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CONVERGENCE OF DOUBLE COSINE SERIES

KARANVIR SINGH1 AND KANAK MODI2

Abstract. In this paper we consider double cosine series whose coefficients form a
null sequence of bounded variation of order (p, 0), (0, p) and (p, p) with the weight
(jk)p−1 for some p > 1. We study pointwise convergence, uniform convergence and
convergence in Lr-norm of the series under consideration. In a certain sense our
results extend the results of Young [7], Kolmogorov [3] and Móricz [4, 5].

1. Introduction

Consider the double cosine series

(1.1)
∞∑
j=0

∞∑
k=0

λjλkajk cos jx cos ky,

on positive quadrant T = [0, π] × [0, π] of the two dimensional torus where λ0 = 1
2

and λj = 1 for j = 1, 2, 3, . . . .
The rectangular partial sums Smn(x, y) and the Cesàro means σmn(x, y) of the

series (1.1) are defined as

Smn(x, y) =
m∑
j=0

n∑
k=0

λjλkajk cos jx cos ky,

σmn(x, y) = 1
(m+ 1)(n+ 1)

m∑
j=0

n∑
k=0

Sjk(x, y), m, n > 0,

Key words and phrases. Rectangular partial sums, Lr−convergence, Cesàro means, monotone
sequences.
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and for λ > 1, the truncated Cesáro means are defined by

V λ
mn(x, y) = 1

([λm]−m)([λn]− n)

[λm]∑
j=m+1

[λn]∑
k=n+1

Sjk(x, y).

Now assuming the coefficients {ajk : j, k ≥ 0} in (1.1) be a double sequence of real
numbers which satisfy the following conditions for some positive integer p:
(1.2) |ajk|(jk)p−1 → 0 as max{j, k} → ∞,

(1.3) lim
k→∞

∞∑
j=0
|4p0ajk|(jk)p−1 = 0,

(1.4) lim
j→∞

∞∑
k=0
|40pajk|(jk)p−1 = 0,

(1.5)
∞∑
j=0

∞∑
k=0
|4ppajk|(jk)p−1 <∞.

The finite order differences 4pqajk are defined by
400ajk =ajk,
4pqajk =4p−1,qajk −4p−1,qaj+1,k, p ≥ 1, q ≥ 0,
4pqajk =4p,q−1ajk −4p,q−1aj,k+1, p ≥ 0, q ≥ 1.

Also a double induction argument gives

4pqajk =
p∑
s=0

q∑
t=0

(−1)s+t
(
p

s

)(
q

t

)
aj+s, k+t.

We can call the above mentioned conditions (1.2)-(1.5) as conditions of bounded vari-
ation of order (p, 0), (0, p) and (p, p) respectively with the weight (jk)p−1. Obviously
these conditions generalise the concept of monotone sequences. Also any sequence
satisfying (1.5) with p = 2 is called a quasi-convex sequence [3, 5]. Clearly the condi-
tions (1.3) and (1.4) can be derived from (1.2) and (1.5) for p = 1 and moreover for
p = 1, the conditions (1.2) and (1.5) reduce to |ajk| → 0 as max{j, k} → ∞ and

∞∑
j=0

∞∑
k=0
|411ajk| <∞.

Generally the pointwise convergence of the series (1.1) is defined in Pringsheim’s sense
([8], Vol. 2, Ch. 17) which means that the rectangular partial sums of the type

Smn(x, y) =
m∑
j=0

n∑
k=0

λjλkajk cos jx cos ky, m, n ≥ 0,

are formed and then by taking both m,n tend to ∞ (independently of one another)
the limit f(x, y) (provided it exists) is assigned to the series (1.1) as its sum.
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Also let ‖f‖r denotes the Lr(T 2)-norm, i.e,

‖f‖r =
 π∫

0

π∫
0

|f(x, y)|r dxdy
1/r

, 1 ≤ r <∞

and ‖f‖ denotes L1(T 2)-norm, i.e,

‖f‖ =
π∫

0

π∫
0

|f(x, y)| dxdy.

