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SOME COMMUTATIVITY THEOREMS FOR NEAR-RINGS WITH
LEFT MULTIPLIERS

A. BOUA1, A. Y. ABDELWANIS2, AND A. CHILLALI1

Abstract. Let N be a 3-prime near-ring with the center Z(N), and U be a nonzero
semigroup ideal of N. In the present paper it is shown that a 3-prime near-ring N is a
commutative ring if and only if it admits left multipliers F and G satisfying any one
of the following properties: (i)F(x)G(y)± [x, y] ∈ Z(N); (ii)F(x)G(y)±x◦y ∈ Z(N);
(iii)F(x)G(y)±yx ∈ Z(N); (iv)F(x)G(y)±xy ∈ Z(N) and (v)F([x, y])±G(x◦y) ∈
Z(N) for all x, y ∈ U .

1. Introduction

In the present paper, N will denote a right near-ring with center Z(N). A near-ring
N is called zero-symmetric if x0 = 0 for all x ∈ N (recall that right distributivity
yields 0x = 0). A non empty subset U of N is said to be a semigroup left (resp. right)
ideal of N if NU ⊆ U (resp. UN ⊆ U ) and if U is both a semigroup left ideal and a
semigroup right ideal, it is called a semigroup ideal of N. As usual for all x, y in N, the
symbol [x, y] stands for Lie product (commutator) xy−yx and x◦y stands for Jordan
product (anticommutator) xy + yx. We note that for a near-ring, −(x + y) = −y− x.
Recall that N is 3-prime, that is, for all a, b in N, aNb = {0} implies that a = 0
or b = 0. N is said to be 2-torsion free if whenever 2x = 0, with x ∈ N, then
x = 0. An additive mapping d : N → N is a derivation if d(xy) = xd(y) + d(x)y
for all x, y ∈ N, or equivalently, as noted in [15], that d(xy) = d(x)y + xd(y) for all
x, y ∈ N. The concept of derivation in rings has been generalized in several ways
by various authors. Generalized derivation has been introduced already in rings by
M. Brešar [7]. Also the notions of generalized derivation has been introduced in
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near-rings by Öznur Gölbasi [11]. An additive mapping F : N → N is called a right
generalized derivation with associated derivation d if F(xy) = F(x)y + xd(y) for all
x, y ∈ N and F is called a left generalized derivation with associated derivation d if
F(xy) = d(x)y + xF(y) for all x, y ∈ N. F is called a generalized derivation with
associated derivation d if it is both a left as well as a right generalized derivation with
associated derivation d. An additive mapping F : N → N is said to be a left (resp.
right) multiplier (or centralizer) if F(xy) = F(x)y (resp. F(xy) = xF(y)) holds for
all x, y ∈ N. F is said to be a multiplier if it is both left as well as right multiplier.
Notice that a right (resp. left) generalized derivation with associated derivation d = 0
is a left (resp. right) multiplier. Several authors investigated the commutativity in
prime and semiprime rings admitting derivations and generalized derivations which
satisfy appropriate algebraic conditions on suitable subset of the rings. For example,
we refer the reader to [1,2,4–6,8,10,12–14], where further references can be found. In
[2] the authors proved that the prime ring R must be commutative if R is equipped
with a generalized derivation F associated with a nonzero derivation d satisfying any
one of the following conditions:

(i) F(x)F(y)− xy ∈ Z(R) for all x, y ∈ I;
(ii) F(x)F(y) + xy ∈ Z(R) for all x, y ∈ I, where I is a nonzero two sided ideal

of R.
From these identities, it is natural to consider the situations

(iii) F(x)F(y)− yx ∈ Z(R) and
(iv) F(x)F(y)+yx ∈ Z(R) for all x, y in some suitable subset of R, which is studied

by Dhara et al. in [9].
Further, A. Ali et al. [10] proved that the prime ring R must be commutative if R
is equipped with a generalized derivation F associated with a nonzero derivation d
satisfying any one of the following conditions: (i) F(x)F(y) ± [x, y] ∈ Z(R) for all
x, y ∈ I, (ii) F(x)F(y)± x ◦ y ∈ Z(R) for all x, y ∈ I. In this line of investigation, it
is more interesting to study the identities in two directions replacing ring by near-ring
and the generalized derivation by left multiplier. Motivated by the above results, here
we continue this line of investigation by considering more general situations. More
precisely, we explore the commutativity of a 3-prime ring provided with left multipliers
F, G satisfying any one of the following identities:

