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SOME MATRIX AND COMPACT OPERATORS OF THE
ABSOLUTE FIBONACCI SERIES SPACES

FADIME GÖKÇE1 AND MEHMET ALI SARIGÖL1

Abstract. In the present paper, we introduce the absolute Fibonacci space |Fu|k,
give some inclusion relations and investigate topological and algebraic structure
such as BK-space, α-, β-, γ- duals and Schauder basis. Further, we characterize
certain matrix and compact operators on these spaces, also determine their norms
and Hausdroff meausures of noncompactness.

1. Introduction

Let ω be the set of all sequences of complex numbers. We write c, `∞, cs, bs and
`k, k ≥ 1, for the sequence space of all convergent, bounded sequences; for the spaces
of all convergent, bounded, k-absolutely convergent series, respectively. Let X and
Y be two subspaces of ω and A = (anv) be an arbitrary infinite matrix of complex
numbers. If the series

An(x) =
∞∑
v=0

anvxv,

converges for all n ∈ N = {0, 1, 2, . . .}, then, by A(x) = (An(x)), we denote the A-
transform of the sequence x = (xv). Also, we say that A defines a matrix transforma-
tion from X into Y , and denote it by A ∈ (X, Y ) or A : X → Y if Ax = (An(x)) ∈ Y
for every x ∈ X. The α-, β-, γ- duals of X and the domain of the matrix A in X are
defined by

Xα = {ε ∈ ω : (εnxn) ∈ ` for all x ∈ X} ,
Xβ = {ε ∈ ω : (εnxn) ∈ cs for all x ∈ X} ,
Xγ = {ε ∈ ω : (εnxn) ∈ bs for all x ∈ X}
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and

(1.1) XA = {x = (xn) ∈ ω : A(x) ∈ X} ,

respectively. Further, X is said to be a BK-space if it is a complete normed space
with continuous coordinates pn : X → C defined by pn(x) = xn for all n ∈ N. If there
exists unique sequence of coefficients (xk) such that, for each x ∈ X,∥∥∥∥∥x−

m∑
k=0

xkbk

∥∥∥∥∥→ 0, m→∞,

then, the sequence (bk) is called the Schauder basis (or briefly basis) for a normed
sequence space X, and in this case we write x = ∑∞

k=0 xkbk. For instance, the sequence
(e(j)) is the Schauder basis of the space `k, where e(j) is the sequence whose only non-
zero term is 1 in jth place for each j ∈ N.

Now take ∑xv as an infinite series with nth partial sum sn and let (un) be a
sequence of positive terms. Then, the series ∑xv is said to be summable |A, un|k,
k ≥ 1, if (see [32])

∞∑
n=0

uk−1
n |∆An(s)|k <∞,

where ∆An(s) = An(s)− An−1(s), A−1(s) = 0.
Note that this method includes some well known methods. For example, if A is

the matrix of weighted mean
(
N̄ , pn

)
(resp. un = Pn/pn), then it reduces to the

summability
∣∣∣N̄ , pn, un∣∣∣

k
[36] (the summability

∣∣∣N̄ , pn∣∣∣
k
[10]). Also if we take A as the

matrix of Cesàro mean of order α > −1 and un = n, then we get summability |C, α|k
in Flett’s notation [11].

A large literature has recently grown up, concerned with producing sequence spaces
by means of matrix domain of a special limitation method and studying their algebraic,
topological structure and matrix transformations (see [1–7, 15–18, 25]). Also, some
series spaces have been derived and studied by absolute summability methods from a
different point of view (see [9–14,23–26,28–34,36]). The aim of this paper is to define
the space |Fu|k combining absolute summability and Fibonacci matrix given by Kara
[15], investigate some inclusion relation, construct their α-, β-, γ- duals, basis and
characterize some matrix operators related to that space, and also determine their
norms and Hausdroff measures of noncompactness.

Firstly, we mention some properties of Fibonacci numbers as follows: the sequence
(fn) of Fibonacci numbers is given by the relations

f0 = f1 = 1 and fn = fn−1 + fn−2 for n ≥ 2

that is, each term is equal to the sum of the previous two terms. The sequences of
Fibonacci numbers have been important for artist, architects, physicists and mathe-
maticians since the old. The ratio of Fibonacci numbers converges to the golden ratio
which is one of the most interesting irrationals having an important role in number
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theory, algorithms, network theory, etc. Also, Fibonacci numbers have the following
properties [19]: ∑

n

1
fn

converges,

f 2
n−1 + fnfn−1 − f 2

n = (−1)n+1, n ≥ 1,

lim
n→∞

fn+1

fn
= 1 +

√
5

2 = 1.61803398875....

