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MORE ABOUT PETROVIĆ’S INEQUALITY ON COORDINATES
VIA m-CONVEX FUNCTIONS AND RELATED RESULTS

ATIQ UR REHMAN1, GHULAM FARID1, AND WASIM IQBAL2

Abstract. In this paper the authors extend Petrović’s inequality for coordinated
m-convex functions in the plane and also find Lagrange type and Cauchy type mean
value theorems for Petrović’s inequality for m-convex functions and coordinated
m-convex functions. The authors consider functional due to Petrović’s inequality
in plane and discuss its properties for certain class of coordinated log-m-convex
functions.

1. Introduction

A function f : [a, b] → R is said to be convex if

f(tx+ (1 − t)y) ≤ tf(x) + (1 − t)f(y)

holds, for all x, y ∈ [a, b] and t ∈ [0,1].
In [6], Dragomir gave the definition of convex functions on coordinates as follows.

Definition 1.1. Let ∆ = [a, b] × [c, d] ⊆ R
2 and f : ∆ → R be a mapping. Define

partial mappings

(1.1) fy : [a, b] → R by fy(u) = f(u, y)

and

(1.2) fx : [c, d] → R by fx(v) = f(x, v).

Then f is said to be convex on coordinates (or coordinated convex) in ∆ if fy and fx
are convex on [a, b] and [c, d] respectively for all y ∈ [c, d] and x ∈ [a, b]. A mapping
f is said to be strictly convex on coordinates (or strictly coordinated convex) in ∆

Key words and phrases. Petrović’s inequality, mean value theorem, log-convexity, m-convex func-
tions on coordinates.
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336 A. U. REHMAN, G. FARID, AND W. IQBAL

if fy and fx are strictly convex on [a, b] and [c, d], respectively, for all y ∈ [c, d] and
x ∈ [a, b].

In [22], G. Toader gave the definition of m-convexity as follows.

Definition 1.2. The function f : [0, b] → R, b > 0, is said to be m-convex, where
m ∈ [0, 1], if we have

f (tx+m(1 − t)y) 6 tf(x) +m(1 − t)f(y),

for all x, y ∈ [0, b] and t ∈ [0, 1].

Remark 1.1. One can note that the notion of m-convexity reduces to convexity if we
take m = 1. We get starshaped functions from m-convex functions if we take m = 0.

Definition 1.3. A function f : [a, b] → R+ is called log-convex if

f (tx+ (1 − t)y) 6 f t(x) + f (1−t)(y)

holds, for all x, y ∈ [0, b] and t ∈ [0, 1].

Log-convex functions have excellent closure properties. The sum and product of
two log-convex functions is convex. If f is convex function and g is log-convex function
then the functional composition g ◦ f is also log-convex.

In [1], Almori and Darus gave the definition of log-convex on coordinates as follows.

Definition 1.4. Let ∆ = [a, b] × [c, d] and let a function f : ∆ → R+ is called
log-convex on coordinates in ∆ if partial mappings defined in (1.1) and (1.2) are
log-convex on [a, b] and [c, d], respectively, for all y ∈ [c, d] and x ∈ [a, b].

In [8], Farid et al. gave the definition of coordinated m-convex functions as follows.

Definition 1.5. Let ∆ = [0, b] × [0, d] ⊂ [0,∞)2, then a function f : ∆ → R will be
called m-convex on coordinates if the partial mappings

fy : [0, b] → R defined by fy(u) = f(u, y)

and
fx : [0, d] → R defined by fx(v) = f(x, v)

are m-convex on [0, b] and [0, d], respectively, for all y ∈ [0, d] and x ∈ [0, b].

In [17] (see also [15, p. 154]), M. Petrović proved the following result, which is
known as Petrović’s inequality in the literature.

Theorem 1.1. Suppose that (x1, . . . , xn) and (p1, . . . , pn) be two non-negative n-tuples

such that
∑n
k=1 pkxk ≥ xi for i = 1, . . . , n and

∑n
k=1 pkxk ∈ [0, a]. If f is a convex

function on [0, a), then the inequality

n∑

k=1

pkf(xk) ≤ f

(
n∑

k=1

pkxk

)
+

(
n∑

k=1

pk − 1

)
f(0)(1.3)

is valid.
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Remark 1.2. Take pk = 1, k = 1, . . . , n the above inequality becomes

n∑

k=1

f(xk) ≤ f

(
n∑

k=1

xk

)
+ (n− 1)f(0).

In [2], M. Bakula et al. gave the Petrović’s inequality for m-convex function which
is stated in the following theorem.

Theorem 1.2. Let (x1, . . . , xn) be non-negative n-tuples and (p1, . . . , pn) be positive

n-tuples such that

Pn :=
n∑

k=1

pk, 0 6= x̃n =
n∑

k=1

pkxk ≥ xj for each j = 1, . . . , n.

If f : [0,∞) → R be an m-convex function on [0,∞) with m ∈ (0, 1], then

n∑

k=1

pkf(xk) 6 min
{
mf

(
x̃n

m

)
+ (Pn − 1)f (0) , f (x̃n) +m(Pn − 1)f (0)

}
.(1.4)

Remark 1.3. If we take m = 1 in Theorem 1.2, we get famous Petrović’s inequality
stated in Theorem 1.1.

In [19], Rehman et al. gave the Petrović’s inequality for coordinated convex func-
tions, which is stated in the following theorem.

Theorem 1.3. Let (x1, . . . , xn) ∈ [0, a)n, (y1, . . . , yn) ∈ [0, b)n and (p1, . . . , pn),
(q1, . . . , qn) be positive n-tuples such that

∑n
k=1 pkxk ∈ [0, a),

∑n
j=1 qjyj ∈ [0, b),∑n

k=1 pk ≥ 1,

Pn :=
n∑

k=1

pk, 0 6= x̃n =
n∑

k=1

pkxk ≥ xi for each i = 1, . . . , n,

and

Qn :=
n∑

j=1

qj, 0 6= ỹn =
n∑

j=1

qjyj ≥ yi for each i = 1, . . . , n.

If f : ∆ → R be a coordinated convex, then

n∑

k=1

n∑

j=1

pkqjf(xk, yj) ≤f (x̃n, ỹn) + (Qn − 1) f (x̃n, 0)(1.5)

+ (Pn − 1) (f(0, ỹn) + (Qn − 1)f(0, 0)) .

By considering non-negative difference of (1.5), the authors in [19] defined the
following functional

Υ (f) =f (x̃n, ỹn) + (Qn − 1) f (x̃n, 0) + (Pn − 1) [f (0, ỹn) + (Qn − 1) f(0, 0)](1.6)

−
n∑

k=1

n∑

j=1

pkqjf(xk, yj).
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By considering non-negative difference of (1.3), the authors in [4] defined the
following functional

P(f) = f

(
n∑

k=1

pkxk

)
−

(
n∑

k=1

pkf(xk)

)
+

(
n∑

k=1

pk − 1

)
f(0).(1.7)

One of the generalizations of convex functions is m-convex functions and it is
considered in literature by many researchers and mathematicians, for example, see
[7, 10–12,24] and references there in. In [17] (also see [15, p. 154]), M. Petrović gave
the inequality for convex functions known as Petrović’s inequality. Many authors
worked on this inequality by giving results related to it, for example see [13, 15, 17]
and it has been generalized for m-convex functions by M. Bakula et al. in [2]. In [19],
Petrović’s inequality was generalized on coordinate by using the definition of convex
functions on coordinates given by Dragomir in [6].

In this paper the authors extend Petrović’s inequality for coordinated m-convex
functions in the plane and also find Lagrange type and Cauchy type mean value
theorems for Petrović’s inequality for m-convex functions and coordinated m-convex
functions. The authors consider functional due to Petrović’s inequality in plane and
discuss its properties for certain class of coordinated log-m-convex functions.

2. Main Result

The following theorem consist the result for Petrović’s inequality on coordinated
m-convex functions.

Theorem 2.1. Let (x1, . . . , xn), (y1, . . . , yn) be non-negative n-tuples and (p1, . . . , pn),

(q1, . . . , qn) be positive n-tuples such that
n∑
k=1

pk ≥ 1,

Pn :=
n∑

k=1

pk, 0 6= x̃n =
n∑

k=1

pkxk ≥ xi for each i = 1, . . . , n

and

Qn :=
n∑

j=1

qj, 0 6= ỹn =
n∑

j=1

qjyj ≥ yi for each i = 1, . . . , n.

If f : [0,∞)2 → R be an m-convex function on coordinates with m ∈ (0, 1], then

n∑

k=1

n∑

j=1

pkqjf(xk, yj) ≤ min {mmin {Gm,1(x̃n/m), G1,m(x̃n/m)} + (Pn − 1)(2.1)

× min {Gm,1(0), G1,m(0)} ,min {Gm,1(x̃n), G1,m(x̃n)}

+m(Pn − 1) min {Gm,1(0), G1,m(0)}} ,

where

(2.2) Gm,m̃(t) = mf
(
t,
ỹn
m

)
+ m̃(Qn − 1)f (t, 0) .
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Proof. Let fx : [0,∞) → R and fy : [0,∞) → R be mappings such that fx(v) = f(x, v)
and fy(u) = f(u, y). Since f is coordinated m-convex on [0,∞)2, therefore fy is m-
convex on [0,∞), so by Theorem 1.2, one has

n∑

k=1

pkfy(xk) ≤ min {mfy (x̃n/m) + (Pn − 1)fy (0) , fy (x̃n) +m(Pn − 1)fy (0)} .

This is equivalent to
n∑

k=1

pkf(xk, y) ≤ min {mf (x̃n/m, y) + (Pn − 1)f (0, y) ,

f (x̃n, y) +m(Pn − 1)f (0, y)} .

By setting y = yj, we have
n∑

k=1

pkf(xk, yj) ≤ min {mf (x̃n/m, yj) + (Pn − 1)f (0, yj) ,

f (x̃n, yj) +m(Pn − 1)f (0, yj)} ,

this gives

(2.3)

n∑

k=1

n∑

j=1

pkqjf(xk, yj) ≤ min



m

n∑

j=1

qjf (x̃n/m, yj) + (Pn − 1)
n∑

j=1

qjf (0, yj) ,

n∑

j=1

qjf (x̃n, yj) +m(Pn − 1)
n∑

j=1

qjf (0, yj)



 .

Now again by Theorem 1.2, one has
n∑

j=1

qjf (x̃n/m, yj) ≤ min {mf (x̃n/m, ỹn/m) + (Qn − 1)f (x̃n/m, 0) ,

f (x̃n/m, ỹn) +m(Qn − 1)f (x̃n/m, 0)} ,
n∑

j=1

qjf (0, yj) ≤ min {mf (0, ỹn/m) + (Qn − 1)f (0, 0) ,

f (0, ỹn) +m(Qn − 1)f (0, 0)}

and
n∑

j=1

qjf (x̃n, yj) ≤ min {mf (x̃n, ỹn/m) + (Qn − 1)f (x̃n, 0) ,

f (x̃n, ỹn) +m(Qn − 1)f (x̃n, 0)} .

Putting these values in inequality (2.3), and using the notation in (2.2), one has the
required result. �

Remark 2.1. If we take m = 1 in Theorem 2.1, we get Theorem 1.3.

In the following corollary, we gave new Petrović’s type inequality for m-convex
functions.
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Corollary 2.1. Let (x1, . . . , xn), (y1, . . . , yn) be non-negative n-tuples and (p1, . . . , pn),

(q1, . . . , qn) be positive n-tuples such that
n∑
k=1

pk ≥ 1 and

Pn :=
n∑

k=1

pk, 0 6= x̃n =
n∑

k=1

pkxk ≥ xi for each i = 1, . . . , n.

If f : [0,∞)2 → R be an m-convex function on coordinates with m ∈ (0, 1], then one

has
n∑

k=1

npkf(xk) ≤ min {mmin {(m+ n− 1)f(x̃n/m), (mn−m+ 1)f(x̃n/m)}(2.4)

+ (Pn − 1) min {(m+ n− 1)f(0), (mn−m+ 1)f(0)} ,

min {(m+ n− 1)f(x̃n), (mn−m+ 1)f(x̃n)}

+m(Pn − 1) min {(m+ n− 1), (mn−m+ 1)f(0)}} .

Proof. If we put yj = 0 and qj = 1, j = 1, . . . , n with f(x, 0) 7→ f(x) in inequality
(2.1), we get the required result. �

Remark 2.2. If we take m = 1 in inequality (2.4), we get the inequality (1.3).

Let f : [0, b] → R be a function. Then we define

(2.5) Pa,m,f (x) :=
f(x) −mf(a)

x−ma
,

for all x ∈ [0, b]\{ma}, for fixed a ∈ [0, b]. Also define

(2.6) rm(x1, x2, x3; f) :=
Px1,m(x3) − Px1,m(x2)

x3 − x2

,

where x1, x2, x3 ∈ [0, b], (x2 −mx1)(x3 −mx1) > 0, x2 6= x3.
In [11] (see also [7, p. 294]), V. G. Mihesan considered the functions defined in (2.5),

(2.6) and proved the following result.

Remark 2.3. If we take m = 1 in (2.5) and (2.6), we get divided differences of first
and second order respectively.

By considering non-negative difference of (1.4), we defined following functional
(2.7)

Pm(f) = min
{
mf

(
x̃n

m

)
+ (Pn − 1)f (0) , f (x̃n) +m(Pn − 1)f (0)

}
−

n∑

k=1

pkf(xk).

Also by considering non-negative difference of (2.1), we defined following functional

Υm(f) = min {mmin {Gm,1(x̃n/m), G1,m(x̃n/m)}(2.8)

+ (Pn − 1) min {Gm,1(0), G1,m(0)} ,min {Gm,1(x̃n), G1,m(x̃n)}

+ m(Pn − 1) min {Gm,1(0), G1,m(0)}} −
n∑

k=1

n∑

j=1

pkqjf(xk, yj).

If we take m = 1 in the above (2.8), we get Υ1(f) = Υ (f).
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Remark 2.4. Under the suppositions of Theorem 2.1, if f is coordinated m-convex in
∆2, then Υm(f) ≥ 0.

Here we state an important lemma that is very helpful in proving mean value
theorems related to the non-negative functional of Petrović’s inequality for m-convex
functions.

Lemma 2.1. Let f : [0, b] → R be a function such that

m1 6
(x−ma)f ′(x) − f(x) +mf(a)

x2 − 2max+ma2
6M1,

for all x ∈ [0, b]\{ma}, a ∈ (0, b) and m ∈ (0, 1).
Consider the functions ψ1, ψ2 : [0, b] → R defined as

ψ1(x) = M1x
2 − f(x)

and

ψ2(x) = f(x) −m1x
2,

then ψ1 and ψ2 are m-convex in [0, b].

Proof. Suppose

Pa,m,ψ1
(x) =

ψ1(x) −mψ1(a)

x−ma

=
M1x

2 − f(x) −mf(a) +mM1a
2

x−ma

=
M1(x

2 −ma2)

x−ma
−
f(x) −mf(a)

x−ma
.

So we have

P ′

a,m,ψ1
(x) = M1

x2 − 2max+ma2

(x−ma)2
−

(x−ma)f ′(x) − f(x) +mf(a)

(x−ma)2
.

Since
x2 − 2max+ma2 = (x−ma)2 +m(1 −m)a2 > 0,

by given condition, we have

M1(x
2 − 2max+ma2) ≥ (x−ma)f ′(x) − f(x) +mf(a).

This leads to

M1
x2 − 2max+ma2

(x−ma)2
≥

(x−ma)f ′(x) − f(x) +mf(a)

(x−ma)2
,

M1
x2 − 2max+ma2

(x−ma)2
−

(x−ma)f ′(x) − f(x) +mf(a)

(x−ma)2
≥ 0.

This implies

P ′

a,m,ψ1
(x) ≥ 0, for all x ∈ [0,ma) ∪ (ma, b].
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Similarly, one can show that

P ′

a,m,ψ2
(x) ≥ 0, for all x ∈ [0,ma) ∪ (ma, b].

This gives Pa,m,ψ1
and Pa,m,ψ2

are increasing on x ∈ [0,ma) ∪ (ma, b] for all a ∈ [0, b].
Hence by Lemma 2.1, ψ1(x) and ψ2(x) are m-convex in [0, b]. �

Here we give mean value theorems related to functional defined for Petrović’s
inequality for m-convex functions.

Theorem 2.2. Let (x1, . . . , xn) ∈ [0, b], (q1, . . . , qn) and (p1, . . . , pn) be positive n-

tuples such that
∑n
k=1 pkxk ≥ xj for each j = 1, 2, . . . , n. Also, let φ(x) = x2.

If f ∈ C1([0, b]), then there exists ξ ∈ (0, b) such that

Pm(f) =
(ξ −ma)f ′(ξ) − f(ξ) +mf(a)

ξ2 − 2maξ +ma2
Pm(φ),(2.9)

provided that Pm(φ) is non zero and a ∈ (0, b).

Proof. As f ∈ C1([0, b]), so there exists real numbers m1 and M1 such that

m1 6
(x−ma)f ′(x) − f(x) +mf(a)

x2 − 2max+ma2
6M1,

for each x ∈ [0, b], a ∈ (0, b) and m ∈ (0, 1).
Now let us consider the functions ψ1 and ψ2 defined in Lemma 2.1. As ψ1 is

m-convex in [0, b],

Pm(ψ1) ≥ 0,

that is

Pm(M1x
2 − f(x)) ≥ 0,

which gives

(2.10) M1Pm(φ) ≥ Pm(f).

Similarly ψ2 is m-convex in [0, b], therefore one has

(2.11) m1Pm(φ) 6 Pm(f).

By assumption Pm(φ) is non zero, combining inequalities (2.10) and (2.11), one has

m1 6
Pm(f)

Pm(φ)
6M1.

Hence, there exists ξ ∈ (0, b) such that

Pm(f)

Pm(φ)
=

(ξ −ma)f ′(ξ) − f(ξ) +mf(a)

ξ2 − 2maξ +ma2
.

Hence, we get the required result. �
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Corollary 2.2. Let (x1, . . . , xn) ∈ [0, b], (q1, . . . , qn) and (p1, . . . , pn) be positive n-

tuples such that
∑n
k=1 pkxk ≥ xj for each j = 1, 2, . . . , n. Also let φ(x) = x2.

If f ∈ C1([0, b]), then there exists ξ ∈ (0, b) such that

P(f) =
(ξ − a)f ′(ξ) − f(ξ) + f(a)

(ξ − a)2
P(φ),

provided that P(φ) is non zero and a ∈ (0, b).

Proof. If we put m = 1 in (2.9), we get the required result. �

Corollary 2.3. Let (x1, . . . , xn) ∈ [0, b], (q1, . . . , qn) and (p1, . . . , pn) be positive n-

tuples such that
∑n
k=1 pkxk ≥ xj for each j = 1, 2, . . . , n and a ∈ (0, b). Also let

φ(x) = x2.

If f ∈ C1([0, b]), then there exists ξ ∈ (0, b) such that

P(f) = f ′′(a)P(φ).

Proof. If we put m = 1 in (2.9), we get

P(f)

P(φ)
=

(ξ − a)f ′(ξ) − f(ξ) + f(a)

(ξ − a)2

=
1

ξ − a

(
f ′(ξ) −

f(a) − f(ξ)

a− ξ

)
.

Take limit as ξ → a, we get

P(f)

P(φ)
= lim

ξ→a

1

ξ − a

(
f ′(ξ) −

f(a) − f(ξ)

a− ξ

)

= lim
ξ→a

1

ξ − a
(f ′(ξ) − f ′(a)) .

Again taking limit as ξ → a, we get

P(f)

P(φ)
= f ′′(a).

Hence, we get the required result. �

Theorem 2.3. Let (x1, . . . , xn) ∈ [0, b], (q1, . . . , qn) and (p1, . . . , pn) be positive n-

tuples such that
∑n
k=1 pkxk ≥ xj for each j = 1, 2, . . . , n. Also, let φ(x) = x2.

If f1, f2 ∈ C1([0, b]), then there exists ξ ∈ (0, b) such that

Pm(f1)

Pm(f2)
=

(ξ −ma)f ′

1(ξ) − f1(ξ) +mf1(a)

(ξ −ma)f ′

2(ξ) − f2(ξ) +mf2(a)
,

provided that the denominators are non-zero and a ∈ (0, b).

Proof. Suppose a function k ∈ C1([0, b]) be defined as

k = c1f1 − c2f2,
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where c1 and c2 are defined as

c1 =Pm(f2),

c2 =Pm(f1).

Then using Theorem 2.2 with f = k, one has

(ξ −ma)((c1f1 − c2f2)(ξ))
′ − (c1f1 − c2f2)(ξ) +m(c1f1 − c2f2)(a) = 0,

that is

(ξ −ma)(c1f
′

1(ξ) − c2f
′

2(ξ)) − c1f1(ξ) + c2f2(ξ) +mc1f1(a) −mc2f2(a) = 0,

which gives

(ξ −ma)c1f
′

1(ξ) − (ξ −ma)c2f
′

2(ξ) − c1f1(ξ) + c2f2(ξ) +mc1f1(a) −mc2f2(a) = 0,

which implies

c1 {(ξ −ma)f ′

1(ξ) − f1(ξ) +mf1(a)} − c2 {(ξ −ma)f ′

2(ξ) + f2(ξ) −mf2(a)} = 0,

c1 {(ξ −ma)f ′

1(ξ) − f1(ξ) +mf1(a)} = c2 {(ξ −ma)f ′

2(ξ) − f2(ξ) +mf2(a)}

and
c2

c1

=
(ξ −ma)f ′

1(ξ) − f1(ξ) +mf1(a)

(ξ −ma)f ′

2(ξ) − f2(ξ) +mf2(a)
.

After putting the values of c1 and c2, we get the required result. �

Here we state an important lemma that is very helpful in proving mean value
theorems related to the non-negative functional of Petrović’s inequality for coordinated
m-convex functions.

Lemma 2.2. Let ∆ = [0, b] × [0, d], m ∈ (0, 1). Also let f : ∆ → R be a function such

that

m1 6
(x−ma) ∂

∂x
f(x, y) − f(x, y) +mf(a, y)

(x2 − 2max+ma2)y2
6M1

and

m2 6
(y −mc) ∂

∂y
f(x, y) − f(x, y) +mf(x, c)

(y2 − 2mcy +mc2)x2
6M2,

for all x ∈ [0, b]\{ma}, a ∈ (0, b) and y ∈ [0, d]\{mc}, c ∈ (0, d).
Consider the functions αy : [0, b] → R, and αx : [0, d] → R, defined as

α(x, y) = max{M1,M2}x
2y2 − f(x, y)

and

β(x, y) = f(x, y) − min{m1,m2}x
2y2.

Then α and β are coordinated m-convex in ∆.
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Proof. Consider the partial mappings αy : [0, b] → R and αx : [0, d] → R defined by
αy(x) := α(x, y) for all x ∈ (0, b] and αx(y) := α(x, y) for all y ∈ (0, d].

Pa,m,αy
(x) =

αy(x) −mαy(a)

x−ma

=
α(x, y) −mα(a, y)

x−ma

=
M1x

2y2 − f(x, y) −mM1a
2y2 +mf(a, y)

x−ma

= M1
(x2 −ma2)y2

x−ma
−
f(x, y) −mf(a, y)

x−ma
.

So we have

P ′

a,m,αy
(x) = M1

∂

∂x

(
(x2 −ma2)y2

x−ma

)
−

∂

∂x

(
f(x, y) −mf(a, y)

x−ma

)

= M1y
2 (x2 − 2max+ma2)

(x−ma)2
−

(x−ma) ∂
∂x
f(x, y) − f(x, y) +mf(a, y)

(x−ma)2
.

Since

M1 ≥
(x−ma) ∂

∂x
f(x, y) − f(x, y) +mf(a, y)

(x2 − 2max+ma2)y2
,

by given conditions, we have

(x2 − 2max+ma2)y2 > 0.

This implies

M1y
2 (x2 − 2max+ma2)

(x−ma)2
≥

(x−ma) ∂
∂x
f(x, y) − f(x, y) +mf(a, y)

(x−ma)2

M1y
2 (x2 − 2max+ma2)

(x−ma)2
−

(x−ma) ∂
∂x
f(x, y) − f(x, y) +mf(a, y)

(x−ma)2
≥ 0.

This implies

P ′

a,m,αy
(x) ≥ 0 for all x ∈ [0,ma) ∪ (ma, b].

Similarly, one can show that

P ′

a,m,αx
(y) ≥ 0 for all x ∈ [0,mc) ∪ (mc, d].

This ensures that Pa,m,αy
is increasing on [0,ma) ∪ (ma, b] for all a ∈ [0, b] and Pa,m,αx

is increasing on [0,mc)∪ (mc, d] for all c ∈ [0, d]. Hence, by Lemma 2.1, α is m-convex
in ∆.

Similarly, one can show that β is m-convex in ∆. �

Here we give mean value theorems related to the functional defined by Petrović’s
inequality for coordinated m-convex functions.
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Theorem 2.4. Let ∆ = [0, b] × [0, d], (x1, . . . , xn) ∈ [0, b], (y1, . . . , yn) ∈ [0, d]
be non-negative n-tuples and (q1, . . . , qn), (p1, . . . , pn) be positive n-tuples such that∑n

k=1 pkxk ≥ xj for each j = 1, 2, . . . , n. Also, let ϕ(x, y) = x2y2.

If f ∈ C1(∆), then there exists (ξ1, η1) and (ξ2, η2) in the interior of ∆, such that

Υm(f) =
(ξ1 −ma) ∂

∂x
f(ξ1, η1) − f(ξ1, η1) +mf(a, η1)

(ξ2
1 − 2maξ1 +ma2)η2

1

Υm(ϕ)(2.12)

and

Υm(f) =
(ξ2 −ma) ∂

∂y
f(ξ2, η2) − f(ξ2, η2) +mf(a, η2)

(ξ2
2 − 2maξ2 +ma2)η2

2

Υm(ϕ),(2.13)

and provided that Υm(ϕ) is non-zero and a ∈ (0, b).

Proof. As f has continuous first order partial derivative in ∆, so there exists real
numbers m1,m2,M1 and M2 such that

m1 6
(x−ma) ∂

∂x
f(x, y) − f(x, y) +mf(a, y)

(x2 − 2max+ma2)y2
6M1

and

m2 ≤
(y −ma) ∂

∂y
f(x, y) − f(x, y) +mf(x, a)

(y2 − 2may +ma2)x2
≤ M2,

for all x ∈ (0, b], y ∈ (0, d], a ∈ (0, b) and m ∈ (0, 1).
Now let us consider the functions α and β defined in Lemma 2.2.
As α is m-convex in ∆, then

Υm(α) ≥ 0,

that is
Υm(M1x

2y2 − f(x, y)) ≥ 0,

which gives

(2.14) M1Υm(ϕ) ≥ Υm(f).

Similarly β is m-convex in ∆, therefore one has

(2.15) m1Υm(ϕ) 6 Υm(f).

By the assumption Υm(ϕ) is non-zero. Combining inequalities (2.14) and (2.15), one
has

m1 6
Υm(f)

Υm(ϕ)
6M1.

Hence there exists (ξ1, η1) in the interior of ∆, such that

Υm(f) =
(ξ1 −ma) ∂

∂x
f(ξ1, η1) − f(ξ1, η1) +mf(a, η1)

(ξ2
1 − 2maξ1 +ma2)η2

1

Υm(ϕ).

Similarly, one can show that

Υm(f) =
(ξ2 −ma) ∂

∂y
f(ξ2, η2) − f(ξ2, η2) +mf(a, η2)

(ξ2
2 − 2maξ2 +ma2)η2

2

Υm(ϕ),
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which is the required result. �

Corollary 2.4. Let ∆ = [0, b] × [0, d], (x1, . . . , xn) ∈ [0, b], (y1, . . . , yn) ∈ [0, d]
be non-negative n-tuples and (q1, . . . , qn), (p1, . . . , pn) be positive n-tuples such that∑n

k=1 pkxk ≥ xj for each j = 1, 2, . . . , n. Also, let ϕ(x, y) = x2y2.

If f ∈ C1(∆), then there exists (ξ1, η1) and (ξ2, η2) in the interior of ∆, such that

Υ (f) =
(ξ1 − a) ∂

∂x
f(ξ1, η1) − f(ξ1, η1) + f(a, η1)

(ξ1 − a)2η2
1

Υ (ϕ)

and

Υ (f) =
(ξ2 − a) ∂

∂y
f(ξ2, η2) − f(ξ2, η2) + f(a, η2)

(ξ2 − a)2η2
2

Υ (ϕ),

provided that Υ (ϕ) is non-zero and a ∈ (0, b).

Proof. If we put m=1 in (2.12) and (2.13), we get the required result. �

Theorem 2.5. Let ∆ = [0, b] × [0, d], (x1, . . . , xn) ∈ [0, b], (y1, . . . , yn) ∈ [0, d]
be non-negative n-tuples and (q1, . . . , qn), (p1, . . . , pn) be positive n-tuples such that∑n

k=1 pkxk ≥ xj for each j = 1, 2, . . . , n. Also, let ϕ(x, y) = x2y2.

If f1, f2 ∈ C1(∆), then there exists (ξ1, η1) and (ξ2, η2) in the interior of ∆, such

that

Υm(f1)

Υm(f2)
=

(ξ1 −ma) ∂
∂x
f1(ξ1, η1) − f1(ξ1, η1) +mf1(a, η1)

(ξ2 −ma) ∂
∂x
f2(ξ2, η2) − f2(ξ2, η2) +mf2(a, η2)

and

Υm(f1)

Υm(f2)
=

(ξ1 −ma) ∂
∂y
f1(ξ1, η1) − f1(ξ1, η1) +mf1(a, η1)

(ξ2 −ma) ∂
∂y
f2(ξ2, η2) − f2(ξ2, η2) +mf2(a, η2)

,

provided that the denominators are non-zero and a ∈ (0, b).

Proof. Suppose

k = c1f1 − c2f2,

where c1 and c2 are defined by

c1 =Υm(f2),

c2 =Υm(f1).
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Then using Theorem 2.4 with f = k, we get

(ξ −ma)
∂

∂x
(c1f1 − c2f2)(ξ, η) − (c1f1 − c2f2)(ξ, η) +m(c1f1 − c2f2)(a, η) = 0,

(ξ −ma)c1
∂

∂x
f1(ξ, η) − (ξ −ma)c2

∂

∂x
f2(ξ, η) − c1f1(ξ, η) + c2f2(ξ, η)

+mc1f1(a, η) −mc2f2(a, η) = 0,

c1

{
(ξ −ma)

∂

∂x
f1(ξ, η) − f1(ξ, η) +mf1(a, η)

}
− c2

{
(ξ −ma)

∂

∂x
f2(ξ, η)

+ f2(ξ, η) −mf2(a, η)
}

= 0,

c1

{
(ξ −ma)

∂

∂x
f1(ξ, η) − f1(ξ, η) +mf1(a, η)

}
= c2

{
(ξ −ma)

∂

∂x
f2(ξ, η)

− f2(ξ, η) +mf2(a, η)
}
,

and
c2

c1

=
(ξ1 −ma) ∂

∂x
f1(ξ1, η1) − f1(ξ1, η1) +mf1(a, η1)

(ξ2 −ma) ∂
∂x
f2(ξ2, η2) − f2(ξ2, η2) +mf2(a, η2)

.

Similarly, one can show that

c2

c1

=
(ξ1 −ma) ∂

∂y
f1(ξ1, η1) − f1(ξ1, η1) +mf1(a, η1)

(ξ2 −ma) ∂
∂y
f2(ξ2, η2) − f2(ξ2, η2) +mf2(a, η2)

.

After putting the values of c1 and c2, we get the required result. �

3. Log Convexity

Here we have defined some families of parametric functions which we use in sequal.
Let I = [0, a), J = [0, b) ⊆ R be intervals and ft : I × J → R represents some
parametric mapping for t ∈ (c, d) ⊆ R. We define functions

ft,y : I → R by ft,y(u) = ft(u, y)

and

ft,x : J → R by ft,x(v) = ft(x, v),

where x ∈ I and y ∈ J . Suppose H1 denotes the class of functions ft : I × J → R for
t ∈ (c, d) such that the functions

t 7→ rm(u0, u1, u2, ft,y), for all u0, u1, u2 ∈ I

and

t 7→ rm(v0, v1, v2, ft,x), for all v0, v1, v2 ∈ J

are log-convex functions in Jensen sense on (c, d).
The following lemma is given in [16].
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Lemma 3.1. Let I ⊆ R be an interval. A function f : I → (0,∞) is log-convex in

J-sense on I, that is, for each r, t ∈ I

f(r)f(t) ≥ f 2
(
t+ r

2

)

if and only if the relation

m2f(t) + 2mnf
(
t+ r

2

)
+ n2f(r) ≥ 0

holds, for each m,n ∈ R and r, t ∈ I.

Our next result comprises properties of functional defined in Theorem 2.1.

Theorem 3.1. Let ft ∈ H1 and Υm be the functional defined in (2.8). Then the

function t 7→ Υm(ft) is log-convex in Jensen sense for each t ∈ (c, d).

Proof. Let

h(u, v) = m2ft(u, v) + 2mnf t+r

2

(u, v) + n2fr(u, v),

where m,n ∈ R and t, r ∈ (c, d). Also we can consider that

hy(u) = m2ft,y(u) + 2mnf t+r

2
,y(u) + n2fr,y(u)

and

hx(v) = m2ft,x(v) + 2mnf t+r

2
,x(v) + n2fr,x(v),

which gives

rm(u0, u1, u2, hy) =m2rm(u0, u1, u2, ft,y) + 2mnrm(u0, u1, u2, f t+r

2
,y)

+ n2rm(u0, u1, u2, fr,y).

As rm[u0, u1, u2, ft,y] is log-convex in Jensen sense so by using Lemma 3.1, the right
hand side of the above expression is non negative so hy is m-convex, similarly hx is
also m-convex, so h is m-convex on coordinates, which implies rm(h) ≥ 0 and

m2rm(ft) + 2mnrm(f t+r

2

) + n2rm(fr) ≥ 0.

Hence, t 7→ Υm(ft) is log-convex in Jensen sense. �

Theorem 3.2. Assume that ft is of class H1 and Υm be the functional defined in

(2.8). If the function Υm(ft) is continuous for each t ∈ (c, d), then Υm(ft) is log-convex

for each t ∈ (c, d).

Proof. If a function is continuous and log-convex in Jensen sense, then it is log-convex
(see [3, p. 48]). It is given that Υm(ft) is continuous for each t ∈ (c, d), hence Υm(ft)
is log-convex for each t ∈ (c, d). �

Lemma 3.2. If f is a convex function for all x1, x2, x3 of an open interval I for

which x1 < x2 < x3, then

(x3 − x2)f(x1) + (x1 − x3)f(x2) + (x2 − x1)f(x3) ≥ 0.
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Theorem 3.3. Let ft ∈ H1 and Υm be the functional defined in (2.8). If Υm(ft) is

positive, then for some r < s < t, where r, s, t ∈ (c, d), one has

[Υm(fs)]
t−r ≤ [Υm(fr)]

t−s [Υm(ft)]
s−r .

Proof. Consider the functional Υm(ft). Also let r < s < t, where r, s, t ∈ (c, d), since
Υm(ft) is log-convex, that is, log Υm(ft) is convex. By taking f = log Υm in Lemma
3.2, we have

(t− s) log Υm(fr) + (r − t) log Υm(fs) + (s− r) log Υm(ft) ≥ 0,

which can be written as

[Υm(fs)]
t−r ≤ [Υm(fr)]

t−s [Υm(ft)]
s−r .

�
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CERTAIN GENERATING MATRIX FUNCTIONS OF LEGENDRE

MATRIX POLYNOMIALS USING LIE ALGEBRAIC METHOD

AYMAN SHEHATA1,2

Abstract. The main aim of this present paper is to investigate a new of interesting
generating matrix relation for Legendre matrix polynomials with the help of a Lie
group-theoretic method. Certain properties are well known but some of them are
believed to be novel families of matrix differential recurrence relations and generating
matrix functions for these matrix polynomials. Special cases of new results are also
given here as applications.

1. Introduction, Motivation and Preliminaries

Special matrix functions are attaining significant results from both the practical
and theoretical examples in different fields of Physics, Mathematics and Lie theory.
Theories in connection with the unification of generating matrix relations for various
special matrix functions are of greater importance in the study of special matrix
functions by Lie group theory. The above idea was originally generated by Weisner
group-theoretic method and [22–24] also applied this technique to obtain the gen-
erating relation. However, the study of special functions from Lie group-theoretic
method approach has been obtained generating relations in the books of McBride
[12] and Miller [13]. In [17,18,21], the author has earlier introduced and studied the
Legendre matrix polynomials. In [3, 9–11, 14–16, 19, 20], certain properties of some
special matrix functions via Lie algebra have been proposed as finite series solutions
of second-order differential matrix equation.

Motivated by their work, in the present paper, our aim is to establish some results
for Legendre matrix polynomials. Here, we give the families of generating matrix

Key words and phrases. Legendre matrix polynomials, Legendre differential matrix equation,
generating matrix functions, Lie algebra.
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functions for Legendre matrix polynomials and the differential recurrence matrix
relations for these matrix polynomials are also obtained in section 2. In section 3, we
study of linear differential operators for Legendre matrix polynomials which generate
Lie algebra to apply Weisner’s method to obtain some generating matrix relations and
apply these linear operators to determine a local representation which makes a one
to one correspondence between these Lie algebra with the help of Weisner’s method.

Here, the concepts associated with the functional matrix calculus are reviewed.
Throughout this article, for a matrix A ∈ C

N×N , its spectrum σ(A) denotes the set
of all the eigenvalues of A. We denote by I and O the identity and null matrix in
C

N×N , respectively.

Definition 1.1 ([7]). For a matrix A ∈ C
N×N such that σ(A) does not contain 0 or a

negative integer (σ(A) ∩ Z
− = ∅ where ∅ is an empty set), the matrix form of shifted

factorial is defined as

(A)n =

{

A(A + I) · · · (A + (n − 1)I) = Γ(A + nI)Γ−1(A), n ∈ N,
I, n = 0,

(1.1)

where Γ(A) is an invertible matrix in C
N×N and Γ−1(A) is inverse Gamma matrix

function (see [8]).

For A is an arbitrary matrix in C
N×N and using (1.1), we have the relations (see

Defez and Jódar [4])

(A)n+k = (A)n(A + nI)k = (A)k(A + kI)n,

(−nI)k =











(−1)k n!

(n − k)!
I, 0 ≤ k ≤ n,

0, k > n,

(A)n−k =

{

(−1)k(A)n[(I − A − nI)k]−1, 0 ≤ k ≤ n,
0, k > n.

(1.2)

If Re(µ) ∈ σ(A) is not an integer and using (1.1), we have the relation

(1.3) Γ(I − A − nI)Γ−1(I − A) = (−1)n[(A)n]−1,

where Γ(I − A) is an invertible matrix.

Lemma 1.1. If A(k, n) is a matrix in C
N×N for k, n ∈ N0, the relation is satisfied

(see Defez and Jódar [4])

(1.4)
∞
∑

n=0

∞
∑

k=0

A(k, n) =
∞
∑

n=0

n
∑

k=0

A(k, n − k).

Definition 1.2 (Jódar and Cortés [7]). For any matrices A, B, and C in C
N×N such

that C is an invertible matrix and for |z| < 1, the hypergeometric matrix function is
defined as follows

(1.5) 2F1(A, B; C; z) =
∞
∑

k=0

zk

k!
(A)k(B)k[(C)k]−1.
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For A ∈ C
N×N , we have the relation (see Defez and Jódar [5])

(1.6) Dk
[

tA+mI
]

= (A + I)m(A + I)m−ktA+(m−k)I , k = 0, 1, 2, . . . .

