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RESULTS ON TAUBERIAN THEOREM FOR CESÀRO
SUMMABLE DOUBLE SEQUENCES OF FUZZY NUMBERS

B. B. JENA1, S. K. PAIKRAY1, P. PARIDA2, AND H. DUTTA3

Abstract. The paper aims to establish new results on Tauberian theorem for
Cesàro summability of double sequences of fuzzy numbers, and thus to extend and
unify several results in the available literature. Further, a number of special cases,
corollaries and illustrative example in support of the investigation of this paper are
also presented.

1. Introduction and Preliminaries

The notion of the fuzzy set was introduced by Zadeh [19]. Matloka [10] has estab-
lished bounded and convergent sequences of fuzzy numbers and proved that every
convergent sequence is bounded. Nanda [12] has studied the spaces of bounded and
convergent sequences of fuzzy numbers and proved that every Cauchy sequence of
fuzzy numbers is convergent. Subrahmanyam [13] has presented Cesàro summability
of sequences of fuzzy numbers and established Tauberian hypotheses identified with
the Cesàro summability method. Talo and Çanak [15] introduced necessary and suffi-
cient Tauberian conditions, under which convergence follows from Cesàro convergence
of sequences of fuzzy numbers. Altın et al. [1] studied the concept of statistical
summability by (C, 1)-mean for sequences of fuzzy numbers and obtained a Tauberian
theorem on that basis. Talo and Başar [14] introduced the concept of slow decreasing
sequence for fuzzy numbers and have shown that Cesàro summable sequence (Xn)
is convergent, if (Xn) is slowly decreasing. Recently, Çanak [2] has established the
concept of the slow oscillation (that is, both slowly decreasing and slowly increasing)

Key words and phrases. Double Cesàro summability, slow oscillation, Tauberian condition, se-
quence of fuzzy numbers.
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sequences for fuzzy numbers and have shown that Cesàro summable sequence (Xn) is
convergent if (Xn) is slowly oscillating.

Let D denote the set of all closed and bounded intervals X = [x1, x2] on the real
line R. For X, Y ∈ D, we define

d(X, Y ) = max{|x1 − y1|, |x2 − y2|},

where
X = [x1, x2], Y = [y1, y2].

It is surely understood that (D, d) is a complete metric space.
A fuzzy number X is a fuzzy set on R and is a mapping X : R → [0, 1] associating

each number t with its grade of membership X(t).
A fuzzy number X is said to be convex, if

X(t) = min{X(s), X(r)}, s < t < r.

If there exists t0 ∈ R, such that X(t0) = 1, then the fuzzy number X is called normal.
A fuzzy number X is said to be upper semi-continuous if, for each ǫ > 0, we have

X−1([0, x + ǫ))

for all x ∈ [0, 1]), is open in the usual topology of R. The set of all upper semi-
continuous, normal, convex fuzzy number is denoted by R([0, 1]). For α ∈ (0, 1], the
α- level set of fuzzy number X denoted by Xα is defined by

Xα = {t ∈ R : X(t) ≧ α}.

The set X0 is defined as the closure of the following set

{t ∈ R : X(t) > 0}.

We define,
d̄ : R([0, 1]) × R([0, 1]) → R+ ∪ {0},

by
d̄(X, Y ) = sup

0≦α≦1

d(Xα, Y α).

2. Definitions and Motivation

A double sequence (Xmn) of fuzzy numbers is a function, X : N∪ {0} ×N∪ {0} →
R([0, 1]) and is said to be convergent to a fuzzy number X0 if, for every ǫ > 0, there
exist a positive integer n0 such that

d̄ (Xmn, X0) < ǫ, for all m, n ≧ n0.

We define,
∆nXmn = d̄(Xmn, Xm,n−1),

∆mXmn = d̄(Xmn, Xm−1,n)

and
∆m,nXmn = d̄(Xmn, Xm−1,n) − d̄(Xm,n−1, Xm−1,n−1), X−1 = 0.
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A double sequence (Xmn) of fuzzy numbers is said to be bounded, if there exists a
positive number K > 0 such that

d̄(Xmn, X0) ≦ K, for all m, n ∈ N ∪ {0}.

The Cesàro means (C, 1) of sequence (Xn) of fuzzy numbers are defined by

σn =
1

n + 1

n
∑

j=0

Xj, for all n ∈ N ∪ {0}.

A sequence (Xn) of fuzzy numbers is Cesàro summable to a fuzzy number L if, for
every ǫ > 0, we have (see [2])

d̄(σn, L) < ǫ, n → ∞.

Similarly, the Cesàro means (C, 1, 1) of double sequences (Xmn) of fuzzy numbers are
defined by

(2.1) σ(1,1)
mn (X) =

1

(m + 1)(n + 1)

m
∑

p=0

n
∑

q=0

Xpq =
m
∑

p=1

n
∑

q=1

Y (1,1)
pq

pq
+ X00

(see [11]). Analogous to equation (2.1), we may define the (C, 1, 0) and (C, 0, 1)-means
of sequences (Xmn) are

(2.2) σ(1,0)
mn (X) =

1

m + 1

m
∑

p=0

Xpn and σ(0,1)
mn (X) =

1

n + 1

n
∑

q=0

Xmq,

respectively.
Then we say that, a double sequence X = (Xmn) of fuzzy numbers is (C, 1, 1)-

summable to a fuzzy number L if, for every ǫ > 0, we have

d̄
(

σ(1,1)
mn (X), L

)

< ǫ, for all m, n → ∞.

Similarly, we say that it is (C, 1, 0)-summable to a fuzzy number L if, for every ǫ > 0,
we have

d̄
(

σ(1,0)
mn (X), L

)

< ǫ, for all m, n → ∞

and (C, 0, 1)-summable to a fuzzy number L if, for every ǫ > 0, we have

d̄
(

σ(1,0)
mn (X), L

)

< ǫ, for all m, n → ∞.

Now, for each non-negative integers k and r, we may define σ(kr)
mn (X) as follows:

σ(kr)
mn (X) =











1

(m + 1)(n + 1)

m
∑

p=0

n
∑

q=0

σ(k−1,r−1)
pq , k, r ≥ 1,

Xmn, k, r = 0.

A double sequence X = (Xmn) of fuzzy numbers is said to be (C, k, r)-summable
to a fuzzy number L if, for every ǫ > 0, we have

d̄
(

σ(kr)
mn (X), L

)

< ǫ, for all m, n → ∞.
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Remark 2.1. If k = 1 and r = 1, then (C, k, r)-summability reduces to (C, 1, 1)-
summability. Furthermore, if k 6= 0 and r = 0 then (C, k, r)-summability reduces to
(C, k, 0)-summability. Finally, if k = 0 and r 6= 0 then (C, k, r)-summability reduces
to (C, 0, r)-summability.

Note that here, Cesàro summability of X = (Xmn) refers (C, 1, 1) and (C, k, r)-
summability of X = (Xmn).

It may also be noted that, the convergence of a double sequence X = (Xmn) of
fuzzy numbers implies the Cesàro summability of X = (Xmn), but the converse is not
generally true.

For example, consider a function f(x, y) = e2x sin(3y); the sequence (Xmn) of fuzzy
numbers which is the sequence of coefficients in the Taylor’s series expansion of the
function f(x, y) about origin is Cesàro summable but not convergent.

For the proof of converse part, certain conditions are presented in terms of oscillatory
behavior of double sequence X = (Xmn) of fuzzy numbers.

Let us define (Xmn) as

(2.3) Xmn = Y (1,1)
mn +

m
∑

p=1

n
∑

q=1

Y (1,1)
pq

pq
+ X00, m, n ∈ N,

where

(2.4) Xmn − σ(1,1)
mn (X) = Y (1,1)

mn (∆X) =
1

(m + 1)(n + 1)

m
∑

p=0

n
∑

q=0

pq (∆p,qXpq)

(see [9]). Moreover, in analogy to Kronecker identity for a single sequence of fuzzy
numbers, we can write

(2.5) Y (1,0)
mn (∆X) =

1

(m + 1)

m
∑

p=0

p(∆p,Xp,n)

and

(2.6) Y (0,1)
mn (∆X) =

1

(n + 1)

n
∑

q=0

q(∆q,Xm,q),

as the (C, 1, 0)-mean of the sequence (m∆mXmn) of fuzzy numbers and the (C, 0, 1)-
mean of the sequence (n∆nXmn) fuzzy number respectively.

Furthermore, as the sequence Y (1,1)
mn (∆mnXmn) of fuzzy numbers is the (C, 1, 1)

mean of the sequence mn(∆mnXmn) of fuzzy number, the sequence mn(∆mnXmn) is
(C, 1, 1)-summable to a fuzzy number L, whenever

d̄
(

Y (1,1)
mn (∆mnXmn), L

)

< ǫ, for all m, n → ∞.

For each non-negative integers k and r, let us define Y (k,r)
mn (∆X) as follows:

Y (k,r)
mn (∆X) =











1

(m + 1)(n + 1)

m
∑

p=0

n
∑

q=0

Y (k−1,r−1)
pq , k, r ≥ 1,

mn(∆m,nXmn), k, r = 0.
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The sequence mn(∆mnXmn) of fuzzy numbers is said to be (C, k, r)-summable to a
fuzzy numbers L if, for every ǫ > 0, we have

d̄
(

Y (kr)
mn (∆mnXmn), L

)

< ǫ, for all m, n → ∞.

Remark 2.2. If k = 1 and r = 1, then (C, k, r)-summabllity reduces to (C, 1, 1)-
summability. Furthermore, if k 6= 0 and r = 0, then (C, k, r)-summabllity reduces to
(C, k, 0)-summability. Finally, if k = 0 and r 6= 0, then (C, k, r)-summabllity reduces
to (C, 0, r)-summability.

Next, we present the De la Vallée Poussin mean of double sequence (Xmn) of fuzzy
numbers for sufficiently large nonnegative integers m, n for λ > 1 and 0 < λ < 1

τmn(X) =
1

([λm] − m)([λn] − n)

[λm]
∑

i=m+1

[λn]
∑

j=n+1

Xij

and

τmn(X) =
1

(m − [λm])(n − [λn])

m
∑

i=λm+1

n
∑

j=λn+1

Xij,

respectively.
A single sequence X = (Xn) of fuzzy numbers is slowly oscillating (in the sense of

Stanojević) if, (see [18])

(2.7) lim
λ→1+

lim sup
n

max
n+1≦k≦[λn]

d̄(Xk, Xn) = 0.

Similarly, we may write a double sequence X = (Xmn) of fuzzy numbers is slowly
oscillating (in the sense of Stanojević) if,

(2.8) lim
λ→1+

lim sup
m,n

max
m+1,n+1≦i,j≦[λm],[λn]

d̄





i
∑

u=m+1

j
∑

v=n+1

∆u,vXuv, 0



 ≦ ǫ.

Recently, few researchers have investigated on sequences and sequences of fuzzy
numbers for proving Tauberian theorems. Different classes of sequences and sequences
of fuzzy numbers have been introduced and studied by Tripathy et al. [17], Dutta
[3], Dutta [4], Dutta and Bilgin [6], Tripathy and Debnath [16], Dutta and Başar [5],
Jena et al. [7], Jena et al. [8] and many others. Recently, Çanak [2] has introduced
Tauberian theorem for Cesàro summability of sequences of fuzzy numbers.

Motivated essentially by the above-mentioned works, here we wish to present the
(presumably new) the notion of (C, 1, 1)-summability of a double sequences of fuzzy
numbers defined in (2.3).

3. Tauberian Theorems for Cesàro Mean

Theorem 3.1. If the double sequence (Xmn) of fuzzy number is (C, 1, 1)-summable
to a fuzzy number L and (Xmn) is slowly oscillating (in the sense of Stanojević), then

d̄(Xmn, L) < ǫ, for all m, n → ∞.
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To prove the above theorem, we need the help of the following lemmas.

Lemma 3.1. A double sequence X = (Xmn) of fuzzy numbers is slowly oscillating if
and only if (Y (1,1)

mn ) is slowly oscillating and bounded.

Proof. Let X = (Xmn) is slowly oscillating. Initially, let us show that

d̄(V (1,1)
mn , 0) = O(1).

We have by definition of slow oscillation, for λ > 1

lim
λ→1+

lim sup
m,n

max
m+1,n+1≦i,j≦[λm,λn]

d̄





i
∑

u=m+1

j
∑

v=n+1

∆u,vXuv, 0



 ≦ ǫ

and let us rewrite the finite sum
m
∑

i=1

n
∑

j=1

ij∆Xij,

as the series
∞
∑

u=0

∞
∑

v=0

∑

m

2u+1
, n

2v+1
≦i,j≦ m

2u , n
2v

ij∆Xij.

Clearly,

d̄





m
∑

i=1

n
∑

j=1

ij∆Xij, 0



 ≦d̄







∞
∑

u=0

∞
∑

v=0

∑

m

2u+1
, n

2v+1
≦i,j< m

2u , n
2v

ij∆Xij, 0







≦d̄

(

∞
∑

u=0

∞
∑

v=0

mn

2u+v
, 0

)

and

max
m

2u+1
+1, n

2v+1
+1≦i,j≦[ λm

2i+1
, λn

2j+1 ]
d̄







i
∑

u= m

2u+1
+1

j
∑

v= n

2v+1
+1

∆u,vXuv, 0







≤mnC

(

∞
∑

u=0

∞
∑

v=0

1

2u+v

)

= mnC∗, C∗ > 0.

Consequently, we have

d̄
(

Y (1,1)
mn (∆X), 0

)

= d̄





1

(m + 1)(n + 1)

m
∑

p=0

n
∑

q=0

pq(∆p,qXpq), 0



 = O(1), m, n → ∞.

Since,






σ(1,1)
mn (X) =

m
∑

p=1

n
∑

q=1

Y (1,1)
pq

pq
+ X00







is slowly oscillating; so (Y (1,1)
mn ) is oscillating slowly.
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To prove the converse part, consider (Y (1,1)
mn ) is bounded and slowly oscillating. Now

the boundedness of (Y (1,1)
mn ) implies that σ(1,1)

mn (X) is slowly oscillating. Furthermore,
(Y (1,1)

mn ) being oscillating slowly, so by Kronecker identity (2.4), (Xmn) is oscillating
slowly. Which completes the proof of Lemma 3.1. �

Next, we represent d̄
(

Xmn, σ(11)
mn (X)

)

under two different cases in the following

lemma.

Lemma 3.2. Let X = (Xmn) be a sequence of fuzzy numbers with m, n sufficiently
large, then we have the following.

(i) For λ > 1

d̄
(

Xmn, σ(1,1)
mn (X)

)

=
([λm] + 1)([λn] + 1)

([λm] − m)([λn] − n)







d̄
(

σ
(1,1)
[λm],[λn](X), σ

(1,1)
[λm],n(X)

)

− d̄
(

σ
(1,1)
m,[λn](X), σ(1,1)

mn (X)
)







+
[λm] + 1

[λn] − m
d̄
(

σ
(1,1)
[λm],n(X), σ(1,1)

m,n (X)
)

+
[λn] + 1

[λm] − m
d̄
(

σ
(1,1)
m,[λn](X), σ(1,1)

mn (X)
)

−
1

([λm] − m)([λn] − n)
d̄





[λm]
∑

i=m+1

[λn]
∑

j=n+1

(Xij, Xmn)



 .(3.1)

(ii) For 0 < λ < 1

d̄
(

Xmn, σ(1,1)
mn (X)

)

=
([λm] + 1)([λn] + 1)

(m − [λm])(n − [λn])







d̄
(

σ(1,1)
mn (X), σ

(1,1)
[λm],n(X)

)

− d̄
(

σ
(1,1)
m,[λn](X), σ

(1,1)
[λm],[λn](X)

)







+
[λm] + 1

m − [λm]
d̄
(

σ(1,1)
m,n (X), σ

(1,1)
[λm],n(X)

)

+
[λn] + 1

n − [λn]
d̄
(

σ(1,1)
mn (X), σ

(1,1)
m,[λn](X)

)

−
1

(m − [λm])(n − [λn])
d̄





m
∑

i=[λm]+1

n
∑

j=[λn]+1

(Xmn, Xij)



 .(3.2)

Proof. We have by De la Vallée Poussin mean of double sequence (Xmn) of fuzzy
numbers

τmn(X) =
1

([λm] − m)([λn] − n)

[λm]
∑

i=m+1

[λn]
∑

j=n+1

Xij
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=
1

([λm] − m)([λn] − n)







d̄





[λm]
∑

i=0

,

[m]
∑

i=0



 d̄





[λn]
∑

j=0

,

[n]
∑

j=0











Xij

=
1

([λm] − m)([λn] − n)







d̄





[λm]
∑

i=0

[λn]
∑

j=0

,

[λm]
∑

i=0

[n]
∑

j=0



Xij − d̄





[m]
∑

i=0

[λn]
∑

j=0

,

[m]
∑

i=0

[n]
∑

j=0



Xij







=
1

([λm] − m)([λn] − n)







([λn] + 1)([λm] + 1)σ
(1,1)
[λm],[λn]

− ([λm] + 1)(n + 1)σ
(1,1)
[λm],n







−
1

([λm] − m)([λn] − n)

−
{

(m + 1)([λn] + 1)σ
(1,1)
m,[λn] − (m + 1)(n + 1)σ1,1

mn

}

=
([λm] + 1)([λn] + 1)

([λm] − m)([λn] − n)
σ

(1,1)
[λm],[λn] −







([λm] + 1)([λn] + 1)

([λm] − m)([λn] − n)
σ

(1,1)
[λm],n

−
([λm] + 1)

([λm] − m)
σ

(1,1)
[λm],n







−

{

([λm] + 1)([λn] + 1)

([λm] − m)([λn] − n)
σ

(1,1)
m,[λn] −

([λn] + 1)

([λn] − n)
σ

(1,1)
m,[λn]

}

+







([λm] + 1)([λn] + 1)

([λm] − m)([λn] − n)
σ(1,1)

m,n −
([λm] + 1)

([λm] − m)
σ(1,1)

m,n

−
([λn] + 1)

([λn] − n)
σ(1,1)

m,n + σ(1,1)
m,n







.

Which implies

τmn − σ(1,1)
m,n =

([λm] + 1)([λn] + 1)

([λm] − m)([λn] − n)

{

d̄
(

σ
(1,1)
[λm],[λn], σ

(1,1)
[λm],n

)

− d̄
(

σ
(1,1)
m,[λn], σ(1,1)

m,n

)}

+
([λm] + 1)

([λm] − m)
d̄
(

σ
(1,1)
[λm],n, σ(1,1)

m,n

)

+
([λn] + 1)

([λn] − n)
d̄
(

σ
(1,1)
m,[λn], σ(1,1)

m,n

)

.

Also,

Xmn = τmn −
1

([λm] − m)([λn] − n)
d̄





[λm]
∑

i=m+1

[λn]
∑

j=n+1

(Xij, Xmn)



 .

Subtracting
(

σ
(1,1)
[λm],[λn]

)

from the above identity, we have

d̄
(

Xmn, σ(1,1)
mn (X)

)

=d̄
(

τmn(X), σ
(1,1)
[λm],[λn]

)

−
1

([λm] − m)([λn] − n)
d̄





[λm]
∑

i=m+1

[λn]
∑

j=n+1

(Xij, Xmn)
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=
([λm] + 1)([λn] + 1)

([λm] − m)([λn] − n)

{

d̄
(

σ
(1,1)
[λm],[λn](X), σ

(1,1)
[λm],n(X)

)

− d̄
(

σ
(1,1)
m,[λn](X), σ(1,1)

mn (X)
)}

+
[λm] + 1

[λn] − m
d̄
(

σ
(1,1)
[λm],n(X), σ(1,1)

m,n (X)
)

+
[λn] + 1

[λm] − m
d̄
(

σ
(1,1)
m,[λn](X), σ(1,1)

mn (X)
)

−
1

([λm] − m)([λn] − n)
d̄





[λm]
∑

i=m+1

[λn]
∑

j=n+1

(Xij, Xmn)



 .

Which establish (i). Next, the proof of (ii) is similar to (i). �

Proof of Theorem 1.