Fibonacci matrix F = (f̂nv) has recently been defined by Kara [15] as follows:

f̂nv =



−fn+1

fn
, v = n− 1,

fn
fn+1

, v = n,

0, v > n or 0 ≤ v < n− 1,
where fn be the nth Fibonacci number for every n ∈ N. Note that if we take the
Fibonacci matrix instead of A, then |A, un|k summability reduces to the absolute
Fibonacci summability. On the other hand, since (sn) is a sequence of partial sum of
the series ∑xv, we get

An(s) =
n∑
v=0

f̂nvsv =
n∑
j=0

xj
n∑
v=j

f̂nv = xnf̂nn +
n−1∑
j=0

(f̂nn + f̂n,n−1)xj

and so,

∆An(s) =xn
fn
fn+1

+ xn−1

(
(−1)n
fnfn+1

− fn+1

fn

)
+

n−2∑
j=0

(−1)nfn−1 + fn+1

fn−1fnfn+1
xj

=
n∑
j=0

σnjxj,

where

σnj =



fn
fn+1

, j = n,

(−1)n
fnfn+1

− fn+1

fn
, j = n− 1,

(−1)nfn−1 + fn+1

fn−1fnfn+1
, 0 ≤ j ≤ n− 2,

0, j > n.

Now, we introduce the absolute Fibonacci space as follows:

|Fu|k =

x ∈ ω :
∞∑
n=0

uk−1
n

∣∣∣∣∣∣
n∑
j=0

σnjxj

∣∣∣∣∣∣
k

<∞

 .
Also, it may be written that
(1.2) (E(k) ◦ T )n(x) = u1/k∗

n (Tn(x)− Tn−1(x)),
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where

tnv =



fn
fn+1

, v = n,

f 2
n − f 2

n+1
fnfn+1

, 0 ≤ v ≤ n− 1,

0, v > n,

e(k)
nv =


u1/k∗
n , v = n,
−u1/k∗

n , v = n− 1,
0, v 6= n, n− 1,

and k∗ is the conjugate of k, i.e., 1/k + 1/k∗ = 1 for k > 1, and 1/k∗ = 0 for k = 1.
With these matrices T = (tnv) and E(k) = (e(k)

nv ), according to the notation (1.1), it
is obvious that |Fu|k = (`k)E(k)◦T . Further, since every triangle matrix has a unique
inverse which also is a triangle [37], T and E(k) have a unique inverse T̃ = (t̃nv) and
Ẽ(k) = (ẽnv) given by

t̃nv =



fn+1

fn
, v = n,

f 2
n+1 − f 2

n

fvfv+1
, 0 ≤ v ≤ n− 1,

0, v > n,

(1.3)

ẽ(k)
nv =

{
u−1/k∗
v , 0 ≤ v ≤ n,

0, v > n,
(1.4)

respectively.
Before the main theorems, we point out some well known lemmas which are needed

in the proofs of theorems.
Lemma 1.1 ([35]). Let 1 < k <∞. Then, A ∈ (`k, `) if and only if

‖A‖(`k,`) = sup
N∈F


∞∑
v=0

∣∣∣∣∣
∞∑
n=0

anv

∣∣∣∣∣
k∗


1/k∗

,

where F denotes the collection of all finite subsets of N.
Lemma 1.1 exposes a rather difficult condition to apply in applications. So the

following lemma is more useful in many cases, which gives equivalent norm.
Lemma 1.2 ([29]). Let 1 < k <∞. Then, A ∈ (`k, `) if and only if

‖A‖
′

(`k,`) =


∞∑
v=0

( ∞∑
n=0
|anv|

)k∗
1/k∗

<∞.

Moreover, since
‖A‖(`k,`) ≤ ‖A‖

′

(`k,`) ≤ 4 ‖A‖(`k,`) ,

there exists 1 ≤ ξ ≤ 4 such that ‖A‖
′

(`k,`) = ξ ‖A‖(`k,`).
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Lemma 1.3 ([20]). Let 1 ≤ k <∞. Then, A ∈ (`, `k) if and only if

‖A‖(`,`k) = sup
v

{ ∞∑
n=0
|anv|k

} 1
k

.