(i) F(x)G(y)± [x, y] ∈ Z(N);
(ii) F(x)G(y)± x ◦ y ∈ Z(N);
(iii) F(x)G(y)± yx ∈ Z(N);
(iv) F(x)G(y)± xy ∈ Z(N) ∈ Z(N) and
(v) F([x, y])±G(x ◦ y) ∈ Z(N) for all x, y ∈ N.

2. Some Preliminaries

In this section, we give some well known results of near-rings which will be used
extensively in the forthcoming sections.
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Lemma 2.1. ([3, Lemma 1.3]). Let N be a 3-prime near-ring.
(i) If z ∈ Z(N)− {0} and xz ∈ Z(N), then x ∈ Z(N).
(ii) If U is a nonzero semigroup right ideal (resp. semigroup left ideal) and x is an

element of N such that Ux = {0} (resp. xU = {0}), then x = 0.

Lemma 2.2. ([3, Lemma 1.5]). Let N be a 3-prime near-ring, such that Z(N) contains
a nonzero semigroup left ideal or semigroup right ideal. Then N is a commutative
ring.

Lemma 2.3. ([3, Theorem 2.1]). Let N be a 3-prime near-ring, U a nonzero semigroup
left ideal or semigroup right ideal. If N admits a nonzero derivation d such that
d(U) ⊆ Z(N), then N is a commutative ring.

Lemma 2.4. ([3, Lemma 1.4]). Let N be a 3-prime near-ring and U a nonzero
semigroup ideal of N. If x, y ∈ N and xUy = {0}, then x = 0 or y = 0.

3. Main Result

Proposition 3.1. Let N be a 3-prime near-ring, and U be a nonzero semigroup
ideal of N. If N admits nonzero left multiplier F and nonzero derivation d, then the
following assertions are equivalent:

(i) F([x, y]) ∈ Z(N) for all x, y ∈ U ;
(ii) F([d(x), y]) ∈ Z(N) for all x, y ∈ U ;
(iii) N is a commutative ring.

Proof. It is obvious that (iii) implies (i) and (iii) implies (ii). So we need to prove
that (i)⇒(iii) and (ii)⇒(iii).
(i)⇒(iii) Suppose that

(3.1) F([x, y]) ∈ Z(N), for all x, y ∈ U.

Replacing y by yx in (3.1), we get

(F([x, y]))x ∈ Z(N), for all x, y ∈ U.

Using Lemma 2.1 (i) together with (3.1), we obtain

F([x, y]) = 0 or x ∈ Z(N), for all x, y ∈ U.

Which implies that

(3.2) F([x, y]) = 0, for all x, y ∈ U.

Since F is left multiplier, (3.2) gives F(x)y = F(y)x for all x, y ∈ U . Replacing y
by [u, v]y and invoking (3.2), we get F(x)[u, v]y = 0 for all u, v, x, y ∈ U. Taking
x = xr where r ∈ N in the last expression, we arrive at F(x)N[u, v]y = {0} for
all u, v, x, y ∈ U . Using the 3-primeness of N with the fact that F 6= 0, we obtain
[u, v]U = {0} for all u, v ∈ U and Lemma 2.1 (ii) gives [u, v] = 0 for all u, v ∈ U
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which forces that N is a commutative ring.
(ii)⇒(iii) Assume that
(3.3) F([d(x), y]) ∈ Z(N), for all x, y ∈ U.

Substituting y with yd(x) in the pervious equation we obtain
(3.4) F([d(x), y])d(x) ∈ Z(N), for all x, y ∈ U.

