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ON THE ESTRADA INDEX OF POINT ATTACHING STRICT
E-QUASI TREE GRAPHS

MOHAMMAD A. IRANMANESH! AND RAZIYEH NEJATI?

ABSTRACT. Let G = (V, E) be a finite and simple graph with A1, Ao, ..., A, as its
eigenvalues. The Estrada index of G is EE(G) = Y., e*i. For a positive integer k,
a connected graph G is called strict k-quasi tree if there exists a set U of vertices of
size k such that G\ U is a tree and this is as small as possible with this property. In
this paper, we define point attaching strict k-quasi tree graphs and obtain the graph
with minimum Estrada index among point attaching strict k-quasi tree graphs with
k even cycles.

1. INTRODUCTION

Let G = (V(G), E(G)) be a finite and simple graph of order n, where by V(G) and
E(G) we denote the set of vertices and edges, respectively. Let A(G) be the adjacency
matrix of G, and \;, Ao, ..., \, be its eigenvalues. The Estrada index of G is defined
as

FE(G) =Y, eM.

which was first proposed by Estrada in 2000 [6]. We refer reader to [7,8, 15, 16]
for multiple applications of Estrada index in various fields, for example in network
science and biochemistry. The results for trees can be found in [3,10,13,19]. Gutman
approximated the Estrada index of cycles and paths in [9]. The unicyclic graphs
with maximum and minimum Estrada index have been determined in [5]. Recently,
the Esrada index of the cactus graphs in which every block is a triangle, has been
characterized in [11,12].

A connected graph G is called quasi tree if there exists vy € V(G) such that G\ {vo}
is a tree. Lu in [14] has determined the Randi¢ index of quasi trees. The Harary index
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of quasi tree graphs and generalized quasi tree graphs are presented in [18]. A strict
k-quasi tree graph G is a connected graph which is not a tree, and k is the smallest
positive integer such that there exists a k-element subset U of vertices for which G'\ U
is a tree.

Let G be a connected graph constructed from pairwise disjoint connected graphs
G, G, ..., Gy as follows: select a vertex of G1,, a vertex of (G5,, and identify these
two vertices. Then continue in this manner inductively. More precisely, suppose that
we have already used G1, G, ..., G; in the construction, where 2 < i < d — 1. Then
select a vertex in the already constructed graph (which may in particular be one of
the already selected vertices) and a vertex G;,1; and identify these two vertices. Note
that the graph G constructed in this way has a tree-like structure, the G;’s being
its building stones. We will briefly say that G is obtained by point attaching from
G1,Gs, ..., Gq and that G;’s are the primary subgraphs of G [4].

A graph G is said to be point attaching strict k-quasi, if it is constructed from
primary subgraphs G, G, ..., G4 where each primary subgraph G; is a strict k;-quasi
tree graph for each 1 <i < d, and k = X% | k;.

In this paper we study the Estrada index of point attaching strict k-quasi graphs.

2. PRELIMINARIES

For £ € NU {0}, let So(G) = ", A\ be the £ spectral moment of G, which is
equal to the number of closed walks of length ¢ in G [2]. For every graph G, we have
So(G) =n, S1(G) = C, S3(G) = 2m, S3(G) = 6D, and S,(G) =23, d? — 2m + 8Q,
where n, C, m, D, Q denote the number of vertices, the number of loops, the number
of edges, the number of triangles and the number of quadrangles in GG, respectively and
d; = d;(G) is the degree of vertex v; in G [2]. Bearing in mind the Taylor expansion
of e*, we have the following equation for the Estrada index of graph G,

n . n 0o )\f 00 S G
(2.1) EB(G) =3 e" =33 5 =3 fé, )
i=1 i=1¢=0 ~ £=0 '

It follows from Equation 2.1 that FE(G) is a strictly monotonously increasing function
of S¢(G). Let G; and Gs be two graphs. If S,(G1) < S¢(G2) holds for all positive
integer ¢, then FE(G,) < EE(Gy). Moreover, if the strict inequality Sy(G1) < S¢(Gs)
holds for at least one value ¢y, > 0, then FE(G,) < EE(G>).

Recall that a sequence aq, aq, ..., a, of numbers is said to be unimodal if for some
0<i<nwehaveay<a; <---<a; > a1 > -+ > a,, and this sequence is called
symmetric if a; = a,—; for 0 < i < n [17]. Thus a symmetric unimodal sequence
ap, ay, ..., a, has its maximum at the middle term (n even) or middle two terms (n
odd). Let A be the adjacency matrix of the graph G. It is well-known that the
entry(A%); ; represents the number of walks of length ¢ from vertex v; to vertex v; [1].
Obviously, (A%);; = (A*);, for undirected graphs.

