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BASIC INEQUALITIES FOR (m, M)-'-CONVEX FUNCTIONS
WHEN V¥ = —In

S. S. DRAGOMIR!2 AND I. GOMM!*

ABSTRACT. In this paper we establish some basic inequalities for (m, M)-¥-convex
functions when ¥ = — In. Applications for power functions and weighted arithmetic
mean and geometric mean are also provided.

1. INTRODUCTION

Assume that the function ¥ : I C R — R (] is an interval) is convex on [ and
m € R. We shall say that the function ® : I — R is m-V-lower convez it & — mV is
a convex function on /. We may introduce the class of functions (see [1])

(1.1) L(I,mV¥):={P:]—-R|P—-mV is convex on [}.

Similarly, for M € R and ¥ as above, we can introduce the class of M-W-upper convex
functions by (see [1])

(1.2) UL, M, ¥):={P: ] —>R| MUV —is convex on [}.

The intersection of these two classes will be called the class of (m, M)-V-convex
functions and will be denoted by (see [1])

(1.3) B (I, m, M, V) =L (I,m,¥)NUI, M, V).

Remark 1.1. If ® € B (I, m, M, V), then & — mV¥ and MV — & are convex and then
(& — mU)+ (MY — ®) is also convex which shows that (M — m) W is convex, implying
that M > m (as W is assumed not to be the trivial convex function ¥ (¢) =0, ¢t € I).
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The above concepts may be introduced in the general case of a convex subset in a
real linear space, but we do not consider this extension here.

In [7], S. S. Dragomir and N. M. Ionescu introduced the concept of g-convex
dominated functions, for a function f : I — R. We recall this, by saying, for a
given convex function g : I — R, the function f : I — R is g-convexr dominated iff
g+ f and g — f are convex functions on /. In [7], the authors pointed out a number
of inequalities for convex dominated functions related to Jensen’s, Fuchs’, Pecarié’s,
Barlow-Proschan and Vasi¢-Mijalkovi¢ results, etc.

We observe that the concept of g-convex dominated functions can be obtained as
a particular case from (m, M)-W-convex functions by choosing m = —1, M =1 and
U =g.

The following lemma holds (see [1]).

Lemma 1.1. Let ¥, ® : I C R — R be differentiable functions on Io, the interior of I
and V is a convex function on I.

(i) For m € R, the function ® € L (]o,m, \I/) if and only if
(1.4) m(Ut)—W(s) =V (s)(t—5)) <DP(t)—D(s)— P (s)(t—s),

forallt,s e I.
(ii) For M € R, the function ® € U (I, M, \If) if and only if

(1.5) () =P (s) =P (s)(t—5) < M (¥ (1) = W(s) =W (s)(t =),

forallt,s € I.
(iii) For M,m € R with M > m, the function ® € B (I,m, M, \If> if and only if
both (1.4) and (1.5) hold.

Another elementary fact for twice differentiable functions also holds (see [1]).

Lemma 1.2. Let U, ® : [ C R — R be twice differentiable on I and ¥ is convex on
1.

(i) For m € R, the function ® € L (_f,m, \I/) if and only if
(1.6) mU” (t) < ®"(t), foralltel.

(ii) For M € R, the function ® € U (I, M, \I/) if and only if
(1.7) " (t) < MY" (t), foralltel.

(iii) For M, m € R with M > m, the function ® € B (]o,m, M, \If) if and only if
both (1.6) and (1.7) hold.
For various inequalities concerning these classes of function, see the survey paper [3].

In what follows, we consider the class of functions B (I, m, M, —1In) for M, m € R,
with M > m that is obtained for ¥ : I C (0,00) — R, ¥ () = —Int.
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If & : 1 C (0,00) = R is a differentiable function on I then by Lemma 1.1 we have
® € B(I,m,M,—1In) if and only if

(1.8) m(lns—lnt—i(s—t)) <D(t) =B (s) — B (s) (t—5)

1
§M(lns—1nt—(s—t)>,
s

foranys,tef. )

If ®: 71 C(0,00)— R is a twice differentiable function on I then by Lemma 1.2 we
have ® € B (I, m, M, —In) if and only if
(1.9) m < 29" (t) < M,

which is a convenient condition to verify in applications.

In this paper we establish some basic inequalities for (m, M)-W-convex functions
when W = —In. Applications for power functions and weighted arithmetic mean and
geometric mean are also provided.

