c}{2}}$ and $P_{\frac{c}{2}+1} \cup Q_{\frac{c}{2}-1}$ are isomorphic to C_1 , and we need only to prove that $|A_2| \leq |A_1|$ for all $\ell \geq 0$.

Let A_{21} and A_{22} be two subsets of A_2 for which every closed walk starts at a vertex in $V(P_{\frac{c}{2}+1} \cup Q_{\frac{c}{2}-1})$ and in $V(G) - \{\alpha\}$, respectively. Then $|A_2| = |A_{21}| + |A_{22}|$.

Let A_{11} and A_{12} be two subsets of A_1 for which every closed walk starts at a vertex in $V(P_{\frac{c}{2}} \cup Q_{\frac{c}{2}})$ and in $V(G) - \{\alpha\}$, respectively. Then $|A_1| = |A_{11}| + |A_{12}|$.

We may decompose any $\omega \in A_{21}$ into three sections $\omega_1\omega_2\omega_3$, where ω_1, ω_3 are walks in $P_{\frac{c}{2}+1} \cup Q_{\frac{c}{2}-1}$ and ω_2 is the longest walk of ω in G(2) starting and ending at the edges in G. By the choice of ω_2 , we have that ω_2 is a (α, α) -walk. Let $A_{21}(\omega, \ell) = \{\omega \in A_{21} : \omega_2 \text{ is a } (\alpha, \alpha)\text{-walk}\}$. So, we have $|A_{21}| = |A_{21}(\omega, \ell)|$.

Let $A_{11}(\omega, \ell) = \{ \omega \in A_{11} : \omega_2 \text{ is a } (\alpha, \alpha)\text{-walk} \}$. So, we have $|A_{11}| = |A_{11}(\omega, \ell)|$.

Let $V(P_{\frac{c}{2}+1} \cup Q_{\frac{c}{2}-1}) := V(1)$. Let $t = |M_{\ell_2}(G(2); \alpha)|$. From this decomposition for $\omega \in A_{21}$ and by the definition of $A_{21}(\omega, \ell)$, we have

$$\begin{split} |A_{21}(\omega,\ell)| &= \sum_{\substack{\ell_1+\ell_2+\ell_3=\ell\\\ell_1,\ell_3\geqslant 0,\ell_2\geqslant 2}} \sum_{\beta\in V(1)} S_{\ell_1}(P_{\frac{c}{2}+1}\cup Q_{\frac{c}{2}-1};\beta,\alpha).t.S_{\ell_3}(P_{\frac{c}{2}+1}\cup Q_{\frac{c}{2}-1};\alpha,\beta) \\ &= \sum_{\substack{\ell_1+\ell_2+\ell_3=\ell\\\ell_1,\ell_3\geqslant 0,\ell_2\geqslant 2}} t. \sum_{\beta\in V(1)} S_{\ell_1}(P_{\frac{c}{2}+1}\cup Q_{\frac{c}{2}-1};\beta,\alpha).S_{\ell_3}(P_{\frac{c}{2}+1}\cup Q_{\frac{c}{2}-1};\alpha,\beta) \\ &= \sum_{\substack{\ell_1+\ell_2+\ell_3=\ell\\\ell_1,\ell_3\geqslant 0,\ell_2\geqslant 2}} .t.S_{\ell_1+\ell_3}(P_{\frac{c}{2}+1}\cup Q_{\frac{c}{2}-1};\alpha). \end{split}$$

Similarly,

$$|A_{21}(\omega,\ell)| = \sum_{\substack{\ell_1 + \ell_2 + \ell_3 = \ell \\ \ell_1, \ell_3 \geqslant 0, \ell_2 \geqslant 2}} |M_{\ell_2}(G(1);\alpha)| . S_{\ell_1 + \ell_3}(P_{\frac{c}{2}} \cup Q_{\frac{c}{2}};\alpha).$$

By Lemma 4.3, we have $|M_{\ell_2}(G(2);\alpha)| \leq |M_{\ell_2}(G(1);\alpha)|$ for all positive integers ℓ_2 and by Lemma 4.2, we have $S_t(P_{\frac{c}{2}+1} \cup Q_{\frac{c}{2}-1};\alpha) \leq S_t(P_{\frac{c}{2}} \cup Q_{\frac{c}{2}};\alpha)$ for all positive integers t. Thus $|A_{21}(\omega,\ell)| \leq |A_{11}(\omega,\ell)|$. Note that this inequality is strict for some positive integer $\ell_0 = t_0 + c - 1$ where $t_0 \geq \frac{c}{2}$. Also $|A_{21}| \leq |A_{11}|$ for all positive integers ℓ , and it is strict for some positive integer ℓ_0 .

By similar argument as above, we can prove that $|A_{22}| \leq |A_{12}|$. Thus $|A_2| \leq |A_1|$ for all positive integers ℓ , and it is strict for some positive integer ℓ_0 .

Corollary 4.1. For graphs G(1) and G(2) we have EE(G(1)) > EE(G(2)).