In this paper, we will investigate the validity of the following statements:
(a) Smn(x, y) converges pointwise to f(x, y) for every (x, y) ∈ T 2;
(b) Smn(x, y) converges uniformly to f(x, y) on T 2;
(c) ‖Smn(x, y)− f(x, y)‖r = o(1) as min{m,n} → 0.
Such type of problems have been studied by Young [7] and Kolmogorov [3] for one-

dimensional case (single trigonometric series especially cosine series ) and by Móricz [4,
5] and K. Kaur, Bhatia and Ram [2] for double trigonometric series. In [5], Móricz
studied both double cosine series and double sine series as far as their integrability and
convergence in L1−norm is concerned where as in [4] he studied double trigonometric
series of the form

∞∑
−∞

∞∑
−∞

cjke
i(jx+ky),

under coefficients of bounded variation. All of them discussed the case for p = 1 or
p = 2 only. Our aim in this paper is to extend the above results from p = 1 to general
cases for double cosine series.

In the results, Cp and Cpr denote constants which may not be the same at each
occurrence. Also we write λn = [λn] where n is a positive integer, λ > 1 is a real
number and [·] means greatest integral part.

The first main result reads as follows.

Theorem 1.1. Assume that conditions (1.2)–(1.5) are satisfied for some p ≥ 1, then
(i) Smn(x, y) converges pointwise to f(x, y) for every (x, y) ∈ T 2 such that x, y > 0;
(ii) ‖Smn(x, y)− f(x, y)‖r = o(1) as min{m,n} → ∞, 1 ≤ r <∞.

The above theorem has been proved by Móricz [4, 5] for p = 1 and p = 2 using
suitable estimates for Dirichlet’s kernel Dj(x) and Fejér kernel Kj(x). In the case
of a single series for p = 2, the results regarding convergence have been proved by
Kolmogorov [3].

Obviously, condition (1.5) implies any of the following conditions:

(1.6) lim
λ↓1

lim
n→∞

∞∑
j=0

λn∑
k=n+1

λn − k + 1
λn − n

|4ppajk|(jk)p−1 = 0,
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(1.7) lim
λ↓1

lim
m→∞

λm∑
j=m+1

∞∑
k=0

λm − j + 1
λm −m

|4ppajk|(jk)p−1 = 0.

We introduce the following three sums for m,n ≥ 0 and λ > 1:∑λ

10(m,n, x, y) =
λm∑

j=m+1

n∑
k=0

λm − j + 1
λm −m

ajk cos jx cos ky,

∑λ

01(m,n, x, y) =
m∑
j=0

λn∑
k=n+1

λn − k + 1
λn − n

ajk cos jx cos ky,

∑λ

11(m,n, x, y) =
λm∑

j=m+1

λn∑
k=n+1

λm − j + 1
λm −m

λn − k + 1
λn − n

ajk cos jx cos ky

and we have∑λ

11(m,n;x, y) = 1
(λm −m)

λm∑
u=m+1

(∑λ

01(u, n;x, y)−
∑λ

01(m,n;x, y)
)
,

∑λ

11(m,n;x, y) = 1
(λn − n)

λn∑
v=n+1

(∑λ

10(m, v;x, y)−
∑λ

10(m,n;x, y)
)
.

This implies

(1.8)
∑λ

11(m,n;x, y) ≤


2 sup
m≤u≤λm

(
|∑λ

01(u, n;x, y)|
)

2 sup
n≤v≤λn

(
|∑λ

10(m, v;x, y)|
)
 .

The second result of this paper is the following theorem.

Theorem 1.2. (i) Let E ⊂ T 2. Assume that the following conditions are satisfied:

(1.9) lim
λ↓1

lim
m,n→∞

(
sup

(x,y)∈E
|
∑λ

10(m,n;x, y)|
)

= 0,

(1.10) lim
λ↓1

lim
m,n→∞

(
sup

(x,y)∈E
|
∑λ

01(m,n;x, y)|
)

= 0.

If V λ
mn(x, y) converges uniformly to f(x, y) on E ⊂ T 2 as min{m,n} → ∞

(that is, in the unrestricted sense), then so does Smn.
(ii) Assume that the following conditions are satisfied for some r ≥ 1:

lim
λ↓1

lim
m,n→∞

(
‖
∑λ

10(m,n;x, y)‖r
)

= 0,

(1.11) lim
λ↓1

lim
m,n→∞

(
‖
∑λ

01(m,n;x, y)‖r
)

= 0.

If ‖V λ
mn − f‖r → 0 unrestictedly then ‖Smn − f‖r → 0 as min{m,n} → ∞.