So by using Lemma 2.1(i) and (3.3), we get
F([d(x), y]) = 0 or d(x) ∈ Z(N), for all x, y ∈ U.

Which implies that
(3.5) F([d(x), y]) = 0, for all x, y ∈ U.

But F is left multiplier, then (3.5) implies that F(d(x))y = F(y)d(x) for all x, y ∈ U .
Replacing y by [d(u), v]y and invoking (3.5), we get F(d(x))[d(u), v]y = 0 for all
u, v, x, y ∈ U . Putting x = xr where r ∈ N in the latter equation, we arrive at
F(x)N[d(u), v]y = {0} for all u, v, x, y ∈ U . By using the 3-primeness of N and the
fact that F 6= 0, we get [d(u), v]U = {0} for all u, v ∈ U . Hence, by Lemma 2.1 (ii)
we obtain [d(u), v] = 0 for all u, v ∈ U , which forces that N is a commutative ring by
[4, Theorem 2.9]. �

It is clear that idN is a left multiplier of N. If we replace F by idN, we find a result
similar to [4, Theorem 2.9] in the case of right near-rings.

Corollary 3.1. Let N be a 3-prime near-ring. If U is a nonzero semigroup ideal of
N and d : N→ N be a derivation, then the following assertions are equivalent:

(i) [x, y] ∈ Z(N) for all x, y ∈ U ;
(ii) [d(x), y] ∈ Z(N) for all x, y ∈ U ;
(ii) N is a commutative ring.

Proposition 3.2. Let N be a 2-torsion free 3-prime near-ring, and U be a nonzero
semigroup ideal of N. If N admits nonzero left multiplier G and nonzero derivations
d, then the following assertions are equivalent:

(i) G(x ◦ y) ∈ Z(N) for all x, y ∈ U ;
(ii) G(d(x) ◦ y) ∈ Z(N) for all x, y ∈ U ;
(iii) N is a commutative ring.

Proof. It is obvious that (iii) implies (i) and (iii) implies (ii). So it remains to prove
that (i)⇒(iii) and (ii)⇒(iii).
(i)⇒(ii) Suppose that
(3.6) G(x ◦ y) ∈ Z(N), for all x, y ∈ U.

Replacing y by yx in (3.6), we get
G(x ◦ y)x ∈ Z(N), for all x, y ∈ U.
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Using Lemma 2.1 (i) together with (3.6), we obtain

(3.7) G(x ◦ y) = 0 or x ∈ Z(N), for all x, y ∈ U.

Suppose there exists x0 ∈ U such that G(x0 ◦ y) = 0 for all y ∈ U. For y = x0, we
obtain G(x0)x0 = 0. Also, we have G(x0)y = −G(y)x0 for all y ∈ U . Putting x0y in
place of y, we arrive at G(x0)Ux0 = {0} and by Lemma 2.4, we get G(x0) = 0 or
x0 = 0 which implies that G(x0) = 0. In this case, our assumption gives G(y)x0 = 0
for all y ∈ U . Replacing y by yt, where t ∈ N , we get G(y)Nx0 = {0}. By 3-primeness
of N with the fact that G 6= 0, we conclude that x0 = 0. In this case, (3.7) implies
that U ⊆ Z(N) and Lemma 2.2 forces that N is a commutative ring.
(ii)⇒(iii) Assume that

(3.8) G(d(x) ◦ y) ∈ Z(N), for all x, y ∈ U.

Replacing y by yd(x) in (3.8), we obtain

(3.9) G(d(x) ◦ y)d(x) ∈ Z(N), for all x, y ∈ U.

Using Lemma 2.1 (i) together with (3.8), we obtain

G(d(x) ◦ y) = 0 or d(x) ∈ Z(N), for all x, y ∈ U.