Throughout this paper, I'(k) is a point attaching strict k-quasi tree graph with k
even cycles (see Figure 1) and M,(G) denotes the set of closed walks of length ¢ in G,
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and we show that among all point attaching strict k-quasi tree graphs with k even
cycles, I'(k) is the graph with minimum Estrada index.

3. THE NUMBER OF CLOSED WALKS OF LENGTH /¢ IN I'(k)

Let My(k(c —1),4) denote the set of closed walks of length ¢ starting at the vertex
v; in I'(k) with & even cycles of length ¢ and |My(k(c —1),i)| = S¢(k(c —1),7) denote
the number of closed walks of length ¢ starting at the vertex v; in I'(k) (see Figure 1).

U1 U3 VUe—5 UVe—3 Ve Ucq2 U2(c=1)-3 V2(c—1)-1
Vo
Ve—1 V2(c—1)
V2 vy Ueed Vo2 Vel Ver3  Vo(e—1)-4 V2(c—1)-2 Y(k=1)(c=1)+2

FIGURE 1. The graph I'(k).

Lemma 3.1. The map ¢ : V(I'(k)) — V(I'(k)), given by o(v;) = Uge—1)—i @5 an
automorphism.

Proof. One can easily see that ¢ is bijective. Let vertices v; and v; be adjacent. Then
by definition of ¢, we have the following cases.

(i) ¢(vo) = Vi(e—1) and @(Vi(e—1)) = Vo.

(i) i = t(c—1), 0 < t < k. In this case v; € {vi_1,vi—2,Vit1,viy2}. Hence,
k(c—1) —i = k(c—1) —t(c—1) = (k —t)(c —1). This implies that
©(Vi) = V(k—t)(c—1)-

We will only prove the case v; = v;—;. A similar argument can be used
for other cases. If v; = v;_y, then k(c —1) —j =k(c—1) —t(c—1)+1 =
(k —t)(c — 1) + 1. Hence ¢(v;) = V(a—t)c—1)+1 Which is adjacent to ¢(v;).

(ili) i =tlc—1)+s,0<t<k—1,1<s<c—2 In this case v; € {v;_9,vis2}.
Hence, k(c—1)—j=k(c—1)—t(c—1)—s = (k—t)(c—1) —s. This implies
that QO(UZ-) = U(k—t)(c—l)—s-

If v; =v;_o, then k(c—1) —t(c—1)—s+2=(k—1t)(c—1) — s+ 2. Hence,
©(v5) = V(k—t)(c—1)—s+2 Which is adjacent to ¢(v;). The proof for case v; = vijo
is similar. U

Corollary 3.1. Let A be the adjacency matrix of the point attaching strict k-quasi
tree graph T'(k). Then (A%);; = (A k(e—1)—ik(e—1)—j for 0 <i,j < k(c—1).

Proof. This is an immediate consequence of Lemma 3.1. O
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Lemma 3.2. Ifk > 2 and t are integers and 0 < t < ¢ — 2, then:
Se(k(c—1),t) < Sp(k(c—1),t+ (c—1))

<. <8 (k:(c—l),t%—qﬂ —1) (c—1)>

k
<5 (k’(c— 1),t+ l2] (c— 1)) ,
where £ > c—1. If { > [g], then strict inequalities hold.

Proof. We prove every diagonal and the main diagonal of the matrix A¢ are unimodal.
By Lemma 3.1, (A%):; = (A)ke—1)—tk(e-1)—j- S0 we only need to show that the
diagonals paralleling to the main diagonal increase for t 4+ j < k(c — 1).

By induction on integer ¢, we will show that for every j < k(¢ — 1) where t + j +
2¢ —2 < k(¢ — 1), we have:

(Ag)t-f-c—l,j-‘rc—l = (Ae)m*

By the definition of I'(k) we have A, ; = 1 if and only if A; .1 j1.—1 = 1. Therefore,
the result is hold for £ = 1. Assume that the result holds for integer ¢. There are four
cases as follows.
Case 1: t,7 =0 (mod (¢ —1)).