Theorem 1.1. For |z| < 1 if A, B and C are matrices in C
N×N where the matrix

C satisfies the condition C + nI is an invertible matrix for all integers n ≥ 0 and C,
C − A and C − B are positive stable matrices with all matrices are commutative, then
the relation

(1.7) 2F1

(

A, B; C; z
)

= (1 − z)C−A−B
2F1

(

C − A, C − B; C; z
)

.

Corollary 1.1 ([1, 2, 6]). Jacobi matrix polynomials have the matrix recurrence rela-
tion:

(x − 1)

[

(A + B + nI)
d

dx
P (A,B)

n (x) + (A + nI)
d

dx
P

(A,B)
n−1 (x)

]

=(A + B + nI)

[

nP (A,B)
n (x) − (A + nI)P

(A,B)
n−1 (x)

]

,(1.8)

where A and B are commutative matrices in C
N×N such that

Re(z) > −1, for all z ∈ σ(A) and Re(w) > −1, for all w ∈ σ(B).

Definition 1.3 ([18]). Let A be a matrix in C
N×N such that

(1.9) 0 < Re(λ) < 1, for all λ ∈ σ(A).

Legendre matrix polynomials Pn(x, A) is defined by

Pn(x, A) =
n
∑

k=0

(−1)k(n + k)!

k!(n − k)!

(

1 − x

2

)k

Γ−1(A + kI)Γ(A), n ≥ 0

= 2F1

(

− nI, (n + 1)I; A;
1

2
(1 − x)

)

,

∣

∣

∣

∣

∣

1 − x

2

∣

∣

∣

∣

∣

< 1,

such that A + kI is an invertible matrix for all integers k ≥ 0.

Theorem 1.2 ([18]). For n ≥ 0, the Legendre matrix polynomials Pn(x, A) satisfy
the second order differential matrix equation as

(1 − x2)D2Pn(x, A) + 2((1 − x)I − A)DPn(x, A) + n(n + 1)Pn(x, A) = 0,(1.10)
∣

∣

∣

∣

∣

x − 1

2

∣

∣

∣

∣

∣

< 1, D =
d

dx
.

Theorem 1.3 ([18]). For the Legendre matrix polynomials Pn(x, A), we have the pure
matrix recurrence relation

(A + nI)Pn+1(x, A) = (2n + 1)xPn(x, A) + (A − (n + 1)I)Pn−1(x, A), n ≥ 1.

(1.11)
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2. Some New Results for Legendre Matrix Polynomials

Here, we derive families of new results for Legendre matrix polynomials with A a
matrix in C

N×N satisfying the condition (1.9). We have the following main results.

Theorem 2.1. The generating matrix functions for the Legendre matrix polynomials
are

(2.1)
∞
∑

n=0

tnPn(x, A) = (1 − t)−1
2F1

(

1

2
I, I; A;

2(x − 1)t

(1 − t)2

)

,

for
∣

∣

∣

2(x−1)t
(1−t)2

∣

∣

∣ < 1, |t| < 1, and

(2.2)
∞
∑

n=0

tn

n!
Pn(x, A) = et

1F1

(

(n + 1)I; A;
(1 − x)t

2

)

,

∣

∣

∣

∣

∣

(1 − x)t

2

∣

∣

∣

∣

∣

< 1.

Proof. From the definition of hypergeometric matrix function and multiplying (1−t)−1,
we have

(1 − t)−1
2F1

(

1

2
I, I; A;

2(x − 1)t

(1 − t)2

)

=
∞
∑

k=0

2k

k!
(1 − t)−(1+2k)Itk(I)k

(

1

2
I

)

k

[(A)k]−1(x − 1)k

=
∞
∑

n=0

∞
∑

k=0

2ktn+k

n!k!
((1 + 2k)I)n(I)k

(

1

2
I

)

k

[(A)k]−1(x − 1)k.

From (1.2), we can write that

(I)2k = 22k(I)k

(

1

2
I

)

k

,

which implies
∞
∑

n=0

∞
∑

k=0

2ktn+k

n!k!
((1 + 2k)I)n2−2k(I)2k[(A)k]−1(x − 1)k.

Using (1.2), we get
(I)n+2k = (I)2k((1 + 2k)I)n,

which implies
∞
∑

n=0

∞
∑

k=0

tn+k

n!k!
(I)n+2k[(A)k]−1

(

x − 1

2

)k

.

Using Lemma 1.1 and replacing n by n − k, we find that

∞
∑

n=0

n
∑

k=0

tn

(n − k)!k!
(I)n+k[(A)k]−1

(

x − 1

2

)k

=
∞
∑

n=0

n
∑

k=0

n!tn

(n − k)!k!
((n + 1)I)k[(A)k]−1

(

x − 1

2

)k

.
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By using (1.2) in the above equation, we obtain (2.1).
From the definition of hypergeometric matrix function and multiplying et, we have

et
1F1

(

(n + 1)I; A;
(1 − x)t

2

)

= et
∞
∑

k=0

1

k!
((n + 1)I)k[(A)k]−1

(

(1 − x)t

2

)k

=
∞
∑

n=0

∞
∑

k=0

tn+k

n!k!
((n + 1)I)k[(A)k]−1

(

1 − x

2

)k

.

Using Lemma 1.1 and replacing n by n − k with the help of these Eqs. (1.1), (1.2)
and (1.3), we find that

∞
∑

n=0

n
∑

k=0

tn

(n − k)!k!
((n − k + 1)I)k[(A)k]−1

(

1 − x

2

)k

=
∞
∑

n=0

n
∑

k=0

tn

(n − k)!k!
(−1)k((n + 1)I)k[(A)k]−1

(

1 − x

2

)k

=
∞
∑

n=0

n
∑

k=0

1

n!k!
((1 + n)I)k(−nI)k[(A)k]−1

(

1 − x

2

)k

tn =
∞
∑

n=0

tn

n!
Pn(x, A),

which completes of the proof (2.2). �

Precisely the same manner as described Theorem 2.1 and using (1.2), (1.3) and
(1.4), we can prove the following results.

Theorem 2.2. For Legendre matrix polynomials, the following generating matrix
functions are

∞
∑

n=0

tnPn(x, A) = (1 − t)−1
2F1

(

− nI, I; A;
(1 − x)

2(1 − t)

)

and
∞
∑

n=0

tnPn(x, A) = (1 − t)−1
2F1

(

I, (n + 1)I; A;
(x − 1)t

2(1 − t)

)

.

Lemma 2.1. The following equalities for the hypergeometric matrix function satisfy
as follows

dn

dzn

[

zC−I
2F1

(

A, B; C; z
)

]

=(C − nI)nzC−(n+1)I

× 2F1

(

A, B; C − nI; z
)

,(2.3)

where C and C − nI are invertible matrices.

dn

dzn

[

2F1

(

A, B; C; z
)

]

=(A)n(B)n[(C)n]−1

× 2F1

(

A + nI, B + nI; C + nI; z
)

,(2.4)



358 A. SHEHATA

where C and C + nI are invertible matrices, and

dn

dzn

[

(1 − z)A+B−C
2F1

(

A, B; C; z
)]

=(C − A)n(C − B)n[(C)n]−1

× (1 − z)A+B−C−nI
2F1

(

A, B; C + nI; z
)

,(2.5)

where C and C + nI are invertible matrices.

Proof. To prove (2.3), from (1.1) and (1.6), we get

dn

dzn

[

zC+(k−1)I
]

=(C + (k − 1)I)(C + (k − 2)I) · · · (C + (k − n)I)zC+(k−n+1)I

=(C)k(C − nI)n[(C − nI)k]−1zC+(k−n−1)I .

Substituting the above expression into the series expression of hypergeometric matrix
function, we obtain (2.3).

From (1.5), we get

d

dz
2F1

(

A, B; C; z
)

=
∞
∑

k=0

zk

k!
(A)k+1(B)k+1[(C)k+1]

−1

=AB−1C−1
∞
∑

k=0

zk

k!
(A + I)k(B + I)k[(C + I)k]−1

=ABC−1
2F1

(

A + I; B + I, C + I; z
)

.(2.6)

By iteration (2.6), for n, one gets (2.4).
In (1.7), we can write

2F1

(

C − A, C − B; C; z
)

= (1 − z)A+B−C
2F1

(

A, B; C; z
)

.

Differentiating with respect to z of n times with the help of this eq. (2.3), we have

dn

dzn

[

(1 − z)A+B−C
2F1

(

A, B; C; z
)]

=
dn

dzn

[

2F1

(

C − A, C − B; C; z
)]

=(C − A)n(C − B)n[(C)n]−1
2F1

(

C − A + nI, C − B + nI; C + nI; z
)

=(C − A)n(C − B)n[(C)n]−1(1 − z)A+B−C−nI
2F1

(

A, B; C + nI; z
)

,

and using (1.7), we have the desired recurrence relation. �

Theorem 2.3. The following differential recurrence matrix relations for Legendre
matrix polynomials hold true:

dr

dxr

[

(1 − x)A−I Pn(x, A)
]

=(−1)r(A − rI)r(1 − x)A−(r+1)IPn(x, A + rI),(2.7)

where A + rI is a matrix C
N×N satisfying the condition (1.9),

dr

dxr

[

Pn(x, A)
]

=(−1)r2−r(−nI)r((n + 1)I)r[(A)r]
−1
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× 2F1

(

(r − n)I, (n + r + 1)I : A + rI;
1 − x

2

)

,(2.8)

where A + rI is an invertible matrix C
N×N , and

dr

dxr

[

(1 + x)I−A Pn(x, A)
]

=(−1)r(A + nI)r(A − (n + 1)I)r

× [(A)r]
−1(1 + x)I−A−rI Pn(x, A + rI),

where A + rI is a matrix C
N×N satisfying the condition (1.9).

Proof. To prove (2.7), taking A → −nI, B → (n + 1)I, C → A and z → 1−x
2

in
equation (2.3), we complete the proof.

Taking z → 1−x
2

, A = −nI, B = (n + 1)I and C = A in equation (2.4), which
completes of the proof (2.8).

Taking z → 1−x
2

, A → −nI, B → (n + 1)I and C → A in equation (2.5), theorem
can be proved. �

Therefore, in (1.8) we interchange A and B and replace x by −x with the help
P (B,A)

n (−x) = (−1)nP (A,B)
n (x) to obtain in the following result.

Corollary 2.1. Jacobi matrix polynomials have the matrix relation:

(x + 1)
[

(A + B + nI)DP (A,B)
n (x) − (B + nI)DP

(A,B)
n−1 (x)

]

=(A + B + nI)
[

nP (A,B)
n (x) + (B + nI)P

(A,B)
n−1 (x)

]

, n ≥ 1, D =
d

dx
.

The relations presented in the following theorem are also interesting.

Theorem 2.4. Legendre matrix polynomials Pn(x, A) satisfy the following differential
recurrence matrix relations:

(x − 1)
(

DPn(x, A) + DPn−1(x, A)
)

= n
(

Pn(x, A) − Pn−1(x, A)
)

, n ≥ 1,(2.9)

(x + 1)
(

(A + (n − 1)I)DPn(x, A) + (A − (n + 1)I)DPn−1(x, A)
)

=n
(

(A + (n − 1)I)Pn(x, A) − (A − (n + 1)I)Pn−1(x, A)
)

, n ≥ 1(2.10)

and

(x2 − 1)DPn(x, A) =
(

(1 + nx)I − A
)

Pn(x, A) + (A − (n + 1)I)Pn−1(x, A), n ≥ 1.

(2.11)

Proof. To prove 2.9. In the generating matrix relation (2.1). If we put that

Φ(x, t, A) =
∞
∑

n=0

tnPn(x, A) = (1 − t)−1
2F1

(

1

2
I, I; A;

2(x − 1)t

(1 − t)2

)

=(1 − t)−1Ψ(x, t, A),(2.12)
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where Ψ(x, t, A) = 2F1

(

1
2
I, I; A; 2(x−1)t

(1−t)2

)

.

Differentiating (2.12) with respect to x and t, we obtain

∂

∂x
Φ(x, t, A) = 2t(1 − t)−3Ψ′(x, t, A)

and

∂

∂t
Φ(x, t, A) =(1 − t)−2 Ψ(x, t, A) + 2(x − 1)(1 + t)(1 − t)−4Ψ′(x, t, A).

Therefore Φ(x, t, A) satisfies the partial differential matrix equation

(2.13) (x − 1)(1 + t)
∂

∂x
Φ(x, t, A) − t(1 − t)

∂

∂t
Φ(x, t, A) = −tΦ(x, t, A).

Equation (2.13) can be put that

(x − 1)
∂

∂x
Φ(x, t, A) − t

∂

∂t
Φ(x, t, A) = − tΦ(x, t, A) − t2 ∂

∂t
Φ(x, t, A)(2.14)

− (x − 1)t
∂

∂x
Φ(x, t, A).

Since

Φ(x, t, A) =
∞
∑

n=0

tnPn(x, A),

if we differentiate (2.12) with respect to x and t, we get

(1 − x)
∂

∂x
Φ(x, t, A) =

∞
∑

n=0

tn(1 − x)
d

dx
Pn(x, A)

and
∂

∂t
Φ(x, t, A) =

∞
∑

n=0

ntn−1Pn(x, A),

(2.14) yields that

∞
∑

n=0

tn

(

(x − 1)
d

dx
Pn(x, A) − nPn(x, A)

)

= −
∞
∑

n=0

tn+1Pn(x, A) −
∞
∑

n=0

ntn+1Pn(x, A) −
∞
∑

n=0

tn+1(x − 1)
d

dx
Pn(x, A)

= −
∞
∑

n=1

tnPn−1(x, A) −
∞
∑

n=0

(n − 1)tnPn−1(x, A) −
∞
∑

n=1

tn(1 − x)
d

dx
Pn−1(x, A)

=
∞
∑

n=0

(−1 − n + 1)tnPn−1(x, A) −
∞
∑

n=1

tn(1 − x)
d

dx
Pn−1(x, A)

= −
∞
∑

n=0

ntnPn−1(x, A) −
∞
∑

n=1

tn(1 − x)
d

dx
Pn−1(x, A).

Comparing the coefficients of tn, which leads to (2.9).
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If we choose A = A − I, B = I − A in Corollary 2.1, we see that the matrix
polynomials P (A−I,I−A)

n (x) is P (A−I,I−A)
n (x) = (A)n

n!
Pn(x, A) which leads to the result

(2.10).
Let us eliminate d

dx
Pn−1(x, A) from multiply (2.9) by (x + 1)(A − (n + 1)I) and

multiply (2.10) by (x − 1) which gives the result (2.11).
Eliminating Pn−1(x, A) from (1.11) and (2.11), one can obtain in the following

result. �

Theorem 2.5. The differential recurrence matrix relation for Legendre matrix poly-
nomials holds

(x2 − 1)DPn(x, A) =((1 − (n + 1)x)I − A)Pn(x, A)

− (A + nI)Pn+1(x, A).

3. Group-Theoretic Method for Legendre Matrix Polynomials

In order to use Weisner’s method. Replacing D by ∂
∂x

, n by y ∂
∂y

and Pn(x, A)

by Pn(x, y, A) = ynPn(x, A) in (1.10) is constructed the partial differential matrix
equation

(1 − x2)
∂2

∂x2
Pn(x, y, A) + 2

[

(1 − x)I − A
] ∂

∂x
Pn(x, y, A)

+ y2 ∂2

∂y2
Pn(x, y, A) + 2y

∂

∂y
Pn(x, y, A) = 0.(3.1)

Thus, Pn(x, y, A) = ynPn(x, A) is a solution of the partial differential matrix equation
(3.1). Linear differential operators A, B and C are defined as follows

(3.2) A = y
∂

∂y
I,

(3.3) B =
1 − x2

y

∂

∂x
I + x

∂

∂y
I +

1

y
(I − A), y 6= 0,

and

(3.4) C = (1 − x2)y
∂

∂x
I − xy2 ∂

∂y
I + ((1 − x)I − A)y.

Then

A

[

Pn(x, A)yn
]

=nPn(x, A)yn,(3.5)

B

[

Pn(x, A)yn
]

= − (A − (n + 1)I)Pn−1(x, A)yn−1(3.6)

and

(3.7) C

[

Pn(x, A)yn
]

= (A + nI)Pn+1(x, A)yn+1.

From (3.2), (3.3) and (3.4), the following theorem can be stated.
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Theorem 3.1. Linear partial differential operators A, B and C as defined in (3.2),
(3.3) and (3.4) have the following properties

(i) [A,B] = −B; (ii) [A,C] = C; (iii) [B,C] = −2A − I,(3.8)

where I is the identity operator, and the notation [A,B] = AB − BA.

Proof. Now, we proceed to calculate [A,B]. So that, we consider the action of AB on
the Legendre matrix polynomials Pn(x, y, A)

ABPn(x, y, A) = y
∂

∂y

[

I − x2

y

∂

∂x
I + x

∂

∂y
I +

1

y
(I − A)

]

Pn(x, y, A).

Hence, on simplification, we have

ABPn(x, y, A) =(1 − x2)
∂2

∂y∂x
Pn(x, y, A) − 1 − x2

y

∂

∂x
Pn(x, y, A)

+ xy
∂2

∂y2
Pn(x, y, A) + (I − A)

∂

∂y
Pn(x, y, A) − 1

y
(I − A)Pn(x, y, A).(3.9)

In the similar fashion we can operate BA on the Pn(x, y, A) and simplified as

BAPn(x, y, A) =(1 − x2)
∂2

∂x∂y
Pn(x, y, A) + x

∂

∂y
Pn(x, y, A)

+ xy
∂2

∂y2
Pn(x, y, A) + (I − A)

∂

∂y
Pn(x, y, A).(3.10)

Subtracting (3.10) from (3.9) and for ∂2

∂x∂y
= ∂2

∂y∂x
, we get

[A,B]Pn(x, y, A) =
(

AB − BA

)

Pn(x, y, A) = −1 − x2

y

∂

∂x
Pn(x, y, A)

− x
∂

∂y
Pn(x, y, A) − 1

y
(I − A)Pn(x, y, A).

Further simplifying, we get

[A,B]Pn(x, y, A) = −BPn(x, y, A).

Hence, we have [A,B] = −B. Similarly, we can calculate each of the results [A,C]
and [B,C]. Thus, the required results are established. �

Now, if we operate the partial differential operator (1−x2)L on Pn(x, y, A), we give

(1 − x2)LPn(x, y, A) =(1 − x2)2 ∂2

∂x2
Pn(x, y, A) + (1 − x2)y2 ∂2

∂y2
Pn(x, y, A)

+ 2[(1 − x)I − A](1 − x2)
∂

∂x
Pn(x, y, A)

+ 2y(1 − x2)
∂

∂y
Pn(x, y, A)
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and

CBPn(x, y, A) =(1 − x2)2 ∂2

∂x2
Pn(x, y, A) + 2((1 − x)I − A)(1 − x2)

∂

∂x
Pn(x, y, A)

+ y(1 − 2x2)
∂

∂y
Pn(x, y, A) − x2y2 ∂2

∂y2
Pn(x, y, A)

+ (I − A)2Pn(x, y, A).

But

A
2Pn(x, y, A) = y

∂

∂y

(

y
∂

∂y

)

Pn(x, y, A) = y2 ∂2

∂y2
Un(x, y, A) + y

∂

∂y
Pn(x, y, A).

Hence, we get

(1 − x2)LPn(x, y, A) − CBPn(x, y, A) =y2 ∂2

∂y2
Pn(x, y, A) + y

∂

∂y
Pn(x, y, A)

− (I − A)2Pn(x, y, A),

which can be express as:

(1 − x2)LPn(x, y, A) =
[

CB + A
2 − (I − A)2

I

]

Pn(x, y, A).

Since, Pn(x, y, A) is the Legendre matrix polynomials, we conclude that

(1 − x2)L = CB + A
2 − (I − A)2

I.

Now, we show that
[

(1 − x2)L,A
]

Pn(x, y, A)

=
(

(1 − x2)LA − A(1 − x2)L
)

Pn(x, y, A)

=
((

CB + A
2 − (I − A)2

I

)

A − A

(

CB + A
2 − (I − A)2

I

))

Pn(x, y, A)

=
(

CBA − ACB

)

Pn(x, y, A).(3.11)

Also, with the aid of (3.8), we have

CBA − ACB = CBA − (C + CA)B = CB − CB = 0.

So that from (3.11), we get
[(

1 − x2
)

L,A
]

= 0.

Hence, we proved that (1 − x2)L commute with A. In a similar manner, we can
calculate of the operator (1 − x2)L commute with each of the differential operators B

and C. Thus, we can give in the following.

Theorem 3.2. The operator (1 − x2)L commute with each of the linear differential
operators A, B and C defined in (3.5), (3.6) and (3.7) as follows

(i) [(1 − x2)L,A] = 0, (ii) [(1 − x2)L,B] = 0, (iii) [(1 − x2)L,C] = 0.
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The extended forms of the transformation groups generated by the differential
operators A, B and C are given by

eaAf(x, y, A) =f
(

x, eay, A
)

,

ebBf(x, y, A) =f

(

xy + b√
y2 + 2bxy + b2

,
√

y2 + 2bxy + b2, A

)

,

for |y2 + 2bxy| < b2, | y

2bx
| < 1 and

ecCf(x, y, A) = (c2y2 + 2cxy + 1)−
1

2 f

(

x + cy√
c2y2 + 2cxy + 1

,
y√

c2y2 + 2cxy + 1
, A

)

,

where |c2y2 + 2cxy| < 1 and
∣

∣

∣

cy

2x

∣

∣

∣ < 1, f(x, y, A) is an arbitrary matrix function, and

a, b and c are arbitrary constants.
From the above equations, we get

ecCebBeaAf(x, y, A) =f

(

y(x + cy) + b(c2y2 + 2cxy + 1)
√

c2y2 + 2cxy + 1
√

b2(c2y2 + 2cxy + 1) + 2by(x + cy) + y2
,

ea

√

b2(c2y2 + 2cxy + 1) + 2by(x + cy) + y2

(c2y2 + 2cxy + 1)
3

2

, A

)

.(3.12)

3.1. Generating matrix functions. From (3.5), Pn(x, y, A) = Pn(x, A)yn is a solu-
tion of the system

LPn(x, y, A) = 0 and (A − nI)Pn(x, y, A) = 0.

From (3.12), we get

ecCebBeaA(1 − x2)L[Pn(x, A)yn] = (1 − x2)LecCebBeaA[Pn(x, A)yn].

Therefore, the transform ecCebBeaA[Pn(x, A)yn] is annulled by (1 − x2)L.
If we choose a = 0 and Pn(x, y, A) = Pn(x, A)yn in (3.12), we get

ecCebB[Pn(x, A)yn]

=
(

b2(c2y2 + 2cxy + 1) + 2by(x − cy) + y2
)

1

2
n
(c2y2 + 2cxy + 1)−( 1

2
+ 3

2
n)

× Pn

(

y(x + cy) + b(c2y2 + 2cxy + 1)
√

c2y2 + 2cxy + 1
√

b2(c2y2 + 2cxy + 1) + 2by(x + cy) + y2
, A

)

.

On the other hand we get

ecCebB[Pn(x, A)yn] =
∞
∑

m=0

cm

m!

∞
∑

k=0

bk

k!
(A + (n − k)I)m((n + 1)I − A)k

× yn−k+mPn−k+m(x, A).

Equating the results (3.6) and (3.7), we get
(

b2(c2y2 + 2cxy + 1) + 2by(x + cy) + y2
)

1

2
n(

c2y2 + 2cxy + 1
)

−( 1

2
+ 3

2
nI)
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× Pn

(

y(x + cy) + b(c2y2 + 2cxy + 1)
√

c2y2 + 2cxy + 1
√

b2(c2y2 + 2cxy + 1) + 2by(x + cy) + y2
, A

)

=
∞
∑

m=0

n
∑

k=0

cmbk

m!k!
(A + (n − k)I)m((n + 1)I − A)kyn−k+mPn−k+m(x, A).(3.13)

Here, we derive of some interesting results as the particular case of generating matrix
relations (2.11), we need to consider three cases.

Case 1: b = −1, c = 0.
If we substitute b = −1 and c = 0 in (3.13), then it will gives us

e−Bf(x, y, A) = f
( xy − 1√

y2 − 2xy + 1
,
√

y2 − 2xy + 1, A
)

.

Hence, if we take f(x, y, A) = P (x, y, A) = Pn(x, A)yn, we find

(3.14) −B
[

Pn(x, A)yn
]

=
(

1 − 2xy + y2
)

1

2
n
Pn

(

xy − 1√
1 − 2xy + y2

, A

)

,

since

B

[

Pn(x, A)yn
]

=
1 − x2

y

∂

∂x

(

Pn(x, A)yn
)

+ x
∂

∂y

(

Pn(x, A)yn
)

=((n + 1)I − A)Pn−1(x, A)yn−1.

On another hand, we can expand left-hand side of (3.14) in a series form and then
repeated application of (3.6) on the same side of (3.14), we have

(3.15) e−B
[

Pn(x, A)yn
]

=
n
∑

k=0

1

k!
(A − (n + 1)I)kPn−k(x, A)yn−k.

Equating expressions (3.14) and (3.15), we get
n
∑

k=0

1

k!
(A − (n + 1)I)kPn−k(x, A)yn−k =

(

1 − 2xy + y2
)

1

2
n
Pn

(

xy − 1√
1 − 2xy + y2

, A

)

.

Replacing y−1 by t, we obtain of a generating matrix relation
n
∑

k=0

1

k!
(A − (n + 1)I)kPn−k(x, A)tk

=
(

1 − 2xt + t2
)

1

2
n
Pn

(

x − t√
1 − 2xt + t2

, A

)

.

Case 2. If we choose b = 0 and c = 1 in (3.13) we have

eCf(x, y, A) =
(

y2 + 2xy + 1
)

−
1

2
f

(

x + y√
y2 + 2xy + 1

,
y√

y2 + 2xy + 1
, A

)

.

Hence, if we take f(x, y, A) = P (x, y, A) = Pn(x, A)yn, we find

eCP (x, y, A) =
(

y2 + 2cxy + 1
)

−
1

2
P

(

x + y√
y2 + 2xy + 1

,
y√

y2 + 2xy + 1
, A

)
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and

(3.16) eCP (x, y, A) = yn
(

y2 + 2cxy + 1
)

−
n+1

2
P

(

x + y√
y2 + 2xy + 1

, A

)

.

Since we have

C

[

Pn(x, A)yn
]

=(1 − x2)y
∂

∂x

(

Pn(x, A)yn
)

− xy2 ∂

∂y

(

Pn(x, A)yn
)

− xy
(

Pn(x, A)yn
)

= (A + nI)Pn+1(x, A)yn+1.

On other hand, we can expand left hand side of (3.16) in a series form and then
repeated application of (3.7) on the same side of (3.16), we have

(3.17) eC
[

Pn(x, A)yn
]

=
n
∑

k=0

1

k!
(A + nI)kPn+k(x, A)yn+k.

Equating expressions (3.16) and (3.17) we get

n
∑

k=0

1

k!
(A + nI)kPn+k(x, A)yk =

(

1 + 2xy + y2
)

−
n+1

2
Pn

(

x + y√
1 + 2xy + y2

, A

)

,

and replacing y by −t, we get of a generating matrix relation
n
∑

k=0

(−1)k

k!
(A + nI)kPn+k(x, A)tk

=
(

1 − 2xt + t2
)

−
n+1

2
Pn

(

x − t√
1 − 2xt + t2

, A

)

.

Case 3: b = 1, c = −1.
Let us take b = 1 and c = −1, so that (3.17) becomes

e−CeB[Pn(x, A)yn] =
∞
∑

r,k=0

(−1)r

r!k!
C

r
B

k[Pn(x, A)yn]

=
∞
∑

r,k=0

(−1)r

r!k!
((A + nI))rB

k[Pn+r(x, A)yn+r]

=
∞
∑

k=0

n
∑

r

(−1)r

r!k!
Γ(A + nI)Γ−1(A + (n − r)I)Bk[Pn(x, A)yn]

and

e−CeB[Pn(x, A)yn =
∞
∑

k=0

n
∑

r

(−1)r

r!k!
Γ(A + nI)Γ−1(A + (n − r)I)

× (A − (n + 1)I)kPn−k(x, A)yn−k.(3.18)

Using (3.13) and (3.18), we get

e−CeB[Pn(x, A)yn] =
(

y2 − 2xy + 1
)

−( n+1

2
)
Pn

(

1 − xy√
y2 − 2xy + 1

, A

)
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=
∞
∑

k=0

n
∑

r

(−1)r

r!k!
Γ(A + nI)Γ−1(A + (n − r)I)(A − (n + 1)I)kPn−k(x, A)yn−k(3.19)

and
(

y2 − 2xy + 1
)

−( n+1

2
)
Pn

(

1 − xy√
y2 − 2xy + 1

, A

)

=
∞
∑

k=0

n
∑

r

(−1)r

r!k!
Γ(A + nI)Γ−1(A + (n − r)I)(A − (n + 1)I)kPn−k(x, A)yn−k.

Replacing y−1 by t in (3.19) we get

t2n+1
(

t2 − 2xt + 1
)

−( n+1

2
)
Pn

(

t − x√
t2 − 2tx + 1

, A

)

=
∞
∑

k=0

n
∑

r

(−1)r

r!k!
Γ(A + nI)Γ−1(A + (n − r)I)(A − (n + 1)I)kPn−k(x, A)tk.

4. Conclusion

A novel approach has been obtained in this paper for studying many interesting
results of Legendre matrix polynomials viz certain generating matrix relations, matrix
recurrence relation, matrix differential recurrence relation and matrix differential
equation. Lie algebra method developed in this work can also be used to study
some other Legendre matrix polynomials which play as applications and a vital role in
Mathematical Physics in the future. However, the merging of these matrix polynomials
with a Lie algebraic techniques is also stimulating for further research work.
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ON THE HERMITE-HADAMARD TYPE INEQUALITIES FOR

FRACTIONAL INTEGRAL OPERATOR

H. YALDIZ1 AND M. Z. SARIKAYA2

Abstract. In this paper, using a general class of fractional integral operators, we
establish new fractional integral inequalities of Hermite-Hadamard type. The main
results are used to derive Hermite-Hadamard type inequalities involving the familiar
Riemann-Liouville fractional integral operators.

1. Introduction

Let f : I ⊆ R → R be a convex mapping defined on the interval I of real numbers
and a, b ∈ I, with a < b. The following double inequality is well known in the
literature as the Hermite-Hadamard inequality [5]:

(1.1) f

(

a + b

2

)

≤
1

b − a

∫ b

a
f (x) dx ≤

f (a) + f (b)

2
.

The most well-known inequalities related to the integral mean of a convex function
are the Hermite-Hadamard inequalities.

In [2], Dragomir and Agarwal proved the following results connected with the right
part of (1.1).

Lemma 1.1. Let f : I◦ ⊆ R → R be a differentiable mapping on I◦, a, b ∈ I◦ with

a < b. If f ′ ∈ L[a, b], then the following equality holds:

(1.2)
f (a) + f (b)

2
−

1

b − a

∫ b

a
f(x)dx =

b − a

2

∫ 1

0
(1 − 2t)f ′(ta + (1 − t)b)dt.

Key words and phrases. Fractional integral operator, convex function, Hermite-Hadamard inequal-
ity.
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Theorem 1.1. Let f : I◦ ⊆ R → R be a differentiable mapping on I◦, a, b ∈ I◦ with

a < b. If |f ′| is convex on [a, b], then the following inequality holds:

(1.3)

∣

∣

∣

∣

∣

f (a) + f (b)

2
−

1

b − a

∫ b

a
f(x)dx

∣

∣

∣

∣

∣

≤
(b − a)

8
(|f ′(a)| + |f ′(b)|) .

Meanwhile, in [8], Sarikaya et al. gave the following interesting Riemann-Liouville
integral inequalities of Hermite-Hadamard type.

Theorem 1.2. Let f : [a, b] → R be a positive function with 0 ≤ a < b and

f ∈ L1([a, b]). If f is a convex function on [a, b], then the following inequalities

for fractional integrals hold:

(1.4) f

(

a + b

2

)

≤
Γ(α + 1)

2 (b − a)α

[

Jα
a+f(b) + Jα

b−
f(a)

]

≤
f (a) + f (b)

2
,

with α > 0.

Lemma 1.2. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b. If

f ′ ∈ L [a, b] , then the following equality for fractional integrals holds:

f(a) + f(b)

2
−

Γ(α + 1)

2 (b − a)α

[

Jα
a+f(b) + Jα

b−
f(a)

]

(1.5)

=
b − a

2

∫ 1

0
[(1 − t)α − tα] f ′ (ta + (1 − t)b) dt.

Theorem 1.3. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b. If

|f ′| is convex on [a, b], then the following inequality for fractional integrals holds:
∣

∣

∣

∣

∣

f(a) + f(b)

2
−

Γ(α + 1)

2 (b − a)α

[

Jα
a+f(b) + Jα

b−
f(a)

]

∣

∣

∣

∣

∣

(1.6)

≤
b − a

2 (α + 1)

(

1 −
1

2α

)

[|f ′(a)| + |f ′(b)|] .

For some recent results connected with fractional integral inequalities see ([8]-[11])
In [7], Raina defined the following results connected with the general class of

fractional integral operators

(1.7) Fσ
ρ,λ (x) = F

σ(0),σ(1),...
ρ,λ (x) =

∞
∑

k=0

σ (k)

Γ (ρk + λ)
xk, ρ, λ > 0, |x| < R,

where the coefficents σ (k), k ∈ N0 = N∪ {0}, is a bounded sequence of positive real
numbers and R is the real number. With the help of (1.7), Raina and Agarwal
et al. defined the following left-sided and right-sided fractional integral operators,
respectively, as follows:

(1.8) Jσ
ρ,λ,a+;ωϕ(x) =

∫ x

a
(x − t)λ−1

Fσ
ρ,λ [ω (x − t)ρ] ϕ(t)dt, x > a,

(1.9) Jσ
ρ,λ,b−;ωϕ(x) =

∫ b

x
(t − x)λ−1

Fσ
ρ,λ [ω (t − x)ρ] ϕ(t)dt, x < b,
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where λ, ρ > 0, ω ∈ R, and ϕ (t) is such that the integrals on the right side exists.
It is easy to verify that Jσ

ρ,λ,a+;ωϕ(x) and Jσ
ρ,λ,b−;ωϕ(x) are bounded integral operators

on L (a, b), if

(1.10) M :=Fσ
ρ,λ+1 [ω (b − a)ρ] < ∞.

In fact, for ϕ ∈ L (a, b), we have

(1.11)
∥

∥

∥Jσ
ρ,λ,a+;ωϕ(x)

∥

∥

∥

1
≤ M (b − a)λ ‖ϕ‖1

and

(1.12)
∥

∥

∥Jσ
ρ,λ,b−;ωϕ(x)

∥

∥

∥

1
≤ M (b − a)λ ‖ϕ‖1 ,

where

‖ϕ‖p :=





b
∫

a

|ϕ (t)|p dt





1

p

.

The importance of these operators stems indeed from their generality. Many useful
fractional integral operators can be obtained by specializing the coefficient σ (k). Here,
we just point out that the classical Riemann-Liouville fractional integrals Iα

a+ and Iα
b−

of order α defined by (see, [3, 4, 6])

(1.13) (Iα
a+ϕ) (x) :=

1

Γ (α)

∫ x

a
(x − t)α−1

ϕ(t)dt, x > a, α > 0

and

(1.14) (Iα
b−ϕ) (x) :=

1

Γ(α)

∫ b

x
(t − x)α−1

ϕ(t)dt, x < b, α > 0,

follow easily by setting

(1.15) λ = α, σ (0) = 1 and w = 0

in (1.8) and (1.9), and the boundedness of (1.13) and (1.14) on L (a, b) is also inherited
from (1.11) and (1.12), (see [1]).

In this paper, using a general class of fractional integral operators, we establish
new fractional integral inequalities of Hermite-Hadamard type. The main results are
used to derive Hermite-Hadamard type inequalities involving the familiar Riemann-
Liouville fractional integral operators.

2. Main Results

In this section, using fractional integral operators, we start with stating and proving
the fractional integral counterparts of Lemma 1.1, Theorem 1.1 and Theorem 1.2.
Then some other refinements will folllow. We begin by the following theorem.
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Theorem 2.1. Let ϕ : [a, b] → R be a convex function on [a, b], with a < b, then the

following inequalities for fractional integral operators hold:

ϕ

(

a + b

2

)

≤
1

2 (b − a)λ
Fσ

ρ,λ+1 [ω (b − a)ρ]

[(

Jσ
ρ,λ,a+;ωϕ

)

(b) +
(

Jσ
ρ,λ,b−;ωϕ

)

(a)
]

(2.1)

≤
ϕ (a) + ϕ (b)

2
,

with λ > 0.

Proof. For t ∈ [0, 1], let x = ta + (1 − t)b, y = (1 − t)a + tb. The convexity of ϕ yields

(2.2) ϕ

(

a + b

2

)

= ϕ

(

x + y

2

)

≤
ϕ (x) + ϕ (y)

2
,

i.e.,

(2.3) 2ϕ

(

a + b

2

)

≤ ϕ (ta + (1 − t)b) + ϕ ((1 − t)a + tb) .

Multiplying both sides of (2.3) by tλ−1Fσ
ρ,λ [ω (b − a)ρ

tρ], then integrating the resulting
inequality with respect to t over [0, 1], we obtain

2ϕ

(

a + b

2

) 1
∫

0

tλ−1Fσ
ρ,λ [ω (b − a)ρ

tρ] dt

≤

1
∫

0

tλ−1Fσ
ρ,λ [ω (b − a)ρ

tρ] ϕ (ta + (1 − t)b) dt

+

1
∫

0

tλ−1Fσ
ρ,λ [ω (b − a)ρ

tρ] ϕ ((1 − t)a + tb) dt.

Calculating the following integrals by using (1.7), we have

1
∫

0

tλ−1Fσ
ρ,λ [ω (b − a)ρ

tρ] dt = Fσ
ρ,λ+1 [ω (b − a)ρ] ,

1
∫

0

tλ−1Fσ
ρ,λ [ω (b − a)ρ

tρ] ϕ (ta + (1 − t)b) dt

=
1

(b − a)λ

b
∫

a

(b − x)λ−1
Fσ

ρ,λ [ω (b − x)ρ] ϕ (x) dx

and
1
∫

0

tλ−1Fσ
ρ,λ [ω (b − a)ρ

tρ] ϕ ((1 − t)a + tb) dt
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=
1

(b − a)λ

b
∫

a

(x − a)λ−1
Fσ

ρ,λ [ω (x − a)ρ] ϕ (x) dx.

As consequence, we obtain

(2.4) 2Fσ
ρ,λ+1 [ω (b − a)ρ] ϕ

(

a + b

2

)

≤
1

(b − a)λ

[(

Jσ
ρ,λ,a+;ωϕ

)

(b) +
(

Jσ
ρ,λ,b−;ωϕ

)

(a)
]

and the first inequality is proved.
Now, we prove the other inequality in (2.1), Since ϕ is convex, for every t ∈ [0, 1],

we have

(2.5) ϕ (ta + (1 − t)b) + ϕ ((1 − t)a + tb) ≤ ϕ (a) + ϕ (b) .