We will also prove the following theorem.
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Theorem 1.3. Assume that the conditions (1.2)–(1.4) and (1.6)–(1.7) are satisfied
for some p ≥ 1, then

(i) if V λ
mn(x, y) converges uniformly to f(x, y) as min{m,n} → ∞, then so does

Smn;
(ii) if ‖V λ

mn − f‖r −→ 0 unrestictedly for some r with 1 ≤ r < ∞, then
‖Smn − f‖r −→ 0 as min{m,n} → ∞.

2. Notation and Formulas

We define for every α = 0, 1, 2, . . . the sequence Sα0 , Sα1 , Sα2 , . . . by the conditions

S0
n = Sn, Sαn =

n∑
u=0

Sα−1
u , α ≥ 1

and
A0
n = 1, Aαn =

n∑
u=0

Aα−1
u , α ≥ 1,

denotes binomial coefficients. Also

Aαn =
(
n+ α

n

)
' nα

Γ(α + 1) , α 6= −1,−2,−3, . . . .

The Cesàro means Tαn of order α of ∑ an will be defined by Tαn = Sαn
Aαn

and also it is
known [8] that

∫ π
0 |Tαn (x)|dx, α > 0, is bounded for all n.

3. Lemmas

We require the following lemmas for the proof of our results.

Lemma 3.1. For m,n ≥ 0 and p > 1, the following representation holds:

Smn(x, y) =
m∑
j=0

n∑
k=0

λjλkajk cos jx cos ky

=
m∑
j=0

n∑
k=0
4ppajkS

p−1
j (x)Sp−1

k (y) +
m∑
j=0

p−1∑
t=0
4ptaj,n+1S

p−1
j (x)Stn(y)

+
n∑
k=0

p−1∑
s=0
4spam+1,kS

s
m(x)Sp−1

k (y) +
p−1∑
s=0

p−1∑
t=0
4stam+1,n+1S

s
m(x)Stn(y).

Lemma 3.2 ([1]). For m,n ≥ 0 and λ > 1, the following representation holds:

Smn − σmn = λm + 1
λm −m

λn + 1
λn − n

(σλm,λn − σλm,n − σm,λn + σmn)

+ λm + 1
λm −m

(σλm,n − σmn) + λn + 1
λn − n

(σm,λn − σmn)

−
∑λ

11(m,n, x, y)−
∑λ

10(m,n, x, y)−
∑λ

01(m,n, x, y).
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Lemma 3.3. For m,n ≥ 0 and λ > 1, we have the following representation:

V λ
mn − Smn =

∑λ

11(m,n, x, y) +
∑λ

10(m,n, x, y) +
∑λ

01(m,n, x, y).

Proof. We have

V λ
mn(x, y) = 1

(λm −m)(λn − n)

λm∑
j=m+1

λn∑
k=n+1

Sjk(x, y).

Performing double summation by parts, we have

V λ
mn = λm + 1

λm −m
λn + 1
λn − n

σλm,λn −
λm + 1
λm −m

n+ 1
λn − n

σλm,n

− m+ 1
λm −m

λn + 1
λn − n

σm,λn + m+ 1
λm −m

n+ 1
λn − n

σmn

= λm + 1
λm −m

λn + 1
λn − n

(σλm,λn − σλm,n − σm,λn + σmn)

+ λm + 1
λm −m

(σλm,n − σmn) + λn + 1
λn − n

(σm,λn − σmn) + σmn.

The use of Lemma 3.2, gives

V λ
mn − Smn =

λm∑
j=m+1

λn∑
k=n+1

λm − j + 1
λm −m

λn − k + 1
λn − n

ajk cos jx cos ky

+
λm∑

j=m+1

n∑
k=0

λm − j + 1
λm −m

ajk cos jx cos ky

+
m∑
j=0

λn∑
k=n+1

λn − k + 1
λn − n

ajk cos jx cos ky. �

Lemma 3.4. For m,n ≥ 0 and λ > 1, we have the following representation:

∑λ

10(m,n;x, y) =
λm∑

j=m+1

n∑
k=0

λm − j + 1
λm −m

ajk cos jx cos ky

=
λm∑

j=m+1

n∑
k=0

λm − j + 1
λm −m

4ppajkS
p−1
j (x)Sp−1

k (y)