Since the set of walks of length ¢ + 1 from v; to v; is in bijective correspondence
with the set of walks of length ¢ from v; to v, adjacent to v;, so

(A€+1)t+cfl,j+cfl :(Ag)t+cfl,j+cf2 + (Ae)t+c71,j+c73 + (AZ)tJrC*Lj‘FC
+ (A" tremtjrests
(A5 =(A) g1+ (A g0 + (A)rg1 + (Ao,
By the induction hypothesis, we have the following results:

(A 4ot je—2 = (A% o1,
(AY e 1jre (At jy1, fort+5+2<k(c—1),

(A iemtjre—s =(A)rj-2,

(Aot jrers >(Aijeo, fort+j+2 < k(c—1).

Hence, we have (A“™); e 111 > (A1), In addition we will show that for
¢ > [k(c — 1)/2] the strict inequalities hold.

For the strict inequality, let 1 < r < k be a fixed number, we consider two rows
r(c—=1)and (r—1)(c—1), 7 < k(c—1). Then

(AK—H)r(cfl),cfl == (Ae)r(cfl),072 + (Ag)r(cfl),cfi’; + (Ag)r(cfl),c + (Ae)r(cfl),chl

and

(A" 1ye—1)0 = (A -1y ey1 + (A 1) e-1)2-
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Note that, since I'(k) is symmetric we have,
(Ag)r(c—l),c—Q :(Az)r(c—l),c—?) > 07
(Ag)r(c—l),c :<A£)T‘(C—1),C+1 > 07
(Ae)r(c—l),l :<A£)T(C—1),2 > 07
for ¢ > r(c—1). So,
(A“_l)r(c—l),c—l - 2(A€>r(c—1),c—2 + Q(Ae)r(c—l)ﬁ—i-l
and
(A o110 = 2(A) oy e-1).2-
By the induction hypothesis, the following inequality holds:
(A e1yer1 > (A 1y(em1) -

Thus, we have the strict inequality (A“l),n(c,l),c,l > (A£+1)(r,1)(c,1)70. This causes
the chain of strict inequalities

(AZ—FQ)T(cfl),Q(cfl) > (A£+2)(r71)(c71),c717
(A)re-n 3 > (A7) ope-n2ee-)-
Finally, we have

(A£+(k—r+1)> Aé+(k—r+1))

r(e=1),(k—r+1)(c—1) > ( (r=1)(c—1),(k=r)(c—1)-

Case 2: t =0 (mod (¢c—1)) and j # 0 (mod (¢ —1)). Let j =1 (mod (¢ — 1)).
Then

(Aot jre1 =(Aipe1jre2 + (A )themtjtets
(A =(A) 1+ (A)jpa-
Similarly, by the induction hypothesis, we have
(A remt ez = (A% o1,
(Az>t+c_1,j+c+1 Z (Ae)t,j_i_g, for t+] + 2 S k(C - ].)

Hence, we have (A" 1 1e1 > (A1),
In addition for the strict inequality, let 1 < r < k be a fixed number, we consider
two rows r(c — 1) and (r — 1)(¢ — 1). Then

(Aé+1)r(c—1),c :(A€>r(c—1),c—1 + (A€>r(c—1)yc+2 = (Ae_l)r(c_l)ﬁ_g
+ (AT emne-3 + (AT riemne + (AT Dre1yem1 + (A rem1), et
and
(A" -1 =(A)-1e-n0 + (A)r-1e-123
(A" e + (A D eo1yen 2 + (A)e-1ye1)3-
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Note that, since I'(k) is symmetric we have,
(A etz =(A)em1)em3 > 0,
(A" -1y =AY e1y,e41 > 0,
(A =11 =(A"Dpe—ny2 > 0,

for £ > r(c—1).
So,

(AeJrl)r(c—l),c = 2<A£71)r(c—1),0—2 + 2(/4@71)7"(0—1),0 + (Ag)r(c—l),c+2
and
(A" —nye-11 = 2(A D o= + (A) = 1)e=1) 3-
By the induction hypothesis, the following inequalities hold:
(A" rem1ye = (A o=y (A remyer2 = (A o 1)(em1) -

Thus, we have the strict inequality (A“™),(c—1)c > (A“)—1)-1)1. This causes
the chain of strict inequalities

(A) cmny 2141 > (AT) o1y em1).e0
(A ey ae-141 > (AT 1y e-1)20c-1)41-
Finally, we have
(A7) e hmri D141 > (AT ) o0y o), () (=11
A similar argument can be used for the cases j = {2,3,...,¢— 2} (mod (¢—1)) .
Case 3: t Z 0 (mod (c—1)) and 7 = 0 (mod (¢ —1)). Let £t = 1 (mod (¢ — 1)).
Then
(A et jremt =(Aigemtjre—2 + (A tremtjre—s + (Ao 1g4e + (A trem1jrests
(AT =(A -1+ (A g2 + (A g1 + (A1 40-
By the induction hypothesis, we have:
(A et ez >(Arj0,
(A e 1jre 2(A) 1, for t+j+1 < k(e —1),
(A temtjre—s =(A)rjo2,
(Ae)t+c_1,j+c+1 Z(Ae)t,jw, fort+j+2<k(c—1).