For recent results concerning inequalities for weighted arithmetic mean and geomet-

ric mean (see [4,5] and [8-15]).
2. SOME INEQUALITIES FROM DEFINITION OF CONVEXITY
We define the weighted arithmetic and geometric means
A, (a,b) ;== (1 —v)a+vband G, (a,b) := a'"1V",

where v € [0,1] and a, b > 0. If v = 1, then we write for brevity A (a,b) and G (a,b),
respectively.
The following double inequality holds, see also [6].

Theorem 2.1. Let M, m € R with M > m and ® € B((0,00),m, M,—1n). Then
for any a, b >0 and v € [0,1] we have

(2.1) In (éZEZ’Z;) <(1-v)®(a)+vdP (D) —P((1—v)a+vb)
A, (a,b)\"
<In (Gy(a,b)> )

Proof. Since ® € B ((0,00),m, M, —1n), then ®,, :== ® + mln is convex and by the
definition of convexity, we have
¢ ((1—-v)a+vb)+mlnA, (a,b)
<(1—-v)(®(a)+mlna)+v (P (b) +mlnb)
=(1-v)®(a)+v®(b)+(1—v)mlna+vmlnbd
=(1—-v)®(a)+vd(b) +mInG, (a,b),
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that is equivalent to
A, (a, b)
G, (a,b) —
and the first inequality in (2.1) is proved.

Similarly, by the convexity of ®,; := —M In —® we get the second part of (2.1). O

mIn

<(1-v)®(a)+vd () —P((1 —v)a+vb)

For m, M with M > m > 0 we define

MP,  ifp>1, mP, ifp>1,
(2.2) M, = and m,, :=
mP, if p <0, MP, if p<O.
Consider the function ® () =¥, p € (—o0,0) U (1, oo) This is a convex function and

(1) =pp—1)tr2 t > 0. C0n81der /-i( ) = t2®" (t) = p(p—1)t*. We observe
that

ten[}g%ﬁ(t) =p(p—1)M, and tefg;g%ﬁ(t) pp—1)m
Corollary 2.1. Let m, M with M >m >0 and p € (—o0,0)U(1,00). Then for any
a, b € [m, M] and v € [0,1] we have

a p(p—1)
(2.3) In (éz Eazg> <(1-v)d?+vb —((1—v)a+uvb)P
AI/ (CL, b) p(p—1)Mp
<o(Gim)

where M,, and m,, are defined by (2.2).

By taking the exponential in (2.3) we get the equivalent inequality

(1—v)a? +vb? — (1 —v)a+ vb)?
(2.4) exp ( P —1) I, )

A

~ G, (a,b)

(1—v)a? +vb? — ((1 —v)a+vb)’
SexP( pp—1)my )

for any p € (—00,0) U (1,00), v € [0,1] and any a, b € [m, M].
If we take p = 2 in (2.4) and perform the calculations, then we get

(2.5) exp (;(1 —y)y(b]\;;‘y) < é EZZ; < exp (;(1 —u)u“;@f)z) ,

for any a,b € [m, M].
If a, b > 0 then by taking M = max {a, b} and m = min {a, b} in (2.5) we have

o co{bi-nil) s (b -nlily)
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Since

m(abxz_{?,zb} - (mi_{ b}>2 - (m - 1>2

nﬁi;€2iﬂ - <nﬁi;£fb}>2:: (?Ei}%f:;'_l>2

for any a, b > 0, then (2.6) can be written as

and

(2.7) exp (; (1—-v)v (1 - m> )
A, (a,b)
=G, (a,b)

gexp(;<1—v>V(m_l>2)'

This inequality was obtained in a different way in [5].

If we take p = —1 in (2.4) and perform the calculations, then we get
1 m (b — a)’ A, (a,b) 1 M (b—a)?
: ~(1- < < A
(%)em@“ W%Mmmﬂ—@m@—“pz(ywmm@m’

for any a, b € [m, M] and v € [0,1].

317

If a, b > 0 then by taking M = max{a,b} and m = min {a,b} in (2.8) and since

ab = max {a, b} min {a, b} we have

1 (b—a)?
(2.9) exXp <2 (1-v) Y nax {a,b} A, (a, b))

< exp <; (1- V)”min{gb,b_}ﬁj(aabJ 7

for any v € [0,1].

Since
1 < 1 < 1
max {a,b} — A, (a,b) — min{a,b}’

hence,

1 min {a, b} ? 1 (b—a)’

Z (11— el Sect e S < S (11—

P (2 (1-r)v (max {a,b} 1) ) = &P (2 (1-v) ¥ max {a,b} A, (a,b)

and

o) <om (- (22 ).
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showing that the double inequality (2.9) is better than (2.7).