Proof. Let (Xmn) is (C, 1, 1)-summable to a fuzzy number L, this implies σ(1,1)
mn is

(C, 1, 1)-summable to a fuzzy number L. Now from equation (2.4), we have (Y (1,1)
mn ) is

(C, 1, 1)-summable to zero. Thus by Lemma 3.1, (Y (1,1)
mn ) oscillating slowly. Again by

Lemma 3.2 (i), we get

d̄
(

Y (1,1)
mn , σ(1,1)

mn (Y (1,1)
mn )

)

=
([λm] + 1)([λn] + 1)

([λm] − m)([λn] − n)







d̄
(

σ
(1,1)
[λm],[λn](Y

(1,1)
mn ), σ

(1,1)
[λm],n(Y (1,1)

mn )
)

− d̄
(

σ
(1,1)
m,[λn](Y

(1,1)
mn ), σ(1,1)

mn (Y (1,1)
mn )

)







+
[λm] + 1

[λn] − m
d̄
(

σ
(1,1)
[λm],n(Y (1,1)

mn ), σ(1,1)
m,n (Y (1,1)

mn )
)

+
[λn] + 1

[λm] − m
d̄
(

σ
(1,1)
m,[λn](Y

(1,1)
mn ), σ(1,1)

mn (Y (1,1)
mn )

)

−
1

([λm] − m)([λn] − n)
d̄





[λm]
∑

i=m+1

[λn]
∑

j=n+1

(Y
(1,1)

ij , Y (1,1)
mn )



 .(3.3)

It is easy to verify that for λ > 1 and sufficiently large n

([λm] + 1)([λn] + 1)

([λm] − m)([λn] − n)
<

([λm] + 1)([λn] + 1)

([λm] − 1 − m)([λn] − 1 − n)
<

4λ2

(λ − 1)2
.

Next, by (3.3)

d̄
(

Y (1,1)
mn , σ(1,1)

mn (Y (1,1)
mn )

)

≦
4λ2

(λ − 1)2
d̄
(

τmn(Y (1,1)
mn ), σ

(1,1)
[λm],[λn](Y

(1,1)
mn )

)

− max
m+1,n+1≦i,j≦[λm],[λn]

d̄





[λn]
∑

j=n+1

(Y
(1,1)

ij , Y (1,1)
mn )



 .(3.4)
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Taking lim sup both sides of (3.4), we have

lim sup
m,n

d̄
(

Y (1,1)
mn , σ(1,1)

mn (Y (1,1)
mn )

)

≦
4λ2

(λ − 1)2
lim sup

m,n
d̄
(

τmn(Y (1,1)
mn ), σ

(1,1)
[λm],[λn](Y

(1,1)
mn )

)

−lim sup
m,n

max
m+1,n+1≦i,j≦[λm],[λn]

d̄





[λn]
∑

j=n+1

(

Y
(1,1)

ij , Y (1,1)
mn

)



 .(3.5)

Furthermore,

σ
(1,1)
[λm],[λn](Y

(1,1)
mn ) → 0, m, n → ∞,

so first term in the right hand side of equation (3.5), must vanish.
This implies,

lim sup
m,n

d̄
(

Y (1,1)
mn , σ(1,1)

mn (Y (1,1)
mn )

)

≦ lim sup
m,n

max
m+1,n+1≦i,j≦[λm],[λn]

d̄





[λn]
∑

j=n+1

(

Y
(1,1)

ij , Y (1,1)
mn

)



 .(3.6)

As λ → 1+ in (3.6), so we get

lim sup
m,n

d̄
(

Y (1,1)
mn , σ(1,1)

mn (Y (1,1)
mn )

)

≦ 0.(3.7)

It implies that,

d̄
(

Y (1,1)
mn , 0

)

< ǫ, m, n → ∞.

Since (Xmn) is summable to a fuzzy number L by (C, 1, 1) mean and

d̄
(

Y (1,1)
mn , 0

)

< ǫ, m, n → ∞,

so
d̄ (Xmn, L) < ǫ, m, n → ∞.

Which completes the proof of the Theorem 3.1. �

Corollary 3.1. If (Xmn) is (C, k, r)-summable to a fuzzy number L and (Xmn) is
slowly oscillating (in the sense of Stanojević), then

d̄(Xmn, L) < ǫ, m, n → ∞.

Proof. Let X = (Xmn) be slowly oscillating, then σ(k,r)
mn (X) is slowly oscillating (by

Lemma 1). Furthermore, since X = (Xmn) is (C, k, r)-summable to a fuzzy number
L, so by Theorem 3.1

(3.8) d̄
(

σ(k,r)
mn (X), L

)

< ǫ, m, n → ∞.

Next from the definition,

(3.9) σ(k,r)
mn (X) = σ(1,1)

mn (X)
(

σ(k−1,r−1)
mn (X)

)

.
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Clearly, equation (3.8) and (3.9) implies X = (Xmn) is (C, k − 1, r − 1)-summable to

a fuzzy number L. Again
(

σ(k−1,r−1)
mn (X)

)

is also slowly oscillating (by Lemma 3.1);

thus by Theorem 3.1, we have

d̄
(

σ(k−1,r−1)
mn (X), L

)

< ǫ, m, n → ∞.

Continuing in this way, we obtain

d̄(Xmn, L) < ǫ, m, n → ∞.

Which completes the proof of the Corollary 3.1. �

Remark 3.1. If k = 0, and r 6= 0, then (C, k, r)- summability reduces to (C, 0, r)-
summability. Again for k 6= 0 and r = 0, (C, k, r)-summability reduces to (C, k, 0)-
summability.

Theorem 3.2. If the double sequence X = (Xmn) of fuzzy number is (C, 1, 1)-
summable to a fuzzy number L and Y (1,1)

mn (∆mnumn) is slowly oscillating, then

d̄(Xmn, L) < ǫ, m, n → ∞.

Proof. As (Xmn) is (C, 1, 1)-summable to a fuzzy number L, so (σ(1,1)
mn ) is (C, 1, 1)-

summable to a fuzzy number L. Therefore, (Y (1,1)
mn ) is (C, 1, 1)-summable to zero by

equation (2.4). Using identity (2.4) to (Y (1,1)
mn ), we get Y (Y (1,1)

mn ) is Cesàro summable
to zero. So that Y (Y (1,1)

mn ) is oscillating slowly by Lemma 3.1. Now by Lemma 3.2(i),

d̄
(

Y (Y (1,1)
mn ), σ(1,1)

mn Y (Y (1,1)
mn )

)

=
([λm] + 1)([λn] + 1)

([λm] − m)([λn] − n)



d̄
(

σ
(1,1)
[λm],[λn]Y (Y (1,1)

mn ), σ
(1,1)
[λm],nY (Y (1,1)

mn )
)

− d̄
(

σ
(1,1)
m,[λn]Y (Y (1,1)

mn ), σ(1,1)
mn Y (Y (1,1)

mn )
)





+
[λm] + 1

[λn] − m
d̄
(

σ
(1,1)
[λm],nY (Y (1,1)

mn ), σ(1,1)
m,n Y (Y (1,1)

mn )
)

+
[λn] + 1

[λm] − m
d̄
(

σ
(1,1)
m,[λn]Y (Y (1,1)

mn ), σ(1,1)
mn Y (Y (1,1)

mn )
)

−
1

([λm] − m)([λn] − n)
d̄





[λm]
∑

i=m+1

[λn]
∑

j=n+1

(

Y (Y
(1,1)

ij ), Y (Y (1,1)
mn )

)



 .(3.10)

It is easy to verify that for λ > 1 and sufficiently large n

([λm] + 1)([λn] + 1)

([λm] − m)([λn] − n)
<

([λm] + 1)([λn] + 1)

([λm] − 1 − m)([λn] − 1 − n)
<

4λ2

(λ − 1)2
.
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Next, by (3.10)

d̄
(

Y (Y (1,1)
mn ), σ(1,1)

mn Y (Y (1,1)
mn )

)

≦
4λ2

(λ − 1)2
d̄
(

τmnY (Y (1,1)
mn ), σ

(1,1)
[λm],[λn]Y (Y (1,1)

mn )
)

− max
m+1,n+1≦i,j≦[λm],[λn]

d̄





[λn]
∑

j=n+1

(

Y (Y
(1,1)

ij ), Y (Y (1,1)
mn )

)



 .(3.11)

Taking lim sup both sides of (3.11) we have

lim sup
m,n

d̄
(

Y (Y (1,1)
mn ), σ(1,1)

mn Y (Y (1,1)
mn )

)

≦
4λ2

(λ − 1)2
lim sup

m,n
d̄
(

τmnY (Y (1,1)
mn ), σ

(1,1)
[λm],[λn]Y (Y (1,1)

mn )
)

− lim sup
m,n

max
m+1,n+1≦i,j≦[λm],[λn]

d̄





[λn]
∑

j=n+1

(

Y (Y
(1,1)

ij ), Y (Y (1,1)
mn )

)



 .(3.12)

Furthermore, as σ
(1,1)
[λm],[λn]Y (Y (1,1)

mn ) converges, so first term in the right hand side of

equation (3.12), must vanish.
This implies,

lim sup
m,n

d̄
(

Y (Y (1,1)
mn ), σ(1,1)

mn Y (Y (1,1)
mn )

)

≦ lim sup
m,n

max
m+1,n+1≦i,j≦[λm],[λn]

d̄





[λn]
∑

j=n+1

(

Y (Y
(1,1)

ij ), Y (Y (1,1)
mn )

)



 .(3.13)

As λ → 1+ in (3.13), so we get

lim sup
m,n

d̄
(

Y (Y (1,1)
mn ), σ(1,1)

mn Y (Y (1,1)
mn )

)

≦ 0.(3.14)

It implies that,

d̄(Y (Y (1,1)
mn ), 0) < ǫ, m, n → ∞.

Since (Xmn) is summable to a fuzzy number L by (C, 1, 1) mean and

d̄(Y (Y (1,1)
mn ), 0) < ǫ, m, n → ∞

so,

d̄(Xmn, L) < ǫ, m, n → ∞.

Which completes the proof of the Theorem 3.2. �

Corollary 3.2. If (Xmn) is (C, k, r)-summable to a fuzzy number L and Y (1,1)
mn (∆X)

is slowly oscillating, then

d̄(Xmn, L) < ǫ, m, n → ∞.
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Proof. As Y (1,1)
mn (∆X) is slowly oscillating, setting X = (Xmn) in place of Y (1,1)

mn (∆X),
then σ(k,r)

mn (Y (1,1)
mn (∆X)) is slowly oscillating by Lemma 3.1. Again as Y (1,1)

mn (∆X) is
(C, k, r)-summable to a fuzzy number L, so by Theorem 3.2, we have

(3.15) d̄
(

σ(k,r)
mn

(

Y (1,1)
mn (∆X)

)

, L
)

< ǫ, m, n → ∞.

By definition,

(3.16) σ(k,r)
mn

(

Y (1,1)
mn (∆X)

)

= σ(1,1)
mn

(

Y (1,1)
mn (∆X)

) [

σ(k−1,r−1)
mn (Y (1,1)

mn (∆X))
]

.

From (3.15) and (3.16) we have Y (1,1)
mn (∆X) is (C, k − 1, r − 1)-summable to a fuzzy

number L. Again by Lemma 3.1, since

σ(k−1,r−1)
mn

(

Y (1,1)
mn (∆X)

)

,

is slowly oscillating, so we have

d̄
(

σ(k−1,r−1)
mn (Y (1,1)

mn (∆X)), L
)

< ǫ (by Theorem 3.2).

Continuing in this way, we obtain

d̄
(

(Y (1,1)
mn (∆X)), L

)

< ǫ, m, n → ∞.

Which completes the proof of the Corollary 3.2. �

Remark 3.2. If k = 0, and r 6= 0, then (C, k, r)- summability reduces to (C, 0, r)-
summability. Again for k 6= 0 and r = 0, (C, k, r)-summability reduces to (C, k, 0)-
summability and consequently the following corollaries are generated from the main
result.
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SHARP BOUNDS ON THE AUGMENTED ZAGREB INDEX OF

GRAPH OPERATIONS

N. DEHGARDI1 AND H. ARAM2∗

Abstract. Let G be a finite and simple graph with edge set E(G). The augmented

Zagreb index of G is

AZI(G) =
∑

uv∈E(G)

(

dG(u)dG(v)

dG(u) + dG(v) − 2

)3

,

where dG(u) denotes the degree of a vertex u in G. In this paper, we give some
bounds of this index for join, corona, cartesian and composition product of graphs
by general sum-connectivity index and general Randić index and compute the sharp
amount of that for the regular graphs.

1. Introduction

Let G be a finite and simple graph with vertex set V = V (G) and edge set E = E(G).
The integers n = n(G) = |V (G)| and m = m(G) = |E(G)| are the order and the
size of the graph G, respectively. For a vertex v ∈ V (G), the open neighborhood of
v, denoted by NG(v) = N(v), is the set {u ∈ V (G) | uv ∈ E(G)}. The degree of
v ∈ V (G), denoted by dG(v), is defined by dG(v) = |NG(v)|. The maximum (resp.
minimum) degree of vertices of G is denoted by ∆G (resp. δG). We use Bondy and
Murty [10] for terminology and notation not defined here.

Several authors defined and studied more vertex degree-based graph invariants such
as [16]. One of them is augmented Zagreb index of G that is proposed in 2010 by
Furtula et al. [15] as

Key words and phrases. Augmented Zagreb index, general sum-connectivity index, general Randić
index, graph operations.
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AZI(G) =
∑

uv∈E(G)

(

dG(u)dG(v)

dG(u) + dG(v) − 2

)3

,

where dG(u) denotes the degree of a vertex u in G. The researchers give a good bounds
for it by using different graph parameters, investigate the impact of removing and
adding the edge for graph on the augmented Zagreb index. For details see [1,18,24,27].

In 2009, Zu and Trijnastić [28] defined the sum-connectivity index as

χ(G) =
∑

uv∈E(G)

dG(u) + dG(v)

and one year later, they in [29] introduced the general sum-connectivity index as

χλ(G) =
∑

uv∈E(G)

(dG(u) + dG(v))λ
, for λ ∈ R.

There are good results on general sum-connectivity index such as [22, 23]. In 1975,
the chemist Milan Randić [21] introduced a topological index R(G) under the name
branching index. The branching index was renamed the molecular connectivity index

and is often referred to as the Randić index and later named second Zagreb index. In
1998, Bollobas and Erdos [9] proposed the generealization state of it named general

Randić index, Rλ(G), as

Rλ(G) =
∑

uv∈E(G)

(dG(u)dG(v))λ
, for λ ∈ R

later that is named second general Zagreb index.
The relation between several indices and operations of graphs were very studied.

(see [2–8,11–14,17,19,20,25,26]). In this paper, we calculate bounds of the augmented
Zagreb index by two other indices, the general sum-connectivity index and the Randić
index for join, corona, cartesian and composition product of graphs and compute the
sharp amount of that for the regular graphs.

2. The Join of Graphs

The join G + H of graphs G and H with disjoint vertex sets V (G) and V (H)
and edge sets E(G) and E(H) is the graph union G ∪ H together with all the
edges joining V (G) and V (H). Obviously, |V (G + H)| = |V (G)| + |V (H)| and
|E(G + H)| = |E(G)| + |E(H)| + |V (G)||V (H)|.

Theorem 2.1. Let G be a graph of order n1 and of size m1 and let H be a graph of

order n2 and of size m2. Then

AZI(G + H) ≤
(∆G − 1)3AZI(G)

(∆G + n2 − 1)3
+

n3
2χ3(G) + (3n2

2∆
2
G + 3n4

2)χ2(G) + 3n5
2χ1(G)

8(δG + n2 − 1)3

+
(6n2∆G + 3n2

2)R2(G) + (12n3
2∆G + 3n4

2)R1(G) + m1n
6
2

8(δG + n2 − 1)3
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+
(∆H − 1)3AZI(H)

(∆H + n1 − 1)3

+
n3

1χ3(H) + (3n2
1∆

2
H + 3n4

1)χ2(H) + 3n5
1χ1(H)

8(δH + n1 − 1)3

+
(6n1∆H + 3n2

1)R2(H) + (12n3
1∆H + 3n4

1)R1(H) + m2n
6
1

8(δH + n1 − 1)3

+ n1n2

(

(∆G + n2)(∆H + n1)

δG + δH + n1 + n2 − 2

)3

,

with equality if and only if G and H are regular graphs.

Proof. By definition,

AZI(G + H) =
∑

uv∈E(G+H)

(

dG+H(u)dG+H(v)

dG+H(u) + dG+H(v) − 2

)3

.

We partition the edges of G + H in to three subset E1, E2 and E3, as follows:

E1 ={e = uv | u, v ∈ V (G)},

E2 ={e = uv | u, v ∈ V (H)},

E3 ={e = uv | u ∈ V (G), v ∈ V (H)}.

Let e = uv ∈ E1. Then dG+H(u) = dG(u) + n2 and dG+H(v) = dG(v) + n2. Hence

((dG(u) + n2)(dG(v) + n2))
3 =(dG(u)dG(v))2[3n2(dG(u) + dG(v)) + 3n2

2]

+ (dG(u)dG(v))3 + dG(u)dG(v)

× [6n3
2(dG(u) + dG(v)) + 3n4

2]

+ n3
2(dG(u) + dG(v))3 + 3n5

2(dG(u) + dG(v))

+ (dG(u) + dG(v))2[3n2
2dG(u)dG(v) + 3n4

2] + n6
2

and
(

dG+H(u)dG+H(v)

dG+H(u) + dG+H(v) − 2

)3

=

(

1 −
2n2

dG(u) + dG(v) + 2n2 − 2

)3 (
dG(u)dG(v)

dG(u) + dG(v) − 2

)3

+
n3

2(dG(u) + dG(v))3 + [3n2
2(dG(u)dG(v))2 + 3n4

2](dG(u) + dG(v))2

(dG(u) + dG(v) + 2n2 − 2)3

+
3n5

2(dG(u) + dG(v)) + [3n2(dG(u) + dG(v)) + 3n2
2](dG(u)dG(v))2

(dG(u) + dG(v) + 2n2 − 2)3

+
[6n3

2(dG(u) + dG(v)) + 3n4
2]dG(u)dG(v) + n6

2

(dG(u) + dG(v) + 2n2 − 2)3
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≤

(

∆G − 1

∆G + n2 − 1

)3 (
dG(u)dG(v)

dG(u) + dG(v) − 2

)3

+
n3

2(dG(u) + dG(v))3 + (3n2
2∆

2
G + 3n4

2)(dG(u) + dG(v))2

8(δG + n2 − 1)3

+
3n5

2(dG(u) + dG(v)) + (6n2∆G + 3n2
2)(dG(u)dG(v))2

8(δG + n2 − 1)3

+
(12n3

2∆G + 3n4
2)dG(u)dG(v) + n6

2

8(δG + n2 − 1)3
.

Therefore,

∑

uv∈E1

(

dG+H(u)dG+H(v)

dG+H(u) + dG+H(v) − 2

)3

≤

(

∆G − 1

∆G + n2 − 1

)3

AZI(G) +
m1n

6
2

8(δG + n2 − 1)3

+
n3

2χ3(G) + (3n2
2∆

2
G + 3n4

2)χ2(G) + n5
2χ1(G)

8(δG + n2 − 1)3

+
(6n2∆G + 3n2

2)R2(G) + (12n3
2∆G + 3n4

2)R1(G)

8(δG + n2 − 1)3
.(2.1)

Obviously, equality holds if and only if ∆G = δG. Similarly

∑

uv∈E2

(

dG+H(u)dG+H(v)

dG+H(u) + dG+H(v) − 2

)3

≤

(

∆H − 1

∆H + n1 − 1

)3

AZI(H) +
m2n

6
1

8(δH + n1 − 1)3

+
n3

1χ3(H) + (3n2
1∆

2
H + 3n4

1)χ2(H) + 3n5
1χ1(H)

8(δH + n1 − 1)3

+
(6n1∆H + 3n2

1)R2(H)+(12n3
1∆H + 3n4

1)R1(H)

8(δH + n1 − 1)3
.(2.2)

Equality holds if and only if ∆H = δH . Let e = uv ∈ E3 such that u ∈ V (G) and
v ∈ V (H). Then dG+H(u) = dG(u) + n2 and dG+H(v) = dH(v) + n1. Hence for every
edge e = uv ∈ E3,

(

dG+H(u)dG+H(v)

dG+H(u) + dG+H(v)

)3

=

(

(dG(u) + n2)(dH(v) + n1)

dG(u) + dH(v) + n1 + n2 − 2

)3

≤

(

(∆G + n2)(∆H + n1)

δG + δH + n1 + n2 − 2

)3

.