Hence, we have (A1) o 1 j4e1 > (AT,
For the strict inequality, let 1 < r < k be a fixed number, for two rows r(c — 1) 4+ 1
and (r — 1)(c — 1) + 1 we have

(A€+1)r(c—1)+1,c—1 — (A€>r(c—1)+l,c—2 + (Ae>r(c—1)+l,c—3 + (Ae)r(c—l)—‘rl,c + (Aé)r(c—l)—‘rl,c—&—l

and

(A“—l)(rfl)(cfl)Jrl,O = (Ae)(rfl)(cfl)+1,1 + (AZ)(rfl)(cfl)+1,2~
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Note that since I'(k) is symmetric we have
(Ae)r(c—l)—i-l,c—Z :<A£)T(C—1)+LC—3 > 07
(A£>r(cfl)+1,c :(Ag)r(cfl)+1,c+l > 07
(Az)r(cfl)+1,1 :(Ae)r(cfl)+1,2 > 0,
for £ > r(c—1).
So,
(A“_l)r(cfl)Jrl,cfl = 2(Az)r(cfl)+1,072 + 2<A£)r(cfl)+l,c+l
and
A+ — 904"
(A7) =D e=1)41,0 = 2(A7) r—1)(c=1)+1,2-
By the induction hypothesis, the following inequality holds:
(Ae)r(cfl)Jrl,chl > (Ag)(rfl)(cfl)+1,2-
Thus, we have the strict inequality (A™™), 141,01 > (A7) o—1yc-1)+10. This
causes the chain of strict inequalities
(A2 e nt120e-1) > (AT o1y e-1) 41,015
(A2 emny41,3-1) > (A7) o e-1+1,2-1)-
Finally, we have:

(Aé+(k—r+1)) A£+(k—r+1))

r(e—1)+1,(k—r41)(e—1)—1 > ( (r—1)(c=1)+1,(k—r)(c—1)—1-
A similar argument can be used for the cases t = {2,3,...,¢— 2} (mod (c—1)).
Case 4: t 20 (mod (¢c—1)) and j =1 (mod (¢ —1)). Let t =1 (mod (c— 1)), we
have
(A€+1)t+c—1,j+c—1 :(Ae)t+c—1,j+c—2 + (Ag)t—l—c—l,j—&-c—&—l»
(AT =(A) 051 + (A1 j42-

By the induction hypothesis, the following inequality holds:

(Aere-tgbe-2 > (AVejo1, (ADere-1giert = (A 0.

Hence, we have (A% 1 1c1 > (A%, . For the strict inequality, let 1 <r < k be
a fixed number, we consider two rows r(¢c — 1) + 1 and (r — 1)(¢c — 1) + 1. Then

(A£+1)r(cfl)+1,c :(Ag)r(cfl)Jrl,cfl + (Ag)r(cfl)+1,c+2
=(A"emnire—2 + (A e + (AT e )41e
+ (Ae_l>r(c—1)+1,c+1 + (Az>r(c—1)+1,c+2
and
(A" -1 =(A) 1) e=1)41.0 + (A) rm1)(e1)41,3
:(Aefl)(r—1)(c—1)+1,1 + (AEil)('r—l)(c—l)—I—l,Q + (AE)(T—I)(C—I)—&-L?)-
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Note that since I'(k) is symmetric, (Ag_l)r(c_l)_FLC_Q = (Af_l)r(c_l)le,C_g > 0,
(A£71>r(c—1)+l,c = (Aeil)r(c—l)—i-l,c-l—l > (0 and (Aéil)r(c—l)-‘rl,l = (AEil)r(c—l)—&-l,Q > 07
for £ > r(c—1). So,

(A€+1)r(c—1)+l7c - 2(A’élz_l)r(c—l)—ﬁ—l,c—2 + 2(A€_1)r(c—1)+1,c + (A€>r(c—1)+1,c+2

and

(A€+1)(T—1)(c—1)+1,1 = 2(Agfl)(r—1)(c—1)+1,1 + (AZ)(T—I)(C—1)+1,3'
By the induction hypothesis, the following inequalities hold:

(Ag_l)r(c—l)—i-l,c = (Az_l)(r—l)(c—l)—i-l,la (Az>r(c—1)+1,c+2 P (AZ)(T—l)(c—l)—i—l,?)-