Suppose there exists x0 ∈ U such that G(d(x0) ◦ y) = 0 for all y ∈ U . For y = d(x0),
by 2-torsion we get G(d(x0))d(x0) = 0. Also, we have G(d(x0))y = −G(y)d(x0) for
all y ∈ U . Replacing d(x0)y in place of y, we arrive at G(d(x0))Ud(x0) = {0} and by
Lemma 2.4, we obtain G(d(x0)) = 0 or d(x0) = 0 which implies that G(d(x0)) = 0.
Thus, our assumption gives G(y)d(x0) = 0 for all y ∈ U . Substituting y by yt, where
t ∈ N, we get G(y)Nd(x0) = {0}. By 3-primeness of N with the fact that G 6= 0, we
conclude that d(x0) = 0. In this case, (3.9) implies that d(U) ⊆ Z(N) and Lemma
2.3 forces that N is a commutative ring. �

When G = idN, we find a result similar to [4, Theorem 2.10] in the case of right
near-rings.

Corollary 3.2. Let N be a 2-torsion 3-prime near-ring. If U is a nonzero semigroup
ideal of N and d : N→ N be a derivation, then the following assertions are equivalent:

(i) x ◦ y ∈ Z(N) for all x, y ∈ U ;
(ii) d(x) ◦ y ∈ Z(N) for all x, y ∈ U ;
(iii) N is a commutative ring.

Theorem 3.1. Let N be a 2-torsion free 3-prime near-ring, and U be a nonzero
semigroup ideal of N. If N admits nonzero left multipliers F and G, then the following
assertions are equivalent:

(i) F([x, y]) + G(x ◦ y) ∈ Z(N) for all x, y ∈ U ;
(ii) F([x, y])−G(x ◦ y) ∈ Z(N) for all x, y ∈ U ;
(iii) N is a commutative ring.
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Proof. It is obvious that (iii) implies (i) and (iii) implies (ii). So we need to prove
that (i)⇒(iii) and (ii)⇒(iii).
(i)⇒(iii) Suppose that
(3.10) F([x, y]) + G(x ◦ y) ∈ Z(N), for all x, y ∈ U.

Replacing y by yx in (3.10), we get
(F([x, y]) + G(x ◦ y))x ∈ Z(N), for all x, y ∈ U.

Using Lemma 2.1(i) together with (3.10), we obtain
(3.11) F([x, y]) + G(x ◦ y) = 0 or x ∈ Z(N), for all x, y ∈ U.

Suppose there exists x0 ∈ Z(N), then (3.10) implies that G(t + t)x0 ∈ Z(N) for all
t ∈ U . By Lemma 2.1(i), we arrive at x0 = 0 or G(t + t) ∈ Z(N) for all t ∈ U , in this
case, (3.11) becomes
(3.12) F([x, y]) + G(x ◦ y) = 0 or G(t + t) ∈ Z(N), for all x, y, t ∈ U.

Assume that F([x, y]) + G(x ◦ y) = 0 for all x, y ∈ U . For x = y, we obtain
G(x2) = G(x)x = 0 for all x ∈ U and replacing x by xG(y) in our assumption, we
have F([xG(y), y]) + G(xG(y) ◦ y) = 0 for all x, y ∈ U and developing this equation,
we find that (G(y) − F(y))UG(y) = {0} for all y ∈ U. Using Lemma 2.4, we find
that either G(y) − F(y) = 0 or G(y) = 0 for all y ∈ U. Suppose there exists y0 ∈ U
such that G(y0) − F(y0) = 0 and replacing y by y0 in F([x, y]) + G(x ◦ y) = 0, we
arrive at (F(x) + G(x))y0 = 0 for all x ∈ U. Taking xt in place of x, where t ∈ N

the last expression becomes (F(x) + G(x))Ny0 = {0} for all x ∈ U . By 3-primeness
of N, we get F = −G or y0 = 0. Since G 6= 0, in all the cases, we obtain that
F = −G which forces that F([x, y]) = F(x ◦ y) for all x, y ∈ U and developing this
expression, we find that F(y)x = 0 for all x, y ∈ U. Using Lemma 2.1(ii), we conclude
that F(U) = {0}. Since NU ⊆ U, then F(N)U = {0}. By Lemma 2.1(ii), we obtain
F = 0, a contradiction.