Therefore,

∑

uv∈E3

(

dG+H(u)dG+H(v)

dG+H(u) + dG+H(v)

)3

≤ n1n2

(

(∆G + n2)(∆H + n1)

δG + δH + n1 + n2 − 2

)3

,(2.3)
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with equality if and only if ∆G = δG and ∆H = δH . By Equations (2.1), (2.2) and
(2.3), we have:

AZI(G + H) ≤
(∆G − 1)3AZI(G)

(∆G + n2 − 1)3
+

n3
2χ3(G) + (3n2

2∆
2
G + 3n4

2)χ2(G) + 3n5
2χ1(G)

8(δG + n2 − 1)3

+
(6n2∆G + 3n2

2)R2(G) + (12n3
2∆G + 3n4

2)R1(G) + m1n
6
2

8(δG + n2 − 1)3

+
(∆H − 1)3AZI(H)

(∆H + n1 − 1)3
+

n3
1χ3(H) + (3n2

1∆
2
H + 3n4

1)χ2(H) + 3n5
1χ1(H)

8(δH + n1 − 1)3

+
(6n1∆H + 3n2

1)R2(H) + (12n3
1∆H + 3n4

1)R1(H) + m2n
6
1

8(δH + n1 − 1)3

+ n1n2

(

(∆G + n2)(∆H + n1)

δG + δH + n1 + n2 − 2

)3

.

Equality holds if and only if G and H are regular graphs. �

Theorem 2.2. Let G be a graph of order n1 and of size m1 and let H be a graph of

order n2 and of size m2. Then

AZI(G + H) ≥
(δG − 1)3AZI(G)

(δG + n2 − 1)3
+

n3
2χ3(G) + (3n2

2δ
2
G + 3n4

2)χ2(G) + 3n5
2χ1(G)

8(∆G + n2 − 1)3

+
(6n2δG + 3n2

2)R2(G) + (12n3
2δG + 3n4

2)R1(G) + m1n
6
2

8(∆G + n2 − 1)3

+
(δH − 1)3AZI(H)

(δH + n1 − 1)3
+

n3
1χ3(H) + (3n2

1δ
2
H + 3n4

1)χ2(H) + 3n5
1χ1(H)

8(∆H + n1 − 1)3

+
(6n1δH + 3n2

1)R2(H) + (12n3
1δH + 3n4

1)R1(H) + m2n
6
1

8(∆H + n1 − 1)3

+ n1n2

(

(δG + n2)(δH + n1)

∆G + ∆H + n1 + n2 − 2

)3

,

with equality if and only if G and H are regular graphs.

Proof. Using an argument similar to that described in proof of Theorem 2.1, we
obtained the result. �

Corollary 2.1. Let G be a k-regular graph of order n1 and let H be a r-regular graph

of order n2. Then

AZI(G + H) =
k(k + n2)

6

16(k + n2 − 1)3
+

r(r + n1)
6

16(r + n1 − 1)3
+

n1n2(k + n2)
3(r + n1)

3

(k + r + n1 + n2 − 2)3
.

3. The Corona Product of Graphs

The corona product G ◦ H of graphs G and H with disjoint vertex sets V (G) and
V (H) and edge sets E(G) and E(H) is as the graph obtained by taking one copy
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of G and |V (G)| copies of H and joining the i-th vertex of G to every vertex in
i-th copy of H. Obviously, |V (G ◦ H)| = |V (G)| + |V (G)||V (H)| and |E(G ◦ H)| =
|E(G)| + |V (G)||E(H)| + |V (G)||V (H)|.

Theorem 3.1. Let G be a graph of order n1 and of size m1 and let H be a graph of

order n2 and of size m2. Then

AZI(G ◦ H) ≤
(∆G − 1)3AZI(G)

(∆G + n2 − 1)3
+

n3
2χ3(G) + (3n2

2∆
2
G + 3n4

2)χ2(G) + 3n5
2χ1(G)

8(δG + n2 − 1)3

+
(6n2∆G + 3n2

2)R2(G) + (12n3
2∆G + 3n4

2)R1(G) + m1n
6
2

8(δG + n2 − 1)3

+
(∆H − 1)3AZI(H)

∆3
H

+
χ3(H) + (3∆2

H + 3)χ2(H) + 3χ1(H)

8δ3
H

+
(6∆H + 3)R2(H) + (12∆H + 3)R1(H) + m2

8δ3
H

+ n1n2

(

(∆G + n2)(∆H + 1)

δG + δH + n2 − 1

)3

,

with equality if and only if G and H are regular graphs.

Proof. We partition the edges of G in to three subset E1, E2 and E3 such that
E1 = {e = uv | u, v ∈ V (G)}, E2 = {e = uv | u, v ∈ V (H)} and E3 = {e = uv | u ∈
V (G), v ∈ V (H)}.

If e = uv ∈ E1, then dG◦H(u) = dG(u) + n2 and dG◦H(v) = dG(v) + n2 and if
e = uv ∈ E2, then dG◦H(u) = dH(u) + 1 and dG◦H(v) = dH(v) + 1. By used of proof
of Theorem 2.1, we have,

∑

uv∈E1

(

dG◦H(u)dG◦H(v)

dG◦H(u) + dG◦H(v) − 2

)3

≤
(∆G − 1)3AZI(G)

(∆G + n2 − 1)3

+
n3

2χ3(G) + (3n2
2∆

2
G + 3n4

2)χ2(G) + n5
2χ1(G)

8(δG + n2 − 1)3

+
(6n2∆G + 3n2

2)R2(G) + (12n3
2∆G + 3n4

2)R1(G)

8(δG + n2 − 1)3

+
m1n

6
2

8(δG + n2 − 1)3
,(3.1)

∑

uv∈E2

(

dG◦H(u)dG◦H(v)

dG◦H(u) + dG◦H(v) − 2

)3

≤
(∆H − 1)3AZI(H)

∆3
H

+
χ3(H) + (3∆2

H + 3)χ2(H) + 3χ1(H)

8δ3
H

+
(6∆Hh + 3)R2(H) + (12∆H + 3)R1(H) + m2

8δ3
H

.(3.2)
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Obviously, equalities hold if and only if ∆G = δG and ∆H = δH .
Let e = uv ∈ E3 such that u ∈ V (G) and v ∈ V (H). Then dG◦H(u) = dG(u) + n2

and dG◦H(v) = dH(v) + 1. Hence for every edge e = uv ∈ E3,
(

dG◦H(u)dG◦H(v)

dG◦H(u) + dG◦H(v) − 2

)3

=

(

(dG(u) + n2)(dH(v) + 1)

dG(u) + dH(v) + n2 + 1 − 2

)3

≤

(

(∆G + n2)(∆H + 1)

δG + δH + n2 − 1

)3

.

Therefore,

∑

uv∈E3

(

dG◦H(u)dG◦H(v)

dG◦H(u) + dG◦H(v) − 2

)3

≤
n1n2(∆G + n2)

3(∆H + 1)3

(δG + δH + n2 − 1)3
,(3.3)

with equality if and only if ∆G = δG and ∆H = δH . By Equations (3.1), (3.2) and
(3.3), we have:

AZI(G ◦ H) ≤
(∆G − 1)3AZI(G)

(∆G + n2 − 1)3
+

n3
2χ3(G) + (3n2

2∆
2
G + 3n4

2)χ2(G) + 3n5
2χ1(G)

8(δG + n2 − 1)3

+
(6n2∆G + 3n2

2)R2(G) + (12n3
2∆G + 3n4

2)R1(G) + m1n
6
2

8(δG + n2 − 1)3

+
(∆H − 1)3AZI(H)

∆3
H

+
χ3(H) + (3∆2

H + 3)χ2(H) + 3χ1(H)

8δ3
H

+
(6∆H + 3)R2(H) + (12∆H + 3)R1(H) + m2

8δ3
H

+ n1n2

(

(∆G + n2)(∆H + 1)

δG + δH + n2 − 1

)3

.

Equality holds if and only if G and H are regular graphs. �

Theorem 3.2. Let G be a graph of order n1 and of size m1 and let H be a graph of

order n2 and of size m2. Then

AZI(G ◦ H) ≥
(δG − 1)3AZI(G)

(δG + n2 − 1)3
+

n3
2χ3(G) + (3n2

2δ
2
G + 3n4

2)χ2(G) + 3n5
2χ1(G)

8(∆G + n2 − 1)3

+
(6n2δG + 3n2

2)R2(G) + (12n3
2δG + 3n4

2)R1(G) + m1n
6
2

8(∆G + n2 − 1)3

+
(δH − 1)3AZI(H)

δ3
H

+
χ3(H) + (3δ2

H + 3)χ2(H) + 3χ1(H)

8∆3
H

+
(6δH + 3)R2(H) + (12δH + 3)R1(H) + m2

8∆3
H

+
n1n2(δG + n2)

3(δH + 1)3

(∆G + ∆H + n2 − 1)3
,
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with equality if and only if G and H are regular graphs.

Proof. The proof of the result is similar to this given in Theorem 3.1. �

Corollary 3.1. Let G be a k-regular graph of order n1 and let H be a r-regular graph

of order n2. Then

AZI(G ◦ H) =
k(k + n2)

6

16(k + n2 − 1)3
+

r(r + 1)6

16r3
+

n1n2(k + n2)
3(r + 1)3

(k + r + n2 − 1)3
.

4. The Cartesian Product of Graphs

The Cartesian product G × H of graphs G and H has the vertex set V (G × H) =
V (G) × V (H) and (u, x)(v, y) is an edge of G × H if uv ∈ E(G) and x = y, or
u = v and xy ∈ E(H). Obviously, |V (G × H)| = |V (G)||V (H)| and |E(G × H)| =
|E(G)||V (H)| + |V (G)||E(H)|.

Theorem 4.1. Let G be a graph of order n1 and of size m1 and let H be a graph of

order n2 and of size m2. Then

AZI(G × H) ≤
n2(∆G + ∆H − δH − 1)3AZI(G) + n1(∆G + ∆H − δG − 1)3AZI(H)

(∆G + ∆H − 1)3

+
n2∆

3
Hχ3(G) + n2(3∆2

H∆2
G + 3∆4

H)χ2(G) + 3n2∆
5
Hχ1(G) + ∆6

Gm2

8(δG + δH − 1)3

+
n1∆

3
Gχ3(H) + n1(3∆2

H∆2
G + 3∆4

G)χ2(H) + 3n1∆
5
Gχ1(H) + ∆6

Hm1

8(δG + δH − 1)3

+
n2(6∆H∆G + 3∆2

H)R2(G) + n2(12∆3
H∆G + 3∆4

H)R1(G)

8(δG + δH − 1)3

+
n1(6∆H∆G + 3∆2

G)R2(H) + n1(12∆3
G∆H + 3∆4

G)R1(H)

8(δG + δH − 1)3
,

with equality if and only if G and H are regular graphs.

Proof. By definition,

AZI(G × H) =
∑

(u,x)(v,y)∈E(G×H)

(

dG×H(u, x)dG×H(v, y)

dG×H(u, x) + dG×H(v, y) − 2

)3

.

We partition the edges of G × H in to two subset E1 and E2, as follows:

E1 ={e = (u, x)(v, y) | uv ∈ E(G), x = y},

E2 ={e = (u, x)(v, y) | xy ∈ E(H), u = v}.

Let e = (u, x)(v, x) ∈ E1. Then dG×H(u, x) = dG(u) + dH(x) and dG×H(v, x) =
dG(v) + dH(x). By used of proof of Theorem 2.1, we have
(

dG×H(u, x)dG×H(v, x)

dG×H(u, x) + dG×H(v, x) − 2

)3

≤
(∆G + ∆H − δH − 1)3

(∆G + ∆H − 1)3

(

dG(u)dG(v)

dG(u) + dG(v) − 2

)3
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+
∆3

H(dG(u) + dG(v))3)(dG(u) + dG(v))2

8(δG + δH − 1)3

+
(3∆2

H∆2
G + 3∆4

H)(dG(u) + dG(v))2

8(δG + δH − 1)3

+
3∆5

H(dG(u) + dG(v))

8(δG + δH − 1)3

+
(6∆H∆G + 3∆2

H)(dG(u)dG(v))2

8(δG + δH − 1)3

+
(12∆3

H∆G + 3∆4
H)dG(u)dG(v) + ∆6

H

8(δG + δH − 1)3
.

Therefore,

∑

(u,x)(v,x)∈E1

(

dG×H(u, x)dG×H(v, x)

dG×H(u, x) + dG×H(v, x) − 2

)3

≤
n2(∆G + ∆H − δH − 1)3AZI(G)

(∆G + ∆H − 1)3
+

n2∆
3
Hχ3(G) + 3n2∆

5
Hχ1(G)

8(δG + δH − 1)3

+
n2(3∆2

H∆2
G + 3∆4

H)χ2(G)

8(δG + δH − 1)3
+

n2(6∆H∆G + 3∆2
H)R2(G)

8(δG + δH − 1)3

+
n2(12∆3

H∆G + 3∆4
H)R1(G)+∆6

Hn2m1

8(δG + δH − 1)3
(4.1)

Obviously, equality holds if and only if ∆G = δG and ∆H = δH . Similarly,

∑

(u,x)(u,y)∈E2

(

dG×H(u, x)dG×H(u, y)

dG×H(u, x) + dG×H(u, y) − 2

)3

≤
n1(∆G + ∆H − δG − 1)3AZI(H)

(∆G + ∆H − 1)3

+
n1∆

3
Gχ3(H) + 3n1∆

5
Gχ1(H)

8(δG + δH − 1)3

+
n1(3∆2

H∆2
G + 3∆4

G)χ2(H)

8(δG + δH − 1)3

+
n1(6∆H∆G + 3∆2

G)R2(H)

8(δG + δH − 1)3

+
n1(12∆3

G∆H +3∆4
G)R1(H)+∆6

Gn1m2

8(δG + δH − 1)3
.(4.2)

Equality holds if and only if ∆G = δG and ∆H = δH . By Equations (4.1) and (4.2),
we have:

AZI(G × H) ≤
n2(∆G + ∆H − δH − 1)3AZI(G) + n1(∆G + ∆H − δG − 1)3AZI(H)

(∆G + ∆H − 1)3

+
n2∆

3
Hχ3(G) + n2(3∆2

H∆2
G + 3∆4

H)χ2(G) + 3n2∆
5
Hχ1(G) + ∆6

Gm2

8(δG + δH − 1)3
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+
n1∆

3
Gχ3(H) + n1(3∆2

H∆2
G + 3∆4

G)χ2(H) + 3n1∆
5
Gχ1(H) + ∆6

Hm1

8(δG + δH − 1)3

+
n2(6∆H∆G + 3∆2

H)R2(G) + n2(12∆3
H∆G + 3∆4

H)R1(G)

8(δG + δH − 1)3

+
n1(6∆H∆G + 3∆2

G)R2(H) + n1(12∆3
G∆H + 3∆4

G)R1(H)

8(δG + δH − 1)3
,

with equality if and only if G and H are regular graphs. �

Theorem 4.2. Let G be a graph of order n1 and of size m1 and let H be a graph of

order n2 and of size m2. Then

AZI(G × H) ≥
n2(δG + δH − ∆H − 1)3AZI(G) + n1(δG + δH − ∆G − 1)3AZI(H)

(δG + δH − 1)3

+
n2δ

3
Hχ3(G) + n2(3δ2

Hδ2
G + 3δ4

H)χ2(G) + 3n2δ
5
Hχ1(G)

8(∆G + ∆H − 1)3

+
n2(6δHδG + 3δ2

H)R2(G) + n2(12δ3
HδG + 3δ4

H)R1(G) + δ6
Hm1

8(∆G + ∆H − 1)3

+
n1δ

3
Gχ3(H) + n1(3δ2

Hδ2
G + 3δ4

G)χ2(H) + 3n1δ
5
Gχ1(H)

8(∆G + ∆H − 1)3

+
n1(6δHδG + 3δ2

G)R2(H) + n1(12δ3
GδH + 3δ4

G)R1(H) + δ6
Gm2

8(∆G + ∆H − 1)3
,

with equality if and only if G and H are regular graphs.

Proof. Using an argument similar to that described in proof of Theorem 4.1, we
obtained the result. �

Corollary 4.1. Let G be a k-regular graph of order n1 and let H be a r-regular graph

of order n2. Then AZI(G × H) = n1n2(k+r)7

16(k+r−1)3 .

5. The Composition Product of Graphs

The composition G[H] of graphs G and H has the vertex set V (G[H]) = V (G) ×
V (H) and (u, x)(v, y) is an edge of G[H] if (uv ∈ E(G)) or (xy ∈ E(H) and
u = v). Obviously, |V (G[H])| = |V (G)||V (H)| and |E(G[H])| = |E(G)||V (H)|2 +
|E(H)||V (G)|.

Theorem 5.1. Let G be a graph of order n1 and of size m1 and let H be a graph of

order n2 and of size m2. Then

AZI(G[H])

≤
n5

2(n2∆G + ∆H − δH − n2)
3AZI(G) + n1(∆H + n2∆G − n2δG − 1)3AZI(H)

(n2∆G + ∆H − 1)3
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+
n5

2∆
3
Hχ3(G) + n2

2(3n4
2∆

2
H∆2

G + 3n2
2∆

4
H)χ2(G) + 3n3

2∆
5
Hχ1(G)

8(n2δG + δH − 1)3

+
n1n

3
2∆

3
Gχ3(H) + n1(3n2

2∆
2
H∆2

G + 3n4
2∆

4
G)χ2(H) + 3n1n

5
2∆

5
Gχ1(H)

8(n2δG + δH − 1)3

+
n2

2(6n5
2∆H∆G + 3n4

2∆
2
H)R2(G) + n2

2(12n3
2∆

3
H∆G + 3n2

2∆
4
H)R1(G) + n2

2m1∆
6
H

8(n2δG + δH − 1)3

+
n1(6n2∆H∆G + 3n2

2∆
2
G)R2(H) + n1(12n3

2∆
3
G∆H + 3n4

2∆
4
G)R1(H) + n1m2n

6
2∆

6
G

8(n2δG + δH − 1)3
,

with equality if and only if G and H are regular graphs.

Proof. We partition the edges of G[H] in to two subset E1 and E2, as follows:

E1 ={e = (u, x)(v, y) | uv ∈ E(G)},

E2 ={e = (u, x)(v, y) | xy ∈ E(H), u = v}.

Let e = (u, x)(v, y) ∈ E1. Then dG[H](u, x) = n2dG(u) + dH(x) and dG[H](v, y) =
n2dG(v) + dH(y). By used of proof of Theorem 2.1, we have,
(

dG[H](u, x)dG[H](v, y)

dG[H](u, x) + dG[H](v, y) − 2

)3

≤
n5

2(n2∆G +∆H −δH −n2)
3

(n2∆G + ∆H − 1)3

(

dG(u)dG(v)

dG(u) + dG(v) − 2

)3

+
n3

2∆
3
H(dG(u) + dG(v))3+3n2∆

5
H(dG(u)+dG(v))

8(n2δG + δH − 1)3

+
(3n4

2∆
2
H∆2

G + 3n2
2∆

4
H)(dG(u) + dG(v))2

8(n2δG + δH − 1)3

+
(6n5

2∆H∆G + 3n4
2∆

2
H)(dG(u)dG(v))2

8(n2δG + δH − 1)3

+
(12n3

2∆
3
H∆G + 3n2

2∆
4
H)dG(u)dG(v) + ∆6

H

8(n2δG + δH − 1)3
.