Then multiplying both hand sides of (2.5) by tλ−1Fσ
ρ,λ [ω (b − a)ρ

tρ] and integrating
the resulting inequality with respect to t over [0, 1], we obtain

1
∫

0

tλ−1Fσ
ρ,λ [ω (b − a)ρ

tρ] ϕ (ta + (1 − t)b) dt

+

1
∫

0

tλ−1Fσ
ρ,λ [ω (b − a)ρ

tρ] ϕ ((1 − t)a + tb) dt

≤ [ϕ (a) + ϕ (b)]

1
∫

0

tλ−1Fσ
ρ,λ [ω (b − a)ρ

tρ] dt.

Using the similar arguments as above we can show that

1

(b − a)λ

[(

Jσ
ρ,λ,a+;ωϕ

)

(b) +
(

Jσ
ρ,λ,b−;ωϕ

)

(a)
]

≤ Fσ
ρ,λ+1 [ω (b − a)ρ] [ϕ (a) + ϕ (b)]

and the second inequality is proved. �

Remark 2.1. If in Theorem 2.1 we set λ = α, σ (0) = 1, w = 0, then the inequalities
(2.1) become the inequalities (1.4) of Theorem 1.2.

Remark 2.2. If in Theorem 2.1 we set λ = 1, σ (0) = 1, w = 0, then the inequalities
(2.1) become the inequalities (1.1).

Before starting and proving our next result, we need the following lemma.

Lemma 2.1. Let ϕ : [a, b] → R be a differentiable mapping on (a, b) with a < b and

λ > 0. If ϕ′ ∈ L [a, b] , then the following equality for fractional integrals holds:

ϕ (a) + ϕ (b)

2
−

1

2 (b − a)λ
Fσ

ρ,λ+1 [ω (b − a)ρ]

[(

Jσ
ρ,λ,a+;ωϕ

)

(b) +
(

Jσ
ρ,λ,b−;ωϕ

)

(a)
]

(2.6)
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=
(b − a)

2Fσ
ρ,λ+1 [ω (b − a)ρ]





1
∫

0

(1 − t)λ
Fσ

ρ,λ+1 [ω (b − a)ρ (1 − t)ρ] ϕ′ (ta + (1 − t)b) dt

−

1
∫

0

tλFσ
ρ,λ+1 [ω (b − a)ρ

tρ] ϕ′ (ta + (1 − t)b) dt



 .

Proof. Here, we apply integration by parts in integrals of right hand side of (2.6),
then we have

1
∫

0

(1 − t)λ
Fσ

ρ,λ+1 [ω (b − a)ρ (1 − t)ρ] ϕ′ (ta + (1 − t)b) dt(2.7)

−

1
∫

0

tλFσ
ρ,λ+1 [ω (b − a)ρ

tρ] ϕ′ (ta + (1 − t)b) dt

= (1 − t)λ
Fσ

ρ,λ+1 [ω (b − a)ρ (1 − t)ρ]
ϕ (ta + (1 − t)b)

a − b

∣

∣

∣

∣

∣

1

0

−
1

b − a

1
∫

0

(1 − t)λ−1
Fσ

ρ,λ [ω (b − a)ρ (1 − t)ρ] ϕ (ta + (1 − t)b) dt

+ tλFσ
ρ,λ+1 [ω (b − a)ρ

tρ]
ϕ (ta + (1 − t)b)

b − a

∣

∣

∣

∣

∣

1

0

−
1

b − a

1
∫

0

tλ−1Fσ
ρ,λ [ω (b − a)ρ

tρ] ϕ (ta + (1 − t)b) dt.

Now we use the substitution rule last integrals in (2.7), after by using definition of
left and right-sided fractional integral operator, we obtain proof of this lemma. �

Remark 2.3. If in Lemma 2.1 we set λ = α, σ (0) = 1, and w = 0, then the inequalities
(2.6) become the equality (1.5) of Lemma 1.2.

Remark 2.4. If in Lemma 2.1 we set λ = 1, σ (0) = 1, and w = 0, then the inequalities
(2.6) become the equality (1.2) of Lemma 1.1.

We have the following results.

Theorem 2.2. Let ϕ : [a, b] → R be a differentiable mapping on (a, b) with a < b and

λ > 0. If |ϕ′| is convex on [a, b], then the following inequality for fractional integrals

holds:

∣

∣

∣

∣

∣

∣

ϕ (a) + ϕ (b)

2
−

1

2 (b − a)λ
Fσ

ρ,λ+1 [ω (b − a)ρ]

[(

Jσ
ρ,λ,a+;ωϕ

)

(b) +
(

Jσ
ρ,λ,b−;ωϕ

)

(a)
]

∣

∣

∣

∣

∣

∣

(2.8)
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≤ (b − a)
Fσ′

ρ,λ+2 [ω (b − a)ρ]

Fσ
ρ,λ+1 [ω (b − a)ρ]

|ϕ′ (a)| + |ϕ′ (b)|

2
,

where

σ′ (k) := σ (k)
(

1 −
1

2ρk+λ

)

.

Proof. Using Lemma 2.1 and the convexity of |ϕ′|, we find that
∣

∣

∣

∣

∣

∣

ϕ (a) + ϕ (b)

2
−

1

2 (b − a)λ
Fσ

ρ,λ+1 [ω (b − a)ρ]

[(

Jσ
ρ,λ,a+;ωϕ

)

(b) +
(

Jσ
ρ,λ,b−;ωϕ

)

(a)
]

∣

∣

∣

∣

∣

∣

≤
(b − a)

2Fσ
ρ,λ+1 [ω (b − a)ρ]





∞
∑

k=0

σ (k) ωk (b − a)

Γ (ρk + λ + 1)

ρk

×





1
∫

0

∣

∣

∣(1 − t)ρk+λ − tρk+λ
∣

∣

∣ [t |ϕ′ (a)| + (1 − t) |ϕ′ (b)|] dt









=
(b − a)

2Fσ
ρ,λ+1 [ω (b − a)ρ]

[

∞
∑

k=0

σ (k) ωk (b − a)ρk

Γ (ρk + λ + 1)

×















1

2
∫

0

[

(1 − t)ρk+λ − tρk+λ
]

[t |ϕ′ (a)| + (1 − t) |ϕ′ (b)|] dt

+

1
∫

1

2

[

tρk+λ − (1 − t)ρk+λ
]

[t |ϕ′ (a)| + (1 − t) |ϕ′ (b)|] dt























=
(b − a)

2Fσ
ρ,λ+1 [ω (b − a)ρ]

(

Fσ′

ρ,λ+2 [ω (b − a)ρ]
)

(|ϕ′ (a)| + |ϕ′ (b)|) .

This completes the proof. �

Remark 2.5. If in Theorem 2.2 we set λ = α, σ (0) = 1, and w = 0, then the inequality
(2.8) become the inequalities (1.6) of Theorem 1.3.

Remark 2.6. If in Theorem 2.2 we set λ = 1, σ (0) = 1, and w = 0, then, the inequality
(2.8) become the inequalities (1.3) of Theorem 1.1.

Theorem 2.3. Let ϕ : [a, b] → R be a differentiable mapping on (a, b) with a < b. If

|ϕ′|q is convex on [a, b] for some q > 1, then the following inequality for fractional

integrals holds:
∣

∣

∣

∣

∣

∣

ϕ (a) + ϕ (b)

2
−

1

2 (b − a)λ
Fσ

ρ,λ+1 [w (b − a)ρ]

[(

Jσ
ρ,λ,a+;wϕ

)

(b) +
(

Jσ
ρ,λ,b−;wϕ

)

(a)
]

∣

∣

∣

∣

∣

∣

≤
(b − a)

2Fσ
ρ,λ+1 [w (b − a)ρ]

F
σ1

ρ,λ+1 [w (b − a)ρ]
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×





(

|ϕ′ (a)|q + 3 |ϕ′ (b)|q

8

)
1

q

+

(

3 |ϕ′ (a)|q + |ϕ′ (b)|q

8

)
1

q



 ,

where

σ1 (k) := σ (k)

(

1

(ρk + λ) p + 1

)
1

p
(

1 −
1

2(ρk+λ)p

)
1

p

,

with 1
p

+ 1
q

= 1, λ > 0.

Proof. Using Lemma 2.1 and the convexity of |ϕ′|q, and Hölder’s inequality, we obtain
∣

∣

∣

∣

∣

∣

ϕ (a) + ϕ (b)

2
−

1

2 (b − a)λ
Fσ

ρ,λ+1 [ω (b − a)ρ]

[(

Jσ
ρ,λ,a+;ωϕ

)

(b) +
(

Jσ
ρ,λ,b−;ωϕ

)

(a)
]

∣

∣

∣

∣

∣

∣

≤
(b − a)

2Fσ
ρ,λ+1 [ω (b − a)ρ]

[

∞
∑

k=0

σ (k) ωk (b − a)ρk

Γ (ρk + λ + 1)

×



























1

2
∫

0

[

(1 − t)ρk+λ − tρk+λ
]p

dt









1

p









1

2
∫

0

[

t |ϕ′ (a)|
q

+ (1 − t) |ϕ′ (b)|
q
]

dt









1

q

+









1
∫

1

2

[

tρk+λ − (1 − t)ρk+λ
]p

dt









1

p









1
∫

1

2

[

t |ϕ′ (a)|
q

+ (1 − t) |ϕ′ (b)|
q
]

dt









1

q





























≤
(b − a)

2Fσ
ρ,λ+1 [ω (b − a)ρ]

[

∞
∑

k=0

σ (k) ωk (b − a)ρk

Γ (ρk + λ + 1)

×



























1

2
∫

0

[

(1 − t)(ρk+λ)p − t(ρk+λ)p
]

dt









1

p









1

2
∫

0

[

t |ϕ′ (a)|
q

+ (1 − t) |ϕ′ (b)|
q
]

dt









1

q

+









1
∫

1

2

[

t(ρk+λ)p − (1 − t)(ρk+λ)p
]

dt









1

p









1
∫

1

2

[

t |ϕ′ (a)|
q

+ (1 − t) |ϕ′ (b)|
q
]

dt









1

q





























=
(b − a)

2Fσ
ρ,λ+1 [w (b − a)ρ]

F
σ1

ρ,λ+1 [w (b − a)ρ]

×





(

|ϕ′ (a)|q + 3 |ϕ′ (b)|q

8

)
1

q

+

(

3 |ϕ′ (a)|q + |ϕ′ (b)|q

8

)
1

q



 .

Here, we use (A − B)p ≤ Ap − Bp for any A > B ≥ 0 and p ≥ 1.
This completes the proof. �
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Corollary 2.1. Under the assumption of Theorem 2.3 with λ = α, σ (0) = 1 and

w = 0, we have
∣

∣

∣

∣

∣

ϕ(a) + ϕ(b)

2
−

Γ(α + 1)

2 (b − a)α

[

Jα
a+ϕ(b) + Jα

b−
ϕ(a)

]

∣

∣

∣

∣

∣

≤
(b − a)

2

(

1

αp + 1

)
1

p
(

1 −
1

2αp

)
1

p

×





(

|ϕ′ (a)|q + 3 |ϕ′ (b)|q

8

)
1

q

+

(

3 |ϕ′ (a)|q + |ϕ′ (b)|q

8

)
1

q



 .

Corollary 2.2. If we take α = 1 in Corollary 2.1, we have
∣

∣

∣

∣

∣

∣

ϕ(a) + ϕ(b)

2
−

1

(b − a)

b
∫

a

ϕ (t) dt

∣

∣

∣

∣

∣

∣

≤

(

b − a

2

)(

1

p + 1

)
1

p
(

1 −
1

2p

)
1

p

×





(

|ϕ′ (a)|q + 3 |ϕ′ (b)|q

8

)
1

q

+

(

3 |ϕ′ (a)|q + |ϕ′ (b)|q

8

)
1

q



 .
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AN APPROXIMATE APPROACH FOR SYSTEMS OF

FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS BASED

ON TAYLOR EXPANSION

M. DIDGAR1,2, A. R. VAHIDI3∗, AND J. BIAZAR4

Abstract. The main purpose of this work is to present an efficient approximate
approach for solving linear systems of fractional integro-differential equations based
on a new application of Taylor expansion. Using the mth-order Taylor polynomial for
unknown functions and employing integration method the given system of fractional
integro-differential equations will be converted into a system of linear equations
with respect to unknown functions and their derivatives. The solutions of this
system yield the approximate solutions of fractional integro-differential equations
system. The Riemann-Liouville fractional derivative is applied in calculations. An
error analysis is discussed as well. The accuracy and the efficiency of the suggested
method is illustrated by considering five numerical examples.

1. Introduction

During the past decades, fractional calculus and fractional differential equations
have found various applications in sciences and engineering, such as electrical net-
works, rheology, acoustics, electroanalytical chemistry, neuron modeling, viscoelas-
ticity, material sciences, fluid flow, diffusive transport akin to diffusion, probability,
electromagnetic theory, and so on (see [7, 13, 18,24,26]).

Since most of FDEs do not have exact solutions, approximate and numerical tech-
niques have received considerable attention to solve fractional differential equations.
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So far, several analytical and numerical methods have been proposed to solve frac-
tional differential equations which the interested reader can refer to [1–5,10–12,16,19–
23,25,27–30,34] and the references therein.

In this paper, we investigate the approximate solutions of linear fractional integro-
differential equations systems based on a new application of Taylor expansion (see
[6, 8–10,14,15,17,31–33]). By expanding unknown functions as an mth-order Taylor
polynomial and employing integration method, we can convert the given system of
fractional integro-differential equations into a system of linear equations with respect
to unknown functions and their derivatives. Approximate solutions can be obtained
by solving the resulting system of equations according to a standard rule. The results
of the obtained approximations of the suggested method are then compared with
the referenced methods for several examples. In the present investigation, the main
property of this approximate method besides simplicity and reliability is that an mth-
order approximation is equal to exact solution if the exact solution is a polynomial
of degree at most m. The present work may be viewed as an extension of the results
obtained in [10].

The remainder of this paper is organized as follows. In Section 2, some definitions
of fractional calculus are recalled. In Section 3, we describe the proposed method.
In Section 4, we give an error analysis. In Section 5, we investigate some examples,
which demonstrate the effectiveness of our approach. In Section 6, our findings are
concluded.

2. Preliminaries and Basic Definitions

Let’s describe some basic concepts, and properties of the fractional calculus, which
will be used later.

Definition 2.1. A real function φ(x), x > 0, is said to be in the space Cµ, µ ∈ R if
there exists a real number p (> µ), such that φ(x) = xpφ1(x), where φ1(x) ∈ C[0,∞),
and it is said to be in the space Cn

µ if and only if φ(n) ∈ Cµ, n ∈ N.

Definition 2.2. The Riemann-Liouville fractional integral operator of order α ≥ 0,
of a function φ ∈ Cµ, µ ≥ −1, is considered as follows

Jαφ(x) =
1

Γ(α)

∫ x

0
(x− t)α−1φ(t)dt, α > 0, x > 0,

J0φ(x) =φ(x).

Definition 2.3. The Caputo fractional derivative of φ(x) is considered as follows

Dα
∗
φ(x) = Jn−α

(
dn

dxn
φ(x)

)
=

1

Γ(n− α)

∫ x

0
(x− t)n−α−1φ(n)(t)dt,

for n− 1 < α ≤ n, n ∈ N, x > 0, φ ∈ Cn
−1.
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Definition 2.4. The Riemann-Liouville fractional derivative of φ(x) is considered as
follows

Dαφ(x) =
dn

dxn

(
Jn−αφ(x)

)
,

for n− 1 < α ≤ n, n ∈ N, x > 0, φ ∈ Cn
−1.

3. Description of the Method

Consider the following system of linear fractional integro-differential equations

Dαiψi(x) + λ1

∫ 1

0

ν∑

j=1

K1ij
(x, t)ψj(t)dt+ λ2

∫ x

0

ν∑

j=1

K2ij
(x, t)ψj(t)dt(3.1)

=fi(x), i = 1, . . . , ν,

with initial conditions

(3.2) ψ
(κ)
i (0) = 0, κ = 0, 1, . . . , n− 1, n− 1 < αi ≤ n, n ∈ N,

where Dαiψi(x) indicates Riemann-Liouville fractional derivative of order αi, and λ1,
λ2 are constants, K1ij

(x, t), K2ij
(x, t), fi(x) are given known functions which satisfy

certain conditions so that system (3.2) has a unique solution, and ψi(x) are unknown
functions.

According to definition (2.4), system of fractional integro-differential equation (3.1)
can be rewritten as

dn

dxn

(
Jn−αiψi(x)

)
+ λ1

∫ 1

0

ν∑

j=1

K1ij
(x, t)ψj(t)dt+ λ2

∫ x

0

ν∑

j=1

K2ij
(x, t)ψj(t)dt = fi(x),

or equivalently by using definition (2.2), we have

dn

dxn

(
1

Γ(n− αi)

∫ x

0
(x− t)n−αi−1ψi(t)dt

)
+ λ1

∫ 1

0

ν∑

j=1

K1ij
(x, t)ψj(t)dt(3.3)

+ λ2

∫ x

0

ν∑

j=1

K2ij
(x, t)ψj(t)dt = fi(x).

In the following, by integrating both hand side of (3.3), n times with respect to x

from 0 to s and with the help of changing the order of the integrations, we obtain

1

Γ(n− αi)

∫ x

0
(x− t)n−αi−1ψi(t)dt+ λ1

ν∑

j=1

∫ 1

0

∫ x

0

(x− s)l−1

(l − 1)!
K1ij

(s, t)ψj(t)dsdt(3.4)

+ λ2

ν∑

j=1

∫ x

0

∫ x

t

(x− s)l−1

(l − 1)!
K2ij

(s, t)ψj(t)dsdt = Fi(x), l = 1, . . . , n,

where

Fi(x) =
∫ x

0

(x− t)l−1

(l − 1)!
fi(t)dt, i = 1, . . . , ν,

in which the variable s has been replaced by x, for simplicity. Hence we transformed
the system of fractional integro-differential equations (3.1) into a system of mixed
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Volterra-Fredholm integral equations. To approximately solve the resulting system, we
reduce Eq. (3.4) into a system of linear equations with respect to unknown functions
and their derivatives. Toward this goal, the method assumes that the desired solutions
ψj(t) to be m+1 times continuously differentiable on the interval I, in other words
ψj ∈ Cm+1(I). Therefore, for ψj ∈ Cm+1(I), ψj(t) can be expressed in terms of the
mth-order Taylor series at an arbitrary point x ∈ I as

ψj(t) = ψj(x) + ψ′

j(x)(t− x) + · · · +
1

m!
ψ

(m)
j (x)(t− x)m + Ej,m(t, x),

where Ej,m(t, x) indicates the Lagrange error bound

Ej,m(t, x) =
ψ

(m+1)
j (ξj)

(m+ 1)!
(t− x)m+1,

for some point ξj between x and t. Generally, the Lagrange error bound Ej,m(t, x)
becomes sufficiently small as m gets great enough. Especially, if the solutions ψj(t)
are polynomials of degree up to m, then the last Lagrange error bound becomes zero,
namely, the obtained approximate solutions of system (3.1) yield the true solutions.
With due attention to aforementioned assumption, by omitting the last Lagrange
error bound, we consider the truncated Taylor expansion ψj(t) as

(3.5) ψj(t) ≈
m∑

k=0

ψ
(k)
j (x)

(t− x)k

k!
.

Inserting the approximate relation (3.5), for unknown functions ψj(t), into (3.4) we
obtain

m∑

k=0

(−1)k

k!
ψ

(k)
j (x)

∫ x

0

(x− t)k+n−αi−1

Γ(n− αi)
dt(3.6)

+ λ1

ν∑

j=1

m∑

k=0

ψ
(k)
j (x)

k!

∫ 1

0

∫ x

0

(x− s)l−1

(l − 1)!
(t− x)kK1ij

(s, t)dsdt

+ λ2

ν∑

j=1

m∑

k=0

ψ
(k)
j (x)

k!

∫ x

0

∫ x

t

(x− s)l−1

(l − 1)!
(t− x)kK2ij

(s, t)dsdt

=Fi(x), i = 1, . . . , ν.

In fact, system (3.1) was converted into a linear system of ordinary differential equa-
tions with respect to ψj(x) and its derivatives up to order m. In other word, we have
obtained ν linear equations in (3.6) with respect to ν × (m+ 1) unknown functions

ψ
(k)
j , for k = 0, . . . ,m, j = 1, . . . , ν. In the following, we want to determine ψ

(k)
j

by solving a system of linear equations. In order to achieve this goal, other ν × m

independent linear equations with respect to ψj(x), . . . , ψ
(m)
j (x) are needed, which can

be achieved by integrating both sides of Eq.(3.4) m times with respect to x. Thus,
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we have
∫ x

0

(x− t)γ+n−αi−1

Γ(γ + n− αi)
ψi(t)dt+ λ1

ν∑

j=1

∫ 1

0

∫ x

0

(x− s)γ+l−1

(γ + l − 1)!
K1ij

(s, t)ψj(t)dsdt(3.7)

+ λ2

ν∑

j=1

∫ x

0

∫ x

t

(x− s)γ+l−1

(γ + l − 1)!
K2ij

(s, t)ψj(t)dsdt = F
(γ)
i (x), γ = 1, . . . ,m,

where

F
(γ)
i (x) =

∫ x

0

(x− t)γ−1

(γ − 1)!
Fi(t)dt, i = 1, . . . , ν, γ = 1, . . . ,m.

We apply the Taylor expansion again and substituting (3.5) for ψj(t) into E(3.7) leads
to

m∑

k=0

(−1)k

k!
ψ

(k)
j (x)

∫ x

0

(x− t)k+γ+n−αi−1

Γ(γ + n− αi)
dt

+ λ1

ν∑

j=1

m∑

k=0

ψ
(k)
j (x)

k!

∫ 1

0

∫ x

0

(x− s)γ+l−1

(γ + l − 1)!
(t− x)kK1ij

(s, t)dsdt+

λ2

ν∑

j=1

m∑

k=0

ψ
(k)
j (x)

k!

∫ x

0

∫ x

t

(x− s)γ+l−1

(γ + l − 1)!
(t− x)kK2ij

(s, t)dsdt

=F
(γ)
i (x), γ = 1, . . . ,m.(3.8)

In this way, (3.4) and (3.8) construct a system of linear equations with resect to
unknown functions ψj(x) and its derivatives up to order m. The obtained system is
indicated as follows

Q(x)Ψ(x) = F (x),

where

Q(x) =




q
10

10(x) · · · q
10

ν0(x) · · · q
10

1k(x) · · · q
10

νk(x) · · · q
10

1m(x) · · · q
10
νm(x)

...
...

...
...

...
...

...
...

...
...

...
q

ν0

10 (x) · · · q
ν0

ν0(x) · · · q
ν0

1k(x) · · · q
ν0

νk(x) · · · q
ν0

1m(x) · · · q
ν0
νm(x)

...
...

...
...

...
...

...
...

...
...

...
q

1γ
10

(x) · · · q
1γ
ν0

(x) · · · q
1γ

1k
(x) · · · q

1γ

νk
(x) · · · q

1γ
1m(x) · · · q

1γ
νm(x)

...
...

...
...

...
...

...
...

...
...

...
q

νγ
10

(x) · · · q
νγ
ν0

(x) · · · q
νγ

1k
(x) · · · q

νγ

νk
(x) · · · q

νγ
1m(x) · · · q

νγ
νm(x)

...
...

...
...

...
...

...
...

...
...

...
q

1m
10 (x) · · · q

1m
ν0 (x) · · · q

1m
1k (x) · · · q

1m
νk (x) · · · q

1m
1m(x) · · · q

1m
νm(x)

...
...

...
...

...
...

...
...

...
...

...
q

νm
10 (x) · · · q

νm
ν0 (x) · · · q

νm
1k (x) · · · q

νm
νk (x) · · · q

νm
1m (x) · · · q

νm
νm(x)




,(3.9)

F(x) =
[
F1(x), . . . , Fν(x), . . . , F

(γ)
1 (x), . . . , F (γ)

ν (x), . . . , F
(m)
1 (x), . . . , F (m)

ν (x)
]T
,
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Ψ(x) =
[
ψ1(x), . . . , ψν(x), . . . , ψ

(k)
1 (x), . . . , ψ(k)

ν (x), . . . , ψ
(m)
1 (x), . . . , ψ(m)

ν (x)
]T
.

In coefficient matrix (3.9), the first ν rows refer to coefficients of ψ
(k)
j (x) in (3.4) for

k = 0, . . . ,m, j = 1, . . . , ν and the other rows refer to coefficients of ψ
(k)
j (x) in (3.8)

for γ = 1, . . . ,m. Application of a standard rule to the resulting new system yields
an mth-order approximate solution of (3.1) as ψim(x). It is to be noted that not only

ψj(x) but also ψ
(k)
j (x), for k = 1, . . . ,m, are determined by solving the resulting new

system but in point of fact, it is ψj(x) that we need.

4. Error Analysis

In this section, we expand the error analysis proposed in [9] for derived mth-order
approximate solution of fractional integro-differential equations system (3.1). We
assume that the exact solutions ψj(t) are infinitely differentiable on the interval I; so
ψj(t) can be expressed as an uniformly convergent Taylor series in I as follows

ψj(t) =
∞∑

k=0

ψ
(k)
j (x)

(t− x)k

k!
.

Using the proposed method in the previous section, system of fractional integro-
differential equations (3.1) can be converted into an equivalent system of linear equa-

tions with respect to unknown functions ψ
(k)
i (x), k = 0, 1, . . . as

QΨ = F,

where
Q = lim

ν−→∞

Qνν
νν , Ψ = lim

ν−→∞

Ψν , F = lim
ν−→∞

Fν ,

in which Qνν
νν , Ψν , and Fν , as shown in the previous section, are defined as follows

Qνν
νν =

[
q

pq
ij (x)

]
ν(m+1)×ν(m+1)

, Ψν =
[
ψ

(k)
i (x)

]
ν(m+1)×1

, Fν =
[
f

(l)
i (x)

]
ν(m+1)×1

.

Hence, under the solvability conditions for the above system and letting B = Q−1,
the unique solution is represented as

(4.1) Ψ = BF.

We rewrite relation (4.1) in an alternative matrix form as
[

Ψν

Ψ∞

]
=

[
Bνν

νν Bν∞

ν∞

B∞ν
∞ν B∞∞

∞∞

] [
Fν

F∞

]
.(4.2)

Accordingly, we can find out that the vector Ψν consists of the first ν(m+1) elements
of the exact solution vector Ψ must satisfy the following relation

(4.3) Ψν = Bνν
ννFν + Bν∞

ν∞
F∞.

According to the proposed process, the unique solution of SFIDE (3.1) can be denoted
as

(4.4) Ψ̃ν = Qνν−1

νν Fν ,
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where Ψν is replaced by Ψ̃ν as its approximate solution.
Subtracting (4.4) from (4.3) leads to

(4.5) Ψν − Ψ̃ν = Dνν
ννFν + Bν∞

ν∞
F∞,

where

Dνν
νν = Bνν

νν − Qνν−1

νν .

In the following, we expand the right-hand side of (4.5) and the first ν elements of
the vector at the left-hand side of (4.5) can be expressed as

ψν(x) − ψ̃ν(x) =
m∑

j=0

ν∑

i=1

d
p0
ij (x)f

(j)
i (x) +

∞∑

j=m+1

ν∑

i=1

b
p0
ij (x)f

(j)
i (x), p = 1, . . . , ν,

where

ψν(x) =




ψ1(x)
ψ2(x)

...
ψν(x)



, ψ̃ν(x) =




ψ̃1(x)

ψ̃2(x)
...

ψ̃ν(x)



,

and dp0
ij (x), bp0

ij (x) are the elements of Dνν
νν and Bν∞

ν∞
, respectively. Thus, according to

the Cauchy-Schwarz inequality we have

∣∣∣ψν(x) − ψ̃ν(x)
∣∣∣ ≤




m∑

j=0

ν∑

i=1

∣∣∣dp0
ij (x)

∣∣∣
2




1

2




m∑

j=0

ν∑

i=1

∣∣∣f (j)
i (x)

∣∣∣
2




1

2

+




∞∑

j=m+1

ν∑

i=1

∣∣∣bp0
ij (x)

∣∣∣
2




1

2




∞∑

j=m+1

ν∑

i=1

∣∣∣f (j)
i (x)

∣∣∣
2




1

2

.

It is to be noted that as lim
ν−→∞

Dνν
νν = 0 and lim

ν−→∞

Bν∞

ν∞
= 0, we have

lim
ν−→∞

|ψν(x) − ψ̃ν(x)| = 0.

5. Illustrative Examples

In this section, the efficiency and the accuracy of the proposed approach is illustrated
by considering some numerical problems. The obtained numerical results are compared
with some existing approaches and it was found that the proposed approximate
approach produces acceptable results and even more accurate results in comparison
with some existing methods. All computations are performed using Mathematica 8.

Example 5.1. Consider the following system of fractional integro-differential equations
(see [5, 29]):

(5.1)





D
1

2ψ1(x) − ∫ 1
0 (ψ1(t) + ψ2(t)) dt =

2
√
x√
π

− 5

6
,

D
3

2ψ1(x) − ∫ 1
0 (ψ1(t) + ψ2(t)) dt =

4
√
x√
π

− x

6
,
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in which the initial conditions are chosen all to be zero and the exact solutions are
ψ1(x) = x and ψ2(x) = x2.

Using the present method, the first-order and the second-order approximate solu-
tions at equidistant points are computed. The obtained results and the results given
in [5, 29] are listed in Tables 1 and 2. From Tables 1 and 2, we observe that the
second-order approximate solution yields the exact solution as expected, since the
exact solution is a polynomial function of degree 2.

Table 1. Absolute errors of Example 5.1 for ψ1(x).

x Method in [29] Method in [5] Suggested method
m = 1 m = 2

0.1 8.75559 × 10−2 2.78470 × 10−3 1.73688 × 10−1 0
0.2 1.23823 × 10−1 3.93816 × 10−3 5.59324 × 10−1 0
0.3 1.51651 × 10−1 4.82324 × 10−3 1.98751 0
0.4 1.75112 × 10−1 5.56940 × 10−3 4.08095 0
0.5 1.95781 × 10−1 6.22678 × 10−3 1.10827 0
0.6 2.14467 × 10−1 6.82110 × 10−3 5.81370 × 10−1 0
0.7 2.31651 × 10−1 7.36763 × 10−3 3.21226 × 10−1 0
0.8 2.47646 × 10−1 7.87633 × 10−3 1.50704 × 10−1 0
0.9 2.62668 × 10−1 8.35411 × 10−3 2.74544 × 10−2 0
1.0 2.76876 × 10−1 8.80600 × 10−3 6.20423 × 10−2 0

Table 2. Absolute errors of Example 5.1 for ψ2(x).

x Method in [5] Method in [30] Suggested method
m = 1 m = 2

0.1 1.93140 × 10−4 1.29824 × 10−4 3.56504 × 10−5 0
0.2 1.09257 × 10−3 3.77788 × 10−4 3.25545 × 10−3 0
0.3 3.01076 × 10−3 7.13496 × 10−4 3.28085 × 10−2 0
0.4 6.18049 × 10−3 1.12845 × 10−3 1.35422 × 10−1 0
0.5 1.07969 × 10−2 1.61892 × 10−3 6.60271 × 10−2 0
0.6 1.70314 × 10−2 2.18315 × 10−3 6.09208 × 10−2 0
0.7 2.50391 × 10−2 2.82043 × 10−3 6.26674 × 10−2 0
0.8 3.49621 × 10−2 3.53063 × 10−3 6.66494 × 10−2 0
0.9 4.69331 × 10−2 4.31399 × 10−3 7.19976 × 10−2 0
1.0 6.10763 × 10−2 5.17100 × 10−3 7.88615 × 10−2 0

It is important to note that after converting system (5.1) into a system of linear
equations, the Mathematica command ‘LinearSolve’ is used for the new system.

Example 5.2. Consider the following system of fractional integro-differential equations
(see [29]): 




D
1

2ψ1(x) − ∫ 1
0 xψ2(t)dt =

2
√
x√
π

− x

2
,

D
1

2ψ2(x) − ∫ 1
0 xψ1(t)dt =

2
√
x√
π

− 1

3
,
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in which the initial conditions are chosen all to be zero and the exact solutions are
ψ1(x) = x and ψ2(x) = x.

We employ the approach described in Section 3 to evaluate the approximate solu-
tions. For this case, we can find that ψm(x) yields the exact solution only by setting
m = 1. Moreover, we present the results given in [29] in Table 3.

Table 3. Absolute errors of Example 5.2 in [29] for (ψ1(x), ψ2(x)).

x Methode in [29]
0.1 (5.02704 × 10−5

, 5.02704 × 10−4)
0.2 (1.42186 × 10−4

, 7.10931 × 10−4)
0.3 (2.61213 × 10−4

, 8.70709 × 10−4)
0.4 (4.02163 × 10−4

, 1.00541 × 10−3)
0.5 (5.62040 × 10−4

, 1.12408 × 10−3)
0.6 (7.38821 × 10−4

, 1.23137 × 10−3)
0.7 (9.31021 × 10−4

, 1.33003 × 10−3)
0.8 (1.13749 × 10−3

, 1.42186 × 10−3)
0.9 (1.35730 × 10−3

, 1.50811 × 10−3)
1.0 (1.58969 × 10−3

, 1.58969 × 10−3)

Example 5.3. Consider the following system of fractional integro-differential equations
(see [16,30]):





D
3

4ψ1(x) −
∫ 1

0
(x+ t) [ψ1(t) + ψ2(t)] dt = − 1

20
− x

12
+

4x
1

4

Γ(1
4
)

− 128x
9

4

15Γ(1
4
)
,

D
3

4ψ2(x) −
∫ 1

0

√
xt2 [ψ1(t) − ψ2(t)] dt = −2

√
x

15
− 4x

1

4

Γ(1
4
)

+
32x

5

4

5Γ(1
4
)
,

in which the initial conditions are chosen all to be zero and the exact solutions are
ψ1(x) = x− x3 and ψ2(x) = x2 − x.

We apply the approach described in Section 3 to determine the approximate solu-
tions. For this case, we can find that ψm(x) yields the exact solution only by setting
m = 3. We present our results when m = 1, 2, 3, and the results given in [30] in Tables
4 and 5.

Example 5.4. Consider the following system of fractional integro-differential equations
(see [16,30])





D
4

5ψ1(x) −
∫ 1

0
2xt [ψ1(t) − ψ2(t)] dt =

83

80
x− 25x

6

5

3Γ(1
5
)

+
125x

11

5

11Γ(1
5
)
,

D
4

5ψ2(x) −
∫ 1

0
(x+ t) [ψ1(t) + ψ2(t)] dt = − 67

160
− 13

24
x+

125x
6

5

8Γ(1
5
)
,

in which the initial conditions are chosen all to be zero and the exact solutions are
ψ1(x) = x3 − x2 and ψ2(x) = 15

8
x2.
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Table 4. Absolute errors of Example 5.3 for ψ1(x)

x Method in [30] Suggested method
m = 1 m = 2 m = 3

0.1 1.86460 × 10−3 2.33950 × 10−2 4.37610 × 10−3 0
0.2 3.38103 × 10−3 6.86709 × 10−2 1.69027 × 10−3 0
0.3 4.91496 × 10−3 1.21870 × 10−1 1.70008 × 10−3 0
0.4 6.51082 × 10−3 1.73108 × 10−1 3.93799 × 10−3 0
0.5 8.18437 × 10−3 2.11497 × 10−1 4.52983 × 10−3 0
0.6 9.94249 × 10−3 2.25976 × 10−1 3.55933 × 10−3 0
0.7 1.17883 × 10−2 2.06732 × 10−1 1.36667 × 10−3 0
0.8 1.37235 × 10−2 1.47035 × 10−1 1.59402 × 10−3 0
0.9 1.57484 × 10−2 4.52912 × 10−2 4.82795 × 10−3 0
1.0 1.78631 × 10−2 9.29796 × 10−2 7.84433 × 10−3 0

Table 5. Absolute errors of Example 5.3 for ψ2(x)

x Method in [30] Suggested method
m = 1 m = 2 m = 3

0.1 1.99879 × 10−4 1.46339 × 10−2 3.62132 × 10−3 0
0.2 4.75397 × 10−4 3.25600 × 10−2 1.64100 × 10−2 0
0.3 7.89170 × 10−4 4.88261 × 10−2 2.95774 × 10−2 0
0.4 1.13069 × 10−3 6.04406 × 10−2 3.63960 × 10−2 0
0.5 1.49445 × 10−3 6.45455 × 10−2 3.60909 × 10−2 0
0.6 1.87697 × 10−3 5.84157 × 10−2 3.03835 × 10−2 0
0.7 2.27584 × 10−2 3.97032 × 10−2 2.15300 × 10−2 0
0.8 2.68925 × 10−2 6.79901 × 10−3 1.17235 × 10−2 0
0.9 3.11582 × 10−2 4.07493 × 10−2 2.96446 × 10−3 0
1.0 3.55442 × 10−2 1.01834 × 10−1 2.95048 × 10−3 0

Applying the approach described in this paper, we determine the approximate
solutions. For this case, we can find that ψm(x) yields the exact solution only by setting
m = 3. We present our numerical results obtained by proposed Taylor expansion
method for m = 1, 2, 3 and the results obtained in [30] in Tables 6 and 7.

Example 5.5. Consider the following system of fractional integro-differential equations




D
3

4ψ1(x) −
∫ x

0

ψ1(t) + ψ2(t)√
x− t

dt = −16x
5

2

15
− 32x

7

2

35
+

32x
5

4

5Γ(1
4
)
,

D
1

2ψ2(x) −
∫ x

0

ψ1(t) + ψ2(t)

(x− t)
2

3

dt = −27x
7

3

14
+

16x
5

2

5
√
π

− 243x
10

3

140
,

in which the initial conditions are chosen all to be zero and the exact solutions are
ψ1(x) = x2 and ψ2(x) = x3.

Based on the proposed method in Section 3, we obtain the approximate results by
setting m = 1, 2, 3 and we observe that the third-order approximate solution yields the
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Table 6. Absolute errors of Example 5.4 for ψ1(x).

x Method in [30] Suggested method
m = 1 m = 2 m = 3

0.1 1.96792 × 10−4 1.66987 × 10−2 4.37610 × 10−3 0
0.2 6.85268 × 10−4 4.54650 × 10−2 1.69027 × 10−3 0
0.3 1.42175 × 10−3 7.48952 × 10−2 1.70008 × 10−3 0
0.4 2.38624 × 10−3 9.69101 × 10−2 3.93799 × 10−3 0
0.5 3.56576 × 10−3 1.05439 × 10−1 4.52983 × 10−3 0
0.6 4.95084 × 10−3 9.62850 × 10−2 3.55933 × 10−3 0
0.7 6.53406 × 10−3 6.71607 × 10−2 1.36667 × 10−3 0
0.8 8.30938 × 10−3 1.77783 × 10−2 1.59402 × 10−3 0
0.9 1.02717 × 10−2 5.00357 × 10−2 4.82795 × 10−3 0
1.0 1.24167 × 10−2 1.32209 × 10−1 7.84433 × 10−3 0

Table 7. Absolute errors of Example 5.4 for ψ2(x).

x Method in [30] Suggested method
m = 1 m = 2 m = 3

0.1 8.20450 × 10−4 1.35222 × 10−1 4.98795 × 10−2 0
0.2 1.58553 × 10−3 1.88478 × 10−1 8.22827 × 10−2 0
0.3 2.41026 × 10−3 2.17328 × 10−1 9.64328 × 10−2 0
0.4 3.30743 × 10−3 2.25836 × 10−1 9.56954 × 10−2 0
0.5 4.28071 × 10−3 2.16061 × 10−1 8.41589 × 10−2 0
0.6 5.33111 × 10−3 1.89798 × 10−1 6.57542 × 10−2 0
0.7 6.45864 × 10−3 1.49181 × 10−1 4.42508 × 10−2 0
0.8 7.66286 × 10−3 9.71051 × 10−2 2.32810 × 10−2 0
0.9 8.94313 × 10−3 3.76493 × 10−2 6.32948 × 10−3 0
1.0 1.02987 × 10−2 2.34213 × 10−2 3.30327 × 10−3 0

exact solution as expected. In the following, our results for m = 1, 2, 3 at equidistant
points in [0, 1] are tabulated in Tables 8 and 9.