+
λm∑

j=m+1

p−1∑
t=0

λm − j + 1
λm −m

4ptaj,n+1S
p−1
j (x)Stn(y)

+ 1
λm −m

λm∑
j=m+1

p−1∑
s=0

n∑
k=0
4spaj+1,kS

s
j (x)Sp−1

k (y)

+ 1
λm −m

λm∑
j=m+1

p−1∑
s=0

p−1∑
t=0
4staj+1,n+1S

s
j (x)Stn(y)
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−
p−1∑
s=0

n∑
k=0
4spam+1,kS

s
m(x)Sp−1

k (y)

−
p−1∑
s=0

p−1∑
t=0
4stam+1,n+1S

s
m(x)Stn(y).

Proof. We have by summation by parts,∑λ

10(m,n;x, y)

=
n∑
k=0

cos ky
(

λm∑
j=m+1

λm − j + 1
λm −m

ajk cos jx
)

=
n∑
k=0

cos ky
(

λm∑
j=m+1

λm − j + 1
λm −m

4p0ajkS
p−1
j (x)

+ 1
λm −m

λm∑
j=m+1

p−1∑
s=0
4s0aj+1,kS

s
j (x)−

p−1∑
s=0
4s0am+1,kS

s
m(x)

)

=
λm∑

j=m+1

λm − j + 1
λm −m

Sp−1
j (x)

(
n∑
k=0
4p0ajk cos ky

)

+ 1
λm −m

λm∑
j=m+1

p−1∑
s=0

(
n∑
k=0
4s0aj+1,k cos ky

)
Ssj (x)

−
p−1∑
s=0

(
n∑
k=0
4s0am+1,k cos ky

)
Ssm(x)

=
λm∑

j=m+1

λm − j + 1
λm −m

Sp−1
j (x)

(
n∑
k=0
4ppajkS

p−1
k (y) +

p−1∑
t=0
4ptaj,n+1S

t
n(y)

)

+ 1
λm −m

λm∑
j=m+1

p−1∑
s=0

(
n∑
k=0
4spaj+1,kS

p−1
k (y) +

p−1∑
t=0
4staj+1,n+1S

t
n(y)

)
Ssj (x)

−
p−1∑
s=0

(
n∑
k=0
4spam+1,kS

p−1
k (y) +

p−1∑
t=0
4stam+1,n+1S

t
n(y)

)
Ssm(x).

Similarly we can have representation for ∑λ
01(m,n;x, y). �

4. Proof of Theorems

Proof of Theorem 1.1. For m,n ≥ 0 and p > 1, we have from Lemma 3.1,

Smn(x, y) =
m∑
j=0

n∑
k=0
4ppajkS

p−1
j (x)Sp−1

k (y) +
m∑
j=0

p−1∑
t=0
4ptaj,n+1S

p−1
j (x)Stn(y)

+
n∑
k=0

p−1∑
s=0
4spam+1,kS

s
m(x)Sp−1

k (y) +
p−1∑
s=0

p−1∑
t=0
4stam+1,n+1S

s
m(x)Stn(y)



450 K. SINGH AND K. MODI

=
∑

1 +
∑

2 +
∑

3 +
∑

4.

Using the results as given in [6] that Spj (x) = O
(

1
xp

)
, for all p ≥ 2, 0 < x ≤ π, etc,

we have for 0 < x, y ≤ π,
∞∑
j=0

∞∑
k=0
|4ppajkS

p−1
j (x)Sp−1

k (y)| <∞ (by (1.2))

and also by (1.3)–(1.5), we have
m∑
j=0

p−1∑
t=0
4ptaj,n+1 ≤

p−1∑
t=0

t∑
v=0

(
t

v

) m∑
j=0
|4p0aj,n+v+1|


≤ sup

n<k≤n+p

m∑
j=0
|4p0ajk|

≤ sup
n<k≤n+p

m∑
j=0
|4p0ajk| → 0 as min{m,n} → ∞.

Thus,
m∑
j=0

p−1∑
t=0
4ptaj,n+1S

p−1
j (x)Stn(y)→ 0 as min{m,n} → ∞.