Therefore,

∑

(u,x)(v,y)∈E1

(
dG[H](u, x)dG[H](v, x)

dG[H](u, x) + dG[H](v, x) − 2
)3 ≤

n5
2(n2∆G + ∆H − δH − n2)

3AZI(G)

(n2∆G + ∆H − 1)3

+
n2

2(6n5
2∆H∆G + 3n4

2∆
2
H)R2(G)

8(n2δG + δH − 1)3

+
n2

2(3n4
2∆

2
H∆2

G + 3n2
2∆

4
H)χ2(G)

8(n2δG + δH − 1)3

+
n5

2∆
3
Hχ3(G)

8(n2δG + δH − 1)3
+

3n3
2∆

5
Hχ1(G)

8(n2δG + δH − 1)3

+
n2

2(12n3
2∆

3
H∆G + 3n2

2∆
4
H)R1(G)

8(n2δG + δH − 1)3
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+
n2

2m1∆
6
H

8(n2δG + δH − 1)3
.(5.1)

Obviously, equality holds if and only if ∆G = δG and ∆H = δH . Similarly,

∑

(u,x)(u,y)∈E2

(

dG[H](u, x)dG[H](u, y)

dG[H](u, x) + dG[H](u, y) − 2

)3

≤
n1(∆H + n2∆G − n2δG − 1)3AZI(H)

(n2∆G + ∆H − 1)3

+
n1(6n2∆H∆G + 3n2

2∆
2
G)R2(H)

8(n2δG + δH − 1)3

+
n1(3n2

2∆
2
H∆2

G + 3n4
2∆

4
G)χ2(H)

8(n2δG + δH − 1)3

+
n1n

3
2∆

3
Gχ3(H)

8(δG + δH − 1)3
+

3n1n
5
2∆

5
Gχ1(H)

8(n2δG + δH − 1)3

+
n1(12n3

2∆
3
G∆H + 3n4

2∆
4
G)R1(H)

8(n2δG + δH − 1)3

+
n1m2n

6
2∆

6
G

8(n2δG + δH − 1)3
.(5.2)

Equality holds if and only if ∆G = δG and ∆H = δH . By Equations (5.1) and (5.2),
we have:

AZI(G[H])

≤
n5

2(n2∆G + ∆H − δH − n2)
3AZI(G) + n1(∆H + n2∆G − n2δG − 1)3AZI(H)

(n2∆G + ∆H − 1)3

+
n5

2∆
3
Hχ3(G) + n2

2(3n4
2∆

2
H∆2

G + 3n2
2∆

4
H)χ2(G) + 3n3

2∆
5
Hχ1(G)

8(n2δG + δH − 1)3

+
n1n

3
2∆

3
Gχ3(H) + n1(3n2

2∆
2
H∆2

G + 3n4
2∆

4
G)χ2(H) + 3n1n

5
2∆

5
Gχ1(H)

8(n2δG + δH − 1)3

+
n2

2(6n5
2∆H∆G + 3n4

2∆
2
H)R2(G) + n2

2(12n3
2∆

3
H∆G + 3n2

2∆
4
H)R1(G) + n2

2m1∆
6
H

8(n2δG + δH − 1)3

+
n1(6n2∆H∆G + 3n2

2∆
2
G)R2(H) + n1(12n3

2∆
3
G∆H + 3n4

2∆
4
G)R1(H) + n1m2n

6
2∆

6
G

8(n2δG + δH − 1)3
,

with equality if and only if G and H are regular graphs. �

Theorem 5.2. Let G be a graph of order n1 and of size m1 and let H be a graph of

order n2 and of size m2. Then

AZI(G[H])

≥
n5

2(n2δG + δH − ∆H − n2)
3AZI(G) + n1(δH + n2δG − n2∆G − 1)3AZI(H)

(n2δG + δH − 1)3
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+
n5

2δ
3
Hχ3(G) + n2

2(3n4
2δ

2
Hδ2

G + 3n2
2δ

4
H)χ2(G) + 3n3

2δ
5
Hχ1(G)

8(n2∆G + ∆H − 1)3

+
n1n

3
2δ

3
Gχ3(H) + n1(3n2

2δ
2
Hδ2

G + 3n4
2δ

4
G)χ2(H) + 3n1n

5
2δ

5
Gχ1(H)

8(n2∆G + ∆H − 1)3

+
n2

2(6n5
2δHδG + 3n4

2δ
2
H)R2(G) + n2

2(12n3
2δ

3
HδG + 3n2

2δ
4
H)R1(G) + n2

2m1δ
6
H

8(n2∆G + ∆H − 1)3

+
n1(6n2δHδG + 3n2

2δ
2
G)R2(H) + n1(12n3

2δ
3
GδH + 3n4

2δ
4
G)R1(H) + n1m2n

6
2δ

6
G

8(n2∆G + ∆H − 1)3
,

with equality if and only if G and H are regular graphs.

Proof. The proof of the result is similar to this given in Theorem 5.1. �

Corollary 5.1. Let G be a k-regular graph of order n1 and let H be a r-regular graph

of order n2. Then AZI(G[H]) = n1n2(n2k+r)7

16(n2k+r−1)3 .
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ON EQUIENERGETIC, HYPERENERGETIC AND

HYPOENERGETIC GRAPHS

SAMIR K. VAIDYA1 AND KALPESH M. POPAT2

Abstract. The eigenvalue of a graph G is the eigenvalue of its adjacency matrix
and the energy E(G) is the sum of absolute values of eigenvalues of graph G. Two
non-isomorphic graphs G1 and G2 of the same order are said to be equienergetic if
E(G1) = E(G2). The graphs whose energy is greater than that of complete graph
are called hyperenergetic and the graphs whose energy is less than that of its order
are called hypoenergetic graphs. The natural question arises: Are there any pairs of
equienergetic graphs which are also hyperenergetic (hypoenergetic)? We have found
an affirmative answer of this question and contribute some new results.

1. Introduction

We begin with finite connected and undirected graphs without loops and multiple
edges. The terms not defined here are used in sense of Balakrishnan and Ranganathan
[1] or Cvetković et al. [5]. The adjacency matrix of a graph G with vertices v1, v2, . . . , vn

is an n × n matrix [aij] such that,

aij =







1, if vi is adjacent with vj,

0, otherwise.

The eigenvalues of adjacency matrix of graph is known as eigenvalues of graph. The
set of eigenvalues of the graph with their multiplicities is known as spectrum of the
graph. Hence,

spec(G) =

(

λ1 λ2 · · · λn

m1 m2 · · · mn

)

.

Key words and phrases. Equienergetic, hyperenergetic, hypoenergetic.
2010 Mathematics Subject Classification. Primary: 05C50, 05C76.
DOI 10.46793/KgJMat2004.523V
Received: June 30, 2017.
Accepted: June 15, 2018.

523



524 S. K. VAIDYA AND K. M. POPAT

Two non-isomorphic graphs are said to be cospectral if they have same spectra,
otherwise they are known as non-cospectral. Let G be a graph on n vertices and
λ1, λ2, . . . , λn be the eigenvalues of G. The energy of a graph G is the sum of absolute
values of the eigenvalues of graph G and denoted by E(G). Hence,

E(G) =
n
∑

i=1

|λi| .

The concept of energy was introduced by Gutman [6]. A brief account of energy
of graph can be found in Cvetković et al. [5] and Li et al. [10]. Two non-isomorphic
graphs G1 and G2 of same order are said to be equienergetic if E(G1) = E(G2).

Ramane et al. [12, 13] have proved that if G1 and G2 are regular graphs of same

order then for k ≥ 2, Lk(G1) and Lk(G2), Lk(G1) and Lk(G2) are equienergetic. Here,
Lk(G) is called iterated line graph of G.

Some equienergetic graphs have been described in Li et al. [10], while a symmetric
computer aided study have carried out for equienergetic trees [2, 11]. Some open
problem on equienergetic graphs were posted in [8]. To find out non-copspectral
equienergetic graphs other than trees is challenging and interesting as well. We take
up this problems and construct a pair of graphs which are equienergetic.

In 1978 Gutman [6] conjectured that among all graphs with n vertices, the complete
graph Kn has the maximum energy. This was disproved by Walikar et al. [16] and
was defined the concept of hyperenergetic graphs whose energy is greater than that
of complete graphs. Gutman [7] has proved that hyperenergetic graphs on n vertices
exist for all n ≥ 8 and there are no hyperenergetic graphs on less than 8 vertices.

A graph G on order n is said to be hypoenergetic [3] if E(G) is less than its order
otherwise it is said to be non-hypoenergetic [4]. In 2007 Gutman [9] have proved that
if the graph G is regular of any non-zero degree, then G is non hypoenergetic.

The present work is aimed to contribute to find families of hyperenergetic and
hypoenergetic.

The splitting graph S ′(G) of a graph G is obtained by adding to each vertex v a new
vertex v′, such that v′ is adjacent to every vertex that is adjacent to v in G. The shadow

graph D2(G) of a connected graph G is constructed by taking two copies of G say G′

and G′′. Join each vertex u′ in G′ to the neighbors of the corresponding vertex u′′ in
G′′. Vaidya and Popat [15] have proved that for any graph G, E(S ′(G)) =

√
5E(G)

and E(D2(G)) = 2E(G).
The m-splitting graph Splm(G) of a graph G is obtained by adding to each vertex

v of G new m vertices, say v1, v2, v3, . . . , vm, such that vi, 1 ≤ i ≤ m, is adjacent to
each vertex that is adjacent to v in G.

The m-shadow graph Dm(G) of a connected graph G is constructed by taking m

copies of G, say G1, G2, . . . , Gm, then join each vertex u in Gi to the neighbors of the
corresponding vertex v in Gj, 1 ≤ i, j ≤ m.

Proposition 1.1 ([14]). E(Splm(G)) =
√

1 + 4m E(G).
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Proposition 1.2 ([14]). E(Dm(G)) = mE(G).

2. Equienergetic Graphs

Theorem 2.1. Spl
2
(G) and D3(G) are equienergetic.

Proof. Let G be any graph with n vertices. Then, D3(G) and Spl
2
(G) are graphs with

3n vertices. According to Proposition 1.1 and Proposition 1.2,

E(Spl
2
(G)) =

√

1 + 4(2)E(G) = 3E(G) = E(D3(G)). �

Example 2.1. Consider Spl
2
(C4) and D3(C4),

v
′

2

v
′

1

v
′

3

v
′

4

v2

v1

v3

v4

v
′′

1

v
′′

2
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v1 0 1 0 1 0 1 0 1 0 1 0 1

v2 1 0 1 0 1 0 1 0 1 0 1 0
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v
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0 1 0 1 0 0 0 0 0 0 0 0

v
′

4
1 0 1 0 0 0 0 0 0 0 0 0

v
′′

1
0 1 0 1 0 0 0 0 0 0 0 0

v
′′

2
1 0 1 0 0 0 0 0 0 0 0 0

v
′′

3
0 1 0 1 0 0 0 0 0 0 0 0

v
′′

4
1 0 1 0 0 0 0 0 0 0 0 0



526 S. K. VAIDYA AND K. M. POPAT

Therefore, spec(Spl
2
(C4))=

(

2 −2 4 −4 0
1 1 1 1 8

)

. Here,

E(Spl
2
(C4)) = 12,

A(D3(C4)) =
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v3 0 1 0 1 0 1 0 1 0 1 0 1

v4 1 0 1 0 1 0 1 0 1 0 1 0

v
′

1
0 1 0 1 0 1 0 1 0 1 0 1

v
′

2
1 0 1 0 1 0 1 0 1 0 1 0

v
′

3
0 1 0 1 0 1 0 1 0 1 0 1

v
′

4
1 0 1 0 1 0 1 0 1 0 1 0

v
′′

1
0 1 0 1 0 1 0 1 0 1 0 1

v
′′

2
1 0 1 0 1 0 1 0 1 0 1 0

v
′′

3
0 1 0 1 0 1 0 1 0 1 0 1

v
′′

4
1 0 1 0 1 0 1 0 1 0 1 0

.

Therefore, spec(D3(C4)) =

(

6 −6 0
1 1 10

)

. Here, E(D3(C4)) = 12. Hence, Spl
2
(C4)

and D3(C4) are equienergetic.

3. Hyperenergetic Graphs

Theorem 3.1. S ′(Kn) is hyperenergetic if and only if n ≥ 6.

Proof. Consider a complete graph Kn on n vertices. Then, S ′(Kn) is a graph with
2n vertices. It is obvious that energy of complete graph with 2n vertices is 2(2n − 1).
Now, if S ′(Kn) is hyperenergetic, then

E(S ′(Kn)) > 2(2n − 1) ⇔
√

5(E(Kn)) > 2(2n − 1)

⇔
√

5(2(n − 1)) > 2(2n − 1)

⇔n >

√
5 − 1√
5 − 2

⇔n ≥ 6. �

Example 3.1. Consider complete graph K6 and S ′(K6).



ON EQUIENERGETIC, HYPERENERGETIC AND HYPOENERGETIC GRAPHS 527

v6

v1

v2

v3

v4

v5

K6

v6

v1

v2

v3

v4

v5

v
′
6

v
′
1

v
′
2

v
′
3

v
′
4

v
′
5

S′(K6)

Figure 2
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v1 0 1 1 1 1 1 0 1 1 1 1 1
v2 1 0 1 1 1 1 1 0 1 1 1 1
v3 1 1 0 1 1 1 1 1 0 1 1 1
v4 1 1 1 0 1 1 1 1 1 0 1 1
v5 1 1 1 1 0 1 1 1 1 1 0 1
v6 1 1 1 1 1 0 1 1 1 1 1 0
v

′

1
0 1 1 1 1 1 0 0 0 0 0 0

v
′

2
1 0 1 1 1 1 0 0 0 0 0 0

v
′

3
1 1 0 1 1 1 0 0 0 0 0 0

v
′

4
1 1 1 0 1 1 0 0 0 0 0 0

v
′

5
1 1 1 1 0 1 0 0 0 0 0 0

v
′

6
1 1 1 1 1 0 0 0 0 0 0 0

Hence,

spec(S ′(K6)) =
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5 − 5
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5
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Here,

E(S ′(K6)) = 10
√

5 ⇒E(S ′(K6)) > 22

⇒E(S ′(K6)) > E(K12)

⇒S ′(K6) is hyperenergetic.

The following is a graph of E(S ′(Kn)) and E(K2n) which helps to understand that
S ′(Kn) is hyperenergetic when n ≥ 6.

1 5 10 15 20 25
2

20

40

60

80

100

E(K2n)

n = 6

E(S′(Kn))

E(K2n) = 2(2n− 1)
E(S′(Kn)) = 2

√
5(n− 1)

n (No. of vertices) −→

E
n
er
gy

E
(G

)
−
→

Figure 3

The natural question arises: Are there any graphs which are equienergetic and
hyperenergetic as well? To answer this question we prove following corollary.

Corollary 3.1. D3(S
′(Kn)) and Spl

2
(S ′(Kn)) are equihyperenergetic graphs for

n ≥ 9.

Proof. As we have discussed in Theorem 3.1, S ′(Kn) is a graph with 2n vertices.
Therefore, D3(S

′(Kn)) is a graph with 6n vertices. To prove above result we show
that D3(S

′(Kn)) is hyperenergetic if and only if n ≥ 9.
If D3(S

′(Kn)) is hyperenergetic then

E(D3(S
′(Kn))) > 2(6n − 1) ⇔3E(S ′(Kn)) > 2(6n − 1)

⇔3
√

5(E(Kn)) > 2(6n − 1)

⇔3
√

5(2(n − 1)) > 2(6n − 1)
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⇔n >
3
√

5 − 1

3
√

5 − 6
⇔n ≥ 9.

Hence, D3(S ′(Kn)) is hyperenergetic for n ≥ 9. Therefore, according to Theorem 2.1,
D3(S

′(Kn)) and Spl
2
(S ′(Kn)) are equihyperenergetic for n ≥ 9. �

4. Hypoenergetic Graphs

Theorem 4.1. Dm(K1,n) is hypoenergetic.

Proof. Consider star graph K1,n on n vertices. Then E(K1,n) = 2
√

n. Now, Dm(K1,n)
is a graph with m(n + 1) vertices. As,

n > 1 ⇒(n − 1)2 > 0

⇒n2 − 2n + 1 > 0

⇒n2 + 2n + 1 > 4n

⇒4n < (n + 1)2

⇒2
√

n < (n + 1)

⇒m(2
√

n) < m(n + 1).

According to Proposition 1.2, we have E(Dm(K1,n)) = mE(K1,n) = m(2
√

n) <

m(n + 1). Hence, Dm(K1,n) is hypoenergetic. �

Example 4.1. Consider star graph K1,4 and D2(K1,4) (see Figure 4). Therefore,

spec(D2(K1,4)) =

(

4 −4 0
1 1 8

)

. Hence, E(D2(K1,4)) = 8 < 10 and D2(K1,4) is hy-

poenergetic.
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A(D2(K1,4)) =
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v 0 1 1 1 1 0 1 1 1 1

v1 1 0 0 0 0 1 0 0 0 0

v2 1 0 0 0 0 1 0 0 0 0

v3 1 0 0 0 0 1 0 0 0 0

v4 1 0 0 0 0 1 0 0 0 0

v
′ 0 1 1 1 1 0 1 1 1 1

v
′

1
1 0 0 0 0 1 0 0 0 0

v
′

2
1 0 0 0 0 1 0 0 0 0

v
′

3
1 0 0 0 0 1 0 0 0 0

v
′

4
1 0 0 0 0 1 0 0 0 0

The following graph on Figure 5 is a graph of n and E(G) which helps to understand
that D2(K1,n) is hypoenergetic.
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E(D2(K1,n)) = 4
√
n
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E
n
er
gy

E
(G

)
−
→

Figure 5

The natural question arises: are there any graphs which are equienergetic as well
as hypoenergetic? We call such graphs as equihypoenergetic. To answer this question
we prove following corollary.

Corollary 4.1. D3(K1,n) and Spl
2
(K1,n) are equihypoenergertic graphs.
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Proof. It is obvious that from Theorem 4.1, D3(K1,n) is hypoenergetic and from The-
orem 2.1, D3(K1,n) and Spl

2
(K1,n) are equienergetic. Hence, D3(K1,n) and Spl

2
(K1,n)

are equihypoenergertic graphs. �
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A GENERALIZED CLASS OF CLOSE-TO-CONVEX FUNCTIONS

PARDEEP KAUR1 AND SUKHWINDER SINGH BILLING2

Abstract. Let H
φ
α(β) denote the class of functions f, analytic in the open unit

disk E which satisfy the condition

Re

(

(1 − α)
zf ′(z)

φ(z)
+ α

(

1 +
zf ′′(z)

f ′(z)

))

> β, z ∈ E,

where α, β are pre-assigned real numbers and φ(z) is a starlike function. The special
cases of the class H

φ
α(β) have been studied in literature by different authors. In

2007, Singh et al. [5] studied the class H
z
α(β) and they established that functions

in H
z
α(β) are univalent for all real numbers α, β satisfying the condition α ≤ β < 1

and the result is sharp in the sense that constant β cannot be replaced by a real
number smaller than α. Singh et al. [7] in 2005, proved that for 0 < α < 1 functions
in class Hz

α(α) are univalent. In 1975, Al-Amiri and Reade [2] showed that functions
in class H

z
α(0) are univalent for all α ≤ 0 and also for α = 1 in E. In the present

paper, we prove that members of the class H
φ
α(β) are close-to-convex and hence

univalent for real numbers α, β and for a starlike function φ satisfying the condition

β + α − 1 < αRe
(

zφ′(z)
φ(z)

)

≤ β < 1.

1. Introduction and Preliminary

Let A be the class of functions f, analytic in the open unit disk E = {z : |z| < 1}
and normalized by the conditions f(0) = f ′(0) − 1 = 0. Let S

∗ and K denote the
classes of starlike and convex function respectively analytically defined as follows:

S
∗ =

{

f ∈ A : Re

(

zf ′(z)

f(z)

)

> 0, z ∈ E

}

,

Key words and phrases. Analytic function, univalent function, close-to-convex function
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and

K =

{

f ∈ A : Re

(

1 +
zf ′′(z)

f ′(z)

)

> 0, z ∈ E

}

.

It is well-known that

(1.1) f ∈ K ⇔ zf ′ ∈ S
∗.

A function f ∈ A is said to be close-to-convex if there is a real number α, −π/2 <
α < π/2, and a convex function g (not necessarily normalized) such that

Re

(

eiα f ′(z)

g′(z)

)

> 0, z ∈ E.

In view of the relation (1.1), the above definition takes the following form in case g is
normalized. A function f ∈ A is said to be close-to-convex if there is a real number
α, −π/2 < α < π/2, and a starlike function φ such that

Re

(

eiα f ′(z)

φ(z)

)

> 0, z ∈ E.

It is well known that every close-to-convex function is univalent. In 1934/35, Noshiro
[4] and Warchawski [8] independently obtained a simple but elegant criterion for
univalence of analytic functions. They proved that if an analytic function f satisfies
Ref ′(z) > 0 for all z in E, then f is close-to-convex and hence univalent in E.

For pre-assigned real numbers α, β and φ ∈ S
∗, the class H

φ
α(β) is defined as the

class of functions f ∈ A as follows:

Re

(

(1 − α)
zf ′(z)

φ(z)
+ α

(

1 +
zf ′′(z)

f ′(z)

))

> β, z ∈ E.