Lemma 1.4 ([35]).

(a) A ∈ (`, c)⇔ (i) lim
n
anv exists for v ≥ 0, (ii) sup

n,v
|anv| <∞;

(b) A ∈ (`, `∞)⇔ (ii) holds;
(c) If 1 < k <∞, then, A ∈ (`k, c)⇔ (i) holds, (iii) sup

n

∞∑
v=0
|anv|k

∗
<∞;

(d) If 1 < k <∞, then, A ∈ (`k, `∞)⇔ (iii) holds.

2. The Hausdorff Measure of Noncompactness

If S and H are subsets of a metric space (X, d) and, for every h ∈ H, there exists
an s ∈ S such that d(h, s) < ε then, S is called an ε-net of H; if S is finite, then the
ε-net S of H is called a finite ε-net of H. Let X and Y be Banach spaces. A linear
operator L : X → Y is called compact if its domain is all of X and, for every bounded
sequence (xn) in X, the sequence (L(xn)) has a convergent subsequence in Y . We
denote the class of such operators by C(X, Y ). If Q is a bounded subset of the metric
space X, then the Hausdorff measure of noncompactness of Q is defined by

χ (Q) = inf {ε > 0 : Q has a finite ε− net in X} ,
and χ is called the Hausdorff measure of noncompactness.

The following lemma is very important to calculate the Hausdorff measure of
noncompactness of a bounded subset of the space `k.

Lemma 2.1 ([27]). Let Q be a bounded subset of the normed space X where X = `k
for 1 ≤ k < ∞ or X = c0. If Pn : X → X is the operator defined by Pn(x) =
(x0, x1, . . . , xn, 0, 0, . . .) for all x ∈ X, then

χ (Q) = lim
r→∞

(
sup
x∈Q
‖(I − Pr) (x)‖

)
.

Let X and Y be Banach space and χ1 and χ2 be Hausdorff measures on X and Y ,
the linear operator L : X → Y is said to be (χ1, χ2)- bounded if L(Q) is a bounded
subset of Y and there exists a positive constantM such that χ2 (L(Q)) ≤Mχ1 (L(Q))
for every bounded subset Q of X. If an operator L is (χ1, χ2)- bounded, then the
number
‖L‖(χ1,χ2) = inf {M > 0 : χ2 (L(Q)) ≤Mχ1 (L(Q)) for all bounded set Q ⊂ X}

is called the (χ1, χ2)-measure noncompactness of L. In particular, if χ1 = χ2 = χ
then we write ‖L‖(χ,χ) = ‖L‖χ .
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Lemma 2.2 ([22]). Let X and Y be Banach spaces and L ∈ B(X, Y ). Also Sx =
{x ∈ X : ‖x‖ ≤ 1} be the unit sphere in X. Then,

‖L‖χ = χ (L (Sx))

and
L ∈ C(X, Y )⇔ ‖L‖χ = 0.

Lemma 2.3 ([21]). Let X be a normed sequence space, T = (tnv) be an infinite triangle
matrix, χT and χ denote the Hausdroff measures of noncompactness on MXT

and MX ,
the collections of all bounded sets in XT and X, respectively. Then, χT (Q) = χ(T (Q))
for all Q ∈MXT

.

3. Absolute Fibonacci Space |Fu|k
In this section, we investigate some inclusion relations, topological and algebraic

structures of the space |Fu|k. Also we characterize some classes of compact matrix
operators on that space and compute their norms and Hausdroff measure of noncom-
pactness.

Firstly, since |Fu|k is generated from `k, to explain a relation between the spaces
`k and |Fu|k, we begin with the following theorem.

Theorem 3.1. Let u = (un) ∈ `∞ and 1 ≤ k <∞. Then, `k ⊂ |Fu|k.