And similarly
p−1∑
s=0

n∑
k=0
4spam+1,k ≤

p−1∑
s=0

s∑
u=0

(
s

u

)
(
n∑
k=0
|40pam+u+1,k|)

≤ sup
m<j≤m+p

n∑
k=0
|40pajk|

≤ sup
m<j≤m+p

n∑
k=0
|40pajk| → 0 as min{m,n} → ∞.

Thus,
n∑
k=0

p−1∑
s=0
4spam+1,kS

s
m(x)Sp−1

k (y)→ 0,

as min{m,n} → ∞. Also
p−1∑
s=0

p−1∑
t=0
4stam+1,n+1 ≤

p−1∑
s=0

p−1∑
t=0

s∑
u=0

t∑
v=0

(
s

u

)(
t

v

)
|400am+u+1,n+v+1|

≤ sup
j>m,k>n

|ajk| → 0 as min{m,n} → ∞.

So,
p−1∑
s=0

p−1∑
t=0
4stam+1,n+1S

s
m(x)Stn(y)→ 0 as min{m,n} → ∞.
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Consequently, series (1.1) converges to the function f(x, y) where

f(x, y) =
∞∑
j=0

∞∑
k=0
4ppajkS

p−1
j (x)Sp−1

k (y) and lim
m,n→∞

Smn(x, y) = f(x, y).

Now we will calculate ‖∑1 ‖, ‖
∑

2 ‖, ‖
∑

3 ‖ and ‖
∑

4 ‖ in the following way:

∥∥∥∑1

∥∥∥ =

∥∥∥∥∥∥
m∑
j=0

n∑
k=0
4ppajkS

p−1
j (x)Sp−1

k (y)

∥∥∥∥∥∥
≤

m∑
j=0

n∑
k=0
|4ppajk|

∫ π

0

∫ π

0
|Sp−1
j (x)Sp−1

k (y)|dxdy

≤
m∑
j=0

n∑
k=0
|4ppajk|Ap−1

j Ap−1
k

∫ π

0

∫ π

0
|T p−1
j (x)T p−1

k (y)|dxdy

≤Cp
m∑
j=0

n∑
k=0
|4ppajk|jp−1kp−1,

∥∥∥∑2

∥∥∥ =

∥∥∥∥∥∥
m∑
j=0

p−1∑
t=0
4ptaj,n+1S

p−1
j (x)Stn(y)

∥∥∥∥∥∥
≤

p−1∑
t=0

t∑
v=0

(
t

v

) m∑
j=0
|4p0aj,n+v+1|

Ap−1
j Atn

∫ π

−π

∫ π

−π
|T p−1
j (x)T tn(y)|dxdy

≤Cp sup
n<k≤n+p

m∑
j=0
|4p0ajk| jp−1

p−1∑
t=0

nt


≤Cp sup

n<k≤n+p

m∑
j=0
|4p0ajk| jp−1kp−1,

∥∥∥∑3

∥∥∥ =

∥∥∥∥∥∥
p−1∑
s=0

n∑
k=0
4spam+1,kS

s
m(x)Sp−1

k (y)

∥∥∥∥∥∥
≤

p−1∑
s=0

s∑
u=0

(
s

u

)(
n∑
k=0
|40pam+u+1,k|

)
AsmA

p−1
k

∫ π

0

∫ π

0
|T sm(x)T p−1

k (y)|dxdy

≤Cp sup
m<j≤m+p

n∑
k=0
|40pajk| kp−1

p−1∑
s=0

ms


≤Cp sup

m<j≤m+p

n∑
k=0
|40pajk| jp−1kp−1,

∥∥∥∑4

∥∥∥ =

∥∥∥∥∥∥
p−1∑
s=0

p−1∑
t=0
4stam+1,n+1S

s
m(x)Stn(y)

∥∥∥∥∥∥
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≤
p−1∑
s=0

p−1∑
t=0

s∑
u=0

t∑
v=0

(
s

u

)(
t

v

)
|400am+u+1,n+v+1|AsmAtn

π∫
0

π∫
0

|T sm(x)T tn(y)|dxdy

≤Cp sup
j>m,k>n

|ajk| jp−1kp−1.

Now let Rmn consists of all (j, k) with j > m or k > n, that is,
∑∑

(j,k)∈Rmn
=

∞∑
j=m+1

n∑
k=0

+
∞∑
j=0

∞∑
k=n+1

+
∞∑

j=m+1

∞∑
k=n+1

.