The following special cases of the class H
φ
α(β) have been studied in literature by

different authors. In fact, the class H
z
α(0) was first studied in 1975 by Al-Amiri and

Reade [2]. They proved that for α ≤ 0, each function in H
z
α(0) satisfies Re(f ′(z)) > 0

in E and hence univalent in E. They left the problem of univalence open for α > 0
(except for α = 1, where f is convex, obviously). Ahuja and Silverman [1] observed
that the convex function f(z) = z/(1 − z) is not in H

z
α(0) for any real α, α 6= 1.

Further this problem pursued by Singh et al. [7] and they proved that for 0 < α < 1,
the class H

z
α(α) consisting univalent functions. In 2007, Singh et al. [5] studied the

class H
z
α(β). They proved that if f ∈ H

z
α(β), then Re(f ′(z)) > 0 in E for all real

numbers α, β satisfying α ≤ β < 1 and the result is best possible one in the sense
that β cannot be replaced by a real number smaller than α. Their result contains the
previous result of Singh et al. [7] and improves the result of Al-Amiri and Reade [2].

In the present paper, we study a more general class H
φ
α(β) and establish that the

functions in H
φ
α(β) are close-to-convex and consequently univalent subject to the

condition

β + α − 1 < αRe

(

zφ′(z)

φ(z)

)

≤ β < 1.
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where α, β are pre-assigned real numbers and φ is a starlike function. We claim that
our results generalize the previous known results in this direction.

To prove our result, we shall need the following lemma of Miller [3].

Lemma 1.1. Let D be a subset of C × C, where C is the complex plane and let
Φ : D → C be a complex function. For u = u1 + iu2, v = v1 + iv2 (u1, u2, v1, v2 are
reals), let Φ satisfies the following conditions:

(i) Φ(u, v) is continuous in D;
(ii) (1, 0) ∈ D and Re(Φ(1, 0)) > 0 and
(iii) Re Φ(iu2, v1) ≤ 0 for all ((iu2, v1) ∈ D such that v1 ≤ −(1 + u2

2)/2.

Let p(z) = 1 + p1z + p2z
2 + · · · be regular in the open unit disk E, such that

(p(z), zp′(z)) ∈ D for all z ∈ E. If

Re(Φ(p(z), zp′(z))) > 0, z ∈ E,

then Re(p(z)) > 0, z ∈ E.

2. Univalence of Functions in H
φ
α(β)

Theorem 2.1. Let φ be a starlike function and let α, β be real numbers such that

(2.1) β + α − 1 < αRe

(

zφ′(z)

φ(z)

)

≤ β < 1.

If f ∈ A satisfies

(2.2) Re

(

(1 − α)
zf ′(z)

φ(z)
+ α

(

1 +
zf ′′(z)

f ′(z)

))

> β, z ∈ E,

then Re

(

zf ′(z)

φ(z)

)

> 0 in E. So f is close-to-convex and hence univalent in E.

Proof. Write p(z) = zf ′(z)
φ(z)

, where p is analytic in E such that p(0) = 1 and φ is a

starlike in E. Then

(1 − α)
zf ′(z)

φ(z)
+ α

(

1 +
zf ′′(z)

f ′(z)

)

= (1 − α)p(z) + α

(

zp′(z)

p(z)
+

zφ′(z)

φ(z)

)

.

Thus, condition (2.2) is equivalent to

(2.3) Re





1 − α

1 − β
p(z) +

α

1 − β

zp′(z)

p(z)
+

α zφ′(z)
φ(z)

− β

1 − β



 > 0, z ∈ E.

Let D = C \ {0} × C and define Φ(u, v) : D → C as under:

Φ(u, v) =
1 − α

1 − β
u +

α

1 − β

v

u
+

α zφ′(z)
φ(z)

− β

1 − β
.
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Then Φ(u, v) is continuous in D, (1, 0) ∈ D and in view of the given condition, we
have

Re(Φ(1, 0)) =
1 − α

(

1 − Re
(

zφ′(z)
φ(z)

))

− β

1 − β
> 0.

Further, from (2.3), we get Re[Φ(p(z), zp′(z))] > 0, z ∈ E. Let u = u1 + iu2, v =

v1 +iv2 where u1, u2, v1 and v2 are all reals. Then, for (iu2, v1) ∈ D, with v1 ≤ −
1+u2

2

2
,

we have

Re(Φ(iu2, v1)) =Re





1 − α

1 − β
iu2 +

α

1 − β

v1

iu2

+
α
(

zφ′(z)
φ(z)

)

− β

1 − β





=
αRe

(

zφ′(z)
φ(z)

)

− β

1 − β
≤ 0.

The proof now follows from Lemma 1.1. �

To illustrate the above result, we consider the following example.

Example 2.1. On selecting φ(z) = zez and f(z) = z + z2

2
in Theorem 2.1, we can easily

check that for α = −0.1 and β = 0, the condition (2.1) is satisfied as follows

−1.1 < −0.1Re(1 + z) ≤ 0 < 1

and

Re

(

(1 − α)
zf ′(z)

φ(z)
+ α

(

1 +
zf ′′(z)

f ′(z)

))

= Re
(

1.1e−z(1 + z) −
0.1 + 0.2z

1 + z

)

> 0.

Therefore,

Re

(

zf ′(z)

φ(z)

)

= Re(1 + z)e−z > 0,

thus f is close-to-convex and hence univalent in E.

Theorem 2.2. Suppose that φ is starlike in E and α, β are real numbers such that

β + α − 1 > αRe

(

zφ′(z)

φ(z)

)

≥ β > 1.

If f ∈ A satisfies

(2.4) Re

(

(1 − α)
zf ′(z)

φ(z)
+ α

(

1 +
zf ′′(z)

f ′(z)

))

< β, z ∈ E,

then Re

(

zf ′(z)

φ(z)

)

> 0 in E. So, f is close-to-convex and hence univalent in E.
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Proof. Write zf ′(z)
φ(z)

= p(z), where p is analytic in E such that p(0) = 1 and φ is starlike

in E. Note that 1 − β < 0, thus the condition (2.4) reduces to

Re





1 − α

1 − β
p(z) +

α

1 − β

zp′(z)

p(z)
+

α zφ′(z)
φ(z)

− β

1 − β



 > 0, z ∈ E.

The proof can now be completed on the same lines as the proof of Theorem 2.1. �

In a special case when φ(z) = z in Theorem 2.1, we obtain the following result of
Singh et al. [5].

Theorem 2.3. Let α and β be real numbers such that α ≤ β < 1. Assume that an
analytic function f ∈ A satisfies the condition

(2.5) Re

(

(1 − α)f ′(z) + α

(

1 +
zf ′′(z)

f ′(z)

))

> β, z ∈ E.

Then Ref ′(z) > 0 in E. So, f is close-to-convex and hence univalent in E. The result
is sharp in the sense that the constant β on the right hand side of (2.5) cannot be
replaced by a constant smaller than α.

Selecting φ(z) = z in Theorem 2.2, we obtain the following result of Singh et al. [6].

Theorem 2.4. For real numbers α and β such that α ≥ β > 1, if f ∈ A satisfies the
inequality

Re

(

(1 − α)f ′(z) + α

(

1 +
zf ′′(z)

f ′(z)

))

< β, z ∈ E.

Then Ref ′(z) > 0 in E. So, f is close-to-convex and hence univalent in E.
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A NEW CLASS OF INTEGRALS INVOLVING GENERALIZED

HYPERGEOMETRIC FUNCTION AND MULTIVARIABLE

ALEPH-FUNCTION

DINESH KUMAR1, FRÉDÉRIC AYANT2,3, AND DEVENDRA KUMAR4

Abstract. The aim of this paper is to evaluate an interesting integral involving
generalized hypergeometric function and the multivariable Aleph-function. The
integral is evaluated with the help of an integral involving generalized hypergeometric
function obtained recently by Kim et al. [8]. The integral is further used to evaluate
an interesting summation formula concerning the multivariable Aleph-function. A
few interesting special cases and corollaries have also been discussed.

1. Introduction and Preliminaries

Hypergeometric function is an important and useful tool for special functions that
plays an important role in the field of analysis. Transformation theory plays a major
role to provide a platform for the development of beautiful transformation. It is
important to mention that whenever generalized hypergeometric function reduces to
a gamma function, the results are very important from application point of view in
mathematics, statistics and mathematical physics [2, 11, 22]. Recently Rohira et al.
[17] have evaluated a class of integrals involving generalized hypergeometric function
and the H-function defined by Fox [5] (see also, [16]). In this paper, we aim to
present a class of integrals involving generalized hypergeometric function and the
multivariable Aleph-function.

The multivariable Aleph-function is an extension of the multivariable I-function
defined by Sharma and Ahmad [20], which is a generalization of the multivariable H-
function defined by Srivastava et al. [24,25] (see also, [3,4,10,23]). The multivariable
Aleph-function is defined by means of the multiple contour integral given by the

Key words and phrases. Multivariable I-function, multivariable H-function, double finite integrals.
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following manner:

ℵ (z1, . . . , zr)

= ℵ0,n:m1,n1,...,mr,nr

pi,qi,τi;R:p
i
(1) ,q

i
(1) ,τ

i
(1) ;R(1);...;p

i
(r) ,q

i
(r) ;τ

i
(r) ;R(r)















z1

.

.

.
zr

∣

∣

∣

∣

∣

∣

[

(

aj;α
(1)
j , . . . , α

(r)
j

)

1,n

]

,

. . . . . . . . . ,

[

τi

(

aji;α
(1)
ji , . . . , α

(r)
ji

)

n+1,pi

]

:
[

(

c
(1)
j

)

,
(

γ
(1)
j

)

1,n1

]

,
[

τi

(

bji; β
(1)
ji , . . . , β

(r)
ji

)

m+1,qi

]

:
[

(

d
(1)
j

)

,
(

δ
(1)
j

)

1,m1

]

,

[

τi(1)

(

c
(1)

ji(1) , γ
(1)

ji(1)

)

n1+1,p
(1)
i

]

; . . . ;
[

(

c
(r)
j

)

,
(

γ
(r)
j

)

1,nr

]

,
[

τi(r)

(

c
(r)

ji(r) , γ
(r)

ji(r)

)

nr+1,p
(r)
i

]

[

τi(1)

(

d
(1)

ji(1) , δ
(1)

ji(1)

)

m1+1,q
(1)
i

]

; . . . ;
[

(

d
(r)
j

)

,
(

δ
(r)
j

)

1,mr

]

,
[

τi(r)

(

d
(r)

ji(r) , δ
(r)

ji(r)

)

mr+1,q
(r)
i

]









=
1

(2πω)r

∫

L1

· · ·
∫

Lr

ψ (ξ1, . . . , ξr)
r
∏

k=1

θk (ξk) zξk

k dξ1 . . . dξr,

(1.1)

with ω =
√

−1,

ψ (ξ1, . . . , ξr) =

∏

n

j=1 Γ
(

1 − aj +
∑r

k=1 α
(k)
j ξk

)

∑R
i=1

[

τi

∏pi

j=n+1 Γ
(

aji −∑r
k=1 α

(k)
ji ξk

)

∏qi

j=1 Γ
(

1 − bji +
∑r

k=1 β
(k)
ji ξk

)]

and

θk (ξk) =

∏mk

j=1 Γ
(

d
(k)
j − δ

(k)
j ξk

)

∏nk

j=1 Γ
(

1 − c
(k)
j + γ

(k)
j ξk

)

∑R(k)

i(k)=1

[

τi(k)

∏q
i
(k)

j=mk+1 Γ
(

1 − d
(k)

ji(k) + δ
(k)

ji(k)ξk

)

∏p
i
(k)

j=nk+1 Γ
(

c
(k)

ji(k) − γ
(k)

ji(k)ξk

)] .

For more details, reader can refer to recent works [1, 18]. The condition for absolute
convergence of multiple Mellin-Barnes type contour can be obtained by extension of

the corresponding conditions for multivariable H-function given as | arg zk| <
1
2
A

(k)
i π,

where

A
(k)
i =

n
∑

j=1

α
(k)
j − τi

pi
∑

j=n+1

α
(k)
ji − τi

qi
∑

j=1

β
(k)
ji +

nk
∑

j=1

γ
(k)
j − τi(k)

p
i
(k)
∑

j=nk+1

γ
(k)

ji(k) +
mk
∑

j=1

δ
(k)
j

− τi(k)

q
i
(k)
∑

j=mk+1

δ
(k)

ji(k) > 0, with k = 1, . . . , r, i = 1, . . . , R, i(k) = 1, . . . , R(k),

where k = 1, . . . , r, i = 1, . . . , R, i(k) = 1, . . . , R(k).
The complex numbers zi 6= 0. Throughout the paper, we assume the existence

and absolute convergence conditions of the multivariable Aleph-function. Here and
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in the following, let Re(a) be the real part of a complex number a. We establish the
asymptotic expansion in the convenient form, below

ℵ (z1, . . . , zr) =0 (|z1|α1 , . . . , |zr|αr) , max (|z1|, . . . , |zr|) → 0,

ℵ (z1, . . . , zr) =0
(

|z1|β1 , . . . , |zr|βr

)

, min (|z1|, . . . , |zr|) → ∞,

where k = 1, . . . , r, αk = min
[

Re
(

d
(k)
j /δ

(k)
j

)]

, j = 1, . . . ,mk and

βk = max
[

Re
((

c
(k)
j − 1

)

/γ
(k)
j

)]

, j = 1, . . . , nk. For convenience, we will also use

the following notations in this paper:

V = m1, n1; . . . ;mr, nr,

(1.2) W = pi(1) , qi(1) , τi(1) ;R(1); . . . ; pi(r) , qi(r) , τi(r) ;R(r),

A =
{

(

aj;α
(1)
j , . . . , α

(r)
j

)

1,n

}

,
{

τi

(

aji;α
(1)
ji , . . . , α

(r)
ji

)

n+1,pi

}{

(

c
(1)
j ; γ

(1)
j

)

1,n1

}

,

(1.3)

{

τi(1)

(

c
(1)

ji(1) ; γ
(1)

ji(1)

)

n1+1,p
i
(1)

}

; . . . ;
{

(

c
(r)
j ; γ

(r)
j

)

1,nr

}

,

{

τi(r)

(

c
(r)

ji(r) ; γ
(r)

ji(r)

)

nr+1,p
i
(r)

}

.

B =
{

τi

(

bji; β
(1)
ji , . . . , β

(r)
ji

)

m+1,qi

}

:
{

(

d
(1)
j ; δ

(1)
j

)

1,m1

}

,

(1.4)

{

τi(1)

(

d
(1)

ji(1) ; δ
(1)

ji(1)

)

m1+1,q
i
(1)

}

; . . . ;
{

(

d
(r)
j ; δ

(r)
j

)

1,mr

}

,

{

τi(r)

(

d
(r)

ji(r) ; δ
(r)

ji(r)

)

mr+1,q
i
(r)

}

.

2. Required Formula

Recently, Kim et al. [8] have obtained the following integral formula involving
generalized hypergeometric function which will be required in our present study. Here
and in the following, let C and Z

−
0 be the sets of complex numbers and non-positive

integers, respectively.

Lemma 2.1. For Re (2c− a− b) > −1 and d ∈ C\Z−
0 , we have the following integral

formula, given by
∫ 1

0
xc−1 (1 − x)c

3F2

[

a, b, d+ 1;
1
2

(a+ b+ 1) , d;
x

]

dx

=
πΓ (c) 4−c Γ

(

1
2
a+ 1

2
b+ 1

2

)

Γ
(

c− 1
2
a− 1

2
b+ 1

2

)

Γ
(

1
2
a+ 1

2

)

Γ
(

1
2
b+ 1

2

)

Γ
(

c− 1
2
a+ 1

2

)

Γ
(

c− 1
2
b+ 1

2

)

+

(

2c− d

d

)

πΓ (c) 4−cΓ
(

1
2
a+ 1

2
b+ 1

2

)

Γ
(

c− 1
2
a− 1

2
b+ 1

2

)

Γ
(

1
2
a
)

Γ
(

1
2
b
)

Γ
(

c− 1
2
a+ 1

)

Γ
(

c− 1
2
b+ 1

) .
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3. Main Integrals

In this section, we evaluate the following interesting integral involving generalized
hypergeometric function and the multivariable Aleph-function.

Theorem 3.1.

∫ 1

0
xc−1 (1 − x)c

3F2

[

a, b, d+ 1;
1
2

(a+ b+ 1) , d;
x

]

ℵ













z1 x
h1 (1 − x)h1

.

.

zr x
hr (1 − x)hr













dx = A1

(3.1)

ℵ0,n+2:V
pi+2,qi+2,τi;R:W













z1 4−h1

.

.
zr 4−hr

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1 − c;h1, . . . , hr) ,
(

1
2

+ 1
2
a+ 1

2
b− c;h1, . . . , hr

)

, A

.

.
(

1
2

+ 1
2
a− c;h1, . . . , hr

)

,
(

1
2

+ 1
2
b− c;h1, . . . , hr

)

, B













+ A2 ℵ0,n+3:V
pi+3,qi+3,τi;R:W













z1 4−h1

.

.
zr 4−hr

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1 − c;h1, . . . , hr) , (d− 2c; 2h1, . . . , 2hr) ,
.
.

(

1
2
a− c;h1, . . . , hr

)

,
(

1
2
b− c;h1, . . . , hr

)

,
(

1
2

+ 1
2
a+ 1

2
b− c;h1, . . . , hr

)

, A

.

.
(1 + d− 2c; 2h1, . . . , 2hr) , B













,

where A and B are given by (1.3) and (1.4) respectively. Also,

(3.2) A1 =
π 4−c Γ

(

1
2
a+ 1

2
b+ 1

2

)

Γ
(

1
2
a+ 1

2

)

Γ
(

1
2
b+ 1

2

)

and

(3.3) A2 =
π 4−c Γ

(

1
2
a+ 1

2
b+ 1

2

)

dΓ
(

1
2
a
)

Γ
(

1
2
b
) .

Provided that

hi > 0, for i = 1, . . . , r, Re (c) > 0, d ∈ C\Z−
0 ,

Re (c) +
r
∑

i=1

hi min
1≤j≤mi

Re





d
(i)
j

δ
(i)
j



 > 0, for i = 1, . . . , r,

∣

∣

∣arg zk x
hk (1 − x)hk

∣

∣

∣ <
1

2
A

(k)
i π,

where A
(k)
i is defined by (1.2) for k = 1, . . . , r.
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Proof. To prove (3.1), first we assume the left side of (3.1) by the notation F1, and
then express the Aleph-function of several variables involved on the left hand side
of (3.1) in terms of Mellin-Barnes contour integral with the help of (1.1), and next
change the order of integrations which is permissible under the stated conditions, so
we obtain

F1 =
1

(2πω)r

∫

L1

. . .
∫

Lr

ψ (s1, . . . , sr)
r
∏

k=1

θk (sk) zsk

k

[∫ 1

0
xc+

∑

r

i=1
hisi−1

× (1 − x)c+
∑

r

i=1
hisi

3F2

[

a, b, d+ 1;
1
2

(a+ b+ 1) , d;
x

]

dx

]

ds1 . . . dsr.

Now, we evaluate the inner integral with the help of lemma 2.1, after algebraic
manipulations, we have

F1 =
π 4−c Γ

(

1
2
a+ 1

2
b+ 1

2

)

Γ
(

1
2
a+ 1

2

)

Γ
(

1
2
b+ 1

2

)

1

(2πω)r

∫

L1

. . .
∫

Lr

ψ (s1, . . . , sr)
r
∏

k=1

θk (sk) zsk

k

×
4−
∑

r

i=1
hisi Γ (c+

∑r
i=1 hisi) Γ

(

c+
∑r

i=1 hisi − 1
2
a− 1

2
b+ 1

2

)

Γ
(

c+
∑r

i=1 hisi − 1
2
a+ 1

2

)

Γ
(

c+
∑r

i=1 hisi − 1
2
b+ 1

2

) ds1 . . . dsr

+
π 4−c Γ

(

1
2
a+ 1

2
b+ 1

2

)

dΓ
(

1
2
a
)

Γ
(

1
2
b
)

1

(2πω)r

∫

L1

. . .
∫

Lr

ψ (s1, . . . , sr)
r
∏

k=1

θk (sk) zsk

k

×
4−
∑

r

i=1
hisiΓ (c+

∑r
i=1 hisi) Γ

(

c+
∑r

i=1 hisi − 1
2
a− 1

2
b+ 1

2

)

Γ
(

c+
∑r

i=1 hisi − 1
2
a+ 1

)

Γ
(

c+
∑r

i=1 hisi − 1
2
b+ 1

)

× Γ (2c− d+ 2
∑r

i=1 hisi + 1)

Γ (2c− d+ 2
∑r

i=1 hisi)
ds1 . . . dsr,

and reinterpreting the multiple Mellin-Barnes contour integral in terms of Aleph-
functions of r-variables, we obtain the desired result (3.1). �

Theorem 3.2.