Table 8. Absolute errors of Example 5.5 for ψ1(x).

x m = 1 m = 2 m = 3
0.1 4.39572 × 10−4 5.63735 × 10−8 0
0.2 2.02649 × 10−3 1.49505 × 10−6 0
0.3 6.38129 × 10−3 1.61418 × 10−5 0
0.4 1.85611 × 10−2 1.16368 × 10−4 0
0.5 4.69815 × 10−2 6.32737 × 10−4 0
0.6 9.46103 × 10−2 2.86770 × 10−3 0
0.7 1.53109 × 10−1 1.22967 × 10−2 0
0.8 2.14122 × 10−1 7.00457 × 10−2 0
0.9 2.76101 × 10−1 2.65058 × 10−1 0
1.0 3.40830 × 10−1 1.19614 × 10−1 0
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Table 9. Absolute errors of Example 5.5 for ψ2(x).

x m = 1 m = 2 m = 3
0.1 1.17689 × 10−4 2.02948 × 10−5 0
0.2 1.61962 × 10−3 1.53357 × 10−4 0
0.3 9.65962 × 10−3 4.69785 × 10−4 0
0.4 3.89089 × 10−2 8.58738 × 10−4 0
0.5 1.13095 × 10−1 4.68815 × 10−4 0
0.6 2.40454 × 10−1 4.31091 × 10−3 0
0.7 3.98040 × 10−1 2.88928 × 10−2 0
0.8 5.63382 × 10−1 1.89377 × 10−1 0
0.9 7.33038 × 10−1 7.60116 × 10−1 0
1.0 9.12716 × 10−1 3.53191 × 10−1 0

6. Conclusion

In this paper, we have proposed an approximate method for solving systems of
fractional integro-differential equations. In the proposed technique, the SFIDE to
be solved, has been converted into integral equations. Then Taylor expansion for
unknown functions and integration method have employed to convert the resulting
integral equations into a system of linear equations with respect to unknown functions
and their derivatives. By applying a standard method the resulting system has been
solved. In particular for such cases when the exact solutions are polynomial functions
of degree up to m, the derived mth-order approximations are exact.

References

[1] R. B. Albadarneh, M. Zerqat and I. M. Batiha, Numerical solutions for linear and non-linear

fractional differential equations, International Journal of Pure and Applied Mathematics 106(3)
(2016), 859–871.

[2] Q. M. Al-Mdallal, M. I. Syam and M. N. Anwar, A collocation-shooting method for solving

fractional boundary value problems, Commun. Nonlinear. Sci. Numer. Simul. 15 (2010), 3814–
3822.

[3] F. Ghoreishi and P. Mokhtary, Spectral collocation method for multi-order fractional differential

equations, Int. J. Comput. Methods 11(5) (2014), Paper ID 1350072, 23 pages.
[4] A. Golbabai and K. Sayevand, Analytical treatment of differential equations with fractional

coordinate derivatives, Comput. Math. Appl. 62 (2011), 1003–1012.
[5] S. A. Deif and S. R. Grace, Iterative refinement for a system of linear integro-differential

equations of fractional type, J. Comput. Appl. Math, DOI 10.1016/j.cam.2015.08.008.
[6] M. Didgar and N. Ahmadi, An efficient method for solving systems of linear ordinary and

fractional differential equations, Bull. Malays. Math. Sci. Soc. 38(4) (2015), 1723–1740.
[7] K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin, Heidel-

berg , New York, 2010.
[8] Y. Huang and X.-F. Li, Approximate solution of a class of linear integro-differential equations

by Taylor expansion method, Int. J. Comput. Math. 87(6) (2010), 1277–1288.
[9] L. Huang, X.-F. Li and Y. Huang, Approximate solution of Abel integral equation, Comput.

Math. Appl. 56 (2008), 1748–1757.
[10] L. Huang, X.-F. Li, Y. Zhao and X.-Y. Duan, Approximate solution of fractional integro-

differential equations by Taylor expansion method, Comput. Math. Appl. 62 (2011), 1127–1134.



AN APPROXIMATE APPROACH FOR SYSTEMS OF FRACTIONAL EQUATIONS 391

[11] M. Inc, The approximate and exact solutions of the space- and time-fractional Burgers equations

with initial conditions by variational iteration method, J. Math. Anal. Appl. 345 (2008), 476–484.
[12] H. Jafari, A. Golbabai, S. Seifi and K. Sayevand, Homotopy analysis method for solving multi-

term linear and nonlinear diffusion-wave equations of fractional order, Comput. Math. Appl. 59

(2010), 1337–1344.
[13] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differ-

ential Equations, North-Holland, Mathematics Studies 204, Elsevier Science B.V. Amsterdam,
2006.

[14] X.-F. Li, Approximate solution of linear ordinary differential equations with variable coefficients,
Math. Comput. Simulation 75 (2007), 113–125.

[15] X.-F. Li, L. Huang and Y. Huang, A new Abel inversion by means of the integrals of an input

function with noise, J. Phys. A 40 (2007), 347–360.
[16] A. M. S. Mahdy and E. M. H. Mohamed, Numerical studies for solving system of linear fractional

integro-differential equations by using least squares method and shifted Chebyshev polynomials,
Journal of Abstract and Computational Mathematics 1 (2015), 24–32.

[17] K. Maleknejad and T. Damercheli, Improving the accuracy of solutions of the linear second kind

volterra integral equations system by using the Taylor expansion method, Indian J. Pure Appl.
Math. 45(3) (2014), 363–376.

[18] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differen-

tial Equations, Wiley-Interscience Publication, John Wiley and Sons, New York, Chichester,
Brisbane, Toronto, 1993.

[19] S. Momani, Analytic and approximate solutions of the space- and time-fractional telegraph

equations, Appl. Math. Comput. 170 (2005), 1126–1134.
[20] S. Momani and Z. Odibat, Analytical approach to linear fractional partial differential equations

arising in fluid mechanics, Phys. Lett. A 355 (2006), 271-279.
[21] S. Momani and Z. Odibat, Analytical solution of a time-fractional Navier-Stokes equation by

Adomian decomposition method, Appl. Math. Comput. 177 (2006), 488–494.
[22] S. Momani and Z. Odibat, Comparison between the homotopy perturbation method and the

variational iteration method for linear fractional partial differential equations, Comput. Math.
Appl. 54 (2007), 910–919.

[23] Z. Odibat and S. Momani, An algorithm for the numerical solution of differential equations of

fractional order, J. Appl. Math. Inform. 26 (2008), 15–27.
[24] K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.
[25] K. Parand and M. Nikarya, Application of Bessel functions for solving differential and integro-

differential equations of the fractional order, Appl. Math. Model. 38 (2014), 4137–4147.
[26] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
[27] E. A. Rawashdeh, Numerical solution of semidifferential equations by collocation method, Appl.

Math. Comput. 174 (2006), 869–876.
[28] M. Rehman and R. A. Khan, Numerical solutions to initial and boundary value problems for

linear fractional partial differential equations, Appl. Math. Model. 37 (2013), 5233–5244.
[29] R. K. Saeed and H. M. Sdeq, Solving a system of linear Fredholm fractional integro-differential

equations using homotopy perturbation method, Australian Journal of Basic and Applied Sciences
4 (2010), 633–638.

[30] M. H. Saleh, S. H. Mohamed, M. H. Ahmed and M. K. Marjan, System of linear fractional

integro-differential equations by using Adomian decomposition method, Int. J. Comput. Appl.
121(24) (2015), 9–19.

[31] B.-Q. Tang and X.-F. Li, A new method for determining the solution of Riccati differential

equations, Appl. Math. Comput. 194 (2007), 431–440.
[32] B.-Q. Tang and X.-F. Li, Approximate solution to an integral equation with fixed singularity for

a cruciform crack, Appl. Math. Lett. 21 (2008), 1238–1244.



392 M. DIDGAR, A. R. VAHIDI, AND J. BIAZAR

[33] A. R. Vahidi and M. Didgar, An improved method for determining the solution of Riccati

equations, Neural Comput. 23 (2013), 1229–1237.
[34] W. K. Zahra and S. M. Elkholy, The use of cubic splines in the numerical solution of fractional

differential equations, Int. J. Math. Math. Sci. 16 (2012), DOI 10.1155/2012/638026.

1Department of Mathematics,
Guilan Science and Research Branch,
Islamic Azad University, Rasht, Iran

2Department of Mathematics,
Rasht Branch,
Islamic Azad University, Rasht, Iran
Email address: mohsen_didgar@yahoo.com

3Department of Mathematics,
College of Science, Yadegar-e-Emam Khomeyni (RAH) Shahr-e-Rey Branch,
Islamic Azad University, Tehran, Iran
Email address: alrevahidi@yahoo.com

4Department of Applied Mathematics,
Faculty of Mathematical Sciences,
University of Guilan, P.O. Box 41335-1914, P.C.4193822697, Rasht, Iran
Email address: j.biazar@gmail.com

∗Corresponding Author



Kragujevac Journal of Mathematics

Volume 44(3) (2020), Pages 393–399.

ON CAPUTO FRACTIONAL DERIVATIVES VIA CONVEXITY

G. FARID1

Abstract. In this paper some estimations of Caputo fractional derivatives via
convexity have been presented. By using convexity of any positive integer order
differentiable function some novel results are given.

1. Introduction

Caputo fractional derivatives are defined as follows (see [1]).

Definition 1.1. Let α > 0 and α /∈ {1, 2, 3, . . . }, n = [α] + 1, f ∈ ACn[a, b], the
space of functions having nth derivatives absolutely continuous. The left-sided and
right-sided Caputo fractional derivatives of order α are defined as follows:

(

CDα
a+f

)

(x) =
1

Γ(n − α)

∫ x

a

f (n)(t)

(x − t)α−n+1
dt, x > a

and
(

CDα
b−

f
)

(x) =
(−1)n

Γ(n − α)

∫ b

x

f (n)(t)

(t − x)α−n+1
dt, x < b.

If α = n ∈ {1, 2, 3, . . . } and usual derivative f (n)(x) of order n exists, then Caputo

fractional derivative
(

CDn
a+f

)

(x) coincides with f (n)(x) whereas
(

CDn
b−

f
)

(x) coin-

cides with f (n)(x) with exactness to a constant multiplier (−1)n. In particular we
have

(

CD0
a+f

)

(x) =
(

CD0
b−

f
)

(x) = f(x),

where n = 1 and α = 0.
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Since the inequalities always have been proved worthy in establishing the mathe-
matical models and their solutions in almost all branches of applied sciences (see [2,3]).
Especially the convexity takes very important role in the optimization theory. The
aim of this paper is to introduce some fractional inequalities for the Caputo fractional
derivatives via the convexity property of the functions which have derivatives of any
integer order.

2. Main Results

First we give the following estimate of the sum of left and right handed Caputo
fractional derivatives.

Theorem 2.1. Let f : I → R be a real valued n-time differentiable function where n
is a positive integer. If f (n) is a positive convex function, then for a, b ∈ I, a < b and

α, β ≥ 1, the following inequality for Caputo fractional derivatives holds

Γ(n − α + 1)
(

CDα−1
a+ f

)

(x) + Γ(n − β + 1)
(

CDβ−1
b−

f
)

(x)(2.1)

≤
(x − a)n−α+1f (n)(a) + (b − x)n−β+1f (n)(b)

2

+ f (n)(x)

[

(x − a)n−α+1 + (b − x)n−β+1

2

]

.

Proof. Let us consider the function f on the interval [a, x], x ∈ [a, b]. For t ∈ [a, x],
the following inequality holds

(2.2) (x − t)n−α ≤ (x − a)n−α.

Since f (n) is convex therefore for t ∈ [a, x] we have

(2.3) f (n)(t) ≤
x − t

x − a
f (n)(a) +

t − a

x − a
f (n)(x).

Multiplying inequalities (2.3) and (2.2), then integrating with respect to t over [a, x]
we have
∫ x

a
(x − t)n−αf (n)(t)dt ≤

(x − a)n−α

x − a

[

f (n)(a)
∫ x

a
(x − t)dt + f (n)(x)

∫ x

a
(t − a)dt

]

,

(2.4) Γ(n − α + 1)
(

CDα−1
a+ f

)

(x) ≤
(x − a)n−α+1

2
[f (n)(a) + f (n)(x)].

Now we consider function f on the interval [x, b], x ∈ [a, b]. For t ∈ [x, b] the following
inequality holds

(2.5) (t − x)n−β ≤ (b − x)n−β.

Since f (n) is convex on [a, b], therefore, for t ∈ [x, b] we have

(2.6) f (n)(t) ≤
t − x

b − x
f (n)(b) +

b − t

b − x
f (n)(x).
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Multiplying inequalities (2.5) and (2.6), then integrating with respect to t over [x, b]
we have

∫ b

x
(t − x)n−βf (n)(t)dt ≤

(b − x)n−β

b − x

[

f (n)(b)
∫ b

x
(t − x)dt + f (n)(x)

∫ b

x
(b − t)dt

]

,

(2.7) Γ(n − β + 1)
(

CDβ−1
b−

f
)

(x) ≤
(b − x)n−β+1

2
[f (n)(b) + f (n)(x)].

Adding (2.4) and (2.7) we get the required inequality in (2.1). �

It is nice to see that the following implication holds.

Corollary 2.1. By setting α = β in (2.1) we get the following fractional integral

inequality

Γ(n − α + 1)
((

CDα−1
a+ f

)

(x) +
(

CDα−1
b−

f
)

(x)
)

≤
(x − a)n−α+1f (n)(a) + (b − x)n−α+1f (n)(b)

2
+ f (n)(x)

[

(x − a)n−α+1 + (b − x)n−α+1

2

]

.

Now we give the next result stated in the following theorem.

Theorem 2.2. Let f : I → R be a real valued n-time differentiable function, where

n is a positive integer. If |f (n+1)| is convex function, then for a, b ∈ I a < b and

α, β > 0, the following inequality for Caputo fractional derivatives holds
∣

∣

∣Γ(n − α + 1)
(

CDα
a+f

)

(x) + Γ(n − β + 1)
(

CDβ
b−

f
)

(x)(2.8)

−
(

(x − a)n−αf (n)(a) + (b − x)n−βf (n)(b)
)∣

∣

∣

≤
(x − a)α+1|f (n+1)(a)| + (b − x)β+1|f (n+1)(b)|

2

+
|f (n+1)(x)|

(

(x − a)α+1 + (b − x)β+1
)

2
.

Proof. Since |f (n+1)| is convex, therefore, for t ∈ [a, x] we have

|f (n+1)(t)| ≤
x − t

x − a
|f (n+1)(a)| +

t − a

x − a
|f (n+1)(x)|

from which we can write

−
(

x − t

x − a
|f (n+1)(a)| +

t − a

x − a
|f (n+1)(x)|

)

≤ f (n+1)(t)

(2.9)

≤
x − t

x − a
|f (n+1)(a)| +

t − a

x − a
|f (n+1)(x)|.

We consider the second inequality of inequality (2.9)

f (n+1)(t) ≤
x − t

x − a
|f (n+1)(a)| +

t − a

x − a
|f (n+1)(x)|.
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Now for α > 0 we have

(2.10) (x − t)n−α ≤ (x − a)n−α, t ∈ [a, x].

The product of last two inequalities give

(x − t)n−αf (n+1)(t) ≤ (x − a)n−α−1
(

(x − t)|f (n+1)(a)| + (t − a)|f (n+1)(x)|
)

.

Integrating with respect to t over [a, x] we have
∫ x

a
(x − t)n−αf (n+1)(t)dt(2.11)

≤(x − a)n−α−1
(

|f (n+1)(a)|
∫ x

a
(x − t)dt + |f (n+1)(x)|

∫ x

a
(t − a)dt

)

=(x − a)n−α+1

(

|f (n+1)(a)| + |f (n+1)(x)|

2

)

and
∫ x

a
(x − t)n−αf (n+1)(t)dt = f (n)(t)(x − t)n−α|xa + (n − α)

∫ x

a
(x − t)n−α−1f (n)(t)dt

= −f (n)(a)(x − a)n−α + Γ(n − α + 1)
(

CDα
a+f

)

(x).

Therefore, (2.11) takes the form

Γ(n − α + 1)
(

CDα
a+f

)

(x) − f (n)(a)(x − a)n−α(2.12)

≤(x − a)n−α+1

(

|f (n+1)(a)| + |f (n+1)(x)|

2

)

.

If one consider from (2.9) the first inequality and proceed as we did for the second
inequality, then following inequality can be obtained

f (n)(a)(x − a)n−α − Γ(n − α + 1)
(

CDα
a+f

)

(x)(2.13)

≤(x − a)n−α+1

(

|f (n+1)(a)| + |f (n+1)(x)|

2

)

.

From (2.12) and (2.13) we get
∣

∣

∣Γ(n − α + 1)
(

CDα
a+f

)

(x) − f (n)(a)(x − a)n−α
∣

∣

∣(2.14)

≤(x − a)n−α+1

(

|f (n+1)(a)| + |f (n+1)(x)|

2

)

.

On the other hand for t ∈ [x, b] using convexity of |f (n+1)| we have

(2.15) |f (n+1)(t)| ≤
t − x

b − x
|f (n+1)(b)| +

b − t

b − x
|f (n+1)(x)|.

Also for t ∈ [x, b] and β > 0 we have

(2.16) (t − x)n−β ≤ (b − x)n−β.
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By adopting the same treatment as we have done for (2.9) and (2.10) one can obtain
from (2.15) and (2.16) the following inequality

∣

∣

∣Γ(n − β + 1)
(

CDβ
b−

f
)

(x) − f (n)(b)(b − x)n−β
∣

∣

∣(2.17)

≤(b − x)n−β+1

(

|f (n+1)(b)| + |f (n+1)(x)|

2

)

.

By combining the inequalities (2.14) and (2.17) via triangular inequality we get the
required inequality. �

It is interesting to see the following inequalities as a special case.

Corollary 2.2. By setting α = β in (2.8) we get the following fractional integral

inequality
∣

∣

∣Γ(n − α + 1)[
(

CDα
a+f

)

(x) +
(

CDα
b−

f
)

(x)]

−
(

(x − a)n−αf (n)(a) + (b − x)n−αf (n)(b)
)∣

∣

∣

≤
(x − a)n−α+1|f (n+1)(a)| + (b − x)n−α+1|f (n+1)(b)|

2

+
|f (n+1)(x)| ((x − a)n−α+1 + (b − x)n−α+1)

2
.

Before going to the next theorem we observe the following result.

Lemma 2.1. Let f : [a, b] → R, be a convex function. If f is symmetric about a+b
2

,

then the following inequality holds

(2.18) f

(

a + b

2

)

≤ f(x), x ∈ [a, b].

Proof. We have

a + b

2
=

1

2

(

x − a

b − a
b +

b − x

b − a
x

)

+
1

2

(

x − a

b − a
a +

b − x

b − a
b

)

.

Since f is convex, therefore we have

f

(

a + b

2

)

≤
1

2

(

f

(

x − a

b − a
b +

b − x

b − a
x

)

+ f

(

x − a

b − a
a +

b − x

b − a
b

))

=
1

2
(f(x) + f(a + b − x)) .

Also f is symmetric about a+b
2

, therefore, we have f(a + b − x) = f(x) and inequality
in (2.18) holds. �

Theorem 2.3. Let f : I → R be a real valued n-time differentiable function where n
is a positive integer. If f (n) is a positive convex and symmetric about a+b

2
, then for
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a, b ∈ I, a < b and α, β ≥ 1, the following inequality for Caputo fractional derivatives

holds

1

2

(

1

n − α + 1
+

1

n − β + 1

)

f (n)

(

a + b

2

)

(2.19)

≤
Γ(n − β + 1)

(

CDβ−1
b−

f
)

(a)

2(b − a)n−β+1
+

Γ(n − α + 1)
(

CDα−1
a+ f

)

(b)

2(b − a)n−α+1

≤
f (n)(a) + f (n)(b)

2
.

Proof. For x ∈ [a, b] we have

(2.20) (x − a)n−β ≤ (b − a)n−β.

Also f is convex function we have

(2.21) f (n)(x) ≤
x − a

b − a
f (n)(b) +

b − x

b − a
f (n)(a).

Multiplying (2.20) and (2.21) and then integrating with respect to x over [a, b] we
have

∫ b

a
(x − a)n−βf (n)(x)dx ≤

(b − a)n−β

b − a

(

∫ b

a
(f (n)(b)(x − a) + f (n)(a)(b − x))dx

)

.

From which we have

(2.22)
Γ(n − β + 1)

(

CDβ−1
b−

f
)

(a)

(b − a)n−β+1
≤

f (n)(a) + f (n)(b)

2
.

On the other hand for x ∈ [a, b] we have

(2.23) (b − x)n−α ≤ (b − a)n−α.

Multiplying (2.21) and (2.23) and then integrating with respect to x over [a, b] we get
∫ b

a
(b − x)n−αf (n)(x)dx ≤ (b − a)n−α+1 f (n)(a) + f (n)(b)

2
.

From which we have

(2.24)
Γ(n − α + 1)

(

CDα−1
a+ f

)

(b)

(b − a)n−α+1
≤

f (n)(a) + f (n)(b)

2
.

Adding (2.22) and (2.24) we get the second inequality

Γ(n − β + 1)
(

CDβ−1
b−

f
)

(a)

2(b − a)n−β+1
+

Γ(n − α + 1)
(

CDα−1
a+ f

)

(b)

2(b − a)n−α+1
≤

f (n)(a) + f (n)(b)

2
.

Since f (n) is convex and symmetric about a+b
2

using Lemma 2.1 we have

(2.25) f (n)

(

a + b

2

)

≤ f (n)(x), x ∈ [a, b].
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Multiplying with (x − a)n−β on both sides and then integrating over [a, b] we have

f (n)

(

a + b

2

)

∫ b

a
(x − a)n−βdx ≤

∫ b

a
(x − a)n−βf (n)(x)dx.

By definition of Caputo fractional derivatives one can has

(2.26) f (n)

(

a + b

2

)

1

2(n − β + 1)
≤

Γ(n − β + 1)
(

CDβ−1
b−

f
)

(a)

2(b − a)n−β+1
.

Multiplying (2.25) with (b − x)n−α, then integrating over [a, b] one can get

(2.27) f (n)

(

a + b

2

)

1

2(n − α + 1)
≤

Γ(n − α + 1)
(

CDα−1
a+ f

)

(b)

2(b − a)n−α+1
.

Adding (2.26) and (2.27) we get the first inequality. �

Corollary 2.3. If we put α = β in (2.19), then we get

f (n)

(

a + b

2

)

1

α + 1
≤

Γ(n − α + 1)

2(b − a)α+1

((

CDα+1
b−

f
)

(a) +
(

CDα+1
a+ f

)

(b)
)

≤
f (n)(a) + f (n)(b)

2
.

Acknowledgements. This research work is supported by Higher Education Com-
mission of Pakistan under NRPU 2016, Project No. 5421.

References

[1] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential

Equations, North-Holland Mathematics Studies 204, Elsevier, New York, London, 2006.
[2] M. Lazarević, Advanced Topics on Applications of Fractional Calculus on Control Problems,

System Stability and Modeling, WSEAS Press, Belgrade, Serbia, 2012.
[3] K. Oldham and J. Spanier, The Fractional Calculus Theory and Applications of Differentiation

and Integration to Arbitrary Order, Academic Press, New York, London, 1974.

1Department of Mathematics,
COMSATS University Islamabad, Attock Campus, Pakistan
Email address: faridphdsms@hotmail.com, ghlmfarid@cuiatk.edu.pk





Kragujevac Journal of Mathematics

Volume 44(3) (2020), Pages 401–413.

BEST PROXIMITY POINT RESULTS VIA SIMULATION

FUNCTIONS IN METRIC-LIKE SPACES

G. V. V. J. RAO1, H. K. NASHINE2∗, AND Z. KADELBURG3

Abstract. In this paper, we discuss the existence of best proximity points of certain
mappings via simulation functions in the frame of complete metric-like spaces. Some
consequences and examples are given of the obtained results.

1. Introduction

Khojasteh et al. introduced in [13] the notion of simulation function in order to
unify several fixed point results obtained by various authors. These functions were
later utilized by Karapinar and Khojasteh in [9] to solve some problems concerning
best proximity points.

On the other hand, spaces more general than metric and fixed point and related
problems in them have been lately a wide field of interest of huge number of mathe-
maticians. Among them, metric-like spaces, introduced by Amini-Harandi in [2], took
a prominent place.

In this paper, we are going to extend these investigations to best proximity points of
mappings acting in complete metric-like spaces, using conditions involving simulation
functions. The results will be illustrated by several examples, showing the strength
of these results compared with others existing in the literature.

2. Preliminaries

Throughout the paper, R and R
+, R+

0 will denote the set of real numbers, the set
of positive real numbers and the set of nonnegative real numbers, respectively. Also,
N0 and N will denote the set of nonnegative, resp. positive integers.

Key words and phrases. Z-contraction, best proximity point, simulation function, admissible
mapping.
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We shall first recall some basic definitions and some results from [1,5, 13].

Definition 2.1 ([13]). A simulation function is a mapping ζ : R+
0 ×R

+
0 → R satisfying

the following conditions:

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s− t for all t, s > 0;
(ζ3) if {tn} and {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn =

l ∈ (0,∞), then lim supn→∞
ζ(tn, sn) < 0.

Note that, according to the axiom (ζ2), each simulation function ζ satisfies ζ(t, t) < 0
for all t > 0. The family of all simulation functions will be denoted by Z.

Example 2.1 (See, e.g., [1,5,7,13]). For i = 1, 2, . . . , 6, define mappings ζi : R+
0 ×R

+
0 →

R, as follows.

(i) ζ1(t, s) = φ1(s)−φ2(t) for all t, s ∈ R
+
0 , where φ1, φ2 : R+

0 → R
+
0 are continuous

functions, with φi(t) = 0 if and only if t = 0 and φ1(t) < t ≤ φ2(t) for all t > 0.

(ii) ζ2(t, s) = s− f(t,s)
g(t,s)

t for all t, s ∈ R
+
0 , where f, g : R+

0
2

→ R
+
0 are two functions,

continuous with respect to each variable and such that f(t, s) > g(t, s) for all
t, s > 0.

(iii) ζ3(t, s) = s − φ(s) − t for all t, s ∈ R
+
0 , where φ : R+

0 → R
+
0 is a continuous

functions, with φ(t) = 0 if and only if t = 0.
(iv) If ϕ : R+

0 → [0, 1) is a function such that lim supt→r+ ϕ(t) < 1 for all r > 0, let

ζ4(t, s) = sϕ(s) − t, for all t, s ∈ R
+
0 .

(v) If η : R+
0 → R

+
0 is an upper semi-continuous function such that η(t) < t for all

t > 0 and η(0) = 0, let

ζ5(t, s) = η(s) − t, for all t, s ∈ R
+
0 .

(vi) If φ : R+
0 → R

+
0 is a function such that

∫ ǫ
0 φ(u) du > ǫ for each ǫ > 0, let

ζ6(t, s) = s−
∫ t

0
φ(u) du, for all t, s ∈ R

+
0 .

It is clear that each function ζi, i = 1, 2, . . . , 6, is a simulation function.

Definition 2.2 ([2]). Let X be a nonempty set, and a mapping σ : X ×X → R
+
0 is

such that, for all x, y, z ∈ X,

(σ1) σ(x, y) = 0 implies x = y;
(σ2) σ(x, y) = σ(y, x);
(σ3) σ(x, y) ≤ σ(x, z) + σ(z, y).

Then (X, σ) is said to be a metric-like space.

As is well known, each partial metric space is an example of a metric-like space.
The converse is not true. The following example illustrates this statement.



PROXIMITY POINT RESULTS VIA SIMULATION FUNCTIONS 403

Example 2.2. Take X = {1, 2, 3} and consider the metric-like σ : X ×X → R
+
0 given

by

σ(1, 1) = 0, σ(2, 2) = 1, σ(3, 3) =
2

3
,

σ(2, 1) = σ(1, 2) =
9

10
, σ(1, 3) = σ(3, 1) =

7

10
, σ(2, 3) = σ(3, 2) =

4

5
.

Since σ(2, 2) 6= 0, σ is not a metric and since σ(2, 2) > σ(2, 1), σ is not a partial
metric.

Every metric-like σ on X generates a topology τσ whose base is the family of all
open σ-balls

{Bσ(x, δ) : x ∈ X, δ > 0 },

where Bσ(x, δ) = { y ∈ X : |σ(x, y) − σ(x, x)| < δ }, for all x ∈ X and δ > 0.

Definition 2.3 ([2]). Let (X, σ) be a metric-like space, let {xn} be a sequence in X

and x ∈ X. Then

(i) {xn} is said to converge to x, w.r.t. τσ, if limn→∞ σ(xn, x) = σ(x, x);
(ii) {xn} is called a Cauchy sequence in (X, σ) if limn,m→∞ σ(xn, xm) exists (and

is finite);
(iii) (X, σ) is called complete if every Cauchy sequence {xn} in X converges with

respect to τσ to a point x ∈ X such that

lim
n,m→∞

σ(xn, xm) = lim
n→∞

σ(xn, x) = σ(x, x);

(iv) a function f : X → X is continuous if for any sequence {xn} in X such that
σ(xn, x) → σ(x, x) as n → ∞, we have σ(fxn, fx) → σ(fx, fx) as n → ∞.

Note that the limit of a sequence in a metric-like space might not be unique.

Lemma 2.1 ([11]). Let (X, σ) be a metric-like space. Let {xn} be a sequence in X

such that xn → x where x ∈ X and σ(x, x) = 0. Then for all y ∈ X, we have

lim
n→∞

σ(xn, y) = σ(x, y).

Ψ will denote the family of non-decreasing functions ψ : R+
0 → R

+
0 satisfying the

following conditions:

(i) ψ(t) < t, for any t ∈ R
+;

(ii) ψ is continuous at 0.

Let (X, σ) be a metric-like space, and U and V be two non-empty subsets of X.
Recall the following standard notation:

σ(U, V ) := inf{σ(u, v) : u ∈ U, v ∈ V },

U0 := {u ∈ U : σ(u, v) = σ(U, V ) for some v ∈ V },

V0 := {v ∈ V : σ(u, v) = σ(U, V ) for some u ∈ U}.
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Consider now a non-self mapping T : U → V and the equation Tu = u (u ∈ U). As
is well known, a solution of this equation, if it exists, is called a fixed point of T . If
such solution does not exist, an approximate solution u∗ ∈ U have the least possible
error when σ(u∗, Tu∗) = σ(U, V ). In this case, u∗ is called a best proximity point of
the mapping T : U → V .

Finally, recall the following useful notions.

Definition 2.4 ([6]). Let U and V be nonempty subsets of a metric-like space (X, σ),
and α : U × U → R

+
0 be a function. We say that the mapping T is α-proximal

admissible if

α(x, y) ≥ 1 and σ(u, Tx) = σ(v, Ty) = σ(U, V ) ⇒ α(u, v) ≥ 1,

for all x, y, u, v ∈ X.

If σ(U, V ) = 0, then T reduces from α-proximal admissible to α-admissible.

Definition 2.5 ([8, 10]). Let T : X → X be a mapping and α : X × X → R
+
0 be a

function. We say that the mapping T is triangular weakly-α-admissible if

α(x, y) ≥ 1 and α(y, z) ≥ 1 ⇒ α(x, z) ≥ 1.

3. Main Results

Definition 3.1. Let (X, σ) be a metric-like space, U and V be two non-empty subsets
of X, ψ ∈ Ψ, α : X × X → R

+
0 and ζ ∈ Z. We say that T : U → V is an α-ψ-ζ-

contraction if T is α-proximal admissible and
(3.1)
α(x, y) ≥ 1 and σ(u, Tx) = σ(v, Ty) = σ(U, V ) ⇒ ζ(α(x, y)σ(u, v), ψ(σ(x, y))) ≥ 0,

for all x, y, u, v ∈ U .

Definition 3.2. Let (X, σ) be a metric-like space, U and V be two non-empty subsets
of X, α : X × X → R

+
0 and ζ ∈ Z. We say that T : U → V is an α-ζ-contraction if

T is α-proximal admissible and
(3.2)
α(x, y) ≥ 1 and σ(u, Tx) = σ(v, Ty) = σ(U, V ) ⇒ ζ(α(x, y)σ(u, v), σ(x, y)) ≥ 0,

for all x, y, u, v ∈ U .

Notice that Definition 3.2 is not a special case of Definition 3.1 since the function
ψ(t) = t does not belong to Ψ.

The following lemma provides a standard step in proving that the given sequence
is Cauchy in a certain space.

Lemma 3.1 (See, e.g., [14]). Let (X, σ) be a metric-like space and let {xn} be a

sequence in X such that σ(xn+1, xn) is non-increasing and that limn→∞ σ(xn+1, xn) = 0.

If {xn} is not a Cauchy sequence, then there exist an ǫ > 0 and two sequences {mk}
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and {nk} of positive integers such that the following four sequences tend to ǫ when

k → ∞:

σ(xmk
, xnk

), σ(xmk+1, xnk+1), σ(xmk−1, xnk
), σ(xmk

, xnk−1).

Now we present the main results of this article.

Theorem 3.1. Let (X, σ) be a metric-like space, U and V be two non-empty subsets

of X, α : X ×X → R
+
0 , ψ ∈ Ψ and ζ ∈ Z is non-decreasing with respect to its second

argument. Suppose that T : U → V is an α-ψ-ζ-contraction and

(1) T is triangular weakly-α-admissible;

(2) U is closed with respect to the topology τσ;

(3) T (U0) ⊂ V0;

(4) there exist x0, x1 ∈ U such that σ(x1, Tx0) = σ(U, V ) and α(x0, x1) ≥ 1;

(5) T is continuous.

Then, T has a best proximity point, that is, there exists z ∈ U such that σ(z, Tz) =
σ(U, V ).

Proof. Take x0, x1 ∈ U given as in (4). Taking (3) into account, we conclude that
Tx1 ∈ V0 which implies that there exists x2 ∈ U such that σ(x2, Tx1) = σ(U, V ).
Since α(x0, x1) ≥ 1 and T is α-proximal admissible, we conclude that α(x1, x2) ≥ 1.
Recursively, a sequence {xn} ⊂ U can be chosen satisfying

(3.3) σ(xn+1, Txn) = σ(U, V ) and α(xn, xn+1) ≥ 1, for all n ∈ N0.

If xk = xk+1 for some k ∈ N0, then σ(xk, Txk) = σ(xk+1, Txk) = σ(U, V ), meaning
that xk is the required best proximal point. Hence, we will further assume that

(3.4) xn 6= xn+1, for all n ∈ N0.

Using relations (3.3) and (3.4), we get that σ(xn, Txn−1) = σ(xn+1, Txn) = σ(U, V ),
for all n ∈ N. Furthermore, by (3.1)

(3.5) ζ(α(xn−1, xn)σ(xn, xn+1), ψ(σ(xn−1, xn))) ≥ 0, for all n ∈ N,

since T : U → V is an α-ψ-ζ-contraction. Regarding (3.4) and (ζ2), the inequality
(3.5) implies that

σ(xn, xn+1) ≤ α(x, y)σ(xn, xn+1) ≤ ψ(σ(xn−1, xn)) < σ(xn−1, xn), for all n ∈ N.

Thus, {σ(xn, xn+1)} is a non-increasing sequence bounded from below and there exists
L ∈ R

+
0 such that σ(xn, xn+1) → L as n → ∞. We shall prove that L = 0. Suppose,

on the contrary, that L > 0. Taking the upper limit in (3.5) as n → ∞, regarding
(ζ3), property (i) of ψ ∈ Ψ and that ζ is non-decreasing with respect to the second
argument, we deduce

0 ≤ lim sup
n→∞

ζ(α(xn, xn−1)σ(xn, xn+1), ψ(σ(xn, xn−1)))

≤ lim sup
n→∞

ζ(α(xn, xn−1)σ(xn, xn+1), σ(xn, xn−1)) < 0,

which is a contradiction. We conclude that limn→∞ σ(xn, xn+1) = 0.
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We shall now prove that the sequence {xn} is Cauchy. Suppose that it is not. Then,
there exist ǫ > 0 and subsequences {xmk

} and {xmk
} of {xn}, so that nk > mk > k

and

(3.6) σ(xmk
, xnk

) ≥ ǫ and σ(xmk
, xnk−1) < ǫ.

By Lemma 2.1, we have

lim
k→∞

σ(xmk
, xnk

) = lim
k→∞

σ(xnk−1, xmk−1) = ǫ.

Since T is triangular weakly-α-admissible, from (3.3), we get that

α(xn, xm) ≥ 1, for all n,m ∈ N0 with n > m.

Hence,
(3.7)
α(xmk

, xnk
) ≥ 1 and σ(xmk

, Txmk−1) = σ(xnk
, Txnk−1) = σ(U, V ), for all k ∈ N.

Since T is an α-ψ-ζ-contraction, the obtained relations (3.7) yield the following in-
equality:

0 ≤ ζ(α(xn, xn−1)σ(xmk
, xnk

), ψ(σ(xmk
, xnk

))), for all k ∈ N.

Letting k → ∞, using (3.6) and (ζ3), and regarding properties of ψ ∈ Ψ and that ζ is
non-decreasing with respect to the second argument, we obtain

0 ≤ lim sup
n→∞

ζ(α(xn, xn−1)σ(xmk
, xnk

), ψ(σ(xmk−1, Txnk−1)))

≤ lim sup
n→∞

ζ(α(xn, xn−1)σ(xmk
, xnk

), σ(xmk−1, Txnk−1)) < 0,

which is a contradiction. Thus, we conclude that the sequence {xn} is Cauchy in U .
Since U is a closed subset of a complete metric-like space (X, σ), there exists z ∈ U

such that

(3.8) lim
n→∞

σ(xn, z) = 0.

Since T is continuous, we deduce that

(3.9) lim
n→∞

σ(Txn, T z) = 0.

From (3.3), using the triangle inequality together with (3.8) and (3.9), we find that

σ(U, V ) = lim
n→∞

σ(xn+1, Txn) = σ(z, Tz).

Thus, z ∈ U is a best proximity point of the mapping T . �

The continuity hypothesis in Theorem 3.1 can be omitted if we assume the following
additional condition on U :

(P ) if a sequence {un} in U converges to u ∈ U and is such that α(un, un+1) ≥ 1
for n ≥ 1, then there is a subsequence {un(k)} of {un} with α(un(k), u) ≥ 1 for
all k.
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Theorem 3.2. Let all the conditions of Theorem 3.1 hold, except that the condition

(5) is replaced by

(5’) (P ) holds.

Then T has a best proximity point.

Proof. As in the proof of Theorem 3.1 we conclude that there exists a sequence {xn}
in U0 which converges to z ∈ U0. Using (3), we note that Tz ∈ V0 and hence

σ(u1, T z) = σ(U, V ), for some u1 ∈ U0.