Then

‖f − Smn‖r =
 π∫

0

π∫
0

|f(x, y)− Smn(x, y)|r dxdy
1/r

, 1 ≤ r <∞,

≤

∥∥∥∥∥∥
∑
(j,k)

∑
∈Rmn

4ppajkS
p−1
j (x)Sp−1

k (y)

∥∥∥∥∥∥
r

+

∥∥∥∥∥∥
m∑
j=0

p−1∑
t=0
4ptaj,n+1S

p−1
j (x)Stn(y)

∥∥∥∥∥∥
r

+

∥∥∥∥∥∥
n∑
k=0

p−1∑
s=0
4spam+1,kS

s
m(x)Sp−1

k (y)

∥∥∥∥∥∥
r

+

∥∥∥∥∥∥
p−1∑
s=0

p−1∑
t=0
4stam+1,n+1S

s
m(x)Stn(y)

∥∥∥∥∥∥
r

≤Cpr
{ ∑

(j,k)∈Rmn
|4ppajk|jp−1kp−1


+
 sup
n<k≤n+p

m∑
j=0
|4p0ajk| jp−1kp−1


+
(

sup
m<j≤m+p

n∑
k=0
|40pajk| jp−1kp−1

)

+
(

sup
j>m,k>n

|ajk| jp−1kp−1
)}

(as discussed above )

→0 as min{m,n} → ∞ (by (1.2)-(1.5)),

which proves (ii) part.
Proof of Theorem 1.2. Using the relation (1.8), we find that (1.9) or (1.10) implies

(4.1) lim
λ↓1

lim
m,n→∞

(
sup

(x,y)∈E
|
∑λ

11(m,n;x, y)|
)

= 0.
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Assume that V λ
mn(x, y) converges uniformly on E to f(x, y). Then by Lemma 3.3, we

get

lim
m,n→∞

(∣∣∣∣∣ sup
(x,y)∈E

(
Smn(x, y)− V λ

mn(x, y)
)∣∣∣∣∣
)
≤ lim

m,n→∞

(
sup

(x,y)∈E

∣∣∣∣∑λ

10(m,n;x, y)
∣∣∣∣
)

+ lim
m,n→∞

(
sup

(x,y)∈E

∣∣∣∣∑λ

01(m,n;x, y)
∣∣∣∣
)

+ lim
m,n→∞

(
sup

(x,y)∈E

∣∣∣∣∑λ

11(m,n;x, y)
∣∣∣∣
)
.

After taking λ ↓ 1 the result follows from (1.9), (1.10) and (4.1).
For (ii) part of theorem, we have∥∥∥∥∑λ

11(m,n;x, y)
∥∥∥∥
r

= 1
λm −m

λm∑
u=m+1

(∥∥∥∥∑λ

01(u, n;x, y)
∥∥∥∥
r

+
∥∥∥∥∑λ

01(m,n;x, y)
∥∥∥∥
r

)

≤ 2
(

sup
m≤u≤λm

(∥∥∥∥∑λ

01(u, n;x, y)
∥∥∥∥
r

))
.

Thus (1.11) implies

lim
λ↓1

lim
m,n→∞

∥∥∥∥∑λ

11(m,n;x, y)
∥∥∥∥
r

= 0.

Thus, the result of Theorem 1.2 (ii) follows.

Proof of Theorem 1.3. Using the Lemma 3.4, we can write the expression for∑λ
01(m,n;x, y) as

∑λ

01(m,n;x, y) =
m∑
j=0

λn∑
k=n+1

λn − k + 1
λn − n

ajk cos jx cos ky

=
m∑
j=0

λn∑
k=n+1

λn − k + 1
λn − n

4ppajkS
p−1
j (x)Sp−1

k (y)

+
λn∑

k=n+1

p−1∑
s=0

λn − k + 1
λn − n

4spam+1,kS
s
m(x)Sp−1

k (y)

+ 1
λn − n

m∑
j=0

λn∑
k=n+1

p−1∑
t=0
4ptaj,k+1S

p−1
j (x)Stk(y)

+ 1
λn − n

λn∑
k=n+1

p−1∑
s=0

p−1∑
t=0
4stam+1,k+1S

s
m(x)Stk(y)

−
p−1∑
t=0

m∑
j=0
4ptaj,n+1S

p−1
j (x)Stn(y)



454 K. SINGH AND K. MODI

−
p−1∑
s=0

p−1∑
t=0
4stam+1,n+1S

s
m(x)Stn(y)

=I1 + I2 + I3 + I4 + I5 + I6.