∫ 1

0
xα−1 (1 − x)β−1 ℵ













z1 x
h1 (1 − x)l1

.

.

zr x
hr (1 − x)lr













dx

=ℵ0,n+2:V
pi+2,qi+1,τi;R:W











z1

.

.
zr

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1 − α;h1, . . . , hr) , (1 − β; l1, . . . , lr) , A
.
.

(1 − α− β;h1 + l1, . . . , hr + lr) , B











,(3.4)

here provided that

hi > 0, li > 0, for i = 1, . . . , r,
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Re (α) +
r
∑

i=1

hi min
1≤j≤mi

Re





d
(i)
j

δ
(i)
j



 > 0,

Re (β) +
r
∑

i=1

li min
1≤j≤mi

Re





d
(i)
j

δ
(i)
j



 > 0, i = 1, . . . , r,

∣

∣

∣arg zk x
hk (1 − x)lk

∣

∣

∣ <
1

2
A

(k)
i π,

where A
(k)
i is given by (1.2) for k = 1, . . . , r.

Proof. To prove (3.4), we express the Aleph-function of several variables involved on
the left hand side of (3.4) in the terms of Mellin-Barnes contour integral with the
help of (1.1), and change the order of integrations which is permissible under the
stated conditions and use the formula concerning beta-integral to evaluate the inner
integral. Now reinterpreting the multiple Mellin-Barnes contour integrals in terms of
Aleph-functions of r-variables, we obtain the desired result (3.4). �

4. Application in Obtaining a New Summation Formula

We have the following summation formula concerning the multivariable Aleph-
function, defined as

Theorem 4.1.

∞
∑

s=0

(a)s (b)s (d+ 1)s
(

1
2

(a+ b+ 1)
)

s
(d)s s!

(4.1)

× ℵ0,n+2:V
pi+2,qi+1,τi;R:W











z1

.

.
zr

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1 − c− s;h1, . . . , hr) , (−c;h1, . . . , hr) , A
.
.

(−2c− s; 2h1, . . . , 2hr) , B











= A1

ℵ0,n+2:V
pi+2,qi+2,τi;R:W













z1 4−h1

.

.
zr 4−hr

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1 − c;h1, . . . , hr) ,
(

1
2

+ 1
2
a+ 1

2
b− c;h1, . . . , hr

)

, A

.

.
(

1
2

+ 1
2
a− c;h1, . . . , hr

)

,
(

1
2

+ 1
2
b− c;h1, . . . , hr

)

, B













+ A2 ℵ0,n+3:V
pi+3,qi+3,τi;R:W













z1 4−h1

.

.
zr 4−hr

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1 − c;h1, . . . , hr) , (d− 2c; 2h1, . . . , 2hr) ,
.
.

(

1
2
a− c;h1, . . . , hr

)

,
(

1
2
b− c;h1, . . . , hr

)

,
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(

1
2

+ 1
2
a+ 1

2
b− c;h1, . . . , hr

)

, A

.

.
(1 + d− 2c; 2h1, . . . , 2hr) , B













,

where A1 and A2 are defined in (3.2) and (3.3) respectively, also the validity conditions

can easily be obtained from (3.1).

Proof. We have the following integral denoted by I (say), given as

I =
∫ 1

0
xc−1 (1 − x)c

3F2

[

a, b, d+ 1;
1
2

(a+ b+ 1) , d;
x

]

ℵ













z1 x
h1 (1 − x)l1

.

.

zr x
hr (1 − x)lr













dx.

Expressing the generalized hypergeometric function 3F2 as a series, and after algebraic
manipulations we have

I =
∞
∑

s=0

(a)s (b)s (d+ 1)s
(

1
2
(a+ b+ 1)

)

s
(d)s s!

∫ 1

0
xc+s−1 (1 − x)c ℵ













z1 x
h1 (1 − x)l1

.

.

zr x
hr (1 − x)lr













dx.

Finally, evaluating the above integral with the help of (3.4), we arrive at

I =
∞
∑

s=0

(a)s (b)s (d+ 1)s
(

1
2

(a+ b+ 1)
)

s
(d)s s!

× ℵ0,n+2:V
pi+2,qi+1,τi;R:W











z1

.

.
zr

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1 − c− s;h1, . . . , hr) , (−c;h1, . . . , hr) , A
.
.

(−2c− s; 2h1, . . . , 2hr) , B











.(4.2)

Hence, the summation formula (4.1) follows from equating the two integrals (3.1) and
(4.2). �

When d = 2c, then above result reduces to the following interesting relation:

∞
∑

s=0

(a)s (b)s (2c+ 1)s
(

1
2

(a+ b+ 1)
)

s
(2c)s s!

× ℵ0,n+2:V
pi+2,qi+1,τi;R:W











z1

.

.
zr

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1 − c− s;h1, . . . , hr) , (−c;h1, . . . , hr) , A
.
.

(−2c− s; 2h1, . . . , 2hr) , B











= A1,
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ℵ0,n+2:V
pi+2,qi+2,τi;R:W













z1 4−h1

.

.
zr 4−hr

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1 − c;h1, . . . , hr) ,
(

1
2

+ 1
2
a+ 1

2
b− c;h1, . . . , hr

)

, A

.

.
(

1
2

+ 1
2
a− c;h1, . . . , hr

)

,
(

1
2

+ 1
2
b− c;h1, . . . , hr

)

, B













+ A2 ℵ0,n+3:V
pi+3,qi+2,τi;R:W













z1 4−h1

.

.
zr 4−hr

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1 − c;h1, . . . , hr) , (0; 2h1, . . . , 2hr) ,
.
.

(

1
2
a− c;h1, . . . , hr

)

,
(

1
2
b− c;h1, . . . , hr

)

,
(

1
2

+ 1
2
a+ 1

2
b− c;h1, . . . , hr

)

, A

.

.
(1; 2h1, . . . , 2hr) , B













.

5. Special Cases

In this section, we will see the interesting special cases of integral formula (3.1) and
summation formula (4.1).

Let b = −2s and replace a by a+ 2s, where s is zero or a positive integer. In such
case, one of the two terms on the right hand side of (3.1) will be vanished and we get
the following interesting result, as concerning by the following corollary.

Corollary 5.1.

∫ 1

0
xc−1 (1 − x)c

3F2

[

a+ 2s,−2s, d+ 1;
1
2

(a+ 1) , d;
x

]

ℵ













z1 x
h1 (1 − x)h1

.

.

zr x
hr (1 − x)hr













dx

=
(−)s √

π
(

1
2

)

s

4c
(

1
2
a+ 1

2

)

s

ℵ0,n+2:V
pi+2,qi+2,τi;R:W













z1 4−h1

.

.
zr 4−hr

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1 − c;h1, . . . , hr) ,
.
.

(

1
2

+ 1
2
a+ s− c;h1, . . . , hr

)

,
(

1
2

+ 1
2
a− c;h1, . . . , hr

)

, A

.

.
(

1
2

− s− c;h1, . . . , hr

)

, B













,

provided that the condition easily obtainable from (3.1) is satisfied.

Let b = −2s− 1 and replace a by a+ 2s+ 1, where s is zero or a positive integer.
Then, one of the two terms on the right hand side of (3.1) will vanish and we get the
following corollary.
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Corollary 5.2. By assuming that the validity condition easily obtainable from (3.1)
is satisfied, then we have

∫ 1

0
xc−1 (1 − x)c

3F2

[

a+ 2s+ 1,−2s− 1, d+ 1;
1
2

(a+ 1) , d;
x

]

ℵ













z1 x
h1 (1 − x)h1

.

.

zr x
hr (1 − x)hr













dx

=
(−)s−1 √

π
(

3
2

)

s

d 22c+1
(

1
2
a+ 1

2

)

s

ℵ0,n+3:V
pi+3,qi+3,τi;R:W













z1 4−h1

.

.
zr 4−hr

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1 − c;h1, . . . , hr) ,
.
.

(

1
2

+ 1
2
a+ s− c;h1, . . . , hr

)

,
(

1
2

+ 1
2
a− c;h1, . . . , hr

)

, (d− 2c; 2h1, . . . , 2hr) , A

.

.
(

−1
2

− s− c;h1, . . . , hr

)

, (1 + d− 2c; 2h1, . . . , 2hr) , B













.

Next, we will provide the special cases of the summation formula (4.1).
Concerning the following corollary, we consider the Aleph-function of one variable
defined by Südland et al. [26, 27] (see also, Saxena et al. [18]).

Corollary 5.3.

∞
∑

s=0

(a)s (b)s (d+ 1)s
(

1
2

(a+ b+ 1)
)

s
(d)s s!

ℵm1,n1+2

p1+2,q1+1,τ
i
(1) ,R(1)











z1

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1 − c− s;h1) , (−c;h1) , A

.

.
(−2c− s; 2h1) , B











=A1 ℵm1,n1+2

p1+2,q1+2,τ
i
(1) ,R(1)













z1 4−h1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1 − c;h1) ,
(

1
2

+ 1
2
a+ 1

2
b− c;h1

)

, A

.

.
(

1
2

+ 1
2
a− c;h1

)

,
(

1
2

+ 1
2
b− c;h1

)

, B













+A2 ℵm1,n1+3

p1+3,q1+3,τ
i
(1) ,R(1)













z1 4−h1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1 − c;h1) , (d− 2c; 2h1) ,
(

1
2

+ 1
2
a+ 1

2
b− c;h1

)

,A

.

.
(

1
2
a− c;h1

)

,
(

1
2
b− c;h1

)

, (1 + d− 2c; 2h1) ,B













,

where

A =
{

(

c
(1)
j ; γ

(1)
j

)

1,n1

}

,

{

τi(1)

(

c
(1)

ji(1) ; γ
(1)

ji(1)

)

n1+1,p
i
(1)

}

and

B =
{

(

d
(1)
j ; δ

(1)
j

)

1,m1

}

,

{

τi(1)

(

d
(1)

ji(1) ; δ
(1)

ji(1)

)

m1+1,q
i
(1)

}

.
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Provided that:

h1 > 0, Re (c) > 0, d 6= 0,−1,−2, . . . ,

Re (c) + h1 min
1≤l≤m1

Re





d
(1)
l

δ
(1)
l



 > 0,
∣

∣

∣arg z1x
h1 (1 − x)h1

∣

∣

∣ <
1

2
π,





n1
∑

j=1

γ
(1)
j − τi(1)

p
i
(1)
∑

j=n1+1

γ
(1)

ji(1) +
m1
∑

j=1

δ
(1)
j − τi(1)

q
i
(1)
∑

j=m1+1

δ
(1)

ji(1)



 > 0.

Now, we consider the I-function defined by Saxena [19]. We have the following
result.

Corollary 5.4.

∞
∑

s=0

(a)s (b)s (d+ 1)s
(

1
2

(a+ b+ 1)
)

s
(d)s s!

Im1,n1+2

p1+2,q1+1;R(1)











z1

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1 − c− s;h1) , (−c;h1) , A′

.

.
(−2c− s; 2h1) , B′











=A1 I
m1,n1+2

p1+2,q1+2;R(1)













z1 4−h1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1 − c;h1) ,
(

1
2

+ 1
2
a+ 1

2
b− c;h1

)

, A′

.

.
(

1
2

+ 1
2
a− c;h1

)

,
(

1
2

+ 1
2
b− c;h1

)

, B′













+ A2 I
m1,n1+3

p1+3,q1+3;R(1)













z1 4−h1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1 − c;h1) , (d− 2c; 2h1) ,
(

1
2

+ 1
2
a+ 1

2
b− c;h1

)

, A′

.

.
(

1
2
a− c;h1

)

,
(

1
2
b− c;h1

)

, (1 + d− 2c; 2h1) , B′













,

where

A′ =
{

(

c
(1)
j ; γ

(1)
j

)

1,n1

}

,

{

(

c
(1)

ji(1) ; γ
(1)

ji(1)

)

n1+1,p
i
(1)

}

and

B′ =
{

(

d
(1)
j ; δ

(1)
j

)

1,m1

}

,

{

(

d
(1)

ji(1) ; δ
(1)

ji(1)

)

m1+1,q
i
(1)

}

.

Provided that

h1 > 0, Re (c) > 0, d 6= 0,−1,−2, . . . ,

Re (c) + h1 min
1≤l≤m1

Re





d
(1)
l

δ
(1)
l



 > 0,
∣

∣

∣arg z1x
h1 (1 − x)h1

∣

∣

∣ <
1

2
π,





n1
∑

j=1

γ
(1)
j −

p
i
(1)
∑

j=n1+1

γ
(1)

ji(1) +
m1
∑

j=1

δ
(1)
j −

q
i
(1)
∑

j=m1+1

δ
(1)

ji(1)



 > 0.

Remark 5.1. By the similar methods, we can obtain the similar summation formula
with the Aleph-function of two variables (see [9]), the I-function of two variables
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(see [12,21]), the multivariable I-function (see [13,15]), the multivariable A-function
(see [7]), the A-function [6], the modified multivariable H-function (see [14]) and the
multivariable H-function (see [3, 4, 10,24,25]).

6. Concluding Remarks

In this paper, we have established two integrals formulas and one summation formula
involving the generalized hypergeometric function and Aleph-function of r-variables.
On account of the most general character of the multivariable Aleph-function in
Theorems 3.1, 3.2 and 4.1, numerous other special cases associated with potentially
useful higher transcendental functions, orthogonal polynomials of one and several
variables can be deduced.
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LOWER BOUNDS FOR INVERSE SUM INDEG INDEX OF

GRAPHS

I. GUTMAN1, M. MATEJIĆ2, E. MILOVANOVIĆ2, AND I. MILOVANOVIĆ2

Abstract. Let G = (V, E), V = {1, 2, . . . , n}, be a simple connected graph with n

vertices and m edges and let d1 ≥ d2 ≥ · · · ≥ dn > 0, be the sequence of its vertex
degrees. With i ∼ j we denote the adjacency of the vertices i and j in G. The
inverse sum indeg index is defined as ISI =

∑ di dj

di+dj
with summation going over

all pairs of adjacent vertices. We consider lower bounds for ISI. We first analyze
some lower bounds reported in the literature. Then we determine some new lower
bounds.

1. Introduction

Let G = (V, E), V = {1, 2, . . . , n}, E = {e1, e2, . . . , em}, be a simple connected
graph with n vertices and m edges, and let ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ > 0,
di = d(i), and d(e1) ≥ d(e2) ≥ · · · ≥ d(em), be sequences of its vertex and edge
degrees, respectively. We denote by ∆e1

= d(e1) + 2 and δe1
= d(em) + 2. If the

vertices i and j are adjacent, we write i ∼ j.
In graph theory, an invariant is a property of graphs that depends only on their

abstract structure, not on the labeling of vertices or edges, or on the drawing of the
graph. Such quantities are also referred to as topological indices. Topological indices
gained considerable popularity because of their applications in chemistry as molecular
structure descriptors [2, 24,25].

An important class of graph invariants are those whose general formula is

V DB = V DB(G) =
∑

i∼j

Φ(di, dj),

Key words and phrases. Degree (of vertex), degree (of edge), inverse sum indeg index, Zagreb
index.
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which are usually referred to as vertex–degree based topological indices. Here Φ may
be any function satisfying the condition Φ(x, y) = Φ(y, x). A very large number of
particular VDB indices has been considered in the literature, some of which are listed
below. There are countless papers reporting relations for VDB indices, which includes
bounds (in terms of various graph parameters), characterization of graphs extremal
w.r.t. some particular VDB index (in some particular class of graphs), and inequalities
between various members of the VDB family. Readers interested in this topic may
consult the recent collections of review articles [12–14].

The present paper contributes to the theory of VDB indices, comparing some
previously known inequalities and challenging their validity, and offering a few new
results of the same kind.

The oldest VDB topological indices, the first and the second Zagreb indices are
defined as (see [8, 9])

M1 = M1(G) =
n
∑

i=1

d2
i and M2 = M2(G) =

∑

i∼j

di dj ,

where the first Zagreb index can be expressed as

(1.1) M1 =
∑

i∼j

(di + dj) .

Bearing in mind that for the edge e connecting the vertices i and j,

d(e) = di + dj − 2 ,

the index M1 can also be considered as an edge–degree based invariant (see [17])

M1 =
m
∑

i=1

[

d(ei) + 2
]

.

A so-called forgotten topological index is defined as (see [8])

F = F (G) =
n
∑

i=1

d3
i =

∑

i∼j

(d2
i + d2

j) .

It can be easily observed that for the indices M2 and F the following identities hold:

F + 2M2 =
m
∑

i=1

[

d(ei) + 2
]2

and F − 2M2 =
∑

i∼j

(di − dj)
2 .

Multiplicative versions of the first and second Zagreb indices, denoted by Π1 and
Π2, respectively, were first considered in a paper [10] published in 2011, and were
promptly followed by numerous additional studies. These indices are defined as:

Π1 = Π1(G) =
n
∏

i=1

d2
i and Π2 = Π2(G) =

∏

i∼j

di dj .
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One year later, motivated by the identity (1.1), the multiplicative sum–Zagreb index
was conceived as [3]:

Π∗

1 = Π∗

1(G) =
∏

i∼j

(di + dj) .

Probably the most popular and most thoroughly investigated molecular–structure
descriptor is the classical Randić (or connectivity) index

(1.2) R = R(G) =
∑

i∼j

1
√

di dj

,

invented by Randić in 1975 [21].
Replacing in (1.2) multiplication by summation, the so-called sum–connectivity

index was put forward as (see [32])

SCI = SCI(G) =
∑

i∼j

1
√

di + dj

.

In [1] (see also [11, 16]) a topological index called general Randić index, Rα, was
introduced as

Rα = Rα(G) =
∑

i∼j

(di dj)
α ,

where α is an arbitrary real number. For α = −1/2 we have R = R
−1/2, whereas for

α = 1/2, the reciprocal Randić index, RR, [11, 16] is obtained.
In order to improve the predictive power of the Randić index, a large number of

additional vertex–degree based topological descriptors was introduced. The geometric–
arithmetic index , introduced in [30], is defined as

GA = GA(G) =
∑

i∼j

2
√

di dj

di + dj

.

The harmonic index , introduced in [4], is defined as

H = H(G) =
∑

i∼j

2

di + dj

.

It should be noted that Π∗

1, SCI, and H can be considered as edge–degree based
topological indices as well, since the following identities hold:

Π∗

1 =
m
∏

i=1

[

d(ei) + 2
]

, SCI =
m
∑

i=1

1
√

d(ei) + 2
, H =

m
∑

i=1

2

d(ei) + 2
.

In a series of papers [26–28,31], Vukičević introduced the so-called Adriatic indices,
providing a general method for constructing vertex–degree based graph invariants;
for review see [29]. Vukičević himself restricted the considerations to some 148 such
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indices, although their possible number would be infinite. One of these Adriatic
indices, named symmetric division deg index , is

SDD = SDD(G) =
∑

i∼j

1

2

(

di

dj

+
dj

di

)

.

Another Adriatic index, the so-called inverse sum indeg index , was singled out in [26]
as being a significantly accurate predictor of total surface area of octane isomers. It
is defined as

ISI = ISI(G) =
∑

i∼j

di dj

di + dj

.

In this paper, we are interested in lower bounds on ISI. We first perform the
analysis of some earlier reported lower bounds for ISI [5, 19, 23]. Then we determine
some new lower bounds for it, in terms of some other vertex–degree based graph
invariants.

2. Preliminary considerations

In this section, we analyze some lower bounds for the inverse sum indeg index
reported in [5, 19,23].

In [23] the following inequality was proven

(2.1) ISI ≥ (n − 1)2

n
,

with equality if and only if G ∼= K1,n−1. This bound is the best possible in its class.
In [5] it was proven

(2.2) ISI ≥ m2

n
,

with equality if and only if the graph G is regular or biregular. This bound depends
on the parameters n and m, and it is the best one in its class, so far.