Thus, we have the strict inequality (A“™),c—1)41,c > (A —1yc—1)41,1. This causes
the chain of strict inequalities

(A2) ey 2001 > (AT oy emy41,es
(Ae+3)7“(c—1)+1,3(c—1)+1 > (AHS)(r—l)(c—1)+1,2(c—1)+1-

Finally,

(A et tert ) e-1 > (A7) e DL (hr)e-1) 1
A similar argument can be used for t =r € {2,3,...,¢—2} (mod (¢ —1)). O

The number of closed walks of length ¢ starting at the vertex v; is equal to the
entry (¢,t) in matrix A*. Therefore,

Se(k(c—=1),t+ (¢ = 1)) = (A1) at(e1)-
By the induction hypothesis, we conclude that Sy(k(c —1),t+ (r — 1)(c — 1)) <
Se(k(c—1),t+r(c—1)) forall 0 < ¢t < c—1and r < [£](c — 1). Hence the strict
inequality holds when ¢ > [£].

4. THE MINIMUM ESTRADA INDEX OF I'(k)

Let G’ be a point attaching strict k1-quasi tree graph of even length c and 6 € V(G').
For k — ki = ks, let G'([%2],[*%2]) be the graph obtained from G’ by attaching two
graphs I'([ %) and I'([% ]) at 0.

Let Ng(G/(LkQJ(C - 1) [%27(c = 1);6) (vespectively, No(G'(|%](c — 1) + ¢ — 1,
[%£2](c—1) —c+1); ) be the set of (4, §)-walks of length £ in G'(| %2 J(c 1), [%27(c— 1))
(respectively, G'([%2](c — 1) + ¢ — 1, [%](c — 1) — ¢ + 1) starting and endmg at the
edges or only one edge in G’ and let Né(G’(L%J (c—1),[%7(c —1));0) (respectively,
Né(G’(L%J (c=1)+c—1,[%](c—1) —c+1);0)) be the set of (8, §)-walks of length £ in
G'([%2](c—1),[%](c—1)) (respectively, G'([%2](c—1)+c—1,[2](c—1) —c+1) start-
ing and ending at the edges or only one edge in union I'(| £ J) UT([%]) (respectively,

D(L]+ 1) U] -1).
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In the following let G'(| %2 |(c—1), [%](c—1)) := G(1) and let G'(| % | (c—
[£2](c = 1) — ¢+ 1) :== G(2). By our definition, both graphs I'(| £ J) IN{}
(L%?j +1u F((%ﬂ — 1) are isomorphic to I'(ks), so they are denoted by I’

Lemma 4.1. If |22] > 1, then for positive integer (,
(i) [Ne(G'(2);0)] < [Ne(G'(1));0)];

(i) [No(G'(2);0)] < [N)(G'(1));0)].
Proof. Let w € NZ(G’ (2);9), we may decompose w into maximal sections in union
(%] + 1)Ul ([%2] —1) or in G’. Each of them is one of the following types.

(Type 1): a (9, ) walk in union (%] + 1) UT([%] — 1).

(Type 2): a walk in G'(2) with all edges in G.

Similarly, we may decompose any w € Ny(G'(1); ) into maximal sections in G’ or
in union I'([ % |) UT([%]). Each of them is one of the following types.

(Type 3): a (,6)- Walk in union T'([ %2 ) UT([%]).

(Type 4): a walk in G’(1) with all edges in G'.

Next, for any w € N;(G'(2);0), we can replace the even indices by the odd indices
that are in front of each other see Figure 2. Hence, from now on, w is a (4, §)- walk with

1)4c—
%W)and
().

[ V(a+1)(c—1)-1 vk‘z(C*l)*l
Yo U(a+1)( > <
U Va(c-1)-2 Va(c—1)+2 V(a+1)(c—1)— 'ng(c—l)72
1
U1 Va(c—1)-3 Va(c—1)+1 'Ukz —1)-1
Va(c—1)- U(a+1 (e=N-1
) Ula—1)(c=1)  Va(e-1 V(at1)(c~ Uky(e—1
Va(c—1)—4
Vy Uy Veed  Ve—2 Vg(e—1)—2 lale=1)+2 Y(a+1)(c— Vky(c—1)—

FIGURE 2. Transformation .

only odd or even indices. So w is a (6, d)- walk with odd indices. By Lemma 3.2 there
is an injection mapping &} that is a (6, 6)- walk of length s’ in T'(| £ | + 1) UT([%2] —1)
into a (4, 6)- walk of length s’ in T'(| %2 |) UT([2]).