3. SOME PERTURBED INEQUALITIES

Recall the following result obtained by Dragomir in 2006 [2] that provides a refine-
ment and a reverse for the weighted Jensen’s discrete inequality:

(3.1) n_min {p} (;f:lf@j) - f (iz))

je{1,2,...,n

S; Yopif(z)— f (; Zpﬂj)

n j=1 nj=1

je{1,2,...,n

<n _max }{pj} (;if(%)—f (ié%))v

where f : C' = R is a convex function defined on convex subset C' of the linear space
X {#;};cq10. ny ave vectors in €' and {p;} are nonnegative numbers with

Py=3"%1p;>0.
For n = 2, we deduce from (3.1) that

(3.2) o (W iy <372+y>>
<vf(x)+Q—-v)f(y)—fve+(1—-v)y)

<R (f(x);f(y) iy (w2+y)>

Je{1,2,...,n}

for any z,y € C' and v € [0, 1], where r :== min{v,1 — v} and R := max{v,1 —v}.

Theorem 3.1. Let M, m € R with M > m and ® € B ((0,00),m, M, —1n). Then
for any a, b >0 and v € [0,1] we have

Ay(a7b) G(a,b) 2r\ M
(3.3) In (GV (,) (A(a,b)> )

g(l—v)@(a>+v¢(b>—@((1—”>“+”b>‘2’°<w_q)(Hb))

G(a,0)\” A (b))
Sln((A(a,b)) Gy(a,b))
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<R ((I)(a) + o) o <a+b

2 ))—(v<1>(a)+(1—u)<1>(b)—@(ya+(1—y)b))

Gy (a,b) (A, b))
Sln(ma,b) <G<a,b>> ) |

where r :== min{v,1 — v} and R := max{v,1 —v}.

Proof. Since ® € B ((0,00),m, M, —1n), then f,, := & + mIn is convex and by (3.2)
we have

(3.5) % (W—@ (Cjb» —27“mlné§z:2
<P (a) + (1— ) ® (b) — ® (va + (1 - 1)b) _mmézgzg
(202 5) o 3
for any a,b > 0 and v € [0, 1].
Since @ € B((0,00),m, M, — In), then also fy = —® — M1n is convex and by
(3.2) we have
I R R
<@ (va+(1-v)b) — v (a) - (l—V)(I>(b)+M1néZEZ:Z;
<2R (@ (a > b) _ %) > cb(b)) +2RMIn égz Z;

for any a,b > 0 and v € [0, 1].
From the first inequality in (3.5) we have

n(en (Gen))

qu>(a)+(1—y)q>(b)—q>(ya+(1—u)b)—27«(W—<I><a+b>

while from the first inequality in (3.6) we also have

uc1>(a>+(1—u)<1>(b)—cp(;/a+(1_,,)b)_2T<<I>(fz)+q>(b)_®<a+b>>

Gl )\ A (@ b))
Sl“((mb)) Gy<a,b>) /

for any a,b > 0 and v € [0, 1].
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These prove the desired result (3.3).
From the second inequality in (3.5) we have

o ((Ae) " )

gzz%(clw—@(“;b)) (B (a)+ (1= ) D () — D (wa+ (1—)b)),

while from the second inequality in (3.6) we also have

oR (cI)(a)+CI>(b) _®<a+b

)) — (@ (a) + (1 - 1)@ () — @ (va+ (1 —1)b))

2R\ M
o (God) (A
- A, (a,b) \ G (a,b) ’
for any a,b > 0 and v € [0, 1].
These prove the desired result (3.4). O

Corollary 3.1. Let m, M with M > m >0 and p € (—o0,0) U (1,00). Then for any
a,b € [m, M] and v € [0, 1] we have

o\ P(P—1)myp
A, (a,b) (G (a,b)
(3.7) In (Gy (a,b) <A(a,b)) )

< =v)a + vt — (1=v)a+vb) —2r (CLPW_ (Hb)p)

2 2
2 p(P*l)Mp
G (a,b) A, (a,b)
=l ((A(a,b)> G, (@ b))

and
R (C T
<2R (a”;rbp - <a—2|—b>p> (L) o — (1 — ) at vb))

where r := min{v,1 — v} and R := max{v,1 — v} and M, and m, are defined by
(2.2).
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Observe, by simple calculation, we have that

(3.9 ﬂ—vﬁf+v¥—(u—uwp+wf—ar(ﬁ+ﬁ2_<a+b>)

2 2

:(1—V)1/(b—a)2—g(b—a)gzr(R—;> (b—a)?

and

ﬁ+02_<a+b2

(3.10) 2R ( 5 5 ) ) - ((1 —v)a*+vb? — (1 —v)a+ l/b)2>

:?(b—af—(l—y)y(b—a) —R<—r> (b—a)’,

for any a,b € [m, M] and v € [0, 1].
If we write the inequalities (3.7) and (3.8) for p = 2, then we get