Notice that from (P ), we have α(xnk
, z) ≥ 1 for all k ∈ N. Since T is α-proximal

admissible and

(3.10) σ(u1, T z) = σ(xnk+1, Txnk
) = σ(U, V ),

we obtain that α(xnk+1, u1) ≥ 1 for all k ∈ N and

ζ(α(xnk+1, u1)σ(u1, xnk+1), ψ(σ(z, xnk
))) ≥ 0.

Then, (ζ2) implies that

σ(u1, xnk+1) ≤ α(xnk+1, u1)σ(u1, xnk+1) ≤ ψ(σ(z, xnk
)) < σ(z, xnk

)

and so limk→∞ σ(u1, xnk+1) → 0. Thus, u1 = z and by (3.10) we have σ(z, Tz) =
σ(U, V ). �

Theorem 3.3. Let (X, σ) be a metric-like space, U and V be two non-empty subsets

of X, ζ ∈ Z and α : X × X → R
+
0 . Suppose that T : U → V is an α-ζ-contraction

and that conditions (1)-(4) of Theorem 3.1 are satisfied, as well as

(5′′) T is continuous or (P) holds.

Then, T has a best proximity point.

Proof. By following the lines in the proof of Theorem 3.1, we easily construct a
sequence {xn} in U which converges to some z ∈ U , moreover

(3.11) lim
n→∞

σ(xn, z) = 0.

Suppose first that T is continuous. Then

(3.12) lim
n→∞

σ(Txn, T z) = 0.

From (3.3), the triangle inequality together with (3.11) and (3.12) imply

σ(U, V ) = lim
n→∞

σ(xn+1, Txn) = σ(z, Tz).

In other words, z ∈ U is a best proximity of the mapping T .
Suppose now that (P) holds. Regarding (3), we note that Tz ∈ V0 and hence

σ(u1, T z) = σ(U, V ), for some u1 ∈ U0.

Notice that from (P ), we have α(xnk
, z) ≥ 1 for all k ∈ N. Since T is α-proximal

admissible, and
σ(u1, T z) = σ(xnk+1, Txnk

) = σ(U, V ),
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we get that α(xnk+1, u1) ≥ 1 for all k ∈ N and

(3.13) ζ(α(xnk+1, u1)σ(u1, xnk+1), σ(z, xnk
)) ≥ 0.

Then, (ζ2) implies that σ(u1, xnk+1) ≤ α(xnk+1, u1)σ(u1, xnk+1) ≤ σ(z, xnk
) and so

lim
k→∞

σ(u1, xnk+1) → 0.

Thus, u1 = z and by (3.13) we have σ(z, Tz) = σ(U, V ) and the proof is completed. �

Notice that Theorem 3.3 cannot be obtained by combining Theorems 3.1 and 3.2,
since the function ψ(t) = t does not belong to Ψ. Furthermore, in Theorems 3.1 and
3.2, we have an additional condition that ζ is non-decreasing in its second argument.

Definition 3.3. Let (X, σ) be a metric-like space, U and V be two non-empty subsets
of X, α : X × X → R

+
0 and ζ ∈ Z. We say that T : U → V is a generalized α-ζ-

contraction if T is α-proximal admissible and
(3.14)
α(x, y) ≥ 1 and σ(u, Tx) = σ(v, Ty) = σ(U, V ) ⇒ ζ(α(x, y)σ(u, v), r(x, y)) ≥ 0,

for all x, y, u, v ∈ U with x 6= y, where

r(x, y) = max

{

σ(x, y),
σ(x, u)σ(y, v)

σ(x, y)

}

.

Theorem 3.4. Let (X, σ) be a metric-like space, U and V be two non-empty subsets

of X and α : X × X → R
+
0 , ζ ∈ Z. Suppose that T : U → V is a generalized

α-ζ-contraction and conditions (1)-(5) of Theorem 3.1 are satisfied. Then T has a

best proximity point.

Proof. As in the proof of Theorem 3.1, we can construct a sequence {xn} in X

satisfying conditions (3.3) and (3.4). Combining these relations with (3.14), we get
that σ(xn, Txn−1) = σ(xn+1, Txn) = σ(U, V ) for all n ∈ N and

ζ(α(xn−1, xn)σ(xn, xn+1), r(xn−1, xn)) ≥ 0, for all n ∈ N.

Here,

r(xn−1, xn) = max

{

σ(xn−1, xn)σ(xn, xn+1)

σ(xn−1, xn)
, σ(xn−1, xn)

}

= max {σ(xn, xn+1), σ(xn−1, xn)} .

Suppose that for some n ∈ N

max {σ(xn, xn+1), σ(xn−1, xn)} = σ(xn, xn+1).

Since σ(xn, xn+1) > 0, using the property (2) of the simulation function, we obtain

ζ(α(xn−1, xn)σ(xn, xn+1), σ(xn, xn+1)) < 0,

which is a contradiction. It follows that r(xn−1, xn) = σ(xn−1, xn) for all n ∈ N,
implying that

(3.15) ζ(α(xn−1, xn)σ(xn, xn+1), σ(xn−1, xn)) ≥ 0, for all n ∈ N.
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Using (ζ2), the inequality (3.15) yields that

σ(xn, xn+1) ≤ σ(xn−1, xn), for all n ∈ N.

Hence, {σ(xn, xn+1)} is a non-increasing sequence, bounded from below, converging
to some L ≥ 0. Suppose that L > 0. Taking the upper limit as n → ∞ in (3.15),
using (ζ3), we get

0 ≤ lim sup
n→∞

ζ(α(xn, xn−1)σ(xn, xn+1), ψ(σ(xn−1, xn))) < 0,

which is a contradiction. Hence, we conclude that limn→∞ σ(xn, xn+1) = 0.
In order to prove that {xn} is a Cauchy sequence, suppose the contrary. Then, as

in the proof of Theorem 3.1, there exist ǫ > 0 and subsequences {xmk
} and {xmk

} of
{xn}, so that for nk > mk > k we have

σ(xmk
, xnk

) ≥ ǫ and σ(xmk
, xnk−1) < ǫ.

Also, in the same way, the following inequalities hold:

lim
k→∞

σ(xmk
, xnk

) = lim
k→∞

σ(xnk−1, xmk−1) = ǫ,(3.16)

lim
k→∞

σ(xmk−1, xnk
) = lim

k→∞

σ(xnk−1, xmk
) = ǫ.

Since T is triangular weakly-α-admissible, we derive that

α(xn, xm) ≥ 1, for all n,m ∈ N0 with n > m.

Thus, we have

(3.17) α(xmk
, xnk

) ≥ 1 and σ(xmk
, Txmk−1) = σ(xnk

, Txnk−1) = σ(U, V ),

for all k ∈ N. Since T is a generalized α-ζ-contraction, the obtained relations (3.17)
imply

0 ≤ ζ(α(xmk−1, xnk−1)σ(xmk
, xnk

), r(xmk−1, xnk−1)), for all k ∈ N.

Since

(3.18) r(xmk−1, xnk−1) = max

{

σ(xmk−1, xmk
)σ(xnk−1, xnk

)

σ(xmk−1, xnk−1)
, σ(xmk−1, xnk−1)

}

,

taking limits of both sides of (3.18), we conclude that limk→∞ r(xmk−1, xnk−1) = ǫ.
Letting k → ∞ and keeping (3.16) and (ζ3) in mind, we get

0 ≤ lim sup
n→∞

ζ(α(xmk−1, xnk−1)σ(xmk
, xnk

), r(xmk−1, xnk−1)) < 0,

which is a contradiction. Thus, we conclude that the sequence {xn} is Cauchy in U .
The final step of the proof is the same as for Theorem 3.1. �
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4. Corollaries and Examples

Using Example 2.1, it is possible to get a number of consequences of our main
results by choosing the simulation function ζ and α(x, y) in a proper way. We skip
making such a list of corollaries since they seem clear. We just state the following one
as a sample

Corollary 4.1. Let (X, σ) be a metric-like space, U and V be two non-empty subsets

of X and α : X × X → R
+
0 , ψ ∈ Ψ. Suppose that T : U → V is a given α-proximal

admissible mapping such that

α(x, y) ≥ 1 and σ(u, Tx) = σ(v, Ty) = σ(U, V ) ⇒ α(x, y)σ(u, v) ≤ ψ(σ(x, y))),

for all x, y, u, v ∈ U . Suppose also

(a) T is triangular weakly-α-admissible;

(b) U is closed with respect to the topology induced by τσ;

(c) T (U0) ⊂ V0;

(d) there exist x0, x1 ∈ U such that σ(x1, Tx0) = σ(U, V ) and α(x0, x1) ≥ 1;

(e) T is continuous or (P) holds.

Then, T has a best proximity point.

In particular, if the given space (X, σ) is also endowed with a partial order �, by
taking

α(x, y) ≥ 1 ⇔ x � y,

one can get standard variations of the given results in a partially ordered space.
The following illustrative examples show how our results can be used for certain

mappings acting in metric-like spaces.

Example 4.1. Consider X = {a, b, c, d} equipped with σ : X ×X → R
+
0 defined by

σ(a, a) =
1

2
, σ(b, b) = 0, σ(c, c) = 2, σ(d, d) =

1

3
, σ(a, b) = 3,

σ(a, c) =
5

2
, σ(a, d) =

3

2
σ(b, c) = 2, σ(b, d) =

3

2
, σ(c, d) =

5

2
,

and σ(x, y) = σ(y, x) for x, y ∈ X. It is clear that (X, σ) is a complete metric-like
space. Take U = {b, c} and V = {c, d}. Consider the mapping T : U → V defined
by Tb = d, and Tc = c. Remark that σ(U, V ) = σ(b, d) = 3

2
. Also, U0 = {b} and

V0 = {d}. Note that T (U0) ⊆ V0. Take ψ(t) = 5
6
t, and ζ(t, s) = 3

4
s− t for all t, s ≥ 0.

Define α : X ×X → R
+
0 by

α(x, y) =







1, x, y ∈ U,

0, otherwise.

Let x, y, u, v ∈ U be such that

α(x, y) ≥ 1 and σ(u, Tx) = σ(v, Ty) = σ(U, V ) =
3

2
.
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Then, necessarily, we have x = y = u = v = b. So, α(u, v) ≥ 1, that is, T is α-proximal
admissible.

We need to prove that T is an α-ψ-ζ contraction. By the previous conclusion, the
only case to be checked is when x = y = u = v = b. Then we have

ζ(α(b, b)σ(b, b), ψ(σ(b, b))) = ζ(1 · 0, ψ(0)) = 0.

Thus, all the conditions of Theorem 3.1 are satisfied. So T has a best proximity point
(which is z = b). On the other hand, e.g., Corollary 2.2 (with k = 2) of [4] is not
applicable for the standard metric.

Example 4.2. Consider the set X = {a, b, c, d} equipped with the following complete
metric-like σ:

σ(a, a) = σ(b, b) =
1

4
, σ(c, c) = σ(d, d) = 2,

σ(a, b) = σ(c, d) =
1

2
, σ(a, c) = σ(b, d) = 1, σ(a, d) = σ(b, c) =

3

2
,

and σ(x, y) = σ(y, x) for all x, y ∈ X. Let U = {a, b} and V = {c, d}; then σ(U, V ) =
1, U0 = U and V0 = V . Consider, further, the mappings T : U → V given by Ta = c,
Tb = c, α : X ×X → [0,+∞) given by

α(x, y) =







1, if x, y ∈ U,

0, otherwise,

and ζ ∈ Z given by ζ(t, s) = s − 2+t
1+t

t. Let us check that the mapping T is a
generalized α-ζ-contraction. Let x, y, u, v ∈ U be such that x 6= y, α(x, y) ≥ 1,
σ(u, Tx) = σ(v, Ty) = 1. Then it must be u = v = a and either x = a, y = b or x = b,
y = a. In both cases, it is α(u, v) ≥ 1. In order to check condition (3.14), it is enough
to consider the case x = a, y = b, u = v = a (the other is treated symmetrically).
Then,

ζ(α(x, y)σ(u, v), r(x, y)) = ζ

(

1 ·
1

4
,max

{

1

2
,

1
4

· 1
2

1
2

})

= ζ

(

1

4
,
1

2

)

=
1

2
−

2 + 1
4

1 + 1
4

·
1

4
=

1

20
> 0,

and the condition is satisfied. All other conditions of Theorem 3.4 are fulfilled, hence,
we conclude that the mapping T has a best proximity point (which is z = a).

5. Application to Best Proximity Results on a Metric-like Space with
a Graph

Throughout this section, (X, σ) will denote a metric-like space and
G = (V (G), E(G)) will be a directed graph such that its set of vertices V (G) = X

and the set of edges E(G) contains all loops, i.e., ∆ := {(x;x) : x ∈ X} ⊆ E(G). We
need in the sequel the following hypothesis:
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(PG) if a sequence {un} in X converges to u ∈ A such that (un, un+1) ∈ E(G), then
there is a subsequence {un(k)} of {un} with (un(k), u) ∈ E(G) for all k.

Definition 5.1. Let U and V be two non-empty subsets of X and α : X ×X → R
+
0 .

We say that T : U → V is a G-proximal mapping if

(5.1)
(x, y) ∈ E(G), α(x, y) ≥ 1,
σ(u, Tx) = σ(v, Ty) = σ(U, V )

}

⇒ (u, v) ∈ E(G),

for all x, y, u, v ∈ U .

Definition 5.2 ([8,10]). Let U and V be two non-empty subsets of X, let T : U → V

be a mapping and α : X × X → R
+
0 be a function. We say that T is triangular

weakly-G-admissible if

α(x, y) ∈ E(G) and α(y, z) ∈ E(G) ⇒ α(x, z) ∈ E(G).

Corollary 5.1. Let U and V be two non-empty subsets of X and ψ ∈ Ψ. Suppose

that T : U → V is a mapping such that

σ(Tx, Ty) ≤ ψ(σ(x, y)),

for all x, y ∈ U such that (x, y) ∈ E(G). Suppose also:

(a) T is triangular weakly-G-admissible;

(b) T (U0) ⊂ V0;

(c) there exist x0, x1 ∈ U such that σ(x1, Tx0) = σ(U, V ) and (x0, x1) ∈ E(G);
(d) T is continuous or (RG) holds.

Then, T has a best proximity point.

Proof. It suffices to consider α : X ×X → R
+
0 such that

α(x, y) =

{

1, if (x, y) ∈ E(G),
0, if not.

All the hypotheses of Corollary 4.1 are satisfied. �

In this way, we can derive all results and consequences of the paper [15], extending
them to partially ordered metric-like spaces. Similarly, we can extend the frame of
several other existing results from, e.g., [3, 10,12,16].

Acknowledgements. The authors are thankful to the referee for his/her careful
reading of the article.
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NUMERICAL RADIUS INEQUALITIES IN 2-INNER PRODUCT

SPACES

PANACKAL HARIKRISHNAN1, HAMID REZA MORADI2,
AND MOHSEN ERFANIAN OMIDVAR3

Abstract. In this paper, we have obtained the analogue results on numerical
radius inequalities from the classical inner product spaces to 2-inner product spaces.
We have established several related reverse inequalities and some well known results
in 2-inner product spaces.

1. Introduction and Preliminaries

Let X be a linear space of dimension greater than 1 over the field K = R of real
numbers or the field K = C of complex numbers. Suppose that (·, ·|·) is a K-valued
function defined on X × X × X satisfying the following conditions:

(I1) (x, x|z) ≥ 0, and (x, x|z) = 0 if and only if x and z are linearly dependent;
(I2) (x, x|z) = (z, z|x);
(I3) (y, x|z) = (x, y|z);
(I4) (αx, y|z) = α (x, y|z) for any scalar α ∈ K;
(I5) (x + x′, y|z) = (x, y|z) + (x′, y|z).

(·, ·|·) is called a 2-inner product on X and (X , (·, ·|·)) is called a 2-inner product
space (or 2-pre-Hilbert sapce). Some basic properties of 2-inner product (·, ·|·) can be
immediately obtained as follows (see [3]):

(P1) (0, y|z) = (x, 0|z) = (x, y|0) = 0;
(P2) (x, αy|z) = α (x, y|z);
(P3) (x, y|αz) = |α|2 (x, y|z), for all x, y, z ∈ X and α ∈ K.

Key words and phrases. 2-inner product space, linear 2-normed space, numerical range, numerical
radius.
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Using the above properties, one has proved that Cauchy-Schwartz inequality (see [5])

|(x, y|z)|2 ≤ (x, x|z) (y, y|z) .

It should be noticed that, the most standard example for a linear 2-inner product
(·, ·|·) is defined on X by

(1.1) (x, y|z) := det

(

〈x, y〉 〈x, z〉
〈z, y〉 〈z, z〉

)

,

for all x, y, z ∈ X . In [2], it is shown that, in any given 2-inner product space
(X , (·, ·|·)), we can define a function

(1.2) ‖x, z‖ =
√

(x, x|z),

for all x, z ∈ X . It is not hard to see that this function satisfies the following
conditions (see [6]):

(N1) ‖x, y‖ = 0 if and only if x and y are linearly dependent;
(N2) ‖x, y‖ = ‖y, x‖;
(N3) ‖αx, y‖ = |α| ‖x, y‖ for any real number α;
(N4) ‖x, y + z‖ ≤ ‖x, y‖ + ‖x, z‖.

Any function ‖·, ·‖ defined on X × X and satisfying the above conditions is called a
2-norm induced from a 2-inner product on X and (X , ‖·, ·‖) is called linear 2-normed
space.

Some of the basic properties of 2-norms are that they are non-negative and
‖x, y + αx‖ = ‖x, y‖, for all x, y ∈ X and all α ∈ R. Whenever a 2-inner prod-
uct space (X , (·, ·|·)) is given, we consider it as a linear 2-normed space (X , ‖·, ·‖)
with the 2-norm defined by (1.2).

An operator A ∈ B (X ) is said to be bounded if there exists a real number M > 0
such that

‖Ax, y‖ ≤ M ‖x, y‖ ,

for every x, y ∈ X . The norm of the b-operator is defined by [9]:

(1.3) ‖A‖
b

= sup {‖Ax, b‖ : ‖x, b‖ = 1} ,

where b is fixed element in X . We can easily verify that the left-hand side of (1.3),
is equivalent with sup {|(Ax, x|b)| : ‖x, b‖ ≤ 1}.

Harikrishnan et al. in [8] proved the Riesz theorem in 2-inner product spaces. As a
consequence of their work, we have

(Ax, y|b) = (x, A∗y|b) ,

for each x, y ∈ X and fixed element b ∈ X .
Recently, M. E. Omidvar et al. [10] established various reverses of the Cauchy-

Schwarz and triangle inequalities in 2-inner product spaces.
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In this paper, we introduce the concepts of b-numerical radius in 2-inner product
spaces. Some fundamental inequalities related to the b-numerical radius of bounded
linear operators in 2-inner product spaces are established.

2. Main Results

We first review some basic facts about numerical range and numerical radius in
Hilbert space H , then try to define them in a 2-inner product space. Let (H , 〈·, ·〉)
be a complex Hilbert space and B (H ) denote the C∗-algebra of all bounded linear
operators on H . An operator A ∈ B (H ) is called positive if 〈Ax, x〉 ≥ 0 for all
x ∈ H . We write A ≥ 0 if A is positive. The numerical radius is defined by

ω (A) = sup {|λ| : λ ∈ W (A)} ,

where W (A) is the numerical range of A given by

W (A) = {〈Ax, x〉 : x ∈ H , ‖x‖ = 1} .

The following properties of W (A) are immediate:

(a) W (αI + βA) = α + βW (A) for α, β ∈ C;

(b) W (A∗) =
{

λ : λ ∈ W (A)
}

, where A∗ is the adjoint operator of A;

(c) W (U∗AU) = W (A) for any unitary operator U .

The most important classical fact about the geometry of the numerical range is that
it is convex and its closure contains the spectrum of the operator. The usual operator
norm of A, is defined by

‖A‖ = sup
‖x‖=1

‖Ax‖ , for all x ∈ H ,

where ‖x‖ = 〈x, x〉
1

2 . It is well known that ω (·) defines a norm on B (H ) and that
for every A ∈ B (H ), we have

(2.1)
1

2
‖A‖ ≤ ω (A) ≤ ‖A‖ .

Thus, the usual operator norm and the numerical radius norm are equivalent. See [7]
for a discussion and further references.

Now we are in a position to state the main result of this section. The b-numerical
range of A ∈ B (X ), denoted by Wb (A), is the subset of the complex numbers given
by

Wb (A) = {(Ax, x|b) : ‖x, b‖ ≤ 1} .

The b-numerical radius of A ∈ B (X ), denoted by ωb (A), is defined by

ωb (A) = sup {|(Ax, x|b)| : ‖x, b‖ ≤ 1} .

It is easy to see that, for any (x, b) ∈ X × 〈b〉, we have

|(Ax, x|b)| ≤ ωb (A) ‖x, b‖2
.
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The b-numerical radius ωb (A) of an operator A on X is a norm on B (X ) , this norm
is equivalent to the b-operator norm. In order to get our main result, we need the
following lemmas:

Lemma 2.1 ([1]). Let A ∈ B (X ), then

4 (Ax, y|z) = (A (x + y) , x + y|z) − (A (x − y) , x − y|z)

+ i (A (x + iy) , x + iy|z) − i (A (x − iy) , x − iy|z) ,

for any x, y, z ∈ X .

Lemma 2.2 ([4]). For every x, y ∈ X , we have

‖x + y, b‖2 + ‖x − y, b‖2 = 2
(

‖x, b‖2 + ‖y, b‖2
)

.

We shall, however, present another result, which is a possible generalization of (2.1).

Proposition 2.1. For each A ∈ B (X ), we get

1

2
‖A‖

b
≤ ωb (A) ≤ ‖A‖

b
.

Proof. If λ = (Ax, x|b) with ‖x, b‖ ≤ 1, by Schwartz inequality we obtain

|λ| ≤ |(Ax, x|b)| ≤ ‖Ax, b‖ ‖x, b‖ ≤ ‖A‖
b
.

On the other hand, by Lemma 2.1 and Lemma 2.2 we get

4 |(Ax, y|b)| ≤ ωb (A)
[

‖x + y, b‖2 + ‖x − y, b‖2 + ‖x + iy, b‖2 + ‖x − iy, b‖2
]

= 2ωb (A)
[

‖x, b‖2 + ‖y, b‖2 + ‖x, b‖2 + ‖iy, b‖2
]

≤ 8ωb (A) .

By taking supremum over ‖x, b‖ = ‖y, b‖ = 1, we deduce the desired result. �

Theorem 2.1. Let A, B ∈ B (X ) and AB = BA, then

ωb (AB) ≤ 2ωb (A) ωb (B) .

Proof. We may assume ωb (A) = ωb (B) = 1 and show that ωb (AB) ≤ 2. By the
triangle inequality, the power inequality theorem, and the subadditivity of ω (·), we
have

ωb (AB) ≡ ωb

(

1

4

[

(A + B)2 − (A − B)2
]

)

≤
1

4
ωb

[

(A + B)2 − (A − B)2
]

≤
1

4

[

(ωb (A + B))2 + (ω2 (A − B))2
]

≤
1

4

[

(ωb (A) + ωb (B))2 + (ωb (A) + ωb (B))2
]

= 2,

as desired. �
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The following simple result provides a connection between the numerical radius and
b-numerical radius as follows:

Theorem 2.2. Let A ∈ B (X ), then

(2.2) ω (A) ≤ ωb (A) + ‖A‖′
b
,

where

‖A‖′
b

= sup {|(Ax, x|b)| : ‖x, b‖ ≤ 1} ,

and b ∈ X is a fixed element.

Proof. We observe that

|(Ax, x|b)| =
∣

∣

∣(Ax, x) ‖b‖2 − (Ax, b) (b, x)
∣

∣

∣ (by (1.1))

≥ |(Ax, x)| ‖b‖2 − |(Ax, b)| |(b, x)| .

By taking supremum over ‖x, b‖ ≤ 1 we deduce the desired result (2.2). �

The following inequalities may be stated as well.

Theorem 2.3. Let A ∈ B (X ) be a bounded linear operator on the linear 2-normed

space X . If λ ∈ C\ {0} and α > 0 are such that

(2.3) ‖A − λI‖
b

≤ α,

where I is the identity operator on X , then

(2.4) ‖A‖
b

− ωb (A) ≤
1

2

α2

|λ|
.

Proof. For (x, b) ∈ X , 〈b〉 with ‖x, b‖ = 1, we have from (2.3) that

‖(A − λ) x, b‖ ≤ ‖A − λI‖
b

≤ α,

giving

(2.5)
‖Ax, b‖2 + |λ|2 ≤ 2 Re

[

λ (Ax, x|b)
]

+ α2

≤ 2 |λ| (Ax, x|b) + α2.

Taking supremum over (x, b) ∈ X , 〈b〉, with ‖x, b‖ = 1 we get the following inequality

(2.6) ‖A‖2
b

+ |λ|2 ≤ 2ωb (A) |λ| + α2.

Since

(2.7) 2‖A‖
b
|λ| ≤ ‖A‖2

b
+ |λ|2,

hence by (2.6) and (2.7) we deduce the desired inequality (2.4). �

Corollary 2.1. In particular, if ‖A − λI‖
b

≤ α and |λ| = ωb (A), λ ∈ C, then

‖A‖
b

− ω2
b

(A) ≤ α2.
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Proposition 2.2. Let A ∈ B (X ) be a non zero bounded linear operator on the linear

2-normed space X and λ ∈ C\ {0} and α > 0 with |λ| > α. If

‖A − λI‖
b

≤ α,

then

(2.8)

√

√

√

√1 −
α2

|λ|2
≤

ωb (A)

‖A‖
b

.

Proof. From (2.6) of Theorem 2.3, we have

‖A‖2
b

+ |λ|2 − α2 ≤ 2 |λ| ωb (A) ,

which implies, on dividing with
√

|λ|2 − α2 > 0 that

(2.9)
‖A‖2

b
√

|λ|2 − α2
+
√

|λ|2 − α2 ≤
2 |λ| ωb (A)
√

|λ|2 − α2
.

Whence

2‖A‖
b

≤
‖A‖2

b
√

|λ|2 − α2
+
√

|λ|2 − α2,

and by (2.9) we deduce

‖A‖
b

≤
ωb (A) |λ|
√

|λ|2 − α2
,

which is equivalent to (2.8). �

Corollary 2.2. Squaring (2.8), we get the inequality

‖A‖2
b

− ω2
b

(A) ≤
α2

|λ|2
‖A‖2

b
.

Corollary 2.3. Let A ∈ B (X ) be a bounded linear operator on the linear 2-normed

space and λ ∈ C\ {0} and α > 0 with |λ| > α then −
√

3
2

≤ α

|λ| ≤
√

3
2

.

Proof. From Proposition 2.1, we infer that 1
2

≤ ωb(A)
‖A‖

b

.

By (2.8) we have
√

1 − α2

|λ|2 ≤ ωb(A)
‖A‖

b

. Combining the above two inequalities one can

obtain
√

1 − α2

|λ|2 ≥ 1
2

implies
(

α

|λ|

)2
≤ 3

4
, which implies −

√
3

2
≤ α

|λ| ≤
√

3
2

. �
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PARACONTACT METRIC (κ̃, µ̃) R̃-HARMONIC MANIFOLDS

I. KÜPELI ERKEN

Abstract. We give classifications of paracontact metric (κ̃, µ̃) manifolds M2n+1

with harmonic curvature for n > 1 and n = 1.

1. Introduction

Paracontact metric structures were introduced in [5], as a natural odd-dimensional
counterpart to para-Hermitian structures, like contact metric structures correspond
to the Hermitian ones. Paracontact metric manifolds (M2n+1, ϕ̃, ξ, η, g̃) have been
studied by many authors in the recent years, particularly since the appearance of [10].
An important class among paracontact metric manifolds is that of the (κ̃, µ̃)-spaces,
which satisfy the nullity condition (see [4])

(1.1) R̃(X, Y )ξ = κ̃(η(Y )X − η(X)Y ) + µ̃(η(Y )h̃X − η(X)h̃Y ),

for all X, Y vector fields on M , where κ̃ and µ̃ are constants and h̃ = 1
2
Lξϕ̃.

This class includes the para-Sasakian manifolds (see [5,10]), the paracontact metric
manifolds satisfying R̃(X, Y )ξ = 0, for all X, Y (see [11]), etc.

In [4], the authors showed that while the values of κ̃ and µ̃ change the form of (1.1)
remains unchanged under D-homothetic deformations. There are differences between
a contact metric (κ, µ)-space (M2n+1, ϕ, ξ, η, g) and a paracontact metric (κ̃, µ̃)-space
(M2n+1, ϕ̃, ξ, η, g̃). Namely, unlike in the contact Riemannian case, a paracontact
(κ̃, µ̃)-manifold such that κ̃ = −1 in general is not para-Sasakian. In fact, there are
paracontact (κ̃, µ̃)-manifolds such that h̃2 = 0 (which is equivalent to take κ̃ = −1)
but with h̃ 6= 0. For 5-dimensional, Cappelletti Montano and Di Terlizzi gave the
first example of paracontact metric (−1, 2)-space (M2n+1, ϕ̃, ξ, η, g̃) with h̃2 = 0 but

Key words and phrases. Paracontact metric manifolds, R-harmonic manifold, (κ, µ)-nullity distri-
bution.
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h̃ 6= 0 in [3] and then Cappelletti Montano et al. gave the first paracontact metric
structures defined on the tangent sphere bundle and constructed an example with
arbitrary n in [4]. Later, for 3-dimensional, the first numerical example was given
in [6]. Another important difference with the contact Riemannian case, due to the
non-positive definiteness of the metric, is that while for contact metric (κ, µ)-spaces
the constant κ can not be greater than 1, paracontact metric (κ̃, µ̃)-space has no
restriction for the constants κ̃ and µ̃.

Contact metric R-harmonic manifolds were studied in [1], [9]. But no effort has
been made for paracontact (κ̃, µ̃)-manifolds. Hence, in this paper, we give some
characterizations for paracontact (κ̃, µ̃) R-harmonic manifolds, i.e, for paracontact
metric manifolds whose characteristic vector ξ belongs to the (κ̃ 6= −1, µ̃)-nullity
distribution and whose curvature tensor R̃ satisfies the condition (divR̃)(X, Y, Z) = 0.

The outline of the article goes as follows. In Section 2, we recall basic facts which we
will need throughout the paper. In Section 3, we deal with some results related with
paracontact metric manifolds with characteristic vector field ξ belongs to the (κ̃, µ̃)-
nullity distribution. Section 4 is devoted to paracontact metric (κ̃, µ̃) R-Harmonic
manifolds. For such manifolds, our first result is that a paracontact metric R-harmonic
manifold M2n+1where n > 1, for which the characteristic vector field ξ belongs to the
(κ̃ 6= −1, µ̃)-nullity distribution is either locally product of a flat (n + 1)-dimensional
manifold and n-dimensional of negative constant curvature equal to −4, or Ricci
operator of the manifold has the form Q̃ = (n2+n+2)I +(3n+1)h̃−(3n2+7n+2)η⊗ξ

with κ̃ ≤ −5, or the manifold is an Einstein manifold. Our second result is that a
paracontact metric R-harmonic manifold M3, for which the characteristic vector field
ξ belongs to the (κ̃ 6= −1, µ̃)-nullity distribution is either flat, or Ricci operator of the
manifold has the form Q̃ = 4I + 4h̃ − 12η ⊗ ξ with κ̃ = −4.

2. Preliminaries

In this section we collect the formulas and results we need on paracontact metric
manifolds. All manifolds are assumed to be connected and smooth. We may refer
to [5], [10] and references therein for more information about paracontact metric
geometry.

An (2n + 1)-dimensional smooth manifold M is said to have an almost paracontact

structure if it admits a (1, 1)-tensor field ϕ̃, a vector field ξ and a 1-form η satisfying
the following conditions:

(i) η(ξ) = 1, ϕ̃2 = I − η ⊗ ξ;
(ii) the tensor field ϕ̃ induces an almost paracomplex structure on each fibre of

D = ker(η), i.e., the ±1-eigendistributions, D
± = Dϕ̃(±1) of ϕ̃ have equal

dimension n.

From the definition it follows that ϕ̃ξ = 0, η ◦ ϕ̃ = 0 and the endomorphism ϕ̃ has
rank 2n. We denote by [ϕ̃, ϕ̃] the Nijenhius torsion

[ϕ̃, ϕ̃](X, Y ) = ϕ̃2[X, Y ] + [ϕ̃X, ϕ̃Y ] − ϕ̃[ϕ̃X, Y ] − ϕ̃[X, ϕ̃Y ].
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When the tensor field Nϕ̃ = [ϕ̃, ϕ̃]−2dη⊗ξ vanishes identically the almost paracontact
manifold is said to be normal. If an almost paracontact manifold admits a pseudo-
Riemannian metric g̃ such that

g̃(ϕ̃X, ϕ̃Y ) = −g̃(X, Y ) + η(X)η(Y ),

for all X, Y ∈ Γ(TM), then we say that (M, ϕ̃, ξ, η, g̃) is an almost paracontact

metric manifold. Notice that any such a pseudo-Riemannian metric is necessarily of
signature (n + 1, n). For an almost paracontact metric manifold, there always exists
an orthogonal basis {X1, . . . , Xn, Y1, . . . , Yn, ξ}, such that g̃(Xi, Xj) = δij, g̃(Yi, Yj) =
−δij, g̃(Xi, Yj) = 0, g̃(ξ, Xi) = g̃(ξ, Yj) = 0, and Yi = ϕ̃Xi, for any i, j ∈ {1, . . . , n}.
Such basis is called a ϕ̃-basis.

We can now define the fundamental form of the almost paracontact metric manifold
by F (X, Y ) = g̃(X, ϕ̃Y ). If dη(X, Y ) = g̃(X, ϕ̃Y ), then (M, ϕ̃, ξ, η, g̃) is said to
be paracontact metric manifold. In a paracontact metric manifold one defines a
symmetric, trace-free operator h̃ = 1

2
Lξϕ̃, where Lξ, denotes the Lie derivative. It is

known [10] that h̃ anti-commutes with ϕ̃ and satisfies h̃ξ = 0, trh̃ =trh̃ϕ̃ = 0 and

(2.1) ∇̃ξ = −ϕ̃ + ϕ̃h̃,

where ∇̃ is the Levi-Civita connection of the pseudo-Riemannian manifold (M, g̃).
Let R̃ be Riemannian curvature operator

R̃(X, Y )Z = (∇̃2
X,Y Z) − (∇̃2

Y,XZ) = [∇̃X , ∇̃Y ]Z − ∇̃[X,Y ]Z.

Moreover h̃ = 0 if and only if ξ is Killing vector field. In this case (M, ϕ̃, ξ, η, g̃) is
said to be a K-paracontact manifold. A normal paracontact metric manifold is called
a para-Sasakian manifold. Also in this context the para-Sasakian condition implies
the K-paracontact condition and the converse holds only in dimension 3. We also
recall that any para-Sasakian manifold satisfies

R̃(X, Y )ξ = −(η(Y )X − η(X)Y ).

3. Paracontact Metric (κ̃, µ̃)-Manifolds

In this section we recall several notions and results which will be needed throughout
the paper.

Let (M, ϕ̃, ξ, η, g̃) be a paracontact manifold. The (κ̃, µ̃)-nullity distribution of a
(M, ϕ̃, ξ, η, g̃) for the pair (κ̃, µ̃) is a distribution

N(κ̃, µ̃) : p → Np(κ̃, µ̃) = {Z ∈ TpM | R̃(X, Y )Z = κ̃(g̃(Y, Z)X − g̃(X, Z)Y )

+ µ̃(g̃(Y, Z)h̃X − g̃(X, Z)h̃Y )},

for some real constants κ̃ and µ̃. If the characteristic vector field ξ belongs to the
(κ̃, µ̃)-nullity distribution we have (1.1). [4] is a complete study of paracontact metric
manifolds for which the Reeb vector field of the underlying contact structure satisfies
a nullity condition (the condition (1.1), for some real numbers κ̃ and µ̃).
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Lemma 3.1 ([4]). Let (M, ϕ̃, ξ, η, g̃) be a paracontact metric (κ̃, µ̃)-manifold of di-

mension 2n + 1. Then the following identity holds:

(∇̃X h̃)Y − (∇̃Y h̃)X = − (1 + κ̃)(2g̃(X, ϕ̃Y )ξ + η(X)ϕ̃Y − η(Y )ϕ̃X)(3.1)

+ (1 − µ̃)(η(X)ϕ̃h̃Y − η(Y )ϕ̃h̃X),

for any vector fields X, Y on M .

Lemma 3.2 ([4]). Let (M, ϕ̃, ξ, η, g̃) be a paracontact (κ̃, µ̃)-manifold such that κ̃ 6=
−1. Then the operator h̃ in the case κ̃ > −1 and the operator ϕ̃h̃ in the case κ̃ < −1
are diagonalizable and admit three eigenvalues: 0, associated to the eigenvector ξ, λ̃

and -λ̃, of multiplicity n, where λ̃ :=
√

|1 + κ̃|. The corresponding eigendistributions

Dh̃(0) = Rξ, Dh̃(λ̃), Dh̃(−λ̃) and Dϕ̃h̃(0) = Rξ, Dϕ̃h̃(λ̃), Dϕ̃h̃(−λ̃) are mutually or-

thogonal and one has ϕ̃Dh̃(±λ̃) = Dh̃(∓λ̃) and ϕ̃Dϕ̃h̃(±λ̃) = Dϕ̃h̃(∓λ̃). Furthermore,

Dh̃(±λ̃) =

{

X ± 1√
1 + κ̃

h̃X | X ∈ Γ(D∓)

}

,

in the case κ̃ > −1, and

Dϕ̃h̃(±λ̃) =

{

X ± 1√
−1 − κ̃

ϕ̃h̃X | X ∈ Γ(D∓)

}

,

in the case κ̃ < −1, where D
+ and D

− denote the eigendistributions of ϕ̃ corresponding

to the eigenvalues 1 and −1, respectively. Finally any two among the four distributions

D
+, D−, Dh̃(λ̃), Dh̃(−λ̃) in the case κ̃ > −1 or D

+, D−, Dϕ̃h̃(λ̃), Dϕ̃h̃(−λ̃) in the

case κ̃ < −1 are mutually transversal.

Theorem 3.1 ([4]). Any positive or negative definite paracontact (κ̃, µ̃)-manifold such

that κ̃ < −1 carries a canonical contact Riemannian structure (φ, ξ, η, g) given by

φ := ± 1√
−1 − κ̃

h̃, g := −dη(·, φ·) + η ⊗ η,

where the sign ± depends on the positive or negative definiteness of the paracontact

(κ̃, µ̃)-manifold. Moreover, (φ, ξ, η, g) is a contact metric (κ, µ)-structure, where

κ = κ̃ + 2 −
(

1 − µ̃

2

)2

, µ = 2.

Lemma 3.3 ([4]). In any (2n + 1)-dimensional paracontact (κ̃, µ̃)-manifold

(M, ϕ̃, ξ, η, g̃) such that κ̃ 6= −1, the Ricci operator Q̃ is given by

(3.2) Q̃ = (2(1 − n) + nµ̃)I + (2(n − 1) + µ̃)h̃ + (2(n − 1) + n(2κ̃ − µ̃))η ⊗ ξ.

Lemma 3.4. Let (M, ϕ̃, ξ, η, g̃) be a paracontact (κ̃, µ̃)-manifold such that κ̃ 6= −1.