Assume that G(t + t) ∈ Z(N) for all t ∈ U . Putting t = tr, where r ∈ N, then
G(tr + tr) = G(t + t)r ∈ Z(N) for all t ∈ U , r ∈ N. Using Lemma 2.1(i), we obtain
G(t + t) = 0 or r ∈ Z(N) for all t ∈ U , r ∈ N and using 2-torsion freeness of N
together with G 6= 0, we conclude that N is a commutative ring.

The proof of (ii)⇒(iii) is similar to (i)⇒(iii). �

In particular, when G = idN, then we have the following corollary.

Corollary 3.3. Let N be a 2-torsion free 3-prime near-ring, and U be a nonzero
semigroup ideal of N. If N admits a nonzero left multiplier F, then the following
assertions are equivalent:

(i) F([x, y]) + x ◦ y ∈ Z(N) for all x, y ∈ U ;
(ii) F([x, y])− x ◦ y ∈ Z(N) for all x, y ∈ U ;
(iii) N is a commutative ring.

In particular, when F is an identity map, then we have the following result.
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Corollary 3.4. Let N be a 2-torsion free 3-prime near-ring, and U be a nonzero
semigroup ideal of N. If N admits a nonzero left multiplier G, then the following
assertions are equivalent:

(i) [x, y] + G(x ◦ y) ∈ Z(N) for all x, y ∈ U ;
(ii) [x, y]−G(x ◦ y) ∈ Z(N) for all x, y ∈ U ;
(iii) N is a commutative ring.

In a ring R, if F is a left multiplier, then F± idR is also a left multiplier, where idR

denotes the identity mapping on R. By substituting F± idR in place of F in Theorem
3.1, we get the following result.

Corollary 3.5. Let R be a prime ring of characteristic not 2, and U be a nonzero
ideal of R. If R admits nonzero left multipliers F and G, then the following assertions
are equivalent:

(i) F([x, y]) + G(x ◦ y)± [x, y] ∈ Z(R) for all x, y ∈ U ;
(ii) F([x, y])−G(x ◦ y)± [x, y] ∈ Z(R) for all x, y ∈ U ;
(iii) R is commutative.

In particular, when G is replaced by G± idR, then we have the following.

Corollary 3.6. Let R be a prime ring of characteristic not 2, and U be a nonzero
ideal of R. If R admits nonzero left multipliers F and G, then the following assertions
are equivalent:

(i) F([x, y]) + G(x ◦ y)± x ◦ y ∈ Z(R) for all x, y ∈ U ;
(ii) F([x, y])−G(x ◦ y)± x ◦ y ∈ Z(R) for all x, y ∈ U ;
(iii) R is commutative.

In particular, when F and G are replaced by F± idR and G± idR respectively, then
we have the following corollary.

Corollary 3.7. Let R be a prime ring of characteristic not 2, and U be a nonzero
ideal of R. If R admits nonzero left multipliers F and G, then the following assertions
are equivalent:

(i) F([x, y]) + G(x ◦ y)± 2xy ∈ Z(R) for all x, y ∈ U ;
(ii) F([x, y])−G(x ◦ y)± 2yx ∈ Z(R) for all x, y ∈ U ;
(iii) R is commutative.

Theorem 3.2. Let N be a 3-prime near-ring, and U be a nonzero semigroup ideal of
N. If N admits left multipliers F and G, then the following assertions are equivalent:

(i) F(x)G(y)− [x, y] ∈ Z(N) for all x, y ∈ U ;
(ii) F(x)G(y)− x ◦ y ∈ Z(N) for all x, y ∈ U ;
(iii) N is a commutative ring.