The bounds given by (2.1) and (2.2), although simple, are very important and,
as we shall demonstrate, are convenient for testing whether other lower bounds,
depending on some other parameters, have any sense. Of course, it is of interest to
determine other (lower) bounds that establish relationships between ISI and other
graph invariants. But, if these inequalities are weaker than inequalities (2.1) and (2.2),
the question of their purpose arises. In that sense we will analyze lower bounds for
ISI obtained in [5] and [19].

In [5] the following lower bounds for ISI were also established:

ISI ≥m2 δ2

M1

,(2.3)

ISI ≥δ2H

2
,(2.4)
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ISI ≥M2

2∆
,(2.5)

ISI ≥δ2(SCI)2

m
,(2.6)

ISI ≥H,(2.7)

ISI ≥M1

2
− F

4δ
,(2.8)

ISI ≥ m2
√

δ∆

(δ + ∆)R
,(2.9)

ISI ≥(SCI)2

R−1

,(2.10)

ISI ≥m

(

Π2

Π∗

1

)1/m

,(2.11)

whereas in [19] it was proven that

(2.12) ISI ≥
√

δ∆ H M2

m(δ + ∆)
.

The inequalities (2.3)–(2.12) are all correct. However, it is questionable whether
any of the bounds given by (2.3)–(2.10) are worthy. In what follows we discuss this
matter.

Since

M1 =
n
∑

i=1

d2
i ≥ nδ2 ,

we have that
m2

n
≥ m2 δ2

M1

.

Thus, the inequality (2.3) is a direct consequence of the inequality (2.2).
Since

n δ2H

2
=

δ2

2

∑

i∼j

(

1

di

+
1

dj

)

∑

i∼j

2

di + dj

≤ δ2

2

2m

δ

m

δ
,

it holds
m2

n
≥ δ2H

2
.

Thus, the inequality (2.4) is a direct consequence of the inequality (2.2).
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Using the arithmetic–harmonic mean inequality for real numbers (see for example
[18]), we get

1

2
HM1 =

1

2

∑

i∼j

2

di + dj

∑

i∼j

(di + dj) ≥ m2

that is
δ2H

2
≥ m2 δ2

M1

,

implying that the inequality (2.3) is a consequence of (2.4).

If m ≥ n, the inequality (2.5) is a consequence of (2.2).

Let m = n − 1, i.e., G is a tree. In [6] it was proven that

(2.13) M2(T ) ≤ ∆(2n − ∆ − 1 − k) + k(k − 1),

where
k ≡ n − 1 (mod ∆ − 1), 1 ≤ k ≤ n − 1.

From (2.13) it follows

M2(T ) ≤ ∆(2n − ∆ − 1 − k) + k(k − 1) ≤ 2∆(n − 1)2

n
,

wherefrom we get
m2

n
=

(n − 1)2

n
≥ M2(T )

2∆
.

This means that the inequality (2.5) is a consequence of (2.2) for every connected
graph G.

According to the inequality

(SCI)2 =





∑

i∼j

1
√

di + dj





2

≤ m
∑

i∼j

1

di + dj

=
mH

2
,

it follows
m2

n
≥ δ2H

2
≥ δ2(SCI)2

m
.

This means that the inequality (2.6) is a consequence of both (2.2) and (2.4).
Let m = n − 1, i.e., G is a tree of order n, and let n ≥ 3. Then di + dj ≥ 3 for

every i ∼ j. Therefore,
(n − 1)2

n
≥ 2

3
(n − 1) ≥ H .

It follows that in this case the inequality (2.7) is a consequence of both (2.1) and (2.2).
Let m ≥ n. Then di + dj ≥ 2 for every i ∼ j. Then we have

m2

n
≥ m ≥ H .

Therefore, in this case, the inequality (2.7) is also a consequence of (2.2).
The inequality (2.2) is stronger than the inequality (2.8) when G is a biregular

graph, or G ∼= Pn, or G ∼= Kn − e, or G ∼= Kn−1 + e. When n ≥ 3 and G is not a
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regular graph, then we could not find any connected graph for which the inequality
(2.8) is stronger than the inequality (2.2). Moreover, if ∆ ≥ 2δ, then the right-hand
side of (2.8) can be negative. Therefore, the right-hand side of (2.8) should be avoided
when estimating lower bound for ISI.

Since

n =
∑

i∼j

(

1

di

+
1

dj

)

=
∑

i∼j

di + dj

di dj

=
∑

i∼j

di + dj
√

di dj

1
√

di dj

and

di + dj
√

di dj

=

√

√

√

√

di

dj

+

√

dj

di

≤
√

∆

δ
+

√

δ

∆
,

for every edge in the graph G, it follows

n ≤ (∆ + δ)R√
∆δ

.

Therefore,

m2

n
≥ m2

√
∆δ

(∆ + δ)R
.

Thus, the inequality (2.9) is a consequence of the inequality (2.2).
The inequality (2.2) is stronger than the inequality (2.10) when G ∼= Pn, or G ∼=

Kn − e or G ∼= Kn−1 + e, n ≥ 3. If n ≥ 3 and G is not a regular or biregular graph,
then we could not find any connected graph for which the inequality (2.10) is stronger
than the inequality (2.2). However, it remains an open question whether this is the
case for every connected graph under given conditions.

The inequality (2.11) is stronger than the inequality (2.2) for G ∼= Pn, G ∼= Kn − e
or G ∼= Kn−1 + e. Again, we could not find any connected graph which is not regular
or biregular for which the inequality (2.2) is stronger than the inequality (2.11). It is
still an open question if this is always the case.

The inequalities (2.2) and (2.12) are not comparable. Thus, for example, if the
connected graph is biregular or G ∼= Kn−1 + e, then the inequality (2.2) is stronger
than the inequality (2.12). If, however, G ∼= Pn or G ∼= Kn − e, then the inequality
(2.12) is stronger than (2.2).

3. Main Results

Before we establish some new lower bounds for ISI, we recall some discrete inequal-
ities for real number sequences that will be used subsequently.

Let p = (pi) and a = (ai), i = 1, 2, . . . , m, be positive real number sequences with
the properties p1 + p2 + · · · + pm = 1 and 0 < a ≤ ai ≤ A < +∞. In [22] the following
inequality was proven

(3.1)
m
∑

i=1

pi ai + aA
m
∑

i=1

pi

ai

≤ a + A .
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Equality holds if and only if ai = A or ai = a, for every i = 1, 2, . . . , m.
Let x = (xi) and a = (ai), i = 1, 2, . . . , m, be positive real number sequences. In

[20] it was proven that for any r ≥ 0 holds

(3.2)
m
∑

i=1

xr+1
i

ar
i

≥

(

m
∑

i=1

xi

)r+1

(

m
∑

i=1

ai

)r ,

with equality if and only if a1

x1

= · · · = am

xm
.

If a = (ai), i = 1, 2, . . . , m, is a positive real number sequence, then [15]

(3.3)

(

m
∑

i=1

√
ai

)2

≥
m
∑

i=1

ai + m(m − 1)

(

m
∏

i=1

ai

)1/m

.

Equality holds if and only if a1 = a2 = · · · = am.

Theorem 3.1. Let G be a simple connected graph. Then

(3.4) ISI ≥ 4R−1M2 + ∆e1
δe1

H2

4(∆e1
+ δe1

)R−1

.

Equality holds if and only if G is regular or biregular.

Proof. For pi := di dj

(di+dj)ISI
, ai := di + dj, a = δe1

, A = ∆e1
, where summation is

performed over all pairs of adjacent vertices of G, the inequality (3.1) becomes

∑

i∼j

di dj + ∆e1
δe1

∑

i∼j

di dj

(di + dj)2
≤ (∆e1

+ δe1
)ISI,

i.e.,

(3.5) M2 + ∆e1
δe1

∑

i∼j

di dj

(di + dj)2
≤ (∆e1

+ δe1
)ISI.

For r = 1, xi := 1
di+dj

, ai := 1
di dj

, where summation goes over all pairs of adjacent

vertices, the inequality (3.2) transforms into

∑

i∼j

di dj

(di + dj)2
≥





∑

i∼j

1

di + dj





2

∑

i∼j

1

di dj

,

that is

(3.6)
∑

i∼j

di dj

(di + dj)2
≥ H2

4R−1

.

In view of (3.5) and (3.6), we obtain (3.4).
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The equality in (3.6) holds if and only if for any two pairs of adjacent vertices i ∼ j
and u ∼ v

(3.7)
1

di

+
1

dj

=
1

du

+
1

dv

.

Let j and u be two vertices adjacent to i, that is i ∼ j and i ∼ u. Then, from the
above identity, it follows dj = du. Since G is a connected graph, equality in (3.6)
holds if and only if G is regular or biregular.

Equality in (3.5) holds if and only if di + dj = ∆e1
or di + dj = δe1

, for every edge
of G. This means that equality in (3.5) holds if and only if G is regular or biregular
or for some edges di + dj = ∆e1

holds whereas for the remaining edges di + dj = δe1
.

This means that equality in (3.4) holds if and only if G is regular or biregular. �

In the next theorem we obtain a lower bound for ISI in terms of the parameters
m, ∆e1

, δe1
, and the topological indices M2 and SDD.

Theorem 3.2. Let G be a simple connected graph with m edges. Then

(3.8) ISI ≥ 2M2(SDD + m) + m2∆e1
δe1

2(SDD + m)(∆e1
+ δe1

)
.

Equality is attained if and only if for any two pairs of adjacent vertices i ∼ j and
u ∼ v the identity

(3.9)
di

dj

+
dj

di

=
du

dv

+
dv

du

holds.

Proof. By the arithmetic–harmonic mean inequality (see e.g. [18]), we have

(3.10)
∑

i∼j

di dj

(di + dj)2

∑

i∼j

(di + dj)
2

di dj

≥ m2 .

Since

∑

i∼j

(di + dj)
2

di dj

=
∑

i∼j

d2
i + d2

j + 2di dj

di dj

=
∑

i∼j

d2
i + d2

j

di dj

+ 2m = 2(SDD + m) ,

from (3.10) and the above it follows

∑

i∼j

di dj

(di + dj)2
≥ m2

2(SDD + m)
.

From this and inequality (3.5) we obtain (3.8).
Equality in (3.10) is attained if and only if for any two pairs of adjacent vertices

i ∼ j and u ∼ v the equality (3.9) holds. Consequently, equality in (3.8) holds if and
only if for any two pairs of adjacent vertices i ∼ j and u ∼ v the equality (3.9) is
valid. �
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In the following theorem we determine a lower bound for ISI in terms of the
parameters m, ∆e1

, δe1
, and the topological indices M2 and GA.

Theorem 3.3. Let G be a simple connected graph with m edges. Then

(3.11) ISI ≥ 4mM2 + ∆e1
δe1

(GA)2

4m(∆e1
+ δe1

)
.

Equality in (3.11) holds if and only if for any two pairs of adjacent vertices i ∼ j and
u ∼ v, the equality (3.9) is valid.

Proof. Since

∑

i∼j

di dj

(di + dj)2
=
∑

i∼j





√

di dj

di + dj





2

≥ 1

m





∑

i∼j

√

di dj

di + dj





2

,

it follows
∑

i∼j

di dj

(di + dj)2
≥ 1

m

(

GA

2

)2

.

From this inequality and (3.5) we obtain (3.11).
The equality case in Theorem 3.3 is proved in a same way as in the case of Theo-

rem 3.2. �

In the following theorem we determine a lower bound for ISI in terms of M1 and
RR.

Theorem 3.4. Let G be a simple connected graph with m edges. Then

(3.12) ISI ≥ (RR)2

M1

.

Equality holds if and only if for any two pairs of adjacent vertices i ∼ j and u ∼ v,
the equality (3.9) is valid.

Proof. For r = 1, xi :=
√

di dj, ai := di + dj, where summation goes over all pairs of

adjacent vertices of G, the inequality (3.2) transforms into

∑

i∼j

(√

di dj

)2

di + dj

≥





∑

i∼j

√

di dj





2

∑

i∼j

(di + dj)
,

that is

ISI ≥ (RR)2

M1

.

The equality case in (3.12) is proved in a same way as in the case of Theorem 3.2. �
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The inequalities (3.4), (3.8), (3.11) and (3.12) are stronger than the inequality (2.2)
when G ∼= Pn, G ∼= Kn − e or G ∼= Kn−1 + e. We could not find any connected graph
for which the inequality (2.2) is stronger than these inequalities. However, it is an
open question whether these inequalities are always stronger than (2.2).
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A NOTE ON THE DEFINITION OF BOUNDED VARIATION OF

HIGHER ORDER FOR DOUBLE SEQUENCES

BHIKHA LILA GHODADRA1 AND VANDA FÜLÖP2

Abstract. In this study the definition of bounded variation of order p (p ∈ N) for
double sequences is considered. Some inclusion relations are proved and counter
examples are provided for ensuring proper inclusions.

1. Introduction

While studying convergence properties of double trigonometric and Walsh series,
many authors have considered double sequences which are of bounded variation or
more generally of bounded variation of order (p, 0), (0, p), and (p, p) (see, e.g., [1,
3]). Also, many results regarding the convergence of trigonometric and Walsh series
with coefficients of bounded variation of higher order are proved (see, e.g., [1, 3]).
But, it seems that showing the inclusion relations for such classes of sequences and
constructing counter examples for showing proper inclusions have not yet been done.

The main goal of this note is to prove such inclusion relations and constructing
examples for showing proper inclusions. We start with the one dimensional case. In
what follows, by a sequence (or a single sequence), we mean a function from Z to C,
and by a double sequence, we mean a function from Z × Z to C.

2. One Dimensional Case

We recall the definition of bounded variation of order p for a single sequence (see
[2, Defintion 1.4]).

Key words and phrases. Double sequence of bounded variation, double sequence of bounded
variation of order p (p ∈ N), double sequence of bounded variation of order (p, 0), double sequence
of bounded variation of order (0, p), double sequence of bounded variation of order (p, p).
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Definition 2.1. A null sequence {ak : k = . . . , −1, 0, 1, . . . }, i.e., {ak} such that
ak → 0 as |k| → ∞, is said to be of bounded variation of order p (p ∈ N) if

∞
∑

k=−∞

|∆pak| < ∞,

where ∆pak = ∆(∆p−1ak) = ∆p−1ak − ∆p−1ak+1 and ∆0ak = ak.

From this definition, it is clear that if {ak} is of bounded variation of order p, then
it is of bounded variation of order p + 1 also. Also, in [2] an example of a sequence is
given which is of bounded variation of order 2, but not of bounded variation.

3. Two Dimensional Case

In this section, we shall consider the definition of a double sequence of bounded
variation of order p. For that first we have the following definition of differences.

Definition 3.1. Let {c(j, k) : j, k = . . . , −1, 0, 1, . . . } be a double sequence. Its
differences are defined by

∆00c(j, k) = c(j, k),

∆pqc(j, k) = ∆p−1,qc(j, k) − ∆p−1,qc(j + 1, k), p ≥ 1,

∆pqc(j, k) = ∆p,q−1c(j, k) − ∆p,q−1c(j, k + 1), q ≥ 1.

As is well-known, the two right-hand sides coincide if min(p, q) ≥ 1. Also, we mention
that that double induction argument gives

∆pqc(j, k) =
p
∑

s=0

q
∑

t=0

(−1)s+t

(

p

s

)(

q

t

)

c(j + s, k + t).

Definition 3.2. A double sequence {c(j, k) : j, k = . . . , −1, 0, 1, . . . } of complex
numbers is called a null sequence, if it satisfies

(3.1) c(j, k) → 0 as max(|j|, |k|) → ∞.

Definition 3.3. A double null sequence {c(j, k) : j, k = . . . , −1, 0, 1, . . . } is said to
be of bounded variation if

(3.2)
∞
∑

j=−∞

∞
∑

k=−∞

|∆11c(j, k)| < ∞.

We shall denote the class of all double sequences of bounded variation by BV.

Now, we give an analogous definition of bounded variation of order p (p ≥ 2) for a
double sequence.

Definition 3.4. A double null sequence {c(j, k) : j, k = . . . , −1, 0, 1, . . . } is said to
belong to the class (BV)p, i.e., of bounded variation of order p ≥ 2, if the following
three conditions are satisfied:

(3.3)
∞
∑

j=−∞

∞
∑

k=−∞

|∆ppc(j, k)| < ∞,
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(3.4) lim
|k|→∞

∞
∑

j=−∞

|∆p0c(j, k)| = 0,

and

(3.5) lim
|j|→∞

∞
∑

k=−∞

|∆0pc(j, k)| = 0.

Some authors (see, e.g., [1, 3]) call conditions (3.3)–(3.5) as conditions of bounded
variation of order (p, p), (p, 0), and (0, p), respectively.

Our main aim is to prove that the following chain of inclusion relations holds:

BV = (BV)1 ⊂ (BV)2 ⊂ · · · ⊂ (BV)p ⊂ (BV)p+1 ⊂ · · · .

We also show that each of above relation is proper.

Theorem 3.1. If {c(j, k)} ∈ BV, then {c(j, k)} ∈ (BV)2.

Proof. Suppose {c(j, k)} ∈ BV. Then, we write

(3.6)
∞
∑

j=−∞

∞
∑

k=−∞

|∆11c(j, k)| < ∞.

Since

∆22c(j, k) = ∆12c(j, k) − ∆12c(j + 1, k)

= ∆11c(j, k) − ∆11c(j, k + 1) − ∆11c(j + 1, k) + ∆11c(j + 1, k + 1),

it follows from (3.6) that
∞
∑

j=−∞

∞
∑

k=−∞

|∆22c(j, k)| ≤ 4
∞
∑

j=−∞

∞
∑

k=−∞

|∆11c(j, k)| < ∞.

So, {c(j, k)} satisfies (3.3) for p = 2. Now, as {c(j, k)} is of bounded variation, that is,
{c(j, k)} is a double sequence satisfying (3.1) and (3.2), it follows (see, e.g., [4, Proof
of Lemma 1]) that

∆10c(j, k0) =
∞
∑

k=k0

∆11c(j, k) and ∆10c(j, k0) = −
k0−1
∑

k=−∞

∆11c(j, k),

for each fixed k0 ∈ Z. Therefore, for each fixed k0 ∈ Z, we have

|∆20c(j, k0)| = |∆10c(j, k0) − ∆10c(j + 1, k0)|

=

∣

∣

∣

∣

∣

∣

∞
∑

k=k0

∆11c(j, k) −
∞
∑

k=k0

∆11c(j + 1, k)

∣

∣

∣

∣

∣

∣

≤
∞
∑

k=k0

|∆11c(j, k)| +
∞
∑

k=k0

|∆11c(j + 1, k)|

and

|∆20c(j, k0)| = |∆10c(j, k0) − ∆10c(j + 1, k0)|
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=

∣

∣

∣

∣

∣

∣

−
k0−1
∑

k=−∞

∆11c(j, k) +
k0−1
∑

k=−∞

∆11c(j + 1, k)

∣

∣

∣

∣

∣

∣

≤
k0−1
∑

k=−∞

|∆11c(j, k)| +
k0−1
∑

k=−∞

|∆11c(j + 1, k)| .

Therefore, in view of (3.6), we have
∞
∑

j=−∞

|∆20c(j, k0)| ≤
∞
∑

j=−∞

∞
∑

k=k0

|∆11c(j, k)| +
∞
∑

j=−∞

∞
∑

k=k0

|∆11c(j + 1, k)|

→ 0 as k0 → ∞

and
∞
∑

j=−∞

|∆20c(j, k0)| ≤
∞
∑

j=−∞

k0−1
∑

k=−∞

|∆11c(j, k)| +
∞
∑

j=−∞

k0−1
∑

k=−∞

|∆11c(j + 1, k)|

→ 0 as k0 → −∞.

Therefore, {c(j, k)} satisfies (3.4) for p = 2. Similarly, it satisfies (3.5) for p = 2.
Thus, {c(j, k)} ∈ (BV)2. This completes the proof. �

Theorem 3.2. If {c(j, k)} ∈ (BV)p, p ≥ 2, then {c(j, k)} ∈ (BV)p+1.