Proof. To prove the inclusion `k ⊂ |Fu|k, it is sufficient to show that

‖x‖|Fu|k
≤ O(1) ‖x‖`k ,

for all x ∈ `k. The proof is clear for the case k = 1, and so it is omitted. Let k > 1.
Then, since the series ∑

n

1
fn

is convergent and ( 1
fn

) is decreasing sequence, it follows

from Abel’s Theorem, n
fn
→ 0 as n→∞,

n∑
v=0
|σnv| = O(1) and

∞∑
n=v
|σnv| = O(1). Now

applying Hölder’s inequality, we get

‖x‖|Fu|k
=


∞∑
n=0

uk−1
n

∣∣∣∣∣
n∑
v=0

σnvxv

∣∣∣∣∣
k


1/k

≤


∞∑
n=0

uk−1
n

n∑
v=0
|σnv| |xv|k

(
n∑
v=0
|σnv|

)k/k∗
1/k

=O(1)
{ ∞∑
v=0
|xv|k

∞∑
n=v
|σnv|

}1/k

=O(1)
{ ∞∑
v=0
|xv|k

}1/k

= O(1) ‖x‖`k ,

which completes the proof. �
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Theorem 3.2. Let 1 ≤ k ≤ q <∞. If there is a constant M > 0 such that un ≤M
for all n ∈ N, then |Fu|k ⊂ |Fu|q .

Proof. Take x ∈ |Fu|k. Since `k ⊂ `q, then
(
u

1
k∗
n
∑n
j=0 σnjxj

)
∈ `q and also, since

un ≤M for all n ∈ N,

M
q

k∗−
q

q∗

∣∣∣∣∣∣u
1

q∗
n

n∑
j=0

σnjxj

∣∣∣∣∣∣
q

≤

∣∣∣∣∣∣u1/k∗
n

n∑
j=0

σnjxj

∣∣∣∣∣∣
q

,

where k∗ and q∗ are the conjugate of exponent of k and q, respectively. So this gives
that x ∈ |Fu|q, which completes the proof. �

Theorem 3.3. Let 1 ≤ k <∞. Then, |Fu|k is BK-space with respect to the norm

‖x‖|Fu|k
=
∥∥∥E(k) ◦ T (x)

∥∥∥
`k
.

Also, the sequence b(j) = (b(j)
n ) is a Schauder basis for the space |Fu|k, where

b(j)
n =


u
−1/k∗
j

fn+1

fn
+ u

−1/k∗
j

n−1∑
r=j

f 2
n+1 − f 2

n

frfr+1
, 0 ≤ j ≤ n− 1

u−1/k∗
n

fn+1

fn
, j = n

0, j > n.

Proof. We note that `k is a BK-space for 1 ≤ k < ∞. Further, since E(k) ◦ T is
a triangle matrix, it follows from Theorem 4.3.2 of [37], |Fu|k = (`k)E(k)◦T is a BK-
space. Since the sequence (e(j)) is the Schauder basis of the space `k, it can be written
from Theorem 2.3 in [14] that b(j) = (T̃n(Ẽ(k)(e(j)))) is a Schauder basis of the space
|Fu|k. �

Theorem 3.4. Let 1 ≤ k <∞. Then, the space |Fu|k is isomorphic to the space `k
that is, |Fu|k ∼= `k.

Proof. To prove the theorem, we should show that there exists a linear bijection
between the spaces |Fu|k and `k where 1 ≤ k <∞. Let consider the transformations
T : |Fu|k → (`k)E(k) , E(k) : (`k)E(k) → `k given in (1.3) and (1.4). Since the matrices
corresponding these transformations are triangles, it can be easily seen that T and
E(k) are linear bijections. So, the composite function E(k) ◦ T is a linear bijective
operator. Furthermore,

‖x‖|Fu|k
=
∥∥∥E(k) ◦ T (x)

∥∥∥
`k
,

i.e., it preserves the norm. So the proof is completed. �

In the following theorems, for the simplicity of presentation we take

ξvr =
fv+1

fv
+
(
f 2
v+1 − f 2

v

) v−1∑
j=r

1
fjfj+1
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and define

D1 =
{
ε ∈ ω :

∞∑
v=r+1

ξvrεv exists for all r
}
,

D2 =

ε ∈ ω : sup
m

 1
um

∣∣∣∣∣εmfm+1

fm

∣∣∣∣∣
k∗

+
m−1∑
r=0

1
ur

∣∣∣∣∣εr fr+1

fr
+

m∑
v=r+1

ξvrεv

∣∣∣∣∣
k∗
 <∞

 ,
D3 =

{
ε ∈ ω : sup

m,r

(∣∣∣∣∣εmfm+1

fm

∣∣∣∣∣+
∣∣∣∣∣εr fr+1

fr
+

m∑
v=r+1

ξvrεv

∣∣∣∣∣
)
<∞

}
,

D4 =

ε ∈ ω :
∞∑
r=0

1
ur

( ∞∑
v=r+1

|ξvrεv|+
∣∣∣∣∣εr fr+1

fr

∣∣∣∣∣
)k∗

<∞

 ,
D5 =

{
ε ∈ ω : sup

r

( ∞∑
v=r+1

|ξvrεv|+
∣∣∣∣∣εr fr+1

fr

∣∣∣∣∣
)
<∞

}
.