Proof. It is obvious that (iii) implies (i) and (iii) implies (ii). So we need to prove
that (i)⇒(iii) and (ii)⇒(iii).
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(i)⇒(iii) If F = 0 or G = 0, then −[x, y] ∈ Z(N) for all x, y ∈ U . Replacing y by yx,
we get (−[x, y])x ∈ Z(N) for all x, y ∈ U and using Lemma 2.1(i), we obtain [x, y] = 0
or x ∈ Z(N) for all x, y ∈ U which implies that [x, y] = 0 for all x, y ∈ U . Using
Corollary 3.1, we conclude that N is a commutative ring.

Suppose that F 6= 0 and G 6= 0, we have
(3.13) F(x)G(y)− [x, y] ∈ Z(N), for all x, y ∈ U.

Replacing y by yx in (3.13) and using the fact that [x, yx] = ([x, y])x, we get
(F(x)G(y)− [x, y])x ∈ Z(N), for all x, y ∈ U.

By Lemma 2.1 (i) together with (3.13), we obtain
(3.14) F(x)G(y) = [x, y] or x ∈ Z(N), for all x, y ∈ U.

Suppose there exists x0 ∈ U such that F(x0)G(y) = [x0, y] for all y ∈ U . Taking yr
instead of y, where r ∈ N, we get F(x0)G(y)r = [x0, yr] for all y ∈ U , r ∈ N which
implies that [x0, y]r = [x0, yr] for all y ∈ U , r ∈ N and developing this expression,
we arrive at y[x0, r] = 0 for all y ∈ U , r ∈ N. Using Lemma 2.1 (ii), we obtain that
x0 ∈ Z(N) in this case, (3.2) becomes x ∈ Z(N) for all x ∈ U which forces that N is
a commutative ring by Lemma 2.2.
(ii)⇒(iii) If F = 0 or G = 0, then −(x ◦ y) ∈ Z(N) for all x, y ∈ U . Replacing y by yx
we get (−x◦ y)x ∈ Z(N) for all x, y ∈ U and using Lemma 2.1 (i), we obtain x◦ y = 0
or x ∈ Z(N) for all x, y ∈ U . Using the same techniques as used in the proof of [4,
Theorem 2.10], we conclude that N is a commutative ring.
Now assume that F 6= 0 and G 6= 0, we have
(3.15) F(x)G(y)− x ◦ y ∈ Z(N), for all x, y ∈ U.

Putting yx instead of y in (3.15) and using the fact that x ◦ yx = (x ◦ y)x, we get
(F(x)G(y)− x ◦ y)x ∈ Z(N), for all x, y ∈ U.

By Lemma 2.1(i) and using (3.15), we obtain
(3.16) F(x)G(y) = x ◦ y or x ∈ Z(N), for all x, y ∈ U.

If there exists x0 ∈ U such that F(x0)G(y) = x0 ◦ y for all y ∈ U . Taking yr instead
of y, where r ∈ N, we obtain F(x0)G(y)r = x0 ◦ yr for all y ∈ U , r ∈ N this reduces
to (x0 ◦ y)r = x0 ◦ yr for all y ∈ U , r ∈ N, so y[x0, r] = 0 for all y ∈ U , r ∈ N. By
Lemma 2.1 (ii), we conclude that x0 ∈ Z(N), in this case, (3.16) becomes x ∈ Z(N)
for all x ∈ U. By Lemma 2.2, we conclude that N is a commutative ring. �

Using similar techniques with necessary variations, we get the following Theorem.
We skip the details of the proof just to avoid repetition.

Theorem 3.3. Let N be a 3-prime near-ring, and U be a nonzero semigroup ideal of
N. If N admits left multipliers F and G, then the following assertions are equivalent:

(i) F(x)G(y) + [x, y] ∈ Z(N) for all x, y ∈ U ;
(ii) F(x)G(y) + x ◦ y ∈ Z(N) for all x, y ∈ U ;



SOME COMMUTATIVITY THEOREMS FOR NEAR-RINGS WITH LEFT MULTIPLIERS 213

(iii) N is a commutative ring.

If we put F = G in Theorem 3.2 and Theorem 3.3, we obtain the following result.