A (@,b) (Glan\"\" 1 ,
(3.11) In (G,,(a,b) (A(a,b)) ) §r<R—2> (b—a)

for any a,b € [m, M] and v € [0, 1].
From the first inequality in (3.11) we have

(3
(3.13) éy E% b; < (G EZ: 2) exp (2177%27“ (R - ;) (b— a)2> :

while from the second inequality in (3.11) we have

ow (&) e e (3 o-0) <5l

From the first inequality in (3.12) we have

o (E) e Cmanle-o) <5
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while from the second inequality in (3.12) we have

o0 G < (Gem) oo (mmn(z-)o-o)
In conclusion, from (3.13)-(3.16) we have the following result:
(3.17) max (é EZ: Z;>2T exp <2]\1427“ (R - ;) (b— a)2> ’
(5ep) o (g (=) o)}
<A,, (a,b)
~— G, (a,b)

gmin{ égzz Z;)QT exp (2;27’ (R — ;) (b— a)2> 7
(Geh) = (Caian )=o),

for any a,b € [m, M] and v € [0, 1].
We need the following lemma (see [4]).

Lemma 3.1. If the function f: I C R — R is a differentiable convez function on Io,
then for any a, b € I and v € [0,1] we have

(3.18) 0<(1—-v)f(a)+vf() —f((1—-v)a+vb)
<v(l=v)(b—a)(f (b) - f(a)).
We have the following theorem.

Theorem 3.2. Let M, m € R with M > m and ® € B((0,00),m, M,—1n). Then
for any a,b >0 and v € [0, 1] we have

019 (o= O 2l
<v(1=v)(b—a) (¥ (b) — &' (a))

—(1=v)®(a) +v® (b) — @ ((1 —v)a+vb))
< (vu-n 05 o).

Proof. Since ® € B ((0,00),m, M, —In), then f,, := ® + mIn is convex and by (3.18)
we have

T

v

0<(1—-v)®(a)+vP () —P(1—-v)a+vb) —mln
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<v(1-0)(b-a) (¢ 1) - (@) + 7 - )

b a
:y(l_y)(b—a)(cb’(b)—q)’(a))—gu(l—y)(b—a)Q,

that is equivalent to
(b _ (Z)2 AI/ (Cl, b)
1-— —1
" <y (1-v) ab " G, (a,b)
<v(1l-=v)(b—a)(® () =P (a)—(1—-v)P(a)+vP(b) —P((1—v)a+ b)),
for any a, b € [m, M] and v € [0, 1] and the first inequality in (3.19) is proved.

Since ® € B((0,00),m, M, —1In), then also fy; := —® — M In is convex and by
(3.18) we have

A, (a,b)
0= —(1=9)@ () =v@ () + F (1 —v)a+vb) + Mn - s

(b—a)’
ab

<—v(l—-v)(b—a)(® () - (a))+ Mv(l—vr)
that is equivalent to

v(l—v)(b—a)(® () — 9 (a) - (1—v)P(a) —vP(b)+ f((1 —v)a+ vb)

(b—a)? A, (a,b)
<M <V(1—V) - —1In a. (a,b)) :

for any a,b € [m, M| and v € [0, 1] and the second inequality in (3.19) is proved. O

Corollary 3.2. Let m, M with M >m >0 and p € (—00,0) U (1,00). Then for any
a,b € [m, M] and v € [0, 1] we have
B (=)’ ,b)
320 o=, (v O g
<pr(1=v)(b—a) (""" —a"") = (1= v)a” + vl — (1 —v)a + b))
(b — (l)Q All (a’u b)
< _ _ _
<plp- 10, (v - P o SR

where M,, and m, are defined by (2.2).

Q

Azx(
—lnG (

s}

v

The case p = 2 is of interest. Observe that
2v(1-v)(b—a)’ = ((1=v)a® + b = (1 - v)a +vb)°)
=w(l-v)b—a)l—v(l—v)(b—a)’=v(1—-v)(b-a)
and by (3.20) we have

2m? (V (1—-v) (b ;ba) —1In a (a,Z)) <v(1—v)(b—a)
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b—a) A, (a,b)
<2M? 1— b=a) —In ="+
- (V (1-v) ab ha, (a,b) )’
which is equivalent to
(3.21)
5 (1 1 )) A, (a,b)
_ _ [ < v\
b (V 1-v)-a (ab 2m2/)) — G, (a,b)
1 1
< — —a)? (= —
o (#1000 (G~ 53p)).
for any a, b € [m, M] and v € [0, 1].
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