Then the following identity holds:

(∇̃X S̃)(Y, Z) = [2(n − 1) + µ̃] (g̃(∇̃X h̃)Y, Z)

+ [2(n − 1) + n(2κ̃ − µ̃)] (g̃(∇̃Xξ, Y )η(Z) + g̃(Z, ∇̃Xξ)η(Y )),(3.3)
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for any vector fields X, Y, Z on M .

Proof. Differentiating S̃ covariantly with respect to X, we have

(3.4) (∇̃X S̃)(Y, Z) = ∇̃X S̃(Y, Z) − S̃(∇̃XY, Z) − S̃(Y, ∇̃XZ).

By means of S̃(Y, Z) = g̃(Q̃Y, Z) and (3.2), we find

∇̃X S̃(Y, Z) =(2(1 − n) + nµ̃)(g̃(∇̃XY, Z) + g̃(Y, ∇̃XZ))

+ (2(n − 1) + µ̃)(g̃(∇̃X h̃Y, Z) + g̃(h̃Y, ∇̃XZ))

+ (2(n − 1) + n(2κ̃ − µ̃))(g̃(∇̃XY, ξ) + g̃(Y, ∇̃Xξ))η(Z)

+ (2(n − 1) + n(2κ̃ − µ̃))(g̃(∇̃XZ, ξ) + g̃(Z, ∇̃Xξ))η(Y ).(3.5)

Taking into account again (3.2), we get

−S̃(∇̃XY, Z) = − (2(1 − n) + nµ̃)g̃(∇̃XY, Z)

− (2(n − 1) + µ̃)(g̃(h̃∇̃XY, Z)

− (2(n − 1) + n(2κ̃ − µ̃))η(∇̃XY )η(Z)(3.6)

and

−S̃(Y, ∇̃XZ) = − (2(1 − n) + nµ̃)g̃(∇̃XZ, Y )

− (2(n − 1) + µ̃)g̃(h̃Y, ∇̃XZ)

− (2(n − 1) + n(2κ̃ − µ̃))η(∇̃XZ)η(Y ).(3.7)

Using (3.5)-(3.7) in (3.4), we obtain the requested equation. �

4. Paracontact Metric (κ̃, µ̃) R̃-Harmonic Manifolds

In this section, we will investigate harmonicity of the curvature tensor of a pseudo-
Riemannian manifold. It is well known that, if the divergence of the curvature tensor
of a pseudo-Riemannian manifold is equal to zero, then this curvature tensor is called
harmonic.

Proposition 4.1. Let R̃ be a curvature tensor field which satisfies the second Bianchi

identity. If S̃ is the associated Ricci tensor field, then

(divR̃)(X, Y, Z) = (∇̃X S̃)(Y, Z) − (∇̃Y S̃)(X, Z).

Definition 4.1 ([7]). A curvature tensor field R̃ is harmonic if

(divR̃)(X, Y, Z) = 0.

A pseudo-Riemannian manifold M is said to be R̃-harmonic if its curvature tensor
field R̃ is harmonic. Following [8], a pseudo- Riemannian manifold has harmonic
curvature tensor if and only if the Ricci operator Q, which is given by S̃(X, Y ) =
g̃(Q̃X, Y ) where S is the Ricci tensor, satisfies

(4.1) (∇̃XQ̃)Y − (∇̃Y Q̃)X = 0,
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for any vector fields X, Y on M .

Theorem 4.1 ([11]). Let M2n+1 be a paracontact metric manifold and suppose that

R̃(X, Y )ξ = 0 for all vector fields X and Y . Then locally M2n+1 is the product of a

flat (n + 1)-dimensional manifold and n-dimensional manifold of negative constant

curvature equal to −4.

Theorem 4.2. Let M2n+1 be a paracontact metric (κ̃, µ̃) R̃-harmonic manifold where

n > 1. If κ̃ 6= −1, then M is either

i) locally product of a flat (n + 1)-dimensional manifold and n-dimensional of

negative constant curvature equal to −4, or

ii) the Ricci operator of the manifold has the form

Q̃ = (n2 + n + 2)I + (3n + 1)h̃ − (3n2 + 7n + 2)η ⊗ ξ,

with κ̃ ≤ −5, or

iii) M is an Einstein manifold.

Proof. Using (3.3) and (4.1), we obtain

(∇̃XQ̃)Y − (∇̃Y Q̃)X = [2(n − 1) + µ̃] ((∇̃X h̃)Y − (∇̃Y h̃)X)

+ [2(n − 1) + n(2κ̃ − µ̃)] (g̃(∇̃Xξ, Y )ξ + η(Y )∇̃Xξ

− g̃(∇̃Y ξ, X)ξ − η(X)∇̃Y ξ).(4.2)

With the help of (3.1) and R̃-harmonic manifold definition, (4.2) returns to

(∇̃XQ̃)Y − (∇̃Y Q̃)X = [2(n − 1) + µ̃] [−(1 + κ̃)(2g̃(X, ϕ̃Y )ξ + η(X)ϕ̃Y − η(Y )ϕ̃X)

+ (1 − µ̃)(η(X)ϕ̃h̃Y − η(Y )ϕ̃h̃X)]

+ [2(n − 1) + n(2κ̃ − µ̃)] [g̃(∇̃Xξ, Y )ξ + η(Y )∇̃Xξ

− g̃(∇̃Y ξ, X)ξ − η(X)∇̃Y ξ]

=0(4.3)

If we take the inner product of (4.3) with ξ and use (2.1), one can easily show that

0 = 2g̃(X, ϕ̃Y ) [κ̃(2 − µ̃) − µ̃(n + 1)] .

Taking into account that g̃(X, ϕ̃Y ) = dη(X, Y ) 6= 0, we can conclude that

(4.4) κ̃(2 − µ̃) − µ̃(n + 1) = 0.

Replacing X by ξ in (4.3), by direct computations we get

[κ̃(2 − µ̃) − µ̃(n + 1)] ϕ̃Y + [−2nκ̃ + µ̃(3 − n − µ̃)] ϕ̃h̃Y = 0.

In virtue of (4.4), we have

(4.5) [−2nκ̃ + µ̃(3 − n − µ̃)] ϕ̃h̃Y = 0.
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From the last equation, precisely following cases occurs

κ̃(2 − µ̃) − µ̃(n + 1) =0 and − 2nκ̃ + µ̃(3 − n − µ̃) = 0,(4.6)

ϕ̃h̃Y =0.

We now check, case by case, whether (4.5) give rise to a local classifcation.
First of all, solving the system of (4.6), we have following possibilities:

(i) κ̃ = µ̃ = 0;
(ii) κ̃ = −(n + 3) = −µ̃;

(iii) κ̃ = (1−n)(1+n)
n

, µ̃ = 2 − 2n.

If the first (i) equality holds, then using Theorem 4.1, we conclude that M is locally
product of a flat (n + 1)-dimensional manifold and n-dimensional of negative constant
curvature equal to −4. If the second (ii) equality holds, then we can deduce that the
Ricci operator of the manifold has the form Q̃ = (n2 + n + 2)I + (3n + 1)h̃ − (3n2 +
7n + 2)η ⊗ ξ with κ̃ ≤ −5.

If the third (iii) equality holds, using (3.2), we obtain M is an Einstein manifold.
Secondly, suppose ϕ̃h̃Y = 0. By (2.1), we have ∇̃Y ξ = −ϕ̃Y which means that M

is K-paracontact and hence h̃ = 0. Using the fact that h2 = (1 + κ̃)ϕ̃2, we obtain
κ̃ = −1. But this contradicts with the chosen of κ̃. So, we omit this case. �

Using the same method for the proof, we can give following result.

Theorem 4.3. Let M3 be a paracontact metric (κ̃, µ̃) R̃-harmonic manifold. If

κ̃ 6= −1, then M is either

i) flat, or

ii) the Ricci operator of the manifold has the form Q̃ = 4I + 4h̃ − 12η ⊗ ξ with

κ̃ = −4.

Remark 4.1. Using Theorem 3.1 and Theorem 4.2, we can say that if M2n+1 be a
paracontact metric R̃-harmonic manifold with ξ belonging to (κ̃ 6= −1, µ̃)-nullity
distribution ,then M2n+1 carries a canonical contact metric (κ, µ)-structure where

either κ = 1, µ = 2 or κ = −n2−6n−5
4

, µ = 2 or κ = 1−n2+2n−n3

n
, µ = 2 .
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ON THE NORMALIZED LAPLACIAN SPECTRUM OF SOME

GRAPHS

RENNY P. VARGHESE1 AND D. SUSHA1

Abstract. In this paper we determine the normalized Laplacian spectrum of dupli-
cation vertex join of two graphs, duplication graph, splitting graph and double graph
of a regular graph. Here we investigate some graph invariants like the normalized
Laplacian energy, Kemeny’s constant and number of spanning tree of these graphs.

1. Introduction

All graphs explained in this paper are undirected, without parallel edges and loops.
Let G = G(V, E) be a graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set
E(G). The adjacency matrix, A(G) = (aij)n×n, is an n × n symmetric matrix with
rows and columns are indexed by vertices of G where aij = 1 if the vertices vi and
vj are adjacent in G, 0 elsewhere. The characteristic polynomial of A is of the form
fG(A : x) = det(xIn − A) where In is the identity matrix of order n. The roots of
fG(A : x) = 0 constitute the eigenvalues of G. We denote these as λ1 ≥ λ2 ≥ · · · ≥ λn

and form the A - spectrum of G.
Let di be the degree of the vertex vi in G and D(G) = diag(d1, d2, . . . , dn) be the

diagonal degree matrix of G. The matrix D−1/2 is a diagonal matrix with diagonal
entries 1√

di

for all i. Chung in [5] introduced a new matrix called, normalized Laplacian

matrix of a graph G. It is defined to be the matrix L̃(G) = D−1/2LD−1/2, whose

Key words and phrases. Normalized Laplacian spectrum, normalized Laplacian energy, Kemeny’s
constant, spanning tree.
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(i, j)th - entry is given by,

L̃ij =



























1, if vi = vj and di 6= 0,
−1
√

didj

, if vi and vj are adjacent,

0 otherwise.

The roots of the characteristic equation of L̃ are known as the normalized Laplacian
eigenvalues of G. Since L̃(G) is symmetric and positive semi definite matrix, its
eigenvalues are all real and non negative of the form 0 = σ1 ≤ σ2 ≤ · · · ≤ σn. These
eigenvalues together their multiplicities is called normalized Laplacian spectrum or
L̃-spectrum of G and is denoted by L̃Spec(G).

The mathematicians like Chen and Zhang express the resistance distance in terms
of normalized Laplacian eigenvalues and vectors of the graph G [4]. Also they propose
degree-Kirchhoff index is closely related to spectrum of the normalized Laplacian. The
concept of limit point for the normalized Laplacian eigenvalues are used by Kirkkland
in [9]. In [1] Banergee and Jost investigated, how the normalized spectrum is affected
by some operations like mofit doubling, graph splitting or joining. Renny and Susha
defined some new join and corona based on duplication graph of an arbitrary graph
(see [13,14]).

Motivated by these, in this paper we are interested in finding the normalized
Laplacian spectrum of duplication, splitting and double graph of a regular graph
G. Also we define and determine the normalized Laplacian spectrum of Duplication
vertex join of two regular graphs G1 and G2.

The arrangement of the paper in section wise as follows. Section 2 describes
the necessary preliminaries. In Section 3, we determine the normalized Laplacian
spectrum of duplication vertex join of two graphs, duplication, splitting, double graph
of a regular graph. Then in the last section we discuss some applications such as
normalized Laplacian energy, the Kemeny’s constant and number of spanning tree of
these graphs.

2. Preliminaries

Definition 2.1 ([8,11,12]). Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn}
and U(G) = {u1, u2, . . . , un} be the vertex set of another copy of G. The double
graph, D2(G), is the graph obtained by joining ui to every vertices in N(vi), the
neighbourhood set of vi of G, for each i. If we remove the edges of the copy of G
in vertex set U(G) in the double graph we get the splitting graph, splt(G), of G.
Removing the edges of two copies of G in the double graph, then it is called the
duplication graph, DG, of G.

Lemma 2.1 ([6]). Let M =

[

M1 M2

M2 M1

]

be a symmetric block matrix of order 2 × 2.

Then the eigenvalues of M are those of M1 + M2 together with M1 − M2.
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Proposition 2.1 ([6]). Let P0, P1, P2 and P3 be matrices of order n1×n1, n1×n2, n2×
n1, n2 × n2 respectively. Then

det

[

P0 P1

P2 P3

]

=







det(P0) det(P3 − P2P
−1
0 P1), if P0 is invertible

det(P3) det(P0 − P1P
−1
3 P2), if P3 is invertible.

Remark 2.1. Let G be a r-regular graph with adjacency matrix A. Then normalized
Laplacian matrix is I − A

r
[5].

Figure 1. Duplication, splitting and double graph of K4

3. Normalized Laplacian Spectrum of Some Graphs

In this section we determine the normalized Laplacian spectrum of duplication
vertex join of two graphs, duplication, double and splitting graph of a regular graph.

3.1. Normalized Laplacian spectrum of duplication vertex join.

Definition 3.1. For i = 1, 2, let Gi be graphs on ni vertices. Let DG1 be the
duplication graph of G1. The duplication vertex join of G1 and G2 is denoted by
G1▽G2 and is the graph obtained from DG1 and G2, by joining every vertex of G1 to
all the vertices of G2.

Example 3.1. The following, Figure 2 illustrate the Definition 3.1.

Figure 2. Duplication vertex join of C5 and K2.

Let Gi, i = 1, 2, be ri-regular graphs on ni vertices and mi edges. Then G1▽G2 has
2n1 + n2 vertices and 2m1 + m2 + n1n2 edges.
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Theorem 3.1. For i = 1, 2, let Gi be ri-regular graphs on ni vertices with spectrum
λi1(G) ≥ λi2(G) ≥ · · · ≥ λini

(G). Then the normalized Laplacian spectrum of G1▽G2

is 0, 1 − λ2k

n1+r2

, 1 ± λ1i√
r1(n2+r1)

, i = 2, 3, . . . , n1, k = 2, 3, . . . , n2. Together with the roots

of the equation

x2 − 3n1 + 2r2

n1 + r2

x +
2n1n2 + 2n1r1 + n2r2

(n1 + r2)(n2 + r1)
= 0.

Proof. Let Gi, i = 1, 2, be ri-regular graphs on ni vertices. Let V (G1) =
{v1, v2, . . . , vn1

} be the vertex set of G1 and U(G1) = {x1, x2, . . . , xn1
} is the ad-

ditional vertices corresponding to each vertex of G1. Let V (G2) = {u1, u2, . . . , un2
}

be the vertex set of G2.
Under this vertex partitioning the adjacency matrix of G1▽G2 is,

A =







0n1
A1 Jn1×n2

A1 0n1
0n1×n2

Jn2×n1
0n2×n1

A2





 ,

where A1 and A2 are the adjacency matrix of G1 and G2 respectively. J denote matrix
with all entries equal to 1 and 0 is the zero matrix of appropriate order. The degree
of the vertices of G1▽G2 are dG1▽G2

(vi) = n2 + r1, dG1▽G2
(xi) = r1, i = 1, 2, . . . , n1

and dG1▽G2
(uj) = n1 + r2, j = 1, 2, . . . , n2.

The diagonal degree matrix of G1▽G2 is

D =







(r1 + n2)In1
0 0

0 r1In1
0

0 0 (n1 + r2)In2





 .

Hence, the Laplace adjacency matrix of G1▽G2 is

L =







(r1 + n2)I −A1 −Jn1×n2

−A1 r1I 0n1×n2

−Jn2×n1
0n2×n1

n1In2
+ L2





 ,

where L2 is the Laplacian matrix of G2. Also,

D−1/2 =





















In1√
r1 + n2

0 0

0
In1√

r1

0

0 0
In2√

n1 + r2





















.
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By simple calculation we get

D−1/2LD−1/2 = L̃ =

























In1

−A1
√

r1(n2 + r1)

−Jn1×n2
√

(n1 + r2)(n2 + r1)
−A1

√

r1(n2 + r1)
In1

0

−Jn2×n1
√

(n1 + r2)(n2 + r1)
0 In2

− A2

n1 + r2

























.

Since Gi is ri-regular, it has an eigenvector jni
, a vector with all entries equal to 1,

corresponding to the eigenvalue ri. All other eigenvectors are orthogonal to jni
. Let

λ2i be an eigenvalue of G2 with eigenvector Z such that jT
n2

Z = 0 Then (0, 0, Z)T is

an eigenvector of L̃ corresponding to the eigenvalue 1 − λ2i

n1+r2

.
This is because,

L̃







0
0
Z





 =







0
0

Z − A2Z
n1+r2





 =

(

1 − λ2i

n1 + r2

)







0
0
Z





 .

Therefore, 1 − λ2i

n1+r2

for i = 2, 3, . . . , n2, is an eigenvalue corresponding to the eigen-

vector (0, 0, Z)T .
Let X be an eigenvector corresponding to the eigenvalue λ1i of G1. Then (X, X, 0)T

is an eigenvector corresponding to the eigenvalue 1 − λ1i√
r1(n2+r1)

. For,

L̃







X
X
0





 =



















X − A1X
√

(r1(n2 + r1)
−A1X

√

(r1(n2 + r1)
+ X

0



















=



1 − λ1i
√

r1(n2 + r1)











X
X
0





 .

Therefore, 1 − λ1i√
r1(n2+r1)

for i = 2, 3, . . . , n1, is an eigenvalue corresponding to the

eigenvector (X, X, 0)T . Similarly we can prove (−X, X, 0)T is an eigenvector corre-
sponding to the eigenvalue 1 + λ1i√

r1(n2+r1)
for i = 2, 3, . . . , n1.

Thus we obtain n2 − 1 + 2(n1 − 1) = 2n1 + n2 − 3 eigenvalues of L̃ all orthogonal
to (j, 0, 0)T , (0, j, 0)T and (0, 0, j)T .
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The remaining three vectors of L̃ are of the form τ = (αj, βj, γj)T for (α, β, γ) 6=
(0, 0, 0). Let v be an eigenvalue of L̃ with eigenvector τ . Then from L̃τ = vτ we get,

α − r1
√

r1(n2 + r1)
β − n2

√

(n1 + r2)(n2 + r1)
γ = vα,(3.1)

− r1
√

r1(n2 + r1)
α + β + 0γ = vβ,(3.2)

− n1
√

(n1 + r2)(n2 + r1)
α + 0β + (1 − r2

n1 + r2

γ = vγ.(3.3)

By solving above three equations we get the cubic equation as,

(3.4) x3 − 3n1 + 2r2

n1 + r2

x2 +
2n1n2 + 2n1r1 + n2r2

(n1 + r2)(n2 + r1)
x = 0.

Now the theorem follows. �

Corollary 3.1. If G2
∼= Kn2

(totally disconnected graph with n2 vertices), then the
normalized Laplacian of G1▽G2 consists of 0, 2, αi and βi together with 1, repeats n2

times, where αi = 1 − λ1i√
r1(n2+r1)

, βi = 1 + λ1i√
r1(n2+r1)

, i = 2, 3, . . . , n1.

Proof. If G2 is totally disconnected or Kn2
then r2 = 0. The cubic equation (3.4)

reduces to
x3 − 3x2 + 2x = 0.

On solving we get the solution as x = 0, 1, 2. The remaining eigenvalues are obtained
from Theorem 3.1. Hence the corollary is proved. �

3.2. Normalized Laplacian spectrum of duplication, splitting and double

graph.

Theorem 3.2. Let G be a r-regular graph on n vertices with adjacency spectrum
{r = λ1, λ2, . . . , λn}. Then the normalized Laplacian spectrum of the duplication
graph, DG, consists of 1 ± λi

r
for i = 1, 2, . . . , n.

Proof. Let A be the adjacency matrix of G. The Laplacian and normalized Laplacian
matrix of DG are

L =

[

rIn −A
−A rIn

]

and L̃ =









In
−A

r−A

r
In









.

Since G is r-regular with n vertices, the duplication graph DG is also an r-regular
graph on 2n vertices with eigenvalues ±λi, i = 1, 2, . . . , n. By Remark 2.1, the
normalized Laplacian eigenvalues of DG are 1 ± λi

r
, i = 1, 2, . . . , n. �

Theorem 3.3. Let G be an r-regular graph on n vertices with adjacency spectrum
{r = λ1, λ2, . . . , λn}. Then the normalized Laplacian spectrum of the splitting graph,
splt(G), consists of 1 − λi

r
, 1 + λi

2r
for i = 1, 2, . . . , n.
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Proof. Let A and D be respectively the adjacency matrix and diagonal degree matrix

of G. The Laplacian matrix of splt(G) is L =

[

2rIn − A −A
−A rIn

]

.

Also D =

[

2rIn 0
0 rIn

]

and D−1/2 =

[ In√
2r

0

0 In√
r

]

.

The normalized Laplacian matrix is

L̃ = D−1/2LD−1/2 =











In − A

2r

−A

r
√

2
−A

r
√

2
In











.

The characteristic polynomial of L̃ is

det(xI − L̃) = det











(x − 1)In +
A

2r

A

r
√

2
A

r
√

2
(x − 1)In











.

Using Proposition 2.1 and the result [6] that, if λi is an eigenvalue of A then P (λi) is
an eigenvalue of P (A), for any polynomial P (x). We arrive at

fG(L̃ : x) = (x − 1)ndet

(

(x − 1)In +
A

2r
− A2

2r2(x − 1)

)

= det

(

(x − 1)2In + (x − 1)
A

2r
− A2

2r2

)

=
n
∏

i=1

(

(x − 1)2 + (x − 1)
λi

2r
− λ2

i

2r2

)

=
n
∏

i=1

(

x2 − (
4r − λi

2r
)x +

2r2 − rλi − λ2
i

2r2

)

=
n
∏

i=1

(

x − 1 − λi

2r

) (

x − 1 +
λi

r

)

.

Thus we obtain the normalized Laplacian spectrum. �

Theorem 3.4. Let G be an r-regular graph on n vertices with adjacency spectrum
{r = λ1, λ2, . . . , λn}. Then the normalized Laplacian spectrum of the double graph,
D2(G), consists of 1, repeats n times and 1 − λi

r
for i = 1, 2, . . . , n.

Proof. Let A be the adjacency matrix of G. The Laplacian and normalized Laplacian
matrix of D2(G) are

L =

[

2rIn − A −A
−A 2rIn − A

]

and L̃ =









In − A

2r

−A

2r−A

2r
In − A

2r









.
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As like the proof of the Theorem 3.2 and using Remark (2.1), we get the normalized
Laplacian eigenvalues of D2(G). �

4. Applications

In this section we discuss some applications of normalized Laplacian spectrum.
Here we determine the normalized Laplacian energy, Kemeny’s constant and number
of spanning tree of the different graphs under consideration.

4.1. Normalized Laplacian energy. In [10], I. Gutman defined the graph energy,
E(G), as the sum of the absolute value of its eigenvalues. Let G be a graph on n
vertices with adjacency spectrum λ1 ≥ λ2 ≥ · · · ≥ λn then energy

E(G) =
n
∑

i=1

|λi|.

Let G be a graph on n vertices and normalized Laplacian spectrum 0 = σ1 ≤ σ2 ≤
· · · ≤ σn. The normalized Laplacian energy is denoted by L̃E(G) and is defined in [3]
as

(4.1) L̃E(G) =
n
∑

i=1

|σi − 1|.

Theorem 4.1. Let G1 be an r1 regular graph on n1 vertices and G2
∼= Kn2

, totally
disconnected graph. Then,

L̃E(G1▽G2) = 2 +
2(E(G1) − r1)
√

r1(n2 + r1)
.

Proof. We have λ1 = r1 and E(G) =
∑n1

i=1 |λ1i| = r1 +
∑n1

i=2 |λ1i|. By Corollary 3.1
and (4.1) we get,

L̃E(G1▽G2) = n2 × 0 + 2 +
n1
∑

i=2

|λ1i|
√

r1(n2 + r1)
+

n1
∑

i=2

| − λ1i|
√

r1(n2 + r1)

= 2 +
2

√

r1(n2 + r1)

n1
∑

i=2

|λ1i|

= 2 +
2(E(G1) − r1)
√

r1(n2 + r1)
. �

Theorem 4.2. Let G be a r-regular graph with n vertices. Then

(a) L̃E(DG) = 2
r
E(G);

(b) L̃E(D2G) = 1
r
E(G);

(c) L̃E(splt(G)) = 3
2r

E(G).

Proof. The proof follows from Theorem 3.2, Theorem 3.4 and Theorem 3.3. �
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4.2. Kemeny’s constant. Kemeny’s constant K(G), of a graph G is defined as the
expected number of steps required for the transition from a starting vertex vi called
origin to a destination vertex, which is chosen randomly according to a stationary
distribution of unbiased random walks on G [2, 7]. Also K(G) is a constant and
is independent of the choice of the origin vi. Let G be a graph on n vertices and
normalized Laplacian spectrum 0 = σ1 ≤ σ2 ≤ · · · ≤ σn then Kemeny’s constant is
the sum of all reciprocal normalized Laplacian eigenvalues except 1/σ1. Thus we can
write,

(4.2) K(G) =
n
∑

i=2

1

σi

.

Theorem 4.3. For i = 1, 2, let Gi be ri-regular graph on ni vertices with adjacency
spectrum {ri = λi1, λi2, . . . , λini

}. Then the Kemeny’s constant of G1▽G2 is

K(G1▽G2) =
(3n1 + 2r2)(n2 + r1)

2n1n2 + 2n1r1 + n2r2

+
n2
∑

i=2

n1 + r2

n1 + r2 − λ2i

+
n1
∑

j=2

2r1(n2 + r1)

n2r1 + r2
1 − λ2

1j

.

Proof. Since for i = 1, 2, Gi is ri-regular graph on ni vertices and let η1 and η2 be the
roots of the quadratic equation x2 − 3n1+2r2

n1+r2

x + 2n1n2+2n1r1+n2r2

(n1+r2)(n2+r1)
= 0. Then

1

η1

+
1

η2

=
η1 + η2

η1η2

=
(3n1 + 2r2)(n2 + r1)

2n1n2 + 2n1r1 + n2r2

,

K(G1▽G2) =
n2
∑

i=2

n1 + r2

n1 + r2 − λ2i

+
1

η1

+
1

η2

+
n1
∑

j=2





√

r1(n2 + r1)
√

r1(n2 + r1) + λ1j

+

√

r1(n2 + r1)
√

r1(n2 + r1) − λ1j





=
(3n1 + 2r2)(n2 + r1)

2n1n2 + 2n1r1 + n2r2

+
n2
∑

i=2

n1 + r2

n1 + r2 − λ2i

+
√

r1(n2 + r1)
n1
∑

j=2

2
√

r1(n2 + r1)

r1(n2 + r1) − λ2
1j

.

On simplification we get the required result. �

Theorem 4.4. Let G be an r-regular graph on n vertices with adjacency spectrum
{r = λ1, λ2, . . . , λn}. Let K(G) be the Kemeny’s constant of G, then

(1) K(DG) = K(G) + r
∑n

i=1
1

r+λi

;

(2) K(splt(G)) = K(G) + 2r
∑n

i=1
1

2r+λi

;

(3) K(D2(G)) = K(G) + n.
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Proof. (1) Since G is r-regular with adjacency spectrum {r = λ1, λ2, . . . , λn}, the
normalized Laplacian spectrum consists of 1 − λi

r
, for i = 1, 2, . . . , n. Therefore,

K(G) =
∑n

i=2(1 − λi

r
)−1.

By Theorem 3.2 and (4.2) we get the Kemney’s constant as

K(DG) =
n
∑

i=2

(

1 − λi

r

)−1

+
n
∑

i=1

(

1 +
λi

r

)−1

= K(G) + r
n
∑

i=1

1

r + λi

.

The other results obtained from Theorem 3.4, Theorem 3.3 and (4.2). �

4.3. Number of spanning tree. Let t(G) denote the number of spanning tree of
the graph G, the total number of distinct spanning subgraphs of G that are trees.
If G is a connected graph with n vertices and the normalized Laplacian spectrum
0 = σ1(G) ≤ σ2(G) · · · ≤ σn(G) then the number of spanning tree (see [5])

(4.3) t(G) =

∏n
i=1 di

∏n
i=2 σi

∑n
i=1 di

.

Theorem 4.5. For i = 1, 2 let Gi be ri-regular graph on ni vertices with adjacency
spectrum {ri = λi1, λi2, . . . , λini

}. Then the number of spanning tree of G1▽G2 is

t(G1▽G2) = r1

n2
∏

i=2

(n1 + r2 − λ2i)
n1
∏

i=2

(n2r1 + r2
1 − λ2

1i).

Proof. Since for i = 1, 2, Gi is a ri-regular graph with ni vertices, there are n1 vertices
of degree n2 + r1, another n1 vertices are of degree r1 and n2 vertices are of degree
n1 + r2.

Let η1 and η2 be the roots of the quadratic equation

x2 − 3n1 + 2r2

n1 + r2

x +
2n1n2 + 2n1r1 + n2r2

(n1 + r2)(n2 + r1)
= 0,

then we have

η1η2 =
2n1n2 + 2n1r1 + n2r2

(n1 + r2)(n2 + r1)
,

∑

di = n1(n2 + r1) + n1r1 + n2(n1 + r2)

= 2n1n2 + 2n1r1 + n2r2,
∏

di = (n2 + r1)
n1rn1

1 (n1 + r2)
n2 .

Hence, from (4.3), we get,

t(G1▽G2) =
(n2 + r1)

n1rn1

1 (n1 + r2)
n2

2n1n2 + 2n1r1 + n2r2

η1η2

n2
∏

i=2

n1 + r2 − λ2i

n1 + r2

n1
∏

j=2

r1(n2 + r1) − λ2
1j

r1(n2 + r1)

= r1

n2
∏

i=2

(n1 + r2 − λ2i)
n1
∏

i=2

(n2r1 + r2
1 − λ2

1i). �
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Theorem 4.6. Let G be a r-regular graph on n vertices with adjacency spectrum
{r = λ1, λ2, . . . , λn}. Let t(G) be the number of spanning tree of G then,

(1) t(DG) = t(G)
2

∏n
i=1(r + λi);

(2) t(splt(G)) = t(G)
3

∏n
i=1(2r + λi);

(3) t(D2(G)) = 22n−2rn t(G).

Proof. (1) Since G is r-regular with adjacency spectrum {r = λ1, λ2, . . . , λn}, the
normalized Laplacian spectrum of t(DG) consists of 1− λi

r
, for i = 1, 2, . . . , n. Therefore

t(G) = 1
n

∏n
i=2(r − λi). Also

∏n
i=2 di = r2nand

∑n
i=1 di = 2nr.

By Theorem 3.2 and (4.3) we get the

t(DG) =
r2n ∏n

i=2
r−λi

r

∏n
i=1

r+λi

r

2nr

=
t(G)

2

n
∏

i=1

(r + λi).

The other results follows from Theorem 3.4, Theorem 3.3 and (4.3). �
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CONVERGENCE OF DOUBLE COSINE SERIES

KARANVIR SINGH1 AND KANAK MODI2

Abstract. In this paper we consider double cosine series whose coefficients form a
null sequence of bounded variation of order (p, 0), (0, p) and (p, p) with the weight
(jk)p−1 for some p > 1. We study pointwise convergence, uniform convergence and
convergence in Lr-norm of the series under consideration. In a certain sense our
results extend the results of Young [7], Kolmogorov [3] and Móricz [4, 5].

1. Introduction

Consider the double cosine series

(1.1)
∞
∑

j=0

∞
∑

k=0

λjλkajk cos jx cos ky,

on positive quadrant T = [0, π] × [0, π] of the two dimensional torus where λ0 = 1
2

and λj = 1 for j = 1, 2, 3, . . . .
The rectangular partial sums Smn(x, y) and the Cesàro means σmn(x, y) of the

series (1.1) are defined as

Smn(x, y) =
m
∑

j=0

n
∑

k=0

λjλkajk cos jx cos ky,

σmn(x, y) =
1

(m + 1)(n + 1)

m
∑

j=0

n
∑

k=0

Sjk(x, y), m, n > 0,

Key words and phrases. Rectangular partial sums, Lr−convergence, Cesàro means, monotone
sequences.
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and for λ > 1, the truncated Cesáro means are defined by

V λ
mn(x, y) =

1

([λm] − m)([λn] − n)

[λm]
∑

j=m+1

[λn]
∑

k=n+1

Sjk(x, y).

Now assuming the coefficients {ajk : j, k ≥ 0} in (1.1) be a double sequence of real
numbers which satisfy the following conditions for some positive integer p:

(1.2) |ajk|(jk)p−1 → 0 as max{j, k} → ∞,

(1.3) lim
k→∞

∞
∑

j=0

|△p0ajk|(jk)p−1 = 0,

(1.4) lim
j→∞

∞
∑

k=0

|△0pajk|(jk)p−1 = 0,

(1.5)
∞
∑

j=0

∞
∑

k=0

|△ppajk|(jk)p−1 < ∞.

The finite order differences △pqajk are defined by

△00ajk =ajk,

△pqajk =△p−1,qajk − △p−1,qaj+1,k, p ≥ 1, q ≥ 0,

△pqajk =△p,q−1ajk − △p,q−1aj,k+1, p ≥ 0, q ≥ 1.

Also a double induction argument gives

△pqajk =
p
∑

s=0

q
∑

t=0

(−1)s+t

(

p

s

)(

q

t

)

aj+s, k+t.

We can call the above mentioned conditions (1.2)-(1.5) as conditions of bounded vari-
ation of order (p, 0), (0, p) and (p, p) respectively with the weight (jk)p−1. Obviously
these conditions generalise the concept of monotone sequences. Also any sequence
satisfying (1.5) with p = 2 is called a quasi-convex sequence [3, 5]. Clearly the condi-
tions (1.3) and (1.4) can be derived from (1.2) and (1.5) for p = 1 and moreover for
p = 1, the conditions (1.2) and (1.5) reduce to |ajk| → 0 as max{j, k} → ∞ and

∞
∑

j=0

∞
∑

k=0

|△11ajk| < ∞.

Generally the pointwise convergence of the series (1.1) is defined in Pringsheim’s sense
([8], Vol. 2, Ch. 17) which means that the rectangular partial sums of the type

Smn(x, y) =
m
∑

j=0

n
∑

k=0

λjλkajk cos jx cos ky, m, n ≥ 0,

are formed and then by taking both m, n tend to ∞ (independently of one another)
the limit f(x, y) (provided it exists) is assigned to the series (1.1) as its sum.
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Also let ‖f‖r denotes the Lr(T 2)-norm, i.e,

‖f‖r =





π
∫

0

π
∫

0

|f(x, y)|r dxdy





1/r

, 1 ≤ r < ∞

and ‖f‖ denotes L1(T 2)-norm, i.e,

‖f‖ =

π
∫

0

π
∫

0

|f(x, y)| dxdy.

In this paper, we will investigate the validity of the following statements:

(a) Smn(x, y) converges pointwise to f(x, y) for every (x, y) ∈ T 2;
(b) Smn(x, y) converges uniformly to f(x, y) on T 2;
(c) ‖Smn(x, y) − f(x, y)‖r = o(1) as min{m, n} → 0.

Such type of problems have been studied by Young [7] and Kolmogorov [3] for one-
dimensional case (single trigonometric series especially cosine series ) and by Móricz [4,
5] and K. Kaur, Bhatia and Ram [2] for double trigonometric series. In [5], Móricz
studied both double cosine series and double sine series as far as their integrability and
convergence in L1−norm is concerned where as in [4] he studied double trigonometric
series of the form

∞
∑

−∞

∞
∑

−∞

cjkei(jx+ky),

under coefficients of bounded variation. All of them discussed the case for p = 1 or
p = 2 only. Our aim in this paper is to extend the above results from p = 1 to general
cases for double cosine series.

In the results, Cp and Cpr denote constants which may not be the same at each
occurrence. Also we write λn = [λn] where n is a positive integer, λ > 1 is a real
number and [·] means greatest integral part.

The first main result reads as follows.

Theorem 1.1. Assume that conditions (1.2)–(1.5) are satisfied for some p ≥ 1, then

(i) Smn(x, y) converges pointwise to f(x, y) for every (x, y) ∈ T 2 such that x, y > 0;

(ii) ‖Smn(x, y) − f(x, y)‖r = o(1) as min{m, n} → ∞, 1 ≤ r < ∞.

The above theorem has been proved by Móricz [4, 5] for p = 1 and p = 2 using
suitable estimates for Dirichlet’s kernel Dj(x) and Fejér kernel Kj(x). In the case
of a single series for p = 2, the results regarding convergence have been proved by
Kolmogorov [3].

Obviously, condition (1.5) implies any of the following conditions:

(1.6) lim
λ↓1

lim
n→∞

∞
∑

j=0

λn
∑

k=n+1

λn − k + 1

λn − n
|△ppajk|(jk)p−1 = 0,
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(1.7) lim
λ↓1

lim
m→∞

λm
∑

j=m+1

∞
∑

k=0

λm − j + 1

λm − m
|△ppajk|(jk)p−1 = 0.

We introduce the following three sums for m, n ≥ 0 and λ > 1:

∑λ

10
(m, n, x, y) =

λm
∑

j=m+1

n
∑

k=0

λm − j + 1

λm − m
ajk cos jx cos ky,

∑λ

01
(m, n, x, y) =

m
∑

j=0

λn
∑

k=n+1

λn − k + 1

λn − n
ajk cos jx cos ky,

∑λ

11
(m, n, x, y) =

λm
∑

j=m+1

λn
∑

k=n+1

λm − j + 1

λm − m

λn − k + 1

λn − n
ajk cos jx cos ky

and we have

∑λ

11
(m, n; x, y) =

1

(λm − m)

λm
∑

u=m+1

(

∑λ

01
(u, n; x, y) −

∑λ

01
(m, n; x, y)

)

,

∑λ

11
(m, n; x, y) =

1

(λn − n)

λn
∑

v=n+1

(

∑λ

10
(m, v; x, y) −

∑λ

10
(m, n; x, y)

)

.

This implies

(1.8)
∑λ

11
(m, n; x, y) ≤























2 sup
m≤u≤λm

(

|
∑λ

01(u, n; x, y)|

)

2 sup
n≤v≤λn

(

|
∑λ

10(m, v; x, y)|

)























.

The second result of this paper is the following theorem.

Theorem 1.2. (i) Let E ⊂ T 2. Assume that the following conditions are satisfied:

(1.9) lim
λ↓1

lim
m,n→∞

(

sup
(x,y)∈E

|
∑λ

10
(m, n; x, y)|

)

= 0,

(1.10) lim
λ↓1

lim
m,n→∞

(

sup
(x,y)∈E

|
∑λ

01
(m, n; x, y)|

)

= 0.

If V λ
mn(x, y) converges uniformly to f(x, y) on E ⊂ T 2 as min{m, n} → ∞

(that is, in the unrestricted sense), then so does Smn.

(ii) Assume that the following conditions are satisfied for some r ≥ 1:

lim
λ↓1

lim
m,n→∞

(

‖
∑λ

10
(m, n; x, y)‖r

)

= 0,

(1.11) lim
λ↓1

lim
m,n→∞

(

‖
∑λ

01
(m, n; x, y)‖r

)

= 0.

If ‖V λ
mn − f‖r → 0 unrestictedly then ‖Smn − f‖r → 0 as min{m, n} → ∞.

We will also prove the following theorem.
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Theorem 1.3. Assume that the conditions (1.2)–(1.4) and (1.6)–(1.7) are satisfied

for some p ≥ 1, then

(i) if V λ
mn(x, y) converges uniformly to f(x, y) as min{m, n} → ∞, then so does

Smn;

(ii) if ‖V λ
mn − f‖r −→ 0 unrestictedly for some r with 1 ≤ r < ∞, then

‖Smn − f‖r −→ 0 as min{m, n} → ∞.