Let W' = wywows - - - € Ny(I'(kq)), where w; is a walk of length s of type (1) or (2)
for i > 1. Let £&(w') = & (w1){* (w2) - - -, where £*(w;) = 531; (w;) and & (w;) = w; if w;
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is of type 2 so £*(w;) for i > 1 is of type 3 or 4 and thus {*(w’) € N,(G'(1)). Thus
|Ne(G'(2);0)] < |Ne(G'(1);6)|. This prove (i). The proof for (ii) is similar. O

Theorem 4.1. If 52| > 1, then S,(G'(2)) < Si(G'(1)). For { > [2](c—1), the strict
inequality holds.

Proof. Let By and By be the sets of closed walks of length ¢ in G'(1) and G'(2)
respectively, containing some edges in G’. Then S,(G'(2)) = S,(I'(|%2]+ 1)Ul ([%2] -

1) +|Ba| and Sy(G'(1)) = Se(T(L%) ] UT([% 1)) +|Bil. Since I([%] +1)UT([%]-1)
and I'(| %2 ]) UT'([22]) are isomorphic to I'(kz), we only need to prove that |Bs| < | B
for all ¢ > 0. Let By and By be two subsets of B, for which every closed walk
starts at a vertex in V(I'([2] + 1) UT([%2] - 1)) and V(G’) — {6}, respectively. Then
|Bs| = |Ba1| + |Baa|. Let Bj; and Bijp be two subsets of B; for which every closed
walk starts at a vertex in V(I'([%2]) UT([%27)) and V(G') — {4}, respectively. Then
|B1| = [Bu| + [Bizl.

We may decompose any w € Bs; into three parts wywsws, where wy, w3 are walks in
I([%]41)UT([%2] —1) and w, is the longest walk of w in G'(2) starting and ending
at the edges or only one edge in G’. By the choice of wy, we have that ws is a (4, d)-
walk. Let Boj(w,l) = {w € Bgy : ws is a (§,0)- walk}. Thus |By| = |Bai(w, )] Let
Bii(w,l) ={w € By : we is a (§,0)-walk}. So |B11] = |Bii(w, )]

Let V(D([ 2] + 1) uT([%] — 1)) := V(2). Then

o= 2 s (3])er(5] )

01,03>0, £2>2

e arans, (v(|12] +)or (2] 1))

= Y. INL(G'(2);9)]
1+-Lo+El3=0
01,0320,02>2

< = s (r([5] <) or([5] )00
su(v([5] r)or([5] 1))
=2 we@onsis (v([5] r)or ([g]-1)0).

£1,632>0,02 22

Similarly,

| Bay (w, 0)] = W;:M N, (G'(1):6)|St, 40 (r (V;J + 1) ur (Fﬂ - 1) ;5) .

01,0320,02>2
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By Lemma 4.1, we have | Ny, (G'(2);0)| < | Ny, (G'(1);6)| for all positive integers ¢ and
by Lemma 3.2, we have Sy(I'(|%2] + 1) UT([%] — 1));0) < S(I([%2]) UT([%7);4)
for all positive integers ¢t. Thus | By (w, )| < |Bi1(w, ¢)|. Note that this inequality is
strict for some positive integer {o = to + ¢ — 1 where tg > %2. Also |Ba;| < | By for
all positive integers ¢, and it is strict for some positive integer /.

By a similar argument as above, we can prove that |Bag| < |Biz|. Thus |Bs| < | By
for all positive integers ¢, and it is strict for some positive integer ¢,. O

Lemma 4.2. For all integer £ > ¢, k > 2, we have
Se(k(c—1),2) < Sp(k(c—1),4) <--- < Sp(k(c—1),¢/2 —2),S,(k(c—1),¢/2).

Proof. First, we show that every diagonal parallel to the main diagonal and the main di-
agonal are unimodal.  Let H be the subgraph of T'(k) with vertex set
{vo,v1,...,v. — 1}. By Lemma 3.1, we only need to show that the diagonals parallel
to the main diagonal increase for s + 7 < ¢ — 1. Let s be an even integer. For the
odd integer the proof is similar. Using induction on integer ¢, we will prove that
(AZ)S+2J+2 > (Aﬁ)s’j for all 0 < S,j <c—2 with s +] <c-—1.

Note that by the definition of I'(k), two vertices v, and v; are adjacent if and only
if vs49 and vj4 are adjacent.