Theorem 3.5. Let 1 < k <∞ and u = (un) be a sequence of positive numbers. Then,
(i) {|Fu|}α = D5, {|Fu|k}

α = D4;
(ii) {|Fu|}β = D1 ∩D3, {|Fu|k}

β = D1 ∩D2;
(iii) {|Fu|}γ = D3, {|Fu|k}

γ = D2.

Proof. (ii) Let’s recall that ε ∈ {|Fu|k}
β if and only if εx = (εnxn) ∈ cs for all x ∈ |Fu|k.

By (1.3) and (1.4), it can be seen immediately that
m∑
v=0

εvxv =ε0x0 +
m∑
v=1

εv

fv+1

fv
yv +

(
f 2
v+1 − f 2

v

) v−1∑
j=0

yj
fjfj+1


=

m∑
r=0

u−1/k∗
r

m∑
v=r

εv
fv+1

fv
zr +

m−1∑
r=0

 m∑
v=r+1

εv(f 2
v+1 − f 2

v )
v−1∑
j=r

1
fjfj+1

u−1/k∗
r zr

=u−1/k∗
m εm

fm+1

fm
zm +

m−1∑
r=0

u−1/k∗
r

(
εr
fr+1

fr
+

m∑
v=r+1

εvξvr

)
zr

=
m∑
r=0

hmrzr (y = T (x), z = E(k)(y))

where H = (hmr) is defined by

hmr =


u−1/k∗
r

(
εr
fr+1

fr
+

m∑
v=r+1

εvξvr

)
, 0 ≤ r ≤ m− 1,

u−1/k∗
m

fm+1

fm
εm, r = m

0, r > m.

Therefore, ε ∈ {|Fu|k}
β if and only if H ∈ (`k, c). Applying Lemma 1.4 to the matrix

H, we get {|Fu|k}
β = D1 ∩D2, which completes the proof.

The proofs of other parts can similarly be proved, so we omit. �
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Theorem 3.6. Let 1 ≤ k <∞, A = (anv) be an infinite matrix of complex numbers
for each n, v ∈ N and define the matrix B(n) =

(
b(n)
mr

)
by

b(n)
mr =


anr

fr+1

fr
+

m∑
v=r+1

anvξvr, 0 ≤ r ≤ m− 1,
fm+1

fm
anm, r = m,

0, r > m.

Further, let B̄ = (b̄nv) be a matrix given by b̄nv = lim
m
b(n)
mv and B̃ = E(k) ◦T ◦ B̄. Then,

A ∈ (|Fu| , |Fu|k) if and only if

(3.1)
∞∑

v=r+1
ξvranv exists for all r

(3.2) sup
m,r

{∣∣∣∣∣anmfm+1

fm

∣∣∣∣∣+
∣∣∣∣∣anr fr+1

fr
+

m∑
v=r+1

ξvranv

∣∣∣∣∣
}
<∞,

(3.3) sup
r

∞∑
n=0

1
ur

∣∣∣b̃nr∣∣∣k <∞,
If A ∈ (|Fu| , |Fu|k), then A is a bounded linear operator,

‖A‖(|Fu|,|Fu|k) =
∥∥∥B̃∥∥∥

(l,lk)

and

‖A‖χ = lim
v→∞

{
sup
r

∞∑
n=v+1

1
ur

∣∣∣b̃nr∣∣∣k
} 1

k

.