2. Notation and Formulas

We define for every α = 0, 1, 2, . . . the sequence Sα
0 , Sα

1 , Sα
2 , . . . by the conditions

S0
n = Sn, Sα

n =
n
∑

u=0

Sα−1
u , α ≥ 1

and

A0
n = 1, Aα

n =
n
∑

u=0

Aα−1
u , α ≥ 1,

denotes binomial coefficients. Also

Aα
n =

(

n + α

n

)

≃
nα

Γ(α + 1)
, α 6= −1, −2, −3, . . . .

The Cesàro means T α
n of order α of

∑

an will be defined by T α
n = Sα

n

Aα
n

and also it is

known [8] that
∫ π

0 |T α
n (x)|dx, α > 0, is bounded for all n.

3. Lemmas

We require the following lemmas for the proof of our results.

Lemma 3.1. For m, n ≥ 0 and p > 1, the following representation holds:

Smn(x, y) =
m
∑

j=0

n
∑

k=0

λjλkajk cos jx cos ky

=
m
∑

j=0

n
∑

k=0

△ppajkS
p−1
j (x)Sp−1

k (y) +
m
∑

j=0

p−1
∑

t=0

△ptaj,n+1S
p−1
j (x)St

n(y)

+
n
∑

k=0

p−1
∑

s=0

△spam+1,kSs
m(x)Sp−1

k (y) +
p−1
∑

s=0

p−1
∑

t=0

△stam+1,n+1S
s
m(x)St

n(y).

Lemma 3.2 ([1]). For m, n ≥ 0 and λ > 1, the following representation holds:

Smn − σmn =
λm + 1

λm − m

λn + 1

λn − n
(σλm,λn

− σλm,n − σm,λn
+ σmn)

+
λm + 1

λm − m
(σλm,n − σmn) +

λn + 1

λn − n
(σm,λn

− σmn)

−
∑λ

11
(m, n, x, y) −

∑λ

10
(m, n, x, y) −

∑λ

01
(m, n, x, y).
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Lemma 3.3. For m, n ≥ 0 and λ > 1, we have the following representation:

V λ
mn − Smn =

∑λ

11
(m, n, x, y) +

∑λ

10
(m, n, x, y) +

∑λ

01
(m, n, x, y).

Proof. We have

V λ
mn(x, y) =

1

(λm − m)(λn − n)

λm
∑

j=m+1

λn
∑

k=n+1

Sjk(x, y).

Performing double summation by parts, we have

V λ
mn =

λm + 1

λm − m

λn + 1

λn − n
σλm,λn

−
λm + 1

λm − m

n + 1

λn − n
σλm,n

−
m + 1

λm − m

λn + 1

λn − n
σm,λn

+
m + 1

λm − m

n + 1

λn − n
σmn

=
λm + 1

λm − m

λn + 1

λn − n
(σλm,λn

− σλm,n − σm,λn
+ σmn)

+
λm + 1

λm − m
(σλm,n − σmn) +

λn + 1

λn − n
(σm,λn

− σmn) + σmn.

The use of Lemma 3.2, gives

V λ
mn − Smn =

λm
∑

j=m+1

λn
∑

k=n+1

λm − j + 1

λm − m

λn − k + 1

λn − n
ajk cos jx cos ky

+
λm
∑

j=m+1

n
∑

k=0

λm − j + 1

λm − m
ajk cos jx cos ky

+
m
∑

j=0

λn
∑

k=n+1

λn − k + 1

λn − n
ajk cos jx cos ky. �

Lemma 3.4. For m, n ≥ 0 and λ > 1, we have the following representation:

∑λ

10
(m, n; x, y) =

λm
∑

j=m+1

n
∑

k=0

λm − j + 1

λm − m
ajk cos jx cos ky

=
λm
∑

j=m+1

n
∑

k=0

λm − j + 1

λm − m
△ppajkS

p−1
j (x)Sp−1

k (y)

+
λm
∑

j=m+1

p−1
∑

t=0

λm − j + 1

λm − m
△ptaj,n+1S

p−1
j (x)St

n(y)

+
1

λm − m

λm
∑

j=m+1

p−1
∑

s=0

n
∑

k=0

△spaj+1,kSs
j (x)Sp−1

k (y)

+
1

λm − m

λm
∑

j=m+1

p−1
∑

s=0

p−1
∑

t=0

△staj+1,n+1S
s
j (x)St

n(y)
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−
p−1
∑

s=0

n
∑

k=0

△spam+1,kSs
m(x)Sp−1

k (y)

−
p−1
∑

s=0

p−1
∑

t=0

△stam+1,n+1S
s
m(x)St

n(y).

Proof. We have by summation by parts,
∑λ

10
(m, n; x, y)

=
n
∑

k=0

cos ky

(

λm
∑

j=m+1

λm − j + 1

λm − m
ajk cos jx

)

=
n
∑

k=0

cos ky

(

λm
∑

j=m+1

λm − j + 1

λm − m
△p0ajkS

p−1
j (x)

+
1

λm − m

λm
∑

j=m+1

p−1
∑

s=0

△s0aj+1,kSs
j (x) −

p−1
∑

s=0

△s0am+1,kSs
m(x)

)

=
λm
∑

j=m+1

λm − j + 1

λm − m
S

p−1
j (x)

(

n
∑

k=0

△p0ajk cos ky

)

+
1

λm − m

λm
∑

j=m+1

p−1
∑

s=0

(

n
∑

k=0

△s0aj+1,k cos ky

)

Ss
j (x)

−
p−1
∑

s=0

(

n
∑

k=0

△s0am+1,k cos ky

)

Ss
m(x)

=
λm
∑

j=m+1

λm − j + 1

λm − m
S

p−1
j (x)

(

n
∑

k=0

△ppajkS
p−1
k (y) +

p−1
∑

t=0

△ptaj,n+1S
t
n(y)

)

+
1

λm − m

λm
∑

j=m+1

p−1
∑

s=0

(

n
∑

k=0

△spaj+1,kS
p−1
k (y) +

p−1
∑

t=0

△staj+1,n+1S
t
n(y)

)

Ss
j (x)

−
p−1
∑

s=0

(

n
∑

k=0

△spam+1,kS
p−1
k (y) +

p−1
∑

t=0

△stam+1,n+1S
t
n(y)

)

Ss
m(x).

Similarly we can have representation for
∑λ

01(m, n; x, y). �

4. Proof of Theorems

Proof of Theorem 1.1. For m, n ≥ 0 and p > 1, we have from Lemma 3.1,

Smn(x, y) =
m
∑

j=0

n
∑

k=0

△ppajkS
p−1
j (x)Sp−1

k (y) +
m
∑

j=0

p−1
∑

t=0

△ptaj,n+1S
p−1
j (x)St

n(y)

+
n
∑

k=0

p−1
∑

s=0

△spam+1,kSs
m(x)Sp−1

k (y) +
p−1
∑

s=0

p−1
∑

t=0

△stam+1,n+1S
s
m(x)St

n(y)



450 K. SINGH AND K. MODI

=
∑

1
+
∑

2
+
∑

3
+
∑

4
.

Using the results as given in [6] that S
p
j (x) = O

(

1
xp

)

, for all p ≥ 2, 0 < x ≤ π, etc,

we have for 0 < x, y ≤ π,
∞
∑

j=0

∞
∑

k=0

|△ppajkS
p−1
j (x)Sp−1

k (y)| < ∞ (by (1.2))

and also by (1.3)–(1.5), we have

m
∑

j=0

p−1
∑

t=0

△ptaj,n+1 ≤
p−1
∑

t=0

t
∑

v=0

(

t

v

)





m
∑

j=0

|△p0aj,n+v+1|





≤ sup
n<k≤n+p

m
∑

j=0

|△p0ajk|

≤ sup
n<k≤n+p

m
∑

j=0

|△p0ajk| → 0 as min{m, n} → ∞.

Thus,
m
∑

j=0

p−1
∑

t=0

△ptaj,n+1S
p−1
j (x)St

n(y) → 0 as min{m, n} → ∞.

And similarly

p−1
∑

s=0

n
∑

k=0

△spam+1,k ≤
p−1
∑

s=0

s
∑

u=0

(

s

u

)

(
n
∑

k=0

|△0pam+u+1,k|)

≤ sup
m<j≤m+p

n
∑

k=0

|△0pajk|

≤ sup
m<j≤m+p

n
∑

k=0

|△0pajk| → 0 as min{m, n} → ∞.

Thus,
n
∑

k=0

p−1
∑

s=0

△spam+1,kSs
m(x)Sp−1

k (y) → 0,

as min{m, n} → ∞. Also

p−1
∑

s=0

p−1
∑

t=0

△stam+1,n+1 ≤
p−1
∑

s=0

p−1
∑

t=0

s
∑

u=0

t
∑

v=0

(

s

u

)(

t

v

)

|△00am+u+1,n+v+1|

≤ sup
j>m,k>n

|ajk| → 0 as min{m, n} → ∞.

So,
p−1
∑

s=0

p−1
∑

t=0

△stam+1,n+1S
s
m(x)St

n(y) → 0 as min{m, n} → ∞.
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Consequently, series (1.1) converges to the function f(x, y) where

f(x, y) =
∞
∑

j=0

∞
∑

k=0

△ppajkS
p−1
j (x)Sp−1

k (y) and lim
m,n→∞

Smn(x, y) = f(x, y).

Now we will calculate ‖
∑

1 ‖, ‖
∑

2 ‖, ‖
∑

3 ‖ and ‖
∑

4 ‖ in the following way:

∥

∥

∥

∑

1

∥

∥

∥ =

∥

∥

∥

∥

∥

∥

m
∑

j=0

n
∑

k=0

△ppajkS
p−1
j (x)Sp−1

k (y)

∥

∥

∥

∥

∥

∥

≤
m
∑

j=0

n
∑

k=0

|△ppajk|
∫ π

0

∫ π

0
|Sp−1

j (x)Sp−1
k (y)|dxdy

≤
m
∑

j=0

n
∑

k=0

|△ppajk|Ap−1
j A

p−1
k

∫ π

0

∫ π

0
|T p−1

j (x)T p−1
k (y)|dxdy

≤Cp

m
∑

j=0

n
∑

k=0

|△ppajk|jp−1kp−1,

∥

∥

∥

∑

2

∥

∥

∥ =

∥

∥

∥

∥

∥

∥

m
∑

j=0

p−1
∑

t=0

△ptaj,n+1S
p−1
j (x)St

n(y)

∥

∥

∥

∥

∥

∥

≤
p−1
∑

t=0

t
∑

v=0

(

t

v

)





m
∑

j=0

|△p0aj,n+v+1|



A
p−1
j At

n

∫ π

−π

∫ π

−π
|T p−1

j (x)T t
n(y)|dxdy

≤Cp sup
n<k≤n+p

m
∑

j=0

|△p0ajk| jp−1





p−1
∑

t=0

nt





≤Cp sup
n<k≤n+p

m
∑

j=0

|△p0ajk| jp−1kp−1,

∥

∥

∥

∑

3

∥

∥

∥ =

∥

∥

∥

∥

∥

∥

p−1
∑

s=0

n
∑

k=0

△spam+1,kSs
m(x)Sp−1

k (y)

∥

∥

∥

∥

∥

∥

≤
p−1
∑

s=0

s
∑

u=0

(

s

u

)(

n
∑

k=0

|△0pam+u+1,k|

)

As
mA

p−1
k

∫ π

0

∫ π

0
|T s

m(x)T p−1
k (y)|dxdy

≤Cp sup
m<j≤m+p

n
∑

k=0

|△0pajk| kp−1





p−1
∑

s=0

ms





≤Cp sup
m<j≤m+p

n
∑

k=0

|△0pajk| jp−1kp−1,

∥

∥

∥

∑

4

∥

∥

∥ =

∥

∥

∥

∥

∥

∥

p−1
∑

s=0

p−1
∑

t=0

△stam+1,n+1S
s
m(x)St

n(y)

∥

∥

∥

∥

∥

∥
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≤
p−1
∑

s=0

p−1
∑

t=0

s
∑

u=0

t
∑

v=0

(

s

u

)(

t

v

)

|△00am+u+1,n+v+1|A
s
mAt

n

π
∫

0

π
∫

0

|T s
m(x)T t

n(y)|dxdy

≤Cp sup
j>m,k>n

|ajk| jp−1kp−1.

Now let Rmn consists of all (j, k) with j > m or k > n, that is,

∑∑

(j,k)∈Rmn

=
∞
∑

j=m+1

n
∑

k=0

+
∞
∑

j=0

∞
∑

k=n+1

+
∞
∑

j=m+1

∞
∑

k=n+1

.

Then

‖f − Smn‖r =





π
∫

0

π
∫

0

|f(x, y) − Smn(x, y)|r dxdy





1/r

, 1 ≤ r < ∞,

≤

∥

∥

∥

∥

∥

∥

∑

(j,k)

∑

∈Rmn

△ppajkS
p−1
j (x)Sp−1

k (y)

∥

∥

∥

∥

∥

∥

r

+

∥

∥

∥

∥

∥

∥

m
∑

j=0

p−1
∑

t=0

△ptaj,n+1S
p−1
j (x)St

n(y)

∥

∥

∥

∥

∥

∥

r

+

∥

∥

∥

∥

∥

∥

n
∑

k=0

p−1
∑

s=0

△spam+1,kSs
m(x)Sp−1

k (y)

∥

∥

∥

∥

∥

∥

r

+

∥

∥

∥

∥

∥

∥

p−1
∑

s=0

p−1
∑

t=0

△stam+1,n+1S
s
m(x)St

n(y)

∥

∥

∥

∥

∥

∥

r

≤Cpr

{





∑

(j,k)∈Rmn

|△ppajk|jp−1kp−1





+



 sup
n<k≤n+p

m
∑

j=0

|△p0ajk| jp−1kp−1





+

(

sup
m<j≤m+p

n
∑

k=0

|△0pajk| jp−1kp−1

)

+

(

sup
j>m,k>n

|ajk| jp−1kp−1

)}

(as discussed above )

→0 as min{m, n} → ∞ (by (1.2)-(1.5)),

which proves (ii) part.
Proof of Theorem 1.2. Using the relation (1.8), we find that (1.9) or (1.10) implies

(4.1) lim
λ↓1

lim
m,n→∞

(

sup
(x,y)∈E

|
∑λ

11
(m, n; x, y)|

)

= 0.
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Assume that V λ
mn(x, y) converges uniformly on E to f(x, y). Then by Lemma 3.3, we

get

lim
m,n→∞

(∣

∣

∣

∣

∣

sup
(x,y)∈E

(

Smn(x, y) − V λ
mn(x, y)

)

∣

∣

∣

∣

∣

)

≤ lim
m,n→∞

(

sup
(x,y)∈E

∣

∣

∣

∣

∑λ

10
(m, n; x, y)

∣

∣

∣

∣

)

+ lim
m,n→∞

(

sup
(x,y)∈E

∣

∣

∣

∣

∑λ

01
(m, n; x, y)

∣

∣

∣

∣

)

+ lim
m,n→∞

(

sup
(x,y)∈E

∣

∣

∣

∣

∑λ

11
(m, n; x, y)

∣

∣

∣

∣

)

.

After taking λ ↓ 1 the result follows from (1.9), (1.10) and (4.1).
For (ii) part of theorem, we have

∥

∥

∥

∥

∑λ

11
(m, n; x, y)

∥

∥

∥

∥

r
=

1

λm − m

λm
∑

u=m+1

(∥

∥

∥

∥

∑λ

01
(u, n; x, y)

∥

∥

∥

∥

r
+
∥

∥

∥

∥

∑λ

01
(m, n; x, y)

∥

∥

∥

∥

r

)

≤ 2

(

sup
m≤u≤λm

(∥

∥

∥

∥

∑λ

01
(u, n; x, y)

∥

∥

∥

∥

r

)

)

.

Thus (1.11) implies

lim
λ↓1

lim
m,n→∞

∥

∥

∥

∥

∑λ

11
(m, n; x, y)

∥

∥

∥

∥

r
= 0.

Thus, the result of Theorem 1.2 (ii) follows.

Proof of Theorem 1.3. Using the Lemma 3.4, we can write the expression for
∑λ

01(m, n; x, y) as

∑λ

01
(m, n; x, y) =

m
∑

j=0

λn
∑

k=n+1

λn − k + 1

λn − n
ajk cos jx cos ky

=
m
∑

j=0

λn
∑

k=n+1

λn − k + 1

λn − n
△ppajkS

p−1
j (x)Sp−1

k (y)

+
λn
∑

k=n+1

p−1
∑

s=0

λn − k + 1

λn − n
△spam+1,kSs

m(x)Sp−1
k (y)

+
1

λn − n

m
∑

j=0

λn
∑

k=n+1

p−1
∑

t=0

△ptaj,k+1S
p−1
j (x)St

k(y)

+
1

λn − n

λn
∑

k=n+1

p−1
∑

s=0

p−1
∑

t=0

△stam+1,k+1S
s
m(x)St

k(y)

−
p−1
∑

t=0

m
∑

j=0

△ptaj,n+1S
p−1
j (x)St

n(y)
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−
p−1
∑

s=0

p−1
∑

t=0

△stam+1,n+1S
s
m(x)St

n(y)

=I1 + I2 + I3 + I4 + I5 + I6.

Now by using (1.2)–(1.4) and (1.6) along with estimates of S
p−1
j (x) etc., as mentioned

in [6], we have the following estimates in brief:

|I1| =

∣

∣

∣

∣

∣

∣

m
∑

j=0

λn
∑

k=n+1

λn − k + 1

λn − n
△ppajkS

p−1
j (x)Sp−1

k (y)

∣

∣

∣

∣

∣

∣

≤
m
∑

j=0

λn
∑

k=n+1

λn − k + 1

λn − n

∣

∣

∣△ppajk

∣

∣

∣

→0 as min{m, n} → ∞.

Consequently, lim
λ↓1

lim
m,n→∞

(

sup
(x,y)∈E

|I1|
)

→ 0 as min{m, n} → ∞. Also,

|I2| =

∣

∣

∣

∣

∣

∣

λn
∑

k=n+1

p−1
∑

s=0

λn − k + 1

λn − n
△spam+1,kSs

m(x)Sp−1
k (y)

∣

∣

∣

∣

∣

∣

≤
p−1
∑

s=0

s
∑

u=0

(

s

u

)

λn
∑

k=n+1

|△0pam+u+1,k|

≤ sup
m<j≤m+p

λn
∑

k=n+1

|△0pajk| → 0 as min{m, n} → ∞.

So, lim
λ↓1

lim
m,n→∞

(

sup
(x,y)∈E

|I2|

)

→ 0 as min{m, n} → ∞. Also,

|I3| ≤ sup
n<k≤λn

p−1
∑

t=0

m
∑

j=0

|△ptaj,k+1|

≤ sup
n<k≤λn

p−1
∑

t=0

t
∑

v=0

(

t

v

)

m
∑

j=0

|△ptaj,k+v+1|

≤ sup
n<k≤λn+p

m
∑

j=0

|△p0ajk| → 0 as min{m, n} → ∞,

which implies lim
λ↓1

lim
m,n→∞

(

sup
(x,y)∈E

|I3|

)

→ 0 as min{m, n} → ∞. Now,

|I4| ≤ sup
n<k≤λn

p−1
∑

s=0

p−1
∑

t=0

|△stam+1,k+1|

≤ sup
j>m,k>n

|ajk| → 0 as min{m, n} → ∞.
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Thus lim
λ↓1

lim
m,n→∞

(

sup
(x,y)∈E

|I4|

)

→ 0 as min{m, n} → ∞. Also,

|I5| ≤
p−1
∑

t=0

t
∑

v=0

(

t

v

)

m
∑

j=0

|△p0aj,n+v+1| ≤ sup
n<k≤n+p

m
∑

j=0

|△p0ajk| → 0 as min{m, n} → ∞,

which implies lim
λ↓1

lim
m,n→∞

(

sup
(x,y)∈E

|I5|

)

→ 0 as min{m, n} → ∞. Also,

|I6| ≤
p−1
∑

s=0

p−1
∑

t=0

s
∑

u=0

t
∑

v=0

(

s

u

)(

t

v

)

|△00am+u+1,n+v+1|

≤ sup
j>m,k>n

|ajk| → 0 as min{m, n} → ∞,

and

lim
λ↓1

lim
m,n→∞

(

sup
(x,y)∈E

|I6|

)

→ 0 as min{m, n} → ∞.

Thus, combining all these, we have

lim
λ↓1

lim
m,n→∞

(

sup
(x,y)∈E

|
∑λ

01
(m, n; x, y)|

)

= 0.

Similarly (1.2)–(1.4) and (1.7) results in

lim
λ↓1

lim
m,n→∞

(

sup
(x,y)∈E

|
∑λ

10
(m, n; x, y)|

)

= 0.

Thus, first part of theorem follows from Theorem 1.2.
Proof of (ii). We have

‖Smn − f‖r ≤‖Smn − V λ
mn‖r+‖V λ

mn − f‖r.

By assumption ‖V λ
mn − f‖r → 0, so it is sufficient to show that

‖Smn − V λ
mn‖r → 0 as min{m, n} → ∞.

By Lemma 3.3, we have

‖Smn − V λ
mn‖r ≤‖

∑λ

10
(m, n; x, y)‖r + ‖

∑λ

01
(m, n; x, y)‖r

+ ‖
∑λ

11
(m, n; x, y)‖r.

Now in order to estimate ‖
∑λ

01(m, n; x, y)‖r , we first find ‖I1‖, ‖I2‖, ‖I3‖, ‖I4‖, ‖I5‖
and ‖I6‖, so we have

‖I1‖ =

∥

∥

∥

∥

∥

∥

m
∑

j=0

λn
∑

k=n+1

λn − k + 1

λn − n
△ppajkS

p−1
j (x)Sp−1

k (y)

∥

∥

∥

∥

∥

∥

≤
m
∑

j=0

λn
∑

k=n+1

λn − k + 1

λn − n
△ppajkA

p−1
j A

p−1
k

π
∫

0

π
∫

0

|T p−1
j (x)T p−1

k (y)|dxdy
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≤Cp

m
∑

j=0

λn
∑

k=n+1

λn − k + 1

λn − n
|△ppajk|jp−1kp−1,

‖I2‖ =

∥

∥

∥

∥

∥

∥

λn
∑

k=n+1

p−1
∑

s=0

λn − k + 1

λn − n
△spam+1,kSs

m(x)Sp−1
k (y)

∥

∥

∥

∥

∥

∥

≤Cp

p−1
∑

s=0

s
∑

u=0

(

s

u

)

λn
∑

k=n+1

|△0pam+u+1,k|kp−1ms

≤Cp sup
m<j≤m+p

(

λn
∑

k=n+1

|△0pajk|kp−1

)(p−1
∑

s=0

ms

)

≤Cp sup
m<j≤m+p

λn
∑

k=n+1

|△0pajk|jp−1kp−1,

‖I3‖ ≤Cp sup
n<k≤λn

p−1
∑

t=0

m
∑

j=0

|△ptaj,k+1|j
p−1kt

≤Cp sup
n<k≤λn

p−1
∑

t=0

t
∑

v=0

(

t

v

)

m
∑

j=0

|△ptaj,k+v+1|j
p−1kt

≤Cp sup
n<k≤λn+p

m
∑

j=0

|△p0ajk|jp−1kp−1,

‖I4‖ ≤Cp sup
n<k≤λn

p−1
∑

s=0

p−1
∑

t=0

|△stam+1,k+1|m
skt

≤Cp sup
j>m,k>n

|ajk|jp−1kp−1,

‖I5‖ ≤Cp

p−1
∑

t=0

t
∑

v=0

(

t

v

)

m
∑

j=0

|△p0aj,n+v+1|j
p−1nt

≤Cp sup
n<k≤n+p

m
∑

j=0

|△p0ajk|jp−1kp−1,

‖I6‖ ≤Cp

p−1
∑

s=0

p−1
∑

t=0

s
∑

u=0

t
∑

v=0

(

s

u

)(

t

v

)

|△00am+u+1,n+v+1|m
snt

≤Cp sup
j>m,k>n

|ajk|jp−1kp−1.

Thus, we can estimate

∥

∥

∥

∥

∑λ

01
(m, n; x, y)

∥

∥

∥

∥

r
≤Cpr

λn
∑

k=n+1

m
∑

j=0

λn − k + 1

λn − n
|△ppajk|jp−1kp−1

+ Cpr

(

sup
m<j≤m+p

λn
∑

k=n+1

|△0pajk|jp−1kp−1

)
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+ Cpr

(

sup
n<k≤λn+p

m
∑

j=0

|△p0ajk|jp−1kp−1

)

+ Cpr

(

sup
j>m,k>n

|ajk|jp−1kp−1

)

+ Cpr

(

sup
n<k≤n+p

m
∑

j=0

|△p0ajk|jp−1kp−1

)

+ Cpr

(

sup
j>m,k>n

|ajk|jp−1kp−1

)

.

By (1.2)–(1.4) and (1.6), we conclude that

lim
λ↓1

lim
m,n→∞

(

‖
∑λ

01
(m, n; x, y)‖r

)

= 0.

Similarly, by conditions (1.2)–(1.4) and (1.7), we get

lim
λ↓1

lim
m,n→∞

(

‖
∑λ

10
(m, n; x, y)‖r

)

= 0.

Also, by (1.8), we have

lim
λ↓1

lim
m,n→∞

(

‖
∑λ

11
(m, n; x, y)‖r

)

= 0.

Thus, ‖Smn − V λ
mn‖r → 0 as min{m, n} → ∞.
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NECESSARY AND SUFFICIENT CONDITION FOR OSCILLATORY

AND ASYMPTOTIC BEHAVIOUR OF SECOND-ORDER

FUNCTIONAL DIFFERENTIAL EQUATIONS

SHYAM SUNDAR SANTRA1,2

Abstract. In this paper, necessary and sufficient conditions are obtained for oscilla-
tory and asymptotic behaviour of solutions of second-order neutral delay differential
equations of the form

d

dt

[

r(t)
d

dt
[x(t) + p(t)x(τ(t))]

]

+ q(t)G (x(σ(t))) = 0, for t ≥ t0,

under the assumption
∫

∞ 1
r(η) dη = ∞ for various ranges of the bounded neutral

coefficient p. Our main tools are Lebesgue’s dominated convergence theorem and
Banach’s contraction mapping principle. Further, an illustrative example showing
the applicability of the new results is included.

1. Introduction

Consider a class of nonlinear neutral delay differential equations of the form:

(1.1)
d

dt

[

r(t)
d

dt

[

x(t) + p(t)x(τ(t))
]

]

+ q(t)G
(

x(σ(t))
)

= 0,

where

(A1) r, q, τ, σ ∈ C(R+,R+), p ∈ C(R+,R) such that τ(t) ≤ t, σ(t) ≤ t for t ≥ t0,
τ(t) → ∞, σ(t) → ∞ as t → ∞, with invertible τ when necessary;

(A2) G ∈ C(R,R) is nondecreasing with satisfying the property uG(u) > 0 for u 6= 0

and

(A3) R(t) =
∫ t

0
dη

r(η)
→ +∞ as t → ∞.

Key words and phrases. Oscillation, nonoscillation, neutral, delay, nonlinear, Lebesgue’s domi-
nated convergence theorem, Banach’s contraction mapping principle.
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Baculikova et al. [3] have studied the linear counterpart of (1.1),

(1.2)
d

dt

[

r(t)
d

dt
[x(t) + p(t)x(τ(t))]

]

+ q(t)x(σ(t)) = 0,

when 0 ≤ p(t) ≤ p0 < ∞ and (A3) holds. The authors have obtained sufficient
conditions for oscillation of solutions of (1.2) through some comparison results, where
the comparison results are unpredictable. In [6], Džurina have studied (1.2) when
0 ≤ p(t) ≤ p0 < ∞ and (A3) holds true. He has established sufficient condition for
oscillation of solutions of (1.2) by comparison techniques. In [16], under various ranges
of p, Santra studied oscillatory behaviour of the solutions of the following neutral
differential equations

d

dt
[x(t) + p(t)x(t − τ)] + q(t)G (x(t − σ)) = 0

and

(1.3)
d

dt
[x(t) + p(t)x(t − τ)] + q(t)G (x(t − σ)) = f(t).

Also, sufficient conditions are obtained for existence of bounded positive solutions
of (1.3). Tripathy et al. [18] have studied and obtained the sufficient conditions
for oscillation, nonoscillation and asymptotic behavior of solutions of (1.1) provided
G could be linear or nonlinear. The motivation of the present work come from the
above studies. Hence, in this work, an attempt is made to study the more general
form of (1.2) without making any comparison. It seems that this method is the next
alternative to the works [3, 6] when p is bounded.

The neutral differential equations find numerous applications in natural sciences
and technology. For instance, they are frequently used for the study of distributed
networks containing lossless transmission lines (see, for e.g., [8]). In this paper, we
restrict our attention to study (1.1), which includes a class of nonlinear functional
differential equations of neutral type. In this direction we refer the reader to some of
the works (see [1, 4, 5, 10,13,19,20]) and the references cited therein.

By a solution to equation (1.1), we mean a function x ∈ C([Tx, ∞),R), where
Tx ≥ t0, such that rz′ ∈ C1([Tx, ∞),R), where

(1.4) z(t) := x(t) + p(t)x(τ(t)), for t ≥ Tx,

and satisfies (1.1) on the interval [Tx, ∞). A solution x of (1.1) is said to be proper if
x is not identically zero eventually, i.e., sup{|x(t)| : t ≥ T} > 0 for all T ≥ Tx. We
assume that (1.1) possesses such solutions. A solution of (1.1) is called oscillatory
if it has arbitrarily large zeros on [Tx, ∞); otherwise, it is said to be nonoscillatory.
(1.1) itself is said to be oscillatory if all of its solutions are oscillatory.

Remark 1.1. When the domain is not specified explicitly, all functional inequalities
considered in this paper are assumed to hold eventually, i.e., they are satisfied for all
t large enough.
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2. Main Results

In this section, necessary and sufficient conditions are obtained for oscillatory
and asymptotic behaviour of solutions of second order nonlinear neutral differential
equations of the form (1.1).

Lemma 2.1. Assume that (A1)-(A3) hold. If x is an eventually positive solution of

(1.1) such that the companion function z defined by (1.4) is also eventually positive,

then z satisfies

(2.1) z′(t) > 0 and (rz′)′(t) < 0, for all large t.

Proof. Suppose that x(t) > 0 and z(t) > 0 for t ≥ t1, where t ≥ t0. By (A1), we may

assume without loss of generality that x
(

σ(t)
)

> 0 for t ≥ t1. From (1.1) and (A2),

it follows that

(2.2) (rz′)′(t) = −q(t)G (x(σ(t))) < 0, for t ≥ t1.

Consequently, rz′ is nonincreasing on [t1, ∞) and thus either z′(t) < 0 or z′(t) > 0 for
t ≥ t2, where t2 ≥ t1. If z′(t) < 0, then there exists ε > 0 such that r(t)z′(t) ≤ −ε for
t ≥ t2, which yields upon integration over [t2, t) ⊂ [t2, ∞) after dividing through by r

that

(2.3) z(t) ≤ z(t2) − ε

∫ t

t2

1

r(η)
dη, for t ≥ t2.

In view of (A3), letting t → ∞ in (2.3) yields z(t) → −∞, which is a contradiction.
Therefore, z′(t) > 0 for t ≥ t2. This completes the proof. �

Remark 2.1. It follows from Lemma 2.1 that limt→∞ z(t) > 0, i.e., there exists ε > 0
such that z(t) ≥ ε for all large t.

Lemma 2.2. Assume that (A1)-(A3) hold. If x is an eventually positive solution of

(1.1) such that the companion function z defined by (1.4) is bounded, then z satisfies

(2.1) for all large t.

Theorem 2.1. Assume that (A1)-(A3) hold and −1 < −a ≤ p(t) ≤ 0, a ≥ 0 for

t ∈ R+. Furthermore, assume that

(A4) G is strictly sublinear, that is,
G(u)
uβ ≥ G(v)

vβ , 0 < u ≤ v, β < 1,

holds. Then every unbounded solution of (1.1) oscillates if and only if

(A5)
∫

∞

T q(η)G
(

εR(σ(η))
)

dη = +∞, T > 0 for every ε > 0.

Proof. Suppose the contrary that x is a nonoscillatory solution of (1.1). Then, there
exists t1 ≥ t0 such that either x(t) > 0 or x(t) < 0 for t ≥ t1. Assume that x(t) > 0,
x(τ(t)) > 0 and x(σ(t)) > 0 for t ≥ t1. Proceeding as in the proof of Lemma 2.1, we
see rz′ is nonincreasing and z is monotonic on [t2, ∞), where t2 ≥ t1. We have the
following two possible cases.
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Case 1. Let z(t) < 0 for t ≥ t2. As x is unbounded, there exists T ≥ t2 such that
x(T ) = max{x(η) : t2 ≤ η ≤ T}. Then, from (1.4), we have x(T ) ≤ z(T )+x(τ(T )) <

x(T ), which is a contradiction.
Case 2. Let z(t) > 0 for t ≥ t2. By Lemma 2.1, (2.1) holds for t ≥ t3. Note that

limt→∞ r(t)z′(t) exists. Upon using z(t) ≤ x(t) in (2.2) and then integrating the final
inequality from t to +∞, we obtain

∫

∞

t
q(η)G

(

z(σ(η))
)

dη ≤ r(t)z′(t),

that is,

(2.4) z′(t) ≥
1

r(t)

∫

∞

t
q(η)G

(

z(σ(η))
)

dη,

for t ≥ t3. Let t4 > t3 be a point such that

R(t) − R(t4) ≥
1

2
R(t), t ≥ t4.

Then integrating (2.4) from t4 to t(> t4), we get

z(t) − z(t4) ≥
∫ t

t4

1

r(η)

∫

∞

η
q(ζ)G

(

z(σ(ζ))
)

dζdη

≥
∫ t

t4

1

r(η)

∫

∞

t
q(ζ)G

(

z(σ(ζ))
)

dζdη,

that is,

z(t) ≥
(

R(t) − R(t4)
)

∫

∞

t
q(ζ)G

(

z(σ(ζ))
)

dζ

≥
1

2
R(t)

∫

∞

t
q(ζ)G

(

z(σ(ζ))
)

dζ, t ≥ t4.(2.5)

Using the fact that r(t)z′(t) is nonincreasing on [t4, ∞), we can find a constant ε > 0
and t5 > t4 such that r(t)z′(t) ≤ ε for t ≥ t5 and hence z(t) ≤ εR(t), t ≥ t5. On the
otherhand, (A3) implies that

G
(

z(σ(ζ))
)

=
G
(

z(σ(ζ))
)

zβ
(

σ(ζ)
) zβ

(

σ(ζ)
)

≥
G
(

εR(σ(ζ))
)

εβRβ
(

σ(ζ)
) zβ

(

σ(ζ)
)

.

Consequently, (2.5) becomes

z(t) ≥
R(t)

2

∫

∞

t

q(ζ)G
(

εR(σ(ζ))
)

zβ(σ(ζ))

εβRβ(σ(ζ))
dζ,
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for t ≥ t5. If we define

w(t) =
1

2

∫

∞

t

q(ζ)G
(

εR(σ(ζ))
)

zβ(σ(ζ))

εβRβ(σ(ζ))
dζ,

then z(t) ≥ R(t)w(t) for t ≥ t5. Now,

w′(t) ≤ −
1

2

q(t)G
(

εR(σ(t))
)

zβ(σ(t))

εβRβ(σ(t))

≤ −
1

2

q(t)G
(

εR(σ(t))
)

εβ
wβ(σ(t)) ≤ 0, t ≥ t5,

implies that w(t) is nonincreasing on [t5, ∞) and limt→∞ w(t) exists. It is easy to
verify that

[

w1−β(t)
]

′

≤ −
(1 − β)

2
w−β(t)

q(t)G
(

εR(σ(t))
)

εβ
wβ
(

σ(t)
)

≤ −
(1 − β)

2
w−β(t)

q(t)G
(

εR(σ(t))
)

εβ
wβ(t)

≤ −
(1 − β)

2εβ
q(t)G

(

εR(σ(t))
)

,(2.6)

for t ≥ t5. Integrating (2.6) from t5 to t(> t5), we obtain

(1 − β)

2εβ

∫ t

t5

q(η)G
(

εR(σ(η))
)

dη ≤ −

[

w1−β(η)

]t

t5

< w1−β(t5) < ∞,

a contradiction to (A5).
If x(t) < 0 for t ≥ t1, then we set y(t) := −x(t) for t ≥ t1 in (1.1). Using (A2), we

find
d

dt

[

r(t)
d

dt
[y(t) + p(t)y(τ(t))]

]

+ q(t)H (y(σ(t))) = 0, for t ≥ t1,

where H(u) := −G(−u) for u ∈ R. Clearly, H also satisfies (A2). Then, proceeding
as above, we find the same contradiction.

Next, we suppose that (A5) does not hold. For ε > 0, let us assume that
∫

∞

T
q(η)G

(

εR(σ(η))
)

dη ≤
ε

3
.

Consider

M =
{

x : x ∈ C([t0, ∞),R), x(t) = 0 for t ∈ [t0, T ] and

ε

3
[R(t) − R(T )] ≤ x(t) ≤ ε[R(t) − R(T )]

}

,
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and define

(Φx)(t) =











(Φx)(T ), t ∈ [t0, T ],

−p(t)x
(

τ(t)
)

+
∫ t

T

1

r(η)

[

ε

3
+
∫

∞

η
q(ζ)G

(

x(σ(ζ))
)

dζ

]

dη, t ≥ T.

For every x ∈ M ,

(Φx)(t) ≥
∫ t

T

1

r(η)

[

ε

3
+
∫

∞

η
q(ζ)G

(

x(σ(ζ))
)

dζ

]

dη

≥
ε

3

∫ t

T

dη

r(η)
=

ε

3
[R(t) − R(T )]

and x(t) ≤ εR(t) implies that

(Φx)(t) ≤ − p(t)x
(

τ(t)
)

+
2ε

3

∫ t

T

dη

r(η)

≤aε
[

R(τ(t)) − R(T )
]

+
2ε

3

[

R(t) − R(T )
]

≤aε
[

R(t) − R(T )
]

+
2ε

3

[

R(t) − R(T )
]

=

(

a +
2

3

)

ε
[

R(t) − R(T )
]

≤ε
[

R(t) − R(T )
]

implies that (Φx)(t) ∈ M . Define un : [t0, +∞) → R by the recursive formula

un(t) =
(

Φun−1

)

(t), n ≥ 1,

with the initial condition

u0(t) =







0, t ∈ [t0, T ],
ε
3
[R(t) − R(T )], t ≥ T.

Inductively it is easy to verify that
ε

3

[

R(t) − R(T )
]

≤ un−1(t) ≤ un(t) ≤ ε
[

R(t) − R(T )
]

,

for t ≥ T . Therefore, for t ≥ t0, limn→∞ un(t) exists. By the Lebesgue’s dominated
convergence theorem, u ∈ M and (Φu)(t) = u(t), where u(t) is a solution of (1.1) such
that u(t) > 0. Hence, (A5) is necessary. This completes the proof of the theorem. �

Theorem 2.2. Assume that (A1)-(A3) hold and −1 < −a ≤ p(t) ≤ 0, a > 0 for

t ∈ R+. Then every unbounded solution of (1.1) oscillates if and only if (A5) holds

for every ε > 0.