Proof. From Theorem 4.2, we have

$$EE(G(2)) = \sum_{\ell \ge 0} \frac{S_{\ell}(G(2))}{(\ell)!} < \sum_{\ell \ge 0} \frac{S_{\ell}(G(1))}{(\ell)!} = EE(G(1)).$$

The transformation from G(1) to G(2), depicted in Figure 3, is called transformation slowromancapi@ of G(1).

Corollary 4.2. For two graphs G'(1) and G'(2), we have EE(G'(1)) > EE(G'(2)).

Proof. By Theorem 4.1, we have

$$EE(G'(2)) = \sum_{\ell>0} \frac{S_{\ell}(G'(2))}{(\ell)!} < \sum_{\ell>0} \frac{S_{\ell}(G'(1))}{(\ell)!} = EE(G'(1)).$$

The transformation from G'(1) to G'(2), depicted in Figure 2, is called transformation slowromancapi@ of G'(1). Transformation slowromancapii@ is similar to transformation slowromancapii@ which obtained by attaching $\alpha \in G$ at v_0 . There is a closed walks in $M_c((c-1),0)$ which is not including the edge v_cv_{c+1} . So there is a closed walk in $M_c((c-1),1)$ not in $M_c((c-1),0)$. Hence, transformation slowromancapiii@ strictly decreases the Estrada index for $\ell \geq c$.

Let G be a point attaching strict k-quasi tree graph with k even cycles of length c, obtained by attaching the subgraphs $G_1, G_2, \ldots, G_{\frac{\Delta}{2}}$ at u with the maximum degree Δ . By using transformations slowromancapi@, slowromancapii@ and slowromancapii@, G_i s, $(1 \leq i \leq \frac{\Delta}{2})$ can be changed into the graphs Γ_i s. These transformations change G into G^* which is obtained by attaching Γ_i s at u. Each application of transformation strictly decreases its Estrada index. So we have $EE(G^*) < EE(G)$. Finally repeatedly applying transformation I, G^* can be changed into the graph $\Gamma(k)$ that is obtained from $\bigcup_{i=1}^{\frac{\Delta}{2}} \Gamma(k_i)$. So we have the following result.

Theorem 4.3. Let G be a point attaching strict k-quasi tree graph with k even cycles. Then $EE(\Gamma(k)) \leq EE(G)$.

References

- [1] N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1993.
- [2] D. M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs: Theory and Application, Academic Press, New York, 1980.
- [3] H. Deng, A proof of a conjecture on the estrada index, MATCH Commun. Math. Comput. Chem. **62** (2009), 599–606.
- [4] E. Deutsch and S. Klavzar, Computing the hosoya polynomial of graphs from primary subgraphs, MATCH Commun. Math. Comput. Chem. **70** (2013), 627–644.
- [5] Z. Du and B. Zhou, The estrada index of unicyclic graphs, Linear Algebra Appl. 436 (2012), 3149–3159.
- [6] E. Estrada, Characterization of 3d molecular structure, Chemical Physics Letters 319 (2000), 713–718.
- [7] E. Estrada, Characterization of the folding degree of proteins, Bioinformatics 18 (2002), 697–704.
- [8] E. Estrada and J. A. Rodriguez-Velazquez, Subgraph centrality in complex networks, Phys. Rev. E 71 (2005), Paper ID 056103.

- [9] I. Gutman and A. Graovac, Estrada index of cycles and paths, Chemical Physics Letters 436 (2007), 294–296.
- [10] A. Ilić and D. Stevanović, *The estrada index of chemical trees*, J. Math. Chem. **47**(1) (2010), 305–314.
- [11] F. Li, L. Wei, J. Cao, F. Hu and H. Zhao, On the maximum estrada index of 3-uniform linear hypertrees, Scientific World Journal (2014), DOI 10.1155/2014/637865.
- [12] F. Li, L. Wei, H. Zhao, F. Hu and X. Ma, On the estrada index of cactus graphs, Discrete Appl. Math. 203 (2016), 94–105.
- [13] J. Li, X. Li and L. Wang, The minimal estrada index of trees with two maximum degree vertices, MATCH Commun. Math. Comput. Chem **64** (2010), 799–810.
- [14] M. Lu and J. Gao, On the randić index of quasi-tree graphs, J. Math. Chem. 42 (2007), 297–310.
- [15] Y. Shang, Biased edge failure in scale-free networks based on natural connectivity, Indian Journal of Physics 86 (2012), 485–488.
- [16] Y. Shang, Random lifts of graphs: network robustness based on the estrada index, Appl. Math. E-Notes 12 (2012), 53–61.
- [17] R. P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Annals of the New York Academy of Sciences **576** (1989), 500–535.
- [18] K. Xu, J. Wang and H. Liu, The harary index of ordinary and generalized quasi-tree graphs, J. Appl. Math. Comput. 45 (2014), 365–374.
- [19] J. Zhang, B. Zhou and J. Li, On estrada index of trees, Linear Algebra Appl. 434 (2011), 215–223.

¹DEPARTMENT OF MATHEMATICS,

YAZD UNIVERSITY

Email address: iranmanesh@yazd.ac.ir

²DEPARTMENT OF MATHEMATICS,

YAZD UNIVERSITY

Email address: nejati.razieh@gmail.com