We have the following cases.
Case 1: j =0 (mod 2) and j # 0. Then

(A g0 40 =(AY g2 + (A st2,544,
(AN =(A%s o2 + (A js2.

By the induction hypothesis, we have the following results:

(Az>s+2,j Z(Ae)s,j—zy
(Ag)s+2,j+4 Z(Ag)s,jJrQa fors+j+4<c—1

Hence, we have (A%)s4212 > (A)5,;. Since, there is a closed walk of length ¢ starting
from vy which is not including the edge v.v.;1, the inequality is strict for £ > c.
Case 2: j =1 (mod 2). The proof is similar to Case 1. O

The number of closed walks of length ¢ starting at the even vertex v, is equal to
the entry (s, s) in matrix A’

Se(c—1,s) = (Aé)svs.

By induction hypothesis, we can conclude that Sy(c —1,s) < Sy(c—1, s+ 2) for every
0 < s <c—1. Note that the strict inequality holds when ¢ > 7.

Let G be a point attaching strict k;1-quasi tree graph of even length ¢ and a € V(G)
and let C. be the cycle H of I'(k) with ks cycles where ky + ko = k. We decompose
C. into two paths denote by Pc and )¢, having common vertices in initial and final.

Let G(35, 5) be the graph obtained from G by attaching P: and Q¢ at a in G.
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11
—_—
v1 Ve—5 V-3 U1 Ve—5 Ve—3
’UE 12%,2
0 Ve—1 Vo Ve—
V9 V4 CESSI Ve—4  Uc—2 V9 | Ve—q Ve—2
G(1) G(2)

F1cURE 3. Transformation II.
Let M,(G(5,5); o) (respectively My (G(5 + 2,5 — 2);a)) be the set of (o, a)-walks
of length £ in G(5,5) (respectively G(5 + 2, § — 2)) starting and ending at the edges
or only one edge in G and let My(G(3, 5) ) (respectively My(G (5 +2,5 —2);a)) be
the set of (a, a)-walks of length £ in G(5, §) (respectively G(§ + 2,5 — 2)), starting
and ending at the edges or only one edge in P: U Q< (respectively Peiq U Qg,l). In
the following let G(3, §) := G(1) and G(§ + 2, § — 2) := G(2). By definition Pz U Q-
and Pci1 U Qg1 are isomorphic to C1, so we denoted them by C.

Lemma 4.3. Let ¢ be an even integer. If £ > 5, then

(i) [M(G(2); )| < [Me(G(1)); )5
(if) [M(G(2); )| < [Mp(G(1)); ).

Proof. Let w € My(G(2); ), we may decompose w into maximal sections in union
Pei1 U@y or in G. Each of them is one of the following types.

(1) a (o, )- walk in union Peyy UQg 1.

(2) a walk in G(2) with all edges in G.

Similarly, we may decompose any w € M,(G(1); ) into maximal sections in union
Pe UQ¢ or in G. Each of these maximal sections has one of the following types.

(3) a (o, @)-walk in union Ps U Q-.

(4) a walk in G(1) with all edges in G.

Next, since I'(k) is symmetric, for any w € M,(G(2); ), we can replace the even
indices with the odd indices that are in front of each other see Figure 3. Hence,
from now on, w is a (a, a)- walk with only odd or even indices. So without loss of
generality w is a (o, a)-walk with only odd indices. By definition, two unions Pe UQ-
and Pc+1 U Q ¢_q are isomorphic to C'; and by Lemma 4.2 there exists an injection
mapping 7; from a (a, a)-walk of length {in Pe 1 UQ:; into a (o, a)- walk of length
{in Pg U Q2 Let w = wjwows - -+ € Mg(P;_H U Q; 1) where w; is a walk of length
¢; of type (1) or (2) for i > 1. Let n*(w) = n*(w1)n*(w2) ... where n*(w;) = n; (w;)
and n*(w;) = w; if w; is type (2) so n*(w;) for ¢ > 1 is of type (3) or (4) and thus



ON THE ESTRADA INDEX OF POINT ATTACHING STRICT k-QUASI TREE GRAPHS 177

n*(w) € My(G(1)). Thus, |M,(G(2); )| < |M,(G(1);«)|. This prove (i). The proof of
(i) is similar. O
Theorem 4.2. Let ¢ be an even integer. If § > 3, then Sy(G(2)) < Sy(G(1)). For
¢ > 5, the strict inequality holds.