Proof. A ∈ (|Fu| , |Fu|k) if and only if (anv)∞v=0 ∈ {|Fu|}
β and A(x) ∈ |Fu|k for all

x ∈ |Fu|. Now, it can be easily seen from Theorem 3.5, (anv)∞v=0 ∈ {|Fu|}
β if and only

if (3.1) and (3.2) hold. On the other hand, if a matrix R = (rnv) ∈ (`, c), then the
series Rn(x) = ∑∞

v=0 rnvxv converges uniformly in n, because, the remaining term of
the series tends to zero uniformly in n, since∣∣∣∣∣

∞∑
v=m

rnvxv

∣∣∣∣∣ ≤ sup
v
|rnv|

∞∑
v=m
|xv | → 0, m→∞.

So we obtain

(3.4) lim
n
Rn (x) =

∞∑
v=0

lim
n
rnvxv.

Using (1.3), (1.4) and (3.4) it can be written that

An(x) = lim
m

m∑
k=0

ankxk = lim
m

m∑
r=0

b(n)
mrzr =

∞∑
r=0

b̄nrzr.
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Besides, according to Theorem 3.4, since |Fu|k ∼= `k for 1 ≤ k < ∞, it follows that
A(x) ∈ |Fu|k for all x ∈ |Fu| if and only if B̄ ∈ (`, |Fu|k), or equivalently, since
|Fu|k = (`k)E(k)◦T , B̃ ∈ (`, `k). Also, it is clear that the terms of matrix B̃ can be
expressed as

b̂nr =
n∑
v=0

tnv b̄vr = fn
fn+1

b̄nr +
n−1∑
v=0

f 2
n − f 2

n+1
fnfn+1

b̄vr,

b̃nr =u1/k∗
r

(
b̂nr − b̂n−1,r

)
, n ≥ 1 and b̃0r = b̄0r.

Hence, applying Lemma 1.3 to the matrix B̃, we have (3.3), which completes the
first part of the proof.

Also, if A ∈ (|Fu| , |Fu|k), then, since the spaces |Fu|k and |Fu| are BK-spaces, it
is a bounded operator. In order to determine the operator norm of A, consider the
isomorphisms T : |Fu|k → (`k)E(k) , E(k) : (`k)E(k) → `k defined as in Theorem 3.4.
Then, it is easy to see that A = T̃ ◦ Ẽ(k) ◦ B̃ ◦ E(1) ◦ T and so,

‖A‖(|Fu|,|Fu|k) = sup
x 6=0

‖A(x)‖|Fu|k
‖x‖|Fu|

= sup
x 6=0

∥∥∥T̃ ◦ Ẽ(k) ◦ B̃ ◦ E(1) ◦ T (x)
∥∥∥
|Fu|k

‖x‖|Fu|

= sup
z 6=0

∥∥∥B̃(z)
∥∥∥
`k

‖z‖`
=
∥∥∥B̃∥∥∥

(`,`k)
(z = E(1) ◦ T (x)).

Finally, assume that Q is a unique ball in |Fu|. Since E(k) ◦T ◦AQ = B̃ ◦E(1) ◦TQ,
we get that

‖A‖χ = χ(AQ) =χ
(
E(k) ◦ T ◦ AQ

)
= χ

(
B̃ ◦ E(1) ◦ TQ

)
= lim

v→∞

 sup
z∈E(1)(T (Q))

∥∥∥(I − Pv) (B̃(z)
)∥∥∥


= lim
v→∞

sup
r

( ∞∑
n=v+1

1
ur

∣∣∣b̃nr∣∣∣
)k

1
k

.

This completes the proof. �

By Theorem 3.6 and Lemma 2.2, the compact operators in this class are character-
ized as follows.

Corollary 3.1. Under the hypothesis of Theorem 3.6

A ∈ (|Fu| , |Fu|k) is compact if and only if lim
v→∞

sup
r

( ∞∑
n=v+1

1
ur

∣∣∣b̃nr∣∣∣
)k

1
k

= 0.

Theorem 3.7. Let 1 < k <∞, A = (anv) be an infinite matrix of complex numbers
for all n, v ∈ N and B(n) =

(
b(n)
mv

)
be as in Theorem 3.6. Besides, define H̄ = (hnv)
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by h̄nv = limm u
−1/k∗
v b(n)

mv and H̃ = E(1) ◦ T ◦ H̄. Then, A ∈ (|Fu|k , |Fu|) if and only if

(3.5)
∞∑

v=r+1
ξvranv exist for all r,

(3.6) sup
m

 1
um

∣∣∣∣∣anmfm+1

fm

∣∣∣∣∣
k∗

+
m−1∑
r=0

1
ur

∣∣∣∣∣anr fr+1

fr
+

m∑
v=r+1

ξvranv

∣∣∣∣∣
k∗
 <∞,

(3.7)
∞∑
r=0

( ∞∑
n=0

∣∣∣h̃nr∣∣∣
)k∗

<∞.