Corollary 3.8. Let N be a 3-prime near-ring, and U be a nonzero semigroup ideal
of N. If N admits left multiplier F, then the following assertions are equivalent:

(i) F(x)F(y)± [x, y] ∈ Z(N) for all x, y ∈ U ;
(ii) F(x)F(y)± x ◦ y ∈ Z(N) for all x, y ∈ U ;
(iii) N is a commutative ring.

Theorem 3.4. Let N be a 3-prime near-ring, and U be a nonzero semigroup ideal of
N. If N admits left multipliers F and G, then the following assertions are equivalent:

(i) F(x)G(y)− yx ∈ Z(N) for all x, y ∈ U ;
(ii) F(x)G(y) + yx ∈ Z(N) for all x, y ∈ U ;
(iii) N is a commutative ring.

Proof. It is clear that (iii) implies (i) and (iii) implies (ii). It remains to show that
(i)⇒(iii) and (ii)⇒(iii).
(i)⇒(iii) If F = 0 or G = 0, then −yx ∈ Z(N) for all x, y ∈ U, so −yxz ∈ Z(N) for all
x, y, z ∈ U. Using Lemma 2.1 (i), we obtain −yx = 0 or z ∈ Z(N) for all x, y, z ∈ U.
Using Lemma 2.1 (ii) and Lemma 2.2 with the fact that U 6= {0}, we conclude that
N is a commutative ring.

Suppose that F 6= 0 and G 6= 0, we have
(3.17) F(x)G(y)− yx ∈ Z(N), for all x, y ∈ U.

Replacing y by yx in (3.17), we get
(F(x)G(y)− yx)x ∈ Z(N), for all x, y ∈ U.

By Lemma 2.1 (i), the last expression becomes
(3.18) F(x)G(y) = yx or x ∈ Z(N), for all x, y ∈ U.

Suppose there exists x0 ∈ U such that F(x0)G(y) = yx0 for all y ∈ U . Taking yr
instead of y, where r ∈ N, we find that F(x0)G(y)r = yrx0 for all y ∈ U , r ∈ N which
implies that yx0r = yrx0 for all y ∈ U , r ∈ N and therefore y[x0, r] = 0 for all y ∈ U ,
r ∈ N. Using Lemma 2.1 (ii), we obtain that x0 ∈ Z(N) in this case, (3.18) becomes
x ∈ Z(N) for all x ∈ U which forces that N is a commutative ring by Lemma 2.2.
(ii)⇒(iii) Using the same tips that have used in the proof of (i)⇒(iii), we get the
desired result. �

For G = F, we have the following result.

Corollary 3.9. Let N be a 3-prime near-ring, and U be a nonzero semigroup ideal
of N. If N admits a left multiplier F, then the following assertions are equivalent:

(i) F(x)F (y)− yx ∈ Z(N) for all x, y ∈ U ;
(ii) F(x)F (y) + yx ∈ Z(N) for all x, y ∈ U ;
(iii) N is a commutative ring.
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Theorem 3.5. Let N be a 3-prime near-ring, and U be a nonzero semigroup ideal
of N. If N admits left multipliers F and G such that F(x)G(y) − xy ∈ Z(N) for all
x, y ∈ U or F(x)G(y) + xy ∈ Z(N) for all x, y ∈ U, then N is a commutative ring or
F is a right multiplier.

Proof. If F = 0 or G = 0, then −xy ∈ Z(N) for all x, y ∈ U. Using the same proof
that we have used in the beginning of Theorem 3.3, we obtain the required result.
Now suppose that
(3.19) F(x)G(y)− xy ∈ Z(N), for all x, y ∈ U.

Putting yz in place of y in (3.19), we get
(F(x)G(y)− xy)z ∈ Z(N), for all x, y, z ∈ U.