Proof. Let A; and Ay be two sets of closed walks of length ¢ in G(1) and G(2),
respectively, containing some edges in G. Then Sy(G(2)) = S¢(Pe1 U Qg 1) + |As]
and Sg(G(l)) = Sg(Pg U Qg) + |A1|

By our definition, P: U Q¢ and Pcyq U Q< are isomorphic to €7, and we need
only to prove that |As| < |A,| for all £ > 0.

Let Ay and Asy be two subsets of A, for which every closed walk starts at a vertex
in V(Pey1 UQg-1) and in V(G) — {a}, respectively. Then |As| = [Az| + [Assl.

Let A;; and Aqo be two subsets of A; for which every closed walk starts at a vertex
in V(P: UQc¢) and in V(G) — {a}, respectively. Then [A;] = [Ay] + |Aa].

We may decompose any w € Ay into three sections wjwows, where wq,ws are
walks in Pey; UQc_; and ws is the longest walk of w in G(2) starting and ending
at the edges in G. By the choice of ws, we have that ws is a (a,a)-walk. Let
A (w,0) = {w € A9 twy is a (o, a)-walk}. So, we have |Ag| = |Agr(w, £)].

Let Ajy(w, ) = {w € Ayt wy is a (o, a)-walk}. So, we have |Ay| = |A11(w, £)].

Let V(Pe1 UQs-1) :=V(1). Let t = [M,(G(2); a)|. From this decomposition for
w € Ay and by the definition of Ag(w, ¢), we have

[Agi (w, 0)] = > > St (P41 U Qs1; B, 2)..80,(Ps 1 U Q13 v, B)

Li+Lla+Ll3=C BeV (1)
£1,0320,02>2

= Yoot Y Su(PeyiUQs 1 B,0).80,(Peya UQs 15, )

Li+Llo+l3=L  BeV (1)
£1,£320,02>2

= Y tSni(PeUQs i)
L1 +Lo+03=0
£1,0320,02>2

Similarly,

(A (w, Ol = >0 [Mp(G(1);0)].Sp40,(Ps U Q5 ).

L14+-La+l3=L
£1,0320,02>2

By Lemma 4.3, we have |M;,(G(2);a)| < |My,(G(1);a)| for all positive integers
{5 and by Lemma 4.2, we have Sy(Pz11 U Q:_1;a) < S;(P: UQ¢;a) for all positive
integers ¢. Thus |Ag; (w, £)| < |Ay1(w, £)|. Note that this inequality is strict for some
positive integer ¢y = to+c—1 where ty > 5. Also [Ag;| < |Ay| for all positive integers
¢, and it is strict for some positive integer /.

By similar argument as above, we can prove that |Ag| < |Aja]. Thus |Ay] < A
for all positive integers ¢, and it is strict for some positive integer £. O

Corollary 4.1. For graphs G(1) and G(2) we have EE(G(1)) > EE(G(2)).
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Proof. From Theorem 4.2, we have

EE(G?2) =Y SZ(G('Q)) <X Sﬁ(Gﬂl)) = EE(G(1)). O
s (0 = ()

The transformation from G(1) to G(2), depicted in Figure 3, is called transformation
slowromancapi@ of G(1).

Corollary 4.2. For two graphs G'(1) and G'(2), we have EE(G'(1)) > EE(G'(2)).
Proof. By Theorem 4.1, we have

!/ /
EE(G/(Q)) _ Z SZ(G (2)) < Z SE(G (1))
= O = (@)
The transformation from G’(1) to G’(2), depicted in Figure 2, is called transfor-
mation slowromancapi@ of G’(1). Transformation slowromancapiii@ is similar to
transformation slowromancapii@ which obtained by attaching o € G at vy. There is a
closed walks in M.((c—1),0) which is not including the edge v.v.41. So there is a closed
walk in M.((c —1),1) not in M.((c¢ — 1),0). Hence, transformation slowromancapiii@
strictly decreases the Estrada index for ¢ > c.
Let G be a point attaching strict k-quasi tree graph with k even cycles of length ¢,
obtained by attaching the subgraphs G, Gs,...,Ga at u with the maximum degree A.

= EE(G'(1)). O

By using transformations slowromancapi@, slowronancapii@ and slowromancapiii@,
Gis, (1<i< %) can be changed into the graphs I'; s. These transformations change
GG into G* which is obtained by attaching I'; s at u. Each application of transformation
strictly decreases its Estrada index. So we have FE(G*) < EE(G). Finally repeatedly
applying transformation I, G* can be changed into the graph I'(k) that is obtained

A
from U2, I'(k;). So we have the following result.

Theorem 4.3. Let G be a point attaching strict k-quasi tree graph with k even cycles.
Then EE(I'(k)) < EE(G).
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