Now by using (1.2)–(1.4) and (1.6) along with estimates of Sp−1
j (x) etc., as mentioned

in [6], we have the following estimates in brief:

|I1| =

∣∣∣∣∣∣
m∑
j=0

λn∑
k=n+1

λn − k + 1
λn − n

4ppajkS
p−1
j (x)Sp−1

k (y)

∣∣∣∣∣∣
≤

m∑
j=0

λn∑
k=n+1

λn − k + 1
λn − n

∣∣∣4ppajk
∣∣∣

→0 as min{m,n} → ∞.

Consequently, lim
λ↓1

lim
m,n→∞

(
sup

(x,y)∈E
|I1|

)
→ 0 as min{m,n} → ∞. Also,

|I2| =

∣∣∣∣∣∣
λn∑

k=n+1

p−1∑
s=0

λn − k + 1
λn − n

4spam+1,kS
s
m(x)Sp−1

k (y)

∣∣∣∣∣∣
≤

p−1∑
s=0

s∑
u=0

(
s

u

)
λn∑

k=n+1
|40pam+u+1,k|

≤ sup
m<j≤m+p

λn∑
k=n+1

|40pajk| → 0 as min{m,n} → ∞.

So, lim
λ↓1

lim
m,n→∞

(
sup

(x,y)∈E
|I2|

)
→ 0 as min{m,n} → ∞. Also,

|I3| ≤ sup
n<k≤λn

p−1∑
t=0

m∑
j=0
|4ptaj,k+1|

≤ sup
n<k≤λn

p−1∑
t=0

t∑
v=0

(
t

v

)
m∑
j=0
|4ptaj,k+v+1|

≤ sup
n<k≤λn+p

m∑
j=0
|4p0ajk| → 0 as min{m,n} → ∞,

which implies lim
λ↓1

lim
m,n→∞

(
sup

(x,y)∈E
|I3|

)
→ 0 as min{m,n} → ∞. Now,

|I4| ≤ sup
n<k≤λn

p−1∑
s=0

p−1∑
t=0
|4stam+1,k+1|

≤ sup
j>m,k>n

|ajk| → 0 as min{m,n} → ∞.
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Thus lim
λ↓1

lim
m,n→∞

(
sup

(x,y)∈E
|I4|

)
→ 0 as min{m,n} → ∞. Also,

|I5| ≤
p−1∑
t=0

t∑
v=0

(
t

v

)
m∑
j=0
|4p0aj,n+v+1| ≤ sup

n<k≤n+p

m∑
j=0
|4p0ajk| → 0 as min{m,n} → ∞,

which implies lim
λ↓1

lim
m,n→∞

(
sup

(x,y)∈E
|I5|

)
→ 0 as min{m,n} → ∞. Also,

|I6| ≤
p−1∑
s=0

p−1∑
t=0

s∑
u=0

t∑
v=0

(
s

u

)(
t

v

)
|400am+u+1,n+v+1|

≤ sup
j>m,k>n

|ajk| → 0 as min{m,n} → ∞,

and
lim
λ↓1

lim
m,n→∞

(
sup

(x,y)∈E
|I6|

)
→ 0 as min{m,n} → ∞.

Thus, combining all these, we have

lim
λ↓1

lim
m,n→∞

(
sup

(x,y)∈E
|
∑λ

01(m,n;x, y)|
)

= 0.

Similarly (1.2)–(1.4) and (1.7) results in

lim
λ↓1

lim
m,n→∞

(
sup

(x,y)∈E
|
∑λ

10(m,n;x, y)|
)

= 0.

Thus, first part of theorem follows from Theorem 1.2.
Proof of (ii). We have

‖Smn − f‖r ≤‖Smn − V λ
mn‖r+‖V λ

mn − f‖r.
By assumption ‖V λ

mn − f‖r → 0, so it is sufficient to show that
‖Smn − V λ

mn‖r → 0 as min{m,n} → ∞.
By Lemma 3.3, we have

‖Smn − V λ
mn‖r ≤‖

∑λ

10(m,n;x, y)‖r + ‖
∑λ

01(m,n;x, y)‖r

+ ‖
∑λ

11(m,n;x, y)‖r.