Using Lemma 2.1(i) and (3.19), the above expression implies that
F(x)G(y) = xy or z ∈ Z(N), for all x, y, z ∈ U

By Lemma 2.2, we obtain
(3.20) F(x)G(y) = xy, for all x, y ∈ U or N is a commutative ring.
Assume that F(x)G(y) = xy for all x, y ∈ U . Taking xu instead of x, we get
F(x)uG(y) = xuy = xF(u)G(y) for all x, y, u ∈ U , so (F(x)u− xF(u)G(y) = 0 for all
x, y, u ∈ U . Replacing u by ur, where r ∈ N, we arrive at (F(x)u−xF(u))NG(y) = {0}
for all x, y, u ∈ U . By 3-primeness of N, we get either G(y) = 0 or F(x)u = xF(u)
for all x, y, u ∈ U. If G(y) = 0 for all y ∈ U , taking ry instead of y, we find that
G(r)U = {0} for all r ∈ N and using Lemma 2.1(ii), we get G = 0; a contradiction. If
F(x)u = xF(u) for all x, u ∈ U. Replacing rx in place of x, we get (F(r)x−rF(x))U =
{0} for all x ∈ U , r ∈ N. By Lemma 2.1(ii), we obtain F(r)x = rF(x) for all x ∈ U ,
r ∈ N. Taking tx instead of x, where t ∈ N and using Lemma 2.1 (ii) again, we
conclude that F(r)t = rF(t) for all r, t ∈ N which forces that F is a right multiplier.

If F(x)G(y) + xy ∈ Z(N) for all x, y ∈ U, using the same techniques as have used
in (i)⇒(iii), we get the required result. �

In particular, when G = F, then we have the following.

Corollary 3.10. Let N be a 3-prime near-ring, and U be a nonzero semigroup ideal
of N. If N admits a left multiplier F such that F(x)F(y)−xy ∈ Z(N) for all x, y ∈ U
or F(x)F(y) + xy ∈ Z(N) for all x, y ∈ U, then N is a commutative ring or F is a
right multiplier.

The following example demonstrates that our results are not true for arbitrary
near-rings.

Example 3.1. Suppose that S is any right near-ring. Let

N =


 0 a b

0 0 c
0 0 0


∣∣∣∣∣∣∣ a, b, c ∈ S

 and U =


 0 0 u

0 0 0
0 0 0


∣∣∣∣∣∣∣u ∈ S

 .
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Define maps F, G : N→ N such that

F

 0 a b
0 0 c
0 0 0

 =

 0 0 a
0 0 0
0 0 0

 and G

 0 a b
0 0 c
0 0 0

 =

 0 0 0
0 0 c
0 0 0

 .

Then, it is easy to see that N is a right near-ring and F, G are left multipliers on N

satisfying the following properties:
(i) F(x)G(y)± [x, y] ∈ Z(N);
(ii) F(x)G(y)± x ◦ y ∈ Z(N);
(iii) F(x)G(y)± xy ∈ Z(N);
(iv) F(x)G(y)± yx ∈ Z(N);
(v) F([x, y])±G(x ◦ y) ∈ Z(N);

for all x, y ∈ U . However, N is not commutative.

The following example shows that the condition ”F([x, y]) ± G(x ◦ y) ∈ Z(N) for
all x, y ∈ U“ is crucial in Theorem 3.1.

Example 3.2. Let N = M2(Z) be the 2× 2 matrix ring over Z and F, G : N→ N such
that

F

(
a b
c d

)
=
(

a b
0 0

)
, for all a, b, c, d ∈ Z and G = F

It is easy to verify that N is a non-commutative prime ring which is 2-torsion free and

F, G are left multipliers of N. Moreover, for A =
(

0 1
1 1

)
, B =

(
1 0
1 0

)
, we have

F([A, B])±G(A ◦B) /∈ Z(N).

The following example demonstrate that the existence of “2-torsion free” in the
hypotheses of Theorem 3.1 is essential.

Example 3.3. Let N = M2(Z2) be the 2× 2 matrix ring over the field Z2 and F = IdN.
It is easy to see that N is a non-commutative prime ring which is not 2-torsion free.
Moreover, N satisfies the condition F([x, y])±G(x ◦ y) ∈ Z(N) for all x, y ∈ N.
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