Moreover, if A ∈ (|Fu|k , |Fu|), then A is a bounded linear operator,

‖A‖(|Fu|k,|Fu|) =
∥∥∥H̃∥∥∥

(`k,`)

and

‖A‖χ = 1
ξ

lim
v→∞


∞∑
r=0

( ∞∑
n=v+1

∣∣∣h̃nr∣∣∣
)k∗

1
k∗

,

where 1 ≤ ξ ≤ 4.

Proof. A ∈ (|Fu|k , |Fu|) if and only if An = (anv)∞v=0 ∈ {|Fu|k}
β and A(x) ∈ |Fu|

where x ∈ |Fu|k. By Theorem 3.5, it can be easily seen that An ∈ {|Fu|k}
β if and

only if (3.5) and (3.6) hold. Also, if any matrix R = (rnv) ∈ (`k, c), then the series
Rn(x) = ∑∞

v=0 rnvxv converges uniformly in n. Because, the remaining term of the
series tends to zero uniformly in n, since∣∣∣∣∣

∞∑
v=m

rnvxv

∣∣∣∣∣ ≤
( ∞∑
v=m
|rnv|k

∗
) 1

k∗
( ∞∑
v=m
|xv|k

) 1
k

→ 0, m→∞

and so, it can be written that

(3.8) lim
n
Rn (x) =

∞∑
v=0

lim
n
rnvxv.

Then, using (3.8), with a few calculations, we get

An(x) = lim
m

m∑
k=0

ankxk = lim
m

m∑
r=0

u−1/k∗
r b(n)

mrzr =
∞∑
r=0

h̄nrzr.

Since |Fu|k ∼= `k for 1 ≤ k < ∞, by the Theorem 3.4, then, A(x) ∈ |Fu| for every
x ∈ |Fu|k if and only if H̄(z) ∈ |Fu|, i.e., H̃(z) = E(1) ◦ T ◦ H̄(z) ∈ ` for every z ∈ `k,
where z = E(k) ◦ T (x). This means that H̃ ∈ (`k, `). Thus applying Lemma 1.2 to
the matrix H̃, we get (3.7). This completes the proof of first part.

Since |Fu|k is BK-spaces for every k ≥ 1, A is a bounded operator by Theorem
4.2.8 of [37].
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Additionally, as Theorem 3.4, it can be written that A = T̃◦ Ẽ(1) ◦ H̃ ◦ E(k) ◦ T
and so,

‖A‖(|Fu|k,|Fu|) = sup
x 6=0

‖A(x)‖|Fu|

‖x‖|Fu|k

= sup
x 6=0

∥∥∥H̃ ◦ E(k) ◦ T (x)
∥∥∥
`

‖E(k) ◦ T (x)‖`k

= sup
z 6=0

∥∥∥H̃(z)
∥∥∥
`

‖z‖`k
=
∥∥∥H̃∥∥∥

(`k,`)
.

Finally, let Q = S|Fu|. Since E(1) ◦ T ◦ AQ = H̃ ◦ E(k) ◦ TQ, it follows by Lemma
2.1, Lemma 2.3 and Lemma 1.2 that

‖A‖χ =χ (AQ) = χ
(
E(1) ◦ T ◦ AQ

)
= χ

(
H̃ ◦ E(k) ◦ TQ

)
= lim

v→∞

 sup
z∈E(k)(T (Q))

∥∥∥(I − Pv)(H̃(z))
∥∥∥
`k



=1
ξ

lim
v→∞


∞∑
r=0

( ∞∑
n=v+1

∣∣∣h̃nr∣∣∣
)k∗

1
k∗

,

which completes the proof. �

Also, the compact operators can immediately be characterized by Lemma 2.2 and
Theorem 3.7 as follows.

Corollary 3.2. Under the conditions of Theorem 3.7

A ∈ C (|Fu|k , |Fu|)⇔
1
ξ

lim
v→∞


∞∑
r=0

( ∞∑
n=v+1

∣∣∣h̃nr∣∣∣
)k∗

1
k∗

= 0.
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