Proof. Without loss of generality, suppose the contrary that x is an eventually positive

unbounded solution of (1.1). Then, there exists t1 ≥ t0 such that x(t) > 0, x
(

τ(t)
)

> 0

and x
(

σ(t)
)

> 0 for t ≥ t1. Proceeding as in the proof of Lemma 2.1, we see rz′ is
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nonincreasing and z is monotonic on [t2, ∞), where t2 ≥ t1. We have the following
two possible cases.

Case 1. Let z(t) < 0 for t ≥ t2. The case is same as in proof of Theorem 2.1.
Case 2. Let z(t) > 0 for t ≥ t2. By Lemma 2.1, (2.1) holds for t ≥ t3. Since z(t)

is unbounded and monotonic increasing, then it follows that

lim
t→∞

z(t)

R(t)
= lim

t→∞

z′(t)

R′(t)
= lim

t→∞

r(t)z′(t) = α < ∞.

If α = 0, then limt→∞ R(t) = +∞ implies that limt→∞ z(t) < +∞, which is absurd
(because of unbounded z(t)). Hence α 6= 0. Therefore, there exists a constant ε > 0
and a t2 > t1 such that z(t) ≥ εR(t) for t ≥ t2. Consequently, x(t) ≥ z(t) ≥ εR(t) for
t ≥ t2. Using x(t) ≥ εR(t) in (2.2) and then integrating from t2 to +∞, we obtain a
contradiction to (A5) for every ε > 0.

The case where x is eventually negative unbounded solution is very similar and we
omit it here.

The necessary part is same as in Theorem 2.1. This completes the proof of the
theorem. �

Theorem 2.3. Assume that (A1)-(A4) hold and −1 < −a ≤ p(t) ≤ 0, where a > 0,

t ∈ R+. Then every solution of (1.1) oscillates or converges to zero if and only if

(A5) holds for every ε > 0.

Proof. Without loss of generality, suppose the contrary that x is an eventually positive
solution of (1.1). Then, there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0 and
x(σ(t)) > 0 for t ≥ t1. Proceeding as in the proof of Lemma 2.1, we see rz′ is
nonincreasing and, rz′ and z is monotonic on [t2, ∞), where t2 ≥ t1. By Lemma 2.1,
we have the following three possible cases.

Case 1. Let z(t) < 0, r(t)z′(t) < 0 for t ≥ t2. Since z(t) < 0 implies z(t) is
bounded due to Theorem 2.1 and r(t)z′(t) < 0 implies that z(t) is unbounded due to
Lemma 2.1, a contradiction.

Case 2. Assume that z(t) < 0, r(t)z′(t) > 0 holds for t ≥ t2. Therefore,

0 ≥ lim
t→∞

z(t) = lim sup
t→∞

z(t)

≥ lim sup
t→∞

(

x(t) − ax(τ(t))
)

≥ lim sup
t→∞

x(t) + lim inf
t→∞

(

−ax(τ(t))
)

=(1 − a) lim sup
t→∞

x(t),

implies that lim supt→∞
x(t) = 0 and hence limt→∞ x(t) = 0.

Case 3. Let z(t) > 0, r(t)z′(t) > 0 for t ≥ t2. The case follows from Theorem 2.1.
Hence, (A5) is a sufficient condition. The case where x is negative solution is similar

and we omit it here.
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The necessary part is same as in the Theorem 2.1. Thus, the proof of the theorem
is complete. �

Theorem 2.4. Assume that (A1)-(A3) hold and −1 < −a ≤ p(t) ≤ 0 such that

r(t) ≥ r
(

σ(t)
)

for a > 0, t ∈ R+. Furthermore, assume that

(A6) G is strictly superlinear, that is,
G(u)
uβ ≥ G(v)

vβ , u ≥ v > 0, β > 1,

holds. Then every solution of (1.1) either oscillates or converges to zero if and only if

(A7)
∫

∞

0
1

r(η)

[

∫

∞

η q(ζ)dζ
]

dη = +∞.

Proof. For the sufficient part, we use the same type of argument as in the proof of
Theorem 2.3 for first two cases of the pair z(t) and r(t)z′(t). Let us consider the Case

3 for t ≥ t1. By Remark 2.1, there exists a constant ε > 0 and t2 > t1 such that

z
(

σ(t)
)

≥ ε for t ≥ t2. Consequently,

G
(

z(σ(t))
)

=
G
(

z(σ(t))
)

zβ
(

σ(t)
) zβ

(

σ(t)
)

≥
G(ε)

εβ
zβ
(

σ(t)
)

,

for t ≥ t2. Therefore, (2.4) becomes

r(t)z′(t) ≥
G(ε)

εβ

∫

∞

t
q(η)zβ

(

σ(η)
)

dη,

≥
G(ε)

εβ

[

∫

∞

t
q(η)dη

]

zβ
(

σ(t)
)

,

that is,

r
(

σ(t)
)

z′

(

σ(t)
)

≥
G(ε)

εβ

[

∫

∞

t
q(η)dη

]

zβ
(

σ(t)
)

,

for t ≥ t2, implies that

z′

(

σ(t)
)

≥
G(ε)

εβr
(

σ(t)
)

[

∫

∞

t
q(η)dη

]

zβ
(

σ(t)
)

≥
G(ε)

εβ

zβ
(

σ(t)
)

r(t)

[

∫

∞

t
q(η)dη

]

.

Integrating the last inequality from t2 to +∞, we get

G(ε)

εβ

∫

∞

t2

1

r(η)

[

∫

∞

η
q(ζ)dζ

]

dη ≤
∫

∞

t2

z′

(

σ(η)
)

zβ
(

σ(η)
)dη < ∞,

which is a contradiction to (A7).
The case where x is eventually negative solution is omitted since it can be dealt

similarly.
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Next, we show that (A7) is necessary. Assume that (A7) fails to hold and let

G(ε)
∫ t

T

1

r(η)

[

∫

∞

η
q(ζ)dζ

]

dη ≤
ε

3
, T ≥ T ∗,

where ε > 0 is a constant. Consider

M =
{

x ∈ C([t0, ∞),R) : x(t) =
ε

3
, t ∈ [t0, T ],

ε

3
≤ x(t) ≤ ε, for t ≥ T

}

,

and define

(Φx)(t) =















ε

3
, t ∈ [t0, T ],

−p(t)x
(

τ(t)
)

+
ε

3
+
∫ t

T

1

r(η)

[

∫

∞

η
q(ζ)G

(

x(σ(ζ))
)

dζ

]

dη, t ≥ T,

for every x ∈ M , (Φx)(t) ≥ ε
3

and

(Φx)(t) ≤aε +
ε

3
+ G(ε)

∫ t

T

1

r(η)

[

∫

∞

η
q(ζ)dζ

]

dη

≤aε +
ε

3
+

ε

3
=

(

a +
2

3

)

ε

≤ε,

implies that Φx ∈ M . The rest of the proof follows from Theorem 2.1. This completes
the proof of the theorem. �

Theorem 2.5. Assume that (A1)-(A3), (A6) hold and 0 ≤ p(t) ≤ a < 1 such that

r(t) ≥ r
(

σ(t)
)

for t ∈ R+. Furthermore, assume that G is Lipschitzian on the interval

of the form [c, d], 0 < c < d < ∞. Then every solution of (1.1) oscillates if and only

if (A7) holds.

Proof. Suppose the contrary that x is a nonoscillatory solution of (1.1). Then, there
exists t1 ≥ t0 such that either x(t) > 0 or x(t) < 0 for t ≥ t1. Assume that x(t) > 0,

x
(

τ(t)
)

> 0 and x
(

σ(t)
)

> 0 for t ≥ t1. Clearly, z defined by (2.1) is positive on

[t1, ∞). By Lemma 2.1 and Remark 2.1, there exists ε > 0 such that z(t) ≥ ε for
t ≥ t2, where t2 ≥ t1. On the other hand, z being increasing implies that

(1 − a)z(t) ≤
(

1 − p(t)
)

z(t) ≤ z(t) − p(t)z(τ(t))

=x(t) − p(t)p(τ(t))x(τ(τ(t))) ≤ x(t),

for t ≥ t3, where t3 ≥ t2. Consequently, (1.1) becomes

(

r(t)z′(t)
)

′

+ q(t)G
(

(1 − a)z(σ(t))
)

≤ 0,
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for t ≥ t3. Using (A6) it follows that

G
(

(1 − a)z(σ(t))
)

=
G
(

(1 − a)z(σ(t))
)

(1 − a)βzβ
(

σ(t)
) (1 − a)βzβ

(

σ(t)
)

≥
G
(

ε(1 − a)
)

εβ(1 − a)β
(1 − a)βzβ

(

σ(t)
)

.

The remaining portion of the sufficient part follows from Theorem 2.4.
Conversely, suppose that (A7) fails to hold. Then there exists T ≥ T ∗ such that

∫

∞

T

1

r(η)

[

∫

∞

η
q(ζ)dζ

]

dη <
1 − a

5K
,

where K = max{K1, G(1)} and K1 is the Lipschitz constant of G on
[

7(1−a)
10

, 1
]

for

t ≥ t0. Let X = BC([t0, ∞),R) be the space of real valued continuous functions on
[t0, ∞). Indeed, X is a Banach space with respect to sup norm defined by

‖x‖ = sup{|x(t)| : t ≥ t0}.

Define

S =

{

u ∈ X :
7(1 − a)

10
≤ u(t) ≤ 1, t ≥ t0

}

.

We notice that S is a closed convex subspace of X. Let Φ : S → S be such that

(Φx)(t) =















(Φx)(T ), t ∈ [t0, T ],

−p(t)x
(

τ(t)
)

+
9 + a

10
−
∫

∞

t

1

r(η)

[

∫

∞

η
q(ζ)G

(

x(σ(ζ))
)

dζ

]

dη, t ≥ T.

For every x ∈ X, (Φx)(t) ≤ 9+a
10

≤ 1 and

(Φx)(t) ≥ −a +
9 + a

10
−

1 − a

5
=

7

10
(1 − a),

implies that Φ(x) ∈ S. Now for x1, x2 ∈ S, we have

|(Φx1)(t) − (Φx2)(t)| ≤a|x1

(

τ(t)
)

− x2

(

τ(t)
)

|

+
∫

∞

t

1

r(η)

[

∫

∞

η
q(ζ)|G

(

x1(σ(ζ))
)

− G
(

x2(σ(ζ))
)

|dζ

]

dη,

that is,

|(Φx1)(t) − (Φx2)(t)| ≤a‖x1 − x2‖ + ‖x1 − x2‖K1

∫

∞

t

1

r(η)

[

∫

∞

η
q(ζ)dζ

]

dη

≤

(

a +
1 − a

5

)

‖x1 − x2‖

=
1 + 4a

5
‖x1 − x2‖.
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Therefore, ‖Φx1 − Φx2‖ ≤ 1+4a
5

‖x1 − x2‖ implies that Φ is a contraction. By using
Banach’s contraction mapping principle, it follows that Φ has a unique fixed point

x(t) in
[

7(1−a)
10

, 1
]

. Hence, (A7) is the necessary condition for oscillation of (1.1). This

completes the proof of the theorem. �

Theorem 2.6. Assume that (A1)-(A3) hold and 0 ≤ p(t) ≤ a < 1 for t ∈ R+.

Furthermore, assume that G be Lipschitzian on intervals of the form [c, d], 0 < c <

d < ∞. Then every bounded solutions of (1.1) oscillates if and only if (A7) holds.

Proof. Proceeding as in proof of the Theorem 2.5 we have obtained x(t) ≥ (1−a)z(t) ≥
(1 − a)ε = ε1. Consequently, (1.1) becomes

(

r(t)z′(t)
)

′

+ q(t)G(ε1) ≤ 0.

Twice integration on last inequality yields a contradiction to (A7). The necessary
part is same as in the proof of Theorem 2.5. Hence the details are omitted. Thus the
proof of theorem is complete. �

Theorem 2.7. Assume that (A1)-(A3) hold and −∞ < −a1 ≤ p(t) ≤ −a2 < −1
such that 3a2 > a1 for t ∈ R+ where a1, a2 > 0. Let G be Lipschitzian on intervals of

the form [c, d], 0 < c < d < ∞. Then every bounded solution of (1.1) oscillates or

tends to zero if and only if (A7) holds.

Proof. Without loss of generality, suppose the contrary that x is an eventually positive
solution of (1.1). Then, there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0 and
x(σ(t)) > 0 for t ≥ t1. Proceeding as in the proof of Lemma 2.1, we see rz′ is
nonincreasing and, rz′ and z is monotonic on [t2, ∞), where t2 ≥ t1. Since x(t) is
bounded, then by (1.4), z(t) is bounded and hence limt→∞ z(t) exists. It is easy to
see that the case z(t) < 0, r(t)z′(t) < 0 is not possible. Using the proof of Lemma
2.2, we conclude that the case z(t) > 0, r(t)z′(t) < 0 does not arise. Therefore, we
have following two cases.

Case 1. Let z(t) > 0, r(t)z′(t) > 0 for [t3, ∞), t3 > t2. Then we can find a constant

ε > 0 and t4 > t3 such that z
(

σ(t)
)

≥ ε for t ≥ t4, that is, x
(

σ(t)
)

≥ z
(

σ(t)
)

≥ ε for

t ≥ t4. Hence, (1.1) becomes
(

r(t)z′(t)
)

′

+ G(ε)q(t) ≤ 0, t ≥ t4.

Twice integration on last inequality gives a contradiction to (A7).
Case 2. Let z(t) < 0, r(t)z′(t) > 0 for [t3, ∞), t3 > t2. We claim that limt→∞ z(t) =

0. If not, there exist α < 0 and t4 > t3 such that z
(

τ−1(σ(t))
)

< α for t ≥ t4.

Hence, z(t) ≥ −a1x
(

τ(t)
)

implies that x(t) ≥ −a−1
1 z

(

τ−1(t)
)

, that is, x
(

σ(t)
)

≥

−a−1
1 z

(

τ−1(σ(t))
)

≥ −a−1
1 α for t ≥ t4. Consequently, (1.1) reduces to

(

r(t)z′(t)
)

′

+ G
(

−a−1
1 α

)

q(t) ≤ 0,
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for t ≥ t4. Using the same type of argument as in the former case, we get a contra-
diction to (A7). Thus, our claim holds and hence

0 = lim
t→∞

z(t) = lim inf
t→∞

(

x(t) + p(t)x(τ(t))
)

≤ lim inf
t→∞

(

x(t) − a2x(τ(t))
)

≤ lim sup
t→∞

x(t) + lim inf
t→∞

(

−a2x(τ(t))
)

=(1 − a2) lim sup
t→∞

x(t),

implies that lim supt→∞
x(t) = 0 [∵ 1 − a2 < 0]. Therefore, limt→∞ x(t) = 0.

The case where x is negative bounded solution is very similar and we omit it here.
For the necessary part, it is possible to find T ≥ T ∗ such that

∫

∞

T

1

r(η)

[
∫

∞

η
q(ζ)dζ

]

dη <
a2 − 1

3K
,

where K = max{K1, G(1)} and K1 is the Lipschitz constants of G on [a, 1], where

a = (a2−1)(3a2−a1)
3a1a2

. Let X = BC([t0, ∞),R) be the space of real valued continuous

functions defined on [t0, ∞). Indeed, X is a Banach space with the sup norm defined
by

‖x‖ = sup{|x(t)| : t ≥ t0}.

Define

S = {u ∈ X : a ≤ u(t) ≤ 1, t ≥ t0}

and we note that S is a closed convex subspace of X. Let Φ : S → S be such that

(Φx)(t) =











































(Φx)(T ), t ∈ [t0, T ],

−
x
(

τ−1(t)
)

p
(

τ−1(t)
) −

a2 − 1

p
(

τ−1(t)
)

+
1

p
(

τ−1(t)
)

∫ τ−1(t)

T

1

r(η)

[

∫

∞

η
q(ζ)G

(

x(σ(ζ))
)

dζ

]

dη, t ≥ T.

For every x ∈ S,

(Φx)(t) ≤ −
x
(

τ−1(t)
)

p
(

τ−1(t)
) −

a2 − 1

p
(

τ−1(t)
) ≤

1

a2

+
a2 − 1

a2

= 1
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and

(Φx)(t) ≥ −
a2 − 1

p
(

τ−1(t)
) +

1

p
(

τ−1(t)
)

∫ τ−1(t)

T

1

r(η)

[

∫

∞

η
q(ζ)G

(

x(σ(ζ))
)

dζ

]

dη

≥ −
a2 − 1

a1

+
G(1)

p
(

τ−1(t)
)

∫ τ−1(t)

T

1

r(η)

[
∫

∞

η
q(ζ)dζ

]

dη

≥ −
a2 − 1

a1

−
G(1)

a2

∫

∞

T

1

r(η)

[
∫

∞

η
q(ζ)dζ

]

dη

≥ −
a2 − 1

a1

−
a2 − 1

3a2

= a,

implies that Φx ∈ S. Now for x1, x2 ∈ S, we have

|(Φx1)(t) − (Φx2)(t)| ≤
1

∣

∣

∣p
(

τ−1(t)
)
∣

∣

∣

|x1

(

τ−1(t)
)

− x2

(

τ−1(t)
)

| +
K1

∣

∣

∣p
(

τ−1(t)
)
∣

∣

∣

×
∫ τ−1(t)

T

1

r(η)

[

∫

∞

η
|x1

(

σ(ζ)
)

− x2

(

σ(ζ)
)

|q(ζ)dζ

]

dη

≤
1

a2

‖x1 − x2‖ +
a2 − 1

3a2

‖x1 − x2‖

=γ‖x1 − x2‖,

implies that

‖Φx1 − Φx2‖ ≤ γ‖x1 − x2‖,

where γ = 1
a2

(1 + a2−1
3

) < 1. Therefore, Φ is a contraction. Hence by the Banach’s
contraction mapping principle Φ has a unique fixed point x ∈ S. It is easy to see that
limt→∞ x(t) 6= 0. This completes the proof of the theorem. �

3. Discussion and Example

It is worth observation that we could succeed partially to establish the oscillation
of all solutions of the nonlinear equation (1.1), when |p(t)| < ∞. We failed to obtain
the necessary and sufficient conditions in the range 1 ≤ p(t) < ∞ and p(t) ≡ −1.
Therefore, the undertaken problem is incomplete for all range of p(t).

Remark 3.1. In Theorems 2.2, 2.6 and 2.7, G could be linear, sublinear or superlinear.

We conclude this section with the following examples to illustrate our main results:

Example 3.1. Consider the delay differential equations

d

dt

[

t
d

dt
[x(t) − 3x(e−πt)]

]

+
4

t
x(t) = 0, for t ≥ 1,(3.1)

where r(t) := t, p(t) :≡ −3, τ(t) := e−πt, q(t) := 4
t2 , σ(t) := t and G(u) := u for

t ≥ 1 and u ∈ R. It can be easily shown that Theorem 2.7 applies to (3.1). Thus,
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every bounded solution oscillates or converges to zero asymptotically. Obviously,
x(t) = sin(ln(t2)) for t ≥ 1 is an oscillating solution.
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SOME ESTIMATES FOR HOLOMORPHIC FUNCTIONS AT THE

BOUNDARY OF THE UNIT DISC

B. N. ORNEK1

Abstract. In this paper, for holomorphic function f(z) = z + c2z2 + c3z3 + · · ·
belong to the class of N (λ), it has been estimated from below the modulus of the

angular derivative of the function zf ′(z)
f(z) on the boundary point of the unit disc.

1. Introduction

Let f be a holomorphic function in the unit disc E = {z : |z| < 1}, f(0) = 0 and
|f(z)| < 1 for |z| < 1. In accordance with the classical Schwarz lemma, for any point
z in the disc E, we have |f(z)| ≤ |z| and |f ′(0)| ≤ 1. Equality in these inequalities
(in the first one, for z 6= 0) occurs only if f(z) = zeiθ, where θ is a real number ([8], p.
329). For historical background about the Schwarz lemma and its applications on the
boundary of the unit disc, we refer to (see [2, 7]).

The basic tool in proving our results is the following lemma due to Jack.

Lemma 1.1 (Jack’s lemma). Let f(z) be holomorphic function in the unit disc E

with f(0) = 0. Then if |f(z)| attains its maximum value on the circle |z| = r at a

point z0 ∈ E, then there exists a real number k ≥ 1 such that

z0f
′(z0)

f(z0)
= k.

Let A denote the class of functions

f(z) = z + c2z
2 + c3z

3 + · · · ,

Key words and phrases. Schwarz lemma, holomorphic function, angular limit.
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that are holomorphic in the unit disc E. Also, N (λ) be the subclass of A consisting
of all functions f(z) which satisfy

(1.1)

∣

∣

∣

∣

∣

zf ′(z)

f(z)

∣

∣

∣

∣

∣

α ∣
∣

∣

∣

∣

z

(

zf ′(z)

f(z)

)′∣
∣

∣

∣

∣

β

<

(

1

2
λ

)β

,

for some real α ≥ 0, β > 0 and λ = β

β+α
.

Let f(z) ∈ N (λ) and define φ(z) in E by

(1.2) φ(z) =
(h(z))

1

λ − 1

(h(z))
1

λ + 1
,

where h(z) = zf ′(z)
f(z)

.

Obviously, φ(z) is holomorphic function in the unit disc E and φ(0) = 0. We want
to prove |φ(z)| < 1 for |z| < 1. Differentiating (1.2) and simplifiying, we obtain

(

zf ′(z)

f(z)

)′

=
2λφ′(z)

(1 − φ(z))2

(

1 + φ(z)

1 − φ(z)

)λ−1

and, so
∣

∣

∣

∣

∣

zf ′(z)

f(z)

∣

∣

∣

∣

∣

α ∣
∣

∣

∣

∣

z

(

zf ′(z)

f(z)

)′∣
∣

∣

∣

∣

β

=

∣

∣

∣

∣

∣

1 + φ(z)

1 − φ(z)

∣

∣

∣

∣

∣

αβ+β(λ−1) ∣
∣

∣

∣

∣

2λzφ′(z)

(1 − φ(z))2

∣

∣

∣

∣

∣

β

=

∣

∣

∣

∣

∣

2λzφ′(z)

(1 − φ(z))2

∣

∣

∣

∣

∣

β

<

(

λ

2

)β

.

If there exists a point z0 ∈ E such that

max
|z|≤|z0|

|φ(z)| = |φ(z0)| = 1,

then Jack’s lemma gives us that φ(z0) = eiθ and z0φ
′(z0) = kφ(z0), k ≥ 1.

Thus we have
∣

∣

∣

∣

∣

z0f
′(z0)

f(z0)

∣

∣

∣

∣

∣

α ∣
∣

∣

∣

∣

z0

(

z0f
′(z0)

f(z0)

)′∣
∣

∣

∣

∣

β

=

∣

∣

∣

∣

∣

2λz0φ
′(z0)

(1 − φ(z0))
2

∣

∣

∣

∣

∣

β

=

∣

∣

∣

∣

∣

2λkeiθ

(1 − eiθ)2

∣

∣

∣

∣

∣

β

=
(2λk)β

|1 − eiθ|2β
≥

(2λ)β

22β
=

(

λ

2

)β

.

This contradict (1.1). So, there is no point z0 ∈ E such that φ(z0) = 1. This means
that |φ(z)| < 1 for |z| < 1. Thus, from the Schwarz lemma, we obtain

|c2| ≤
2β

β + α
.

Moreover, the equality |c2| = 2β

β+α
occurs for the function

f(z) = e

z
∫

0

1

t
( 1+t

1−t
)

λ

dt

.



SOME ESTIMATES FOR HOLOMORPHIC FUNCTIONS 477

That proves the following lemma.

Lemma 1.2. If f(z) ∈ N (λ), then we have

(1.3) |c2| ≤
2β

β + α
.

The equality in (1.3) occurs for the function

f(z) = e

z
∫

0

1

t
( 1+t

1−t
)

λ

dt

.

The following boundary version of the Schwarz lemma was proved in 1938 by
Unkelbach in [21] and then rediscovered and partially improved by Osserman in [17].

Lemma 1.3. Let f(z) be a holomorphic function self-mapping of E = {z : |z| < 1},

that is |f(z)| < 1 for all z ∈ E. Assume that there is a b ∈ ∂E so that f extend

continuously to b, |f(b)| = 1 and f ′(b) exists. Then

(1.4) |f ′(b)| ≥
2

1 + |f ′(0)|
.

The equality in (1.4) holds if and only if f is of the form

f(z) = −z
a− z

1 − az
, for all z ∈ E,

for some constant a ∈ (−1, 0].

Corollary 1.1. Under the hypotheses lemma, we have

(1.5) |f ′(b)| ≥ 1,

with equality only if f is of the form

f(z) = zeiθ,

where θ is a real number.

The following Lemma 1.4 and Corollary 1.2, known as the Julia-Wolff lemma, is
needed in the sequel [15].

Lemma 1.4 (Julia-Wolff lemma). Let f be a holomorphic function in E, f(0) = 0
and f(E) ⊂ E. If, in addition, the function f has an angular limit f(b) at b ∈ ∂E,

|f(b)| = 1, then the angular derivative f ′(b) exists and 1 ≤ |f ′(b)| ≤ ∞.

Corollary 1.2. The holomorphic function f has a finite angular derivative f ′(b) if

and only if f ′ has the finite angular limit f ′(b) at b ∈ ∂E.

Inequality (1.4) and its generalizations have important applications in geometric
theory of functions (see, e.g., [8, 18]). Therefore, the interest to such type results is
not vanished recently (see, e.g., [1, 2, 5–7,15–17,19,20] and references therein).
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Vladimir N. Dubinin has continued this line and has made a refinement on the
boundary Schwar lemma under the assumption that f(z) = cpz

p + cp+1z
p+1 + · · · ,

with a zero set {zk} (see [5]).
S. G. Krantz and D. M. Burns [3] and D. Chelst [4] studied the uniqueness part

of the Schwarz lemma. According to M. Mateljević’s studies, some other types of
results which are related to the subject can be found in ([13,14] and [12]). In addition,
[11] was posed on ResearchGate where is discussed concerning results in more general
aspects.

Also, M. Jeong [10] showed some inequalities at a boundary point for different form
of holomorphic functions and found the condition for equality and in [9] a holomorphic
self map defined on the closed unit disc with fixed points only on the boundary of the
unit disc.

2. Main Results

In this section, for holomorphic function f(z) = z + c2z
2 + c3z

3 + · · · belong to the
class of N (λ), it has been estimated from below the modulus of the angular derivative

of the function zf ′(z)
f(z)

on the boundary point of the unit disc.

Theorem 2.1. Let f(z) ∈ N (λ). Assume that, for some b ∈ ∂E, f has angular limit

f(b) at b and
bf ′(b)
f(b)

= iλ. Then we have the inequality

(2.1)

∣

∣

∣

∣

∣

(

zf ′(z)

f(z)

)′

z=b

∣

∣

∣

∣

∣

≥
β

β + α
.

The equality in (2.1) occurs for the function

f(z) = e

z
∫

0

1

t
( 1+t

1−t
)

λ

dt

,

where λ = β

β+α
.

Proof. Consider the function

φ(z) =
(h(z))

1

λ − 1

(h(z))
1

λ + 1
,

where h(z) = zf ′(z)
f(z)

and λ = β

β+α
. φ(z) is a holomorphic function in the unit disc E

and φ(0) = 0. From the Jack’s lemma and since f(z) ∈ N (λ), we obtain |φ(z)| < 1
for |z| < 1. Also, we have |φ(b)| = 1 for b ∈ ∂E.

From (1.5), we obtain

1 ≤ |φ′(b)| =
2

λ

∣

∣

∣

∣

∣

∣

∣

(h(b))
1

λ
−1
h′(b)

(

1 + (h(b))
1

λ

)2

∣

∣

∣

∣

∣

∣

∣

=
2

λ

∣

∣

∣

∣

∣

∣

∣

∣

(

iλ
)

1

λ
−1
h′(b)

(

1 + (iλ)
1

λ

)2

∣

∣

∣

∣

∣

∣

∣

∣

=
2

λ

∣

∣

∣

∣

∣

∣

∣

∣

(

iλ
)

1

λ
−1
h′(b)

(

1 + (iλ)
1

λ

)2

∣

∣

∣

∣

∣

∣

∣

∣
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and

1 ≤
2

λ

|h′(b)|

|1 + i|2
=

|h′(b)|

λ
.

So, we take the inequality (2.1).
Now, we shall show that the inequality (2.1) is sharp. Let

f(z) = e

z
∫

0

1

t
( 1+t

1−t
)

λ

dt

.

Then, we have

ln f(z) = ln e

z
∫

0

1

t
( 1+t

1−t
)

λ

dt

=

z
∫

0

1

t

(

1 + t

1 − t

)λ

dt,

f ′(z)

f(z)
=

1

z

(

1 + z

1 − z

)λ

,

h(z) =z
f ′(z)

f(z)
=
(

1 + z

1 − z

)λ

and

h′(z) = λ

(

1 + z

1 − z

)λ−1 2

(1 − z)2 .

Therefore, we obtain

h′(i) = λ

(

1 + i

1 − i

)λ−1 2

(1 − i)2

and

|h′(i)| = λ =
β

β + α
. �

Theorem 2.2. Under the same assumptions as in Theorem 2.1, we have

(2.2)

∣

∣

∣

∣

∣

(

zf ′(z)

f(z)

)′

z=b

∣

∣

∣

∣

∣

≥
4β2

(β + α) (2β + (β + α) |c2|)
.

The inequality (2.2) is sharp with equality for the function

f(z) = e

z
∫

0

1

t
( 1+t

1−t
)

λ

dt

,

where λ = β

β+α
.

Proof. Let φ(z) be as in the proof of Theorem 2.1. Using the inequality (1.4) for the
function φ(z), we obtain

2

1 + |φ′(0)|
≤ |φ′(b)| =

2

λ

∣

∣

∣

∣

∣

∣

∣

(h(b))
1

λ
−1
h′(b)

(

1 + (h(b))
1

λ

)2

∣

∣

∣

∣

∣

∣

∣

=
2

λ

|h′(b)|

|1 + i|2
=

|h′(b)|

λ
.
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Since

φ′(z) =
2

λ

(h(z))
1

λ
−1
h′(z)

(

1 + (h(z))
1

λ

)2

and

|φ′(0)| =
2

λ

∣

∣

∣

∣

∣

∣

∣

(h(0))
1

λ
−1
h′(0)

(

1 + (h(0))
1

λ

)2

∣

∣

∣

∣

∣

∣

∣

=
2

λ

|c2|

4
=

|c2|

2λ
,

we have
2

1 + |c2|
2λ

≤
|h′(b)|

λ

and

|h′(b)| ≥
4λ2

2λ+ |c2|
.

So, we obtain the inequality (2.2).
To show that the inequality (2.2) is sharp, take the holomorphic function

f(z) = e

z
∫

0

1

t
( 1+t

1−t
)

λ

dt

.

Then

h(z) = z
f ′(z)

f(z)
=
(

1 + z

1 − z

)λ

and

|h′(i)| = λ.

Since |c2| = 2λ is satisfied with equality. That is;

4λ2

2λ+ |c2|
=

4λ2

2λ+ 2λ
= λ. �

Theorem 2.3. Let f(z) ∈ N (λ). Assume that, for some b ∈ ∂E, f has angular limit

f(b) at b and
bf ′(b)
f(b)

= iλ. Then we have the inequality

(2.3)

∣

∣

∣

∣

∣

(

zf ′(z)

f(z)

)′

z=b

∣

∣

∣

∣

∣

≥ λ

(

1 +
2 (2λ− |c2|)

2

4λ2 − |c2|
2 + |4λc3 − c2

2(2λ− 1) + (1 − λ)c2|

)

,

where λ = β

β+α
. The inequality (2.3) is sharp with equality for the function

f(z) = e

z
∫

0

1

t
( 1+t

1−t
)

λ

dt

.

Proof. Let φ(z) be as in the proof of Theorem 2.1. By the maximum principle for
each z ∈ E, we have |φ(z)| ≤ |z|. So,

ψ(z) =
φ(z)

z
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is a holomorphic function in E and |ψ(z)| < 1 for |z| < 1. For any real number µ = 1
λ

that is not a non-negative integer

kµ =
∞
∑

n=0

(

µ

n

)

(k − 1)n
,

where k = zf ′(z)
f(z)

= 1 + c2z + (2c3 − c2
2) z

2 + · · · .

From equality of ψ(z), we have

ψ(z) =
φ(z)

z
=

1

z

(h(z))
1

λ − 1

(h(z))
1

λ + 1
=

1

z

(k)µ − 1

(k)µ + 1
.

Thus, we take

(2.4) |ψ(0)| =
|c2|

2λ
≤ 1

and

|ψ′(0)| =
|4λc3 − c2

2(2λ− 1) + (1 − λ)c2|

4λ2
.

Moreover, it can be seen that

bφ′(b)

φ(b)
= |φ′(b)| ≥

∣

∣

∣(bp)′
∣

∣

∣ =
b (bp)′

bp
.

The function

Φ(z) =
ψ(z) − ψ(0)

1 − ψ(0)ψ(z)

is a holomorphic in the unit disc E, |Φ(z)| < 1 for |z| < 1, Φ(0) = 0 and |Φ(b)| = 1
for b ∈ ∂E.

From (1.4), we obtain

2

1 + |Φ′(0)|
≤ |Φ′(b)| =

1 − |ψ(0)|2
∣

∣

∣1 − ψ(0)ψ(b)
∣

∣

∣

2 |ψ′(b)| ≤
1 + |ψ(0)|

1 − |ψ(0)|
|ψ′(b)|

=
1 + |ψ(0)|

1 − |ψ(0)|
{|φ′(b)| − 1} .

Since

Φ′(z) =
1 − |ψ(0)|2

(

1 − ψ(0)ψ(z)
)2ψ

′(z),

|Φ′(0)| =
|ψ′(0)|

1 − |ψ(0)|2
=

|4λc3−c2
2
(2λ−1)+(1−λ)c2|

4λ2

1 −
(

|c2|
2λ

)2 =
|4λc3 − c2

2(2λ− 1) + (1 − λ)c2|

4λ2 − |c2|
2 ,
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we take

2

1 +
|4λc3−c2

2
(2λ−1)+(1−λ)c2|

4λ2−|c2|2

≤
1 + |c2|

2λ

1 − |c2|
2λ

{

|h′(b)|

λ
− 1

}

=
2λ+ |c2|

2λ− |c2|

{

|h′(b)|

λ
− 1

}

.

Therefore, we obtain

1 +
2
(

4λ2 − |c2|
2
)

4λ2 − |c2|
2 + |4λc3 − c2

2(2λ− 1) + (1 − λ)c2|

2λ− |c2|

2λ+ |c2|
≤

|h′(b)|

λ

and

|h′(b)| ≥ λ

(

1 +
2 (2λ− |c2|)

2

4λ2 − |c2|
2 + |4λc3 − c2

2(2λ− 1) + (1 − λ)c2|

)

.

So, we obtain the inequality (2.3).
To show that the inequality (2.3) is sharp, take the holomorphic function

f(z) = e

z
∫

0

1

t
( 1+t

1−t
)

λ

dt

.

Then

h(z) = z
f ′(z)

f(z)
=
(

1 + z

1 − z

)λ

and

|h′(i)| = λ.

Since |c2| = 2λ, (2.3) is satisfied with equality. �

If
(

zf ′(z)
f(z)

)
1

λ − 1 has no zeros different from z = 0 in Theorem 2.3, the inequality

(2.3) can be further strengthened. This is given by the following theorem.

Theorem 2.4. Let f(z) ∈ N (λ) and
(

zf ′(z)
f(z)

)
1

λ −1 has no zeros in E except z = 0 and

c2 > 0. Assume that, for some b ∈ ∂E, f has angular limit f(b) at b and
bf ′(b)
f(b)

= iλ.

Then we have the inequality

(2.5)

∣

∣

∣

∣

∣

(

zf ′(z)

f(z)

)′

z=b

∣

∣

∣

∣

∣

≥ λ



1 −
2λ |c2| ln2

(

|c2|
2λ

)

2λ |c2| ln
(

|c2|
2λ

)

− |4λc3 − c2
2(2λ− 1) + (1 − λ)c2|



 ,

where λ = β

β+α
. In addition, the equality in (2.5) occurs for the function

f(z) = e

z
∫

0

1

t
( 1+t

1−t
)

λ

dt

,

where λ = β

β+α
.
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Proof. Let c2 > 0 in the expression of the function f(z). Having in mind the inequality

(2.4) and the function
(

zf ′(z)
f(z)

)
1

λ − 1 has no zeros in E except E − {0}, we denote by

lnψ(z) the holomorphic branch of the logarithm normed by the condition

lnψ(0) = ln

(

|c2|

2λ

)

< 0.

The auxiliary function

∆(z) =
lnψ(z) − lnψ(0)

lnψ(z) + lnψ(0)

is a holomorphic in the unit disc E, |∆(z)| < 1, ∆(0) = 0 and |∆(b)| = 1 for b ∈ ∂E.
From (1.4), we obtain

2

1 + |∆′(0)|
≤ |∆′(b)| =

|2 lnψ(0)|

|lnψ(b) + lnψ(0)|2

∣

∣

∣

∣

∣

ψ′(b)

ψ(b)

∣

∣

∣

∣

∣

=
−2 lnψ(0)

ln2 ψ(0) + arg2 ψ(b)
{|φ′(b)| − 1} .

Since

|∆′(0)| =
−1

ln
(

|c2|
2λ

)

|4λc3−c2
2
(2λ−1)+(1−λ)c2|

4λ2

|c2|
2λ

=
−1

ln
(

|c2|
2λ

)

|4λc3 − c2
2(2λ− 1) + (1 − λ)c2|

2λ |c2|

and replacing arg2 ψ(b) by zero, then we have

1

1 −
|4λc3−c2

2
(2λ−1)+(1−λ)c2|

2λ|c2| ln

(

|c2|

2λ

)

≤
−1

ln
(

|c2|
2λ

)

{

|h′(b)|

λ
− 1

}

and

1 −
2λ |c2| ln2

(

|c2|
2λ

)

2λ |c2| ln
(

|c2|
2λ

)

− |4λc3 − c2
2(2λ− 1) + (1 − λ)c2|

≤
|h′(b)|

λ
.

Thus, we obtain the inequality (2.5) with an obvious equality case. �

The following inequality (2.6) is weaker, but is simpler than (2.5) and does not
contain the coeffient c3.

Theorem 2.5. Under the hypotheses of Theorem 2.4, we have the inequality

(2.6)

∣

∣

∣

∣

∣

(

zf ′(z)

f(z)

)′

z=b

∣

∣

∣

∣

∣

≥
β

β + α

[

1 − ln

(

(β + α)
|c2|

2β

)]

.
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Moreover, the result is sharp and the extremal function is

f(z) = e

z
∫

0

1

t
( 1+t

1−t
)

λ

dt

,

where λ = β

β+α
.

Proof. Let c2 > 0 . Using the inequality (1.5) for the function Φ(z), we obtain

1 ≤ |∆′(b)| =
|2 lnψ(0)|

|lnψ(b) + lnψ(0)|2

∣

∣

∣

∣

∣

ψ′(b)

ψ(b)

∣

∣

∣

∣

∣

=
−2 lnψ(0)

ln2 ψ(0) + arg2 ψ(b)
{|φ′(b)| − 1} .

Replacing arg2 ϕ(b) by zero, then we have

1 ≤
−1

ln
(

|c2|
2λ

)

{

|h′(b)|

λ
− 1

}

and

|h′(b)| ≥ λ

[

1 − ln

(

|c2|

2λ

)]

.

Thus, we obtain the inequality (2.6) with an obvious equality case. �
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