Now in order to estimate ‖∑λ
01(m,n;x, y)‖r , we first find ‖I1‖, ‖I2‖, ‖I3‖, ‖I4‖, ‖I5‖

and ‖I6‖, so we have

‖I1‖ =

∥∥∥∥∥∥
m∑
j=0

λn∑
k=n+1

λn − k + 1
λn − n

4ppajkS
p−1
j (x)Sp−1

k (y)

∥∥∥∥∥∥
≤

m∑
j=0

λn∑
k=n+1

λn − k + 1
λn − n

4ppajkA
p−1
j Ap−1

k

π∫
0

π∫
0

|T p−1
j (x)T p−1

k (y)|dxdy
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≤Cp
m∑
j=0

λn∑
k=n+1

λn − k + 1
λn − n

|4ppajk|jp−1kp−1,

‖I2‖ =

∥∥∥∥∥∥
λn∑

k=n+1

p−1∑
s=0

λn − k + 1
λn − n

4spam+1,kS
s
m(x)Sp−1

k (y)

∥∥∥∥∥∥
≤Cp

p−1∑
s=0

s∑
u=0

(
s

u

)
λn∑

k=n+1
|40pam+u+1,k|kp−1ms

≤Cp sup
m<j≤m+p

(
λn∑

k=n+1
|40pajk|kp−1

)(p−1∑
s=0

ms

)

≤Cp sup
m<j≤m+p

λn∑
k=n+1

|40pajk|jp−1kp−1,

‖I3‖ ≤Cp sup
n<k≤λn

p−1∑
t=0

m∑
j=0
|4ptaj,k+1|jp−1kt

≤Cp sup
n<k≤λn

p−1∑
t=0

t∑
v=0

(
t

v

)
m∑
j=0
|4ptaj,k+v+1|jp−1kt

≤Cp sup
n<k≤λn+p

m∑
j=0
|4p0ajk|jp−1kp−1,

‖I4‖ ≤Cp sup
n<k≤λn

p−1∑
s=0

p−1∑
t=0
|4stam+1,k+1|mskt

≤Cp sup
j>m,k>n

|ajk|jp−1kp−1,

‖I5‖ ≤Cp
p−1∑
t=0

t∑
v=0

(
t

v

)
m∑
j=0
|4p0aj,n+v+1|jp−1nt

≤Cp sup
n<k≤n+p

m∑
j=0
|4p0ajk|jp−1kp−1,

‖I6‖ ≤Cp
p−1∑
s=0

p−1∑
t=0

s∑
u=0

t∑
v=0

(
s

u

)(
t

v

)
|400am+u+1,n+v+1|msnt

≤Cp sup
j>m,k>n

|ajk|jp−1kp−1.

Thus, we can estimate∥∥∥∥∑λ

01(m,n;x, y)
∥∥∥∥
r
≤Cpr

λn∑
k=n+1

m∑
j=0

λn − k + 1
λn − n

|4ppajk|jp−1kp−1

+ Cpr

(
sup

m<j≤m+p

λn∑
k=n+1

|40pajk|jp−1kp−1
)
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+ Cpr

(
sup

n<k≤λn+p

m∑
j=0
|4p0ajk|jp−1kp−1

)

+ Cpr

(
sup

j>m,k>n
|ajk|jp−1kp−1

)

+ Cpr

(
sup

n<k≤n+p

m∑
j=0
|4p0ajk|jp−1kp−1

)

+ Cpr

(
sup

j>m,k>n
|ajk|jp−1kp−1

)
.

By (1.2)–(1.4) and (1.6), we conclude that

lim
λ↓1

lim
m,n→∞

(
‖
∑λ

01(m,n;x, y)‖r
)

= 0.

Similarly, by conditions (1.2)–(1.4) and (1.7), we get

lim
λ↓1

lim
m,n→∞

(
‖
∑λ

10(m,n;x, y)‖r
)

= 0.

Also, by (1.8), we have

lim
λ↓1

lim
m,n→∞

(
‖
∑λ

11(m,n;x, y)‖r
)

= 0.

Thus, ‖Smn − V λ
mn‖r → 0 as min{m,n} → ∞.
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