Proof. Suppose {c(j, k)} ∈ (BV)p. Then, (3.3)–(3.5) hold true. Since

∆p+1,p+1c(j, k) = ∆p,p+1c(j, k) − ∆p,p+1c(j + 1, k)

= ∆ppc(j, k) − ∆ppc(j, k + 1) − ∆ppc(j + 1, k) + ∆ppc(j + 1, k + 1),

it follows from (3.3) that
∞
∑

j=−∞

∞
∑

k=−∞

|∆p+1,p+1c(j, k)| ≤ 4
∞
∑

j=−∞

∞
∑

k=−∞

|∆ppc(j, k)| < ∞.

So, {c(j, k)} satisfies (3.3) for p + 1 in place of p. Also, for a fixed k ∈ Z, we have
∞
∑

j=−∞

|∆p+1,0c(j, k)| =
∞
∑

j=−∞

|∆p,0c(j, k) − ∆p,0c(j + 1, k)|

≤
∞
∑

j=−∞

|∆p,0c(j, k)| +
∞
∑

j=−∞

|∆p,0c(j + 1, k)|

→ 0 as |k| → ∞,

in view of (3.4). So, {c(j, k)} satisfies (3.4) for p+1 in place of p. Similarly, in view of
(3.5), {c(j, k)} satisfies (3.5) for p + 1 in place of p. Therefore, {c(j, k)} is of bounded
variation of order p + 1. �

Now, we will prove that the inclusion relations proved in above theorems are proper.
In the following example, we give an example of a double sequence defined on Z × Z,
which is of bounded variation of of order 2, but not of bounded variation.
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Example 3.1. We consider {aj} and {bk} to be single sequences as in [2, Example, p.
424]. That is, for j, k = 1, 2, . . . , and −j ≤ p < j, −k ≤ q < k, we put

aj2+p =
j − |p|

j2
, bk2+q =

k − |q|

k2
.

As argued in [2], the sequences {aj} and {bk} are well-defined on N ∪ {0} as j2 + j =
(j + 1)2 − (j + 1) and k2 + k = (k + 1)2 − (k + 1). We also put aj = 0 if j ≤ −1, and
bk = 0 if k ≤ −1. Then, {aj} and {bk} are well-defined sequences on Z.

Now, we put

c(j, k) = ajbk, j, k ∈ Z.

Then, {c(j, k)} is a well-defined double sequence on Z×Z. Actually, it is proved in [2]
that these single sequences are of bounded variation of order 2, but not of bounded
variation. We claim that the double sequence {c(j, k)} is of bounded variation of
order 2, but not of bounded variation.

We first observe that

∆11c(j, k) = c(j, k) − c(j + 1, k) − c(j, k + 1) + c(j + 1, k + 1)

= ajbk − aj+1bk − ajbk+1 + aj+1bk+1

= (aj − aj+1)bk − (aj − aj+1)bk+1

= (∆aj)bk − (∆aj)bk+1

= (∆aj)(∆bk)

and therefore, we also have

∆22c(j, k) = ∆12c(j, k) − ∆12c(j + 1, k)

= ∆11c(j, k) − ∆11c(j, k + 1) − ∆11c(j + 1, k) + ∆11c(j + 1, k + 1)

= (∆aj)(∆bk) − (∆aj)(∆bk+1) − (∆aj+1)(∆bk) + (∆aj+1)(∆bk+1)

= (∆aj)(∆bk − ∆bk+1) − (∆aj+1)(∆bk − ∆bk+1)

= (∆2aj)(∆
2bk).

Now, by definition of {aj},

∆aj2+p = aj2+p − aj2+p+1 =
j − |p|

j2
−

j − |p + 1|

j2
=

|p + 1| − |p|

j2

=



















1

j2
, if p ≥ 0,

−1

j2
, if p ≤ −1.

Therefore, |∆aj2+p| = 1/j2 and similarly |∆bk2+q| = 1/k2. Next, we have

∞
∑

j=0

|∆aj| =
∞
∑

j=1

j−1
∑

p=−j

|∆aj2+p| =
∞
∑

j=1

j−1
∑

p=−j

1

j2
=

∞
∑

j=1

2j

j2
=

∞
∑

j=1

2

j
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and similarly
∞
∑

k=0

|∆bk| =
∞
∑

k=1

2

k
.

Therefore, as ∆aj = 0 for j ≤ −1, and ∆bk = 0 for k ≤ −1, we have

∞
∑

j=−∞

∞
∑

k=−∞

|∆11c(j, k)| =
∞
∑

j=−∞

∞
∑

k=−∞

|(∆aj)(∆bk)| =
∞
∑

j=0

∞
∑

k=0

|(∆aj)(∆bk)|

=





∞
∑

j=0

|∆aj|





(

∞
∑

k=0

|∆bk|

)

=





∞
∑

j=1

2

j





(

∞
∑

k=1

2

k

)

= ∞,

which proves that {c(j, k)} is not of bounded variation.
But, for −j ≤ p ≤ −2,

∆2aj2+p = ∆aj2+p − ∆aj2+p+1 =

(

−1

j2

)

−

(

−1

j2

)

= 0,

for 0 ≤ p ≤ j − 1,

∆2aj2+p = ∆aj2+p − ∆aj2+p+1 =

(

1

j2

)

−

(

1

j2

)

= 0,

and, for p = −1 we have

∆2aj2−1 = ∆aj2−1 − ∆aj2 =

(

−1

j2

)

−

(

1

j2

)

=
−2

j2
.

Similarly, ∆2bk2+q = 0, for −k ≤ q ≤ −2, for 0 ≤ q ≤ k − 1, and ∆2bk2−1 = −2/k2.
Hence, as ∆2aj = 0, for j ≤ −2, and ∆2bk = 0, for k ≤ −2, we have

∞
∑

j=−∞

∞
∑

k=−∞

|∆22c(j, k)| =
∞
∑

j=−∞

∞
∑

k=−∞

∣

∣

∣

(

∆2aj

) (

∆2bk

)∣

∣

∣ =
∞
∑

j=−1

∞
∑

k=−1

∣

∣

∣

(

∆2aj

) (

∆2bk

)∣

∣

∣

=
∣

∣

∣(∆2a−1)(∆
2b−1)

∣

∣

∣+
∣

∣

∣(∆2a−1)(∆
2b0)

∣

∣

∣+
∣

∣

∣(∆2a0)(∆
2b−1)

∣

∣

∣

+





∞
∑

j=0

∣

∣

∣∆2aj

∣

∣

∣





(

∞
∑

k=0

∣

∣

∣∆2bk

∣

∣

∣

)

= |1 · 1| + |1 · (−2)| + |(−2) · 1| +





∞
∑

j=1

j−1
∑

p=−j

∣

∣

∣∆2aj2+p

∣

∣

∣









∞
∑

k=1

k−1
∑

q=−k

∣

∣

∣∆2bk2+q

∣

∣

∣





=5 +





∞
∑

j=1

2

j2





(

∞
∑

k=1

2

k2

)

< ∞.
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So, {c(j, k)} satisfies (3.3) for p = 2. Now, for each fixed k0 ∈ Z, we have

∞
∑

j=0

|∆20c(j, k0)| =
∞
∑

j=0

∣

∣

∣∆2ajbk0

∣

∣

∣ =





∞
∑

j=0

|∆2aj|



 |bk0
| =





∞
∑

j=1

2

j2



 |bk0
| < ∞

and in view of |bk0
| → 0 as |k0| → ∞, it follows that {c(j, k)} satisfies (3.4) for p = 2.

Similarly, {c(j, k)} satisfies (3.5) also for p = 2. Thus, {c(j, k)} is of bounded variation
of order 2.

Example 3.2. Consider the sequences {aj} and {bk} defined in Example 3.1. Let {a′
j}

and {b′
k} be sequences defined on Z such that a′

0 = 0, b′
0 = 0, and ∆a′

j = aj and
∆b′

k = bk, for j, k ∈ Z. These sequences {a′
j} and {b′

k} can be constructed as follows.
By our definition, we have ai = 0, if i ≤ −1, and the elements a0, a1, a2, . . . are:

0

1
,

1

1
;

0

4
,

1

4
,

2

4
,

1

4
;

0

9
,

1

9
,

2

9
,

3

9
,

2

9
,

1

9
, . . . .

In view of 0 = a0 = ∆a′
0 = a′

0 − a′
1 and a′

0 = 0, we calculate a′
1 = 0. Then, from

1 = a1 = ∆a′
1 = a′

1 − a′
2 and from a′

1 = 0, we calculate a′
2 = −1. Similarly, we can

calculate all other elements of {a′
j} and {b′

k}.
Now, we put c′(j, k) = a′

jb
′
k, for j, k ∈ Z. Then, as in Example 3.1, we can easily

see that {c′(j, k)} is of bounded variation of order 3 but not of bounded variation of
order 2.

Continuing in this way, for each p ∈ N, we can construct a sequence of bounded
variation of order p + 1 which not of bounded variation of order p.

This shows that (BV)p is a proper subset of (BV)p+1 for each p ∈ N.
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SOME GRÜSS TYPE INEQUALITIES FOR FRÉCHET
DIFFERENTIABLE MAPPINGS

T. TEIMOURI-AZADBAKHT1 AND A. G GHAZANFARI1

Abstract. Let X be a Hilbert C∗-module on C∗-algebra A and p ∈ A. We denote
by Dp(A, X) the set of all continuous functions f : A → X, which are Fréchet
differentiable on a open neighborhood U of p. Then, we introduce some generalized
semi-inner products on Dp(A, X), and using them some Grüss type inequalities in
semi-inner product C∗-module Dp(A, X) and Dp(A, Xn) are established.

1. Introduction

Let A, X be two normed vector spaces over K(K = C,R), we recall that a function
f : A → X is Fréchet differentiable in p ∈ A, if there exists a bounded linear mapping
u : A → X such that

lim
h→0

‖f(p + h) − f(p) − u(h)‖X

‖h‖A

= 0,

and in this case, we denote u by Df(p). Let Dp(A, X) denotes the set of all continuous
functions f : A → X, which are Fréchet differentiable on a open neighborhood (say U)
of p. The main purpose of differential calculus consists in getting some information
using an affine approximation to a given nonlinear map around a given point. In
many applications it is important to have Fréchet derivatives of f , since they provide
genuine local linear approximation to f . For instance, let U be an open subset of A

containing the segment [x, y] = {(1 − θ)x + θy : 0 ≤ θ ≤ 1}, and let f : A → X be
Fréchet differentiable on U , then the following mean value formula holds

‖f(x) − f(y) ≤ ‖x − y‖ sup
0<θ<1

‖Df((1 − θ)x + θy)‖ .

Key words and phrases. Fréchet differentiable mappings, C∗-modules, Grüss inequality.
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For two Lebesgue integrable functions f, g : [a, b] → R, consider the Čebys̆ev
functional:

T (f, g) :=
1

b − a

∫ b

a
f(t)g(t)dt − 1

b − a

∫ b

a
f(t)dt

1
b − a

∫ b

a
g(t)dt.

In 1934, G. Grüss [4] showed that

(1.1) |T (f, g)| ≤ 1
4

(M − m)(N − n),

provided m, M, n, N are real numbers with the property −∞ < m ≤ f ≤ M < ∞
and −∞ < n ≤ g ≤ N < ∞ a.e. on [a, b]. The constant 1

4
is the best possible in the

sense that it cannot be replaced by a smaller quantity and is achieved for

f(x) = g(x) = sgn
(

x − a + b

2

)

.

The discrete version of (1.1) states that: if a ≤ ai ≤ A, b ≤ bi ≤ B, i = 1, ..., n,
where a, A, b, B, ai, bi are real numbers, then

(1.2)

∣

∣

∣

∣

∣

1
n

n
∑

i=1

aibi − 1
n

n
∑

i=1

ai.
1
n

n
∑

i=1

bi

∣

∣

∣

∣

∣

≤ 1
4

(A − a)(B − b),

where the constant 1

4
is the best possible for an arbitrary n ≥ 1. Some refinements

of the discrete version of Grüss inequality (1.2) for inner product spaces are available
in [1, 6].

Theorem 1.1. ([2, Theorem 2]). Let (H; 〈·, ·〉) and K be as above and

x = (x1, . . . , xn) ∈ Hn, α = (α1, . . . , αn) ∈ Kn and p = (p1, . . . , pn) a probability

vector. If x, X ∈ H are such that

Re 〈X − xi, xi − x〉 ≥ 0, for all i ∈ {1, . . . , n},

or, equivalently,
∥

∥

∥

∥

xi − x + X

2

∥

∥

∥

∥

≤ 1
2

‖X − x‖, for all i ∈ {1, . . . , n},

holds, then the following inequality holds
∥

∥

∥

∥

∥

n
∑

i=1

piαixi −
n

∑

i=1

piαi

n
∑

i=1

pixi

∥

∥

∥

∥

∥

≤ 1
2

‖X − x‖
n

∑

i=1

pi

∣

∣

∣

∣

∣

∣

αi −
n

∑

j=1

pjαj

∣

∣

∣

∣

∣

∣

≤ 1
2

‖X − x‖




n
∑

i=1

pi|αi|2 −
∣

∣

∣

∣

∣

n
∑

i=1

piαi

∣

∣

∣

∣

∣

2




1

2

.

The constant 1

2
in the first and second inequalities is the best possible.

In recent years several refinements and generalizations have been considered for the
Grüss inequality. We would like to refer the reader to [2–6,8,9] and references therein
for more information.
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In this paper, for every Hilbert C∗-module X over a C∗-algebra A, some Grüss type
inequalities in semi-inner product C∗-module Dp(A, Xn) are established. We also for
two arbitrary Banach ∗-algebras, define a norm and an involution map on Dp(A, B)
and prove that Dp(A, B) is a Banach ∗-algebra.

2. Grüss Type Inequalities for Differentiable Mappings

Let A be a C∗-algebra. A semi-inner product module over A is a right module X

over A together with a generalized semi-inner product, that is with a mapping 〈., .〉
on X × X, which is A-valued and has the following properties:

(i) 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉 for all x, y, z ∈ X;
(ii) 〈x, ya〉 = 〈x, y〉 a for x, y ∈ X, a ∈ A;
(iii) 〈x, y〉∗ = 〈y, x〉 for all x, y ∈ X;
(iv) 〈x, x〉 ≥ 0 for x ∈ X.

We will say that X is a semi-inner product C∗-module. If, in addition,

(v) 〈x, x〉 = 0 implies x = 0,

then 〈·, ·〉 is called a generalized inner product and X is called an inner product
module over A or an inner product C∗-module. An inner product C∗-module which
is complete with respect to its norm ‖x‖ = ‖〈x, x〉‖ 1

2 , is called a Hilbert C∗-module.
As we can see, an inner product module obeys the same axioms as an ordinary

inner product space, except that the inner product takes values in a more general
structure rather than in the field of complex numbers. If A is a C∗-algebra and X is
a semi-inner product A-module, then the following Schwarz inequality holds:

〈x, y〉〈y, x〉 ≤ ‖〈x, x〉‖〈y, y〉, x, y ∈ X

(e.g., [7, Proposition 1.1]).

Theorem 2.1 ([3]). Let A be a C∗- Algebra, X a Hilbert C∗- module. If x, y, e ∈ X,

〈e, e〉 is an idempotent in A and α, β, λ, µ are complex numbers such that
∥

∥

∥

∥

∥

x − α + β

2
e

∥

∥

∥

∥

∥

≤ 1

2
|α − β|,

∥

∥

∥

∥

∥

y − λ + µ

2
e

∥

∥

∥

∥

∥

≤ 1

2
|λ − µ|,

hold, then one has the following inequality:

‖〈x, y〉 − 〈x, e〉〈e, y〉‖ ≤ 1

4
|α − β| |λ − µ|.

Example 2.1. Let A be a C∗-algebra and X be a semi-inner product C∗-module
on a C∗-algebra B. If functions f, g ∈ Dp(A, X), then function k : A → B as
k(a) = 〈f(a), g(a)〉 is differentiable in p ∈ A and derivative of that is a linear mapping
Dk(p) : A → B defined by

Dk(p)(a) = 〈Df(p)(a∗), g(p)〉 + 〈f(p), Dg(p)(a)〉.
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Because

〈f(p + h), g(p + h)〉 − 〈f(p), g(p)〉 − 〈Df(p)(h∗), g(p)〉 − 〈f(p), Dg(p)(h)〉
=〈f(p + h), g(p + h) − g(p) − Dg(p)(h))〉 + 〈f(p + h) − f(p), Dg(p)(h)〉

+ 〈f(p + h∗) − f(p) − Df(p)(h∗), g(p)〉 + 〈f(p + h) − f(p + h∗), g(p)〉.

Let A be a C∗-algebra and X a semi-inner product A-module. If f ∈ Dp(A, X) and
a ∈ A, we define the function fa : A → X by fa(t) = f(t)a.

Theorem 2.2. Let X be a semi-inner product C∗-module on C∗-algebra A, and

p ∈ A, e ∈ X. If 〈e, e〉 is an idempotent element in A, and f, g ∈ Dp(A, X), then for

every a ∈ A, the map [·, ·]a : Dp(A, X) × Dp(A, X) → A with

[f, g]a :=
〈

Df(p)(a), Dg(p)(a)
〉

1
+

〈

f(p), g(p)
〉

1
− D

〈

f(·), g(·)
〉

1
(p)(a),

is a generalized semi-inner product on Dp(A, X), where

〈f(a), g(a)〉1 = 〈f(a), g(a)〉 − 〈f(a), e〉〈e, g(a)〉.

Proof. First, we show that fa ∈ Dp(A, X) and Dfa(p) = (Df(p))a. There exists a
bounded convex set V (= B(p, r)) containing p such that V ⊆ U . Let p, h ∈ V , a ∈ A,
then

‖fa(p + h) − fa(p) − (Df(p)(h))a‖ = ‖[f(p + h) − f(p) − Df(p)(h)]a‖
≤ ‖f(p + h) − f(p) − Df(p)(h)‖‖a‖.

This implies that fa ∈ Dp(A, X).
A simple calculation shows

[f, g]a =
〈

Df(p)(a) − f(p), Dg(p)(a) − g(p)
〉

−
〈

Df(p)(a) − f(p), e〉〈e, Dg(p)(a) − g(p)
〉

=
〈

(Df(p)(a) − f(p)) − e
〈

e, (Df(p)(a) − f(p))
〉

,

(Dg(p)(a) − g(p)) − e
〈

e, (Dg(p)(a) − g(p))
〉

〉

.

Therefore,

[f, f ]a =
〈

(Df(p)(a) − f(p)) − e
〈

e, (Df(p)(a) − f(p))
〉

,

(Df(p)(a) − f(p)) − e
〈

e, (Df(p)(a) − f(p))
〉

〉

≥ 0.

It is easy to show that [·, ·]a is a generalized semi-inner product on Dp(A, X). �

Lemma 2.1. Let X be a semi-inner product C∗-module on C∗-algebra A, and p, a ∈
A, e ∈ X. If 〈e, e〉 is an idempotent element in A, f, g ∈ Dp(A, X) and α, β, α′, β′, µ,
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λ, µ′, λ′ are complex numbers such that
∥

∥

∥

∥

∥

f(p) − α + β

2
e

∥

∥

∥

∥

∥

≤1

2
|α − β|,

∥

∥

∥

∥

∥

Df(p)(a) − α′ + β′

2
e

∥

∥

∥

∥

∥

≤1

2
|α′ − β′|,

∥

∥

∥

∥

∥

g(p) − λ + µ

2
e

∥

∥

∥

∥

∥

≤1

2
|λ − µ|,

∥

∥

∥

∥

∥

Dg(p)(a) − µ′ + λ′

2
e

∥

∥

∥

∥

∥

≤1

2
|µ′ − λ′|,

then the following inequality holds

‖〈Df(p)(a), Dg(p)(a)〉1 + 〈f(p), g(p)〉1 − D
〈

f(·), g(·)
〉

1
(p)(a)‖

≤1

2
(|α − β| + |α′ − β′|)(|λ − µ| + |λ′ − µ′|).

Proof. Since [·, ·]a is a generalized semi-inner product on Dp(A, X), the Schwartz
inequality holds, i.e,

‖[f, g]a‖2 ≤ ‖[f, f ]a‖ ‖[g, g]a‖.

We know that

‖[f, f ]a‖ ≤
∥

∥

∥〈Df(p)(a), Df(p)(a)〉 − 〈Df(p)(a), e〉〈e, Df(p)(a)〉
∥

∥

∥

+
∥

∥

∥〈f(p), f(p)〉 − 〈f(p), e〉〈e, f(p)〉
∥

∥

∥

+
∥

∥

∥〈Df(p)(a), f(p)〉 − 〈Df(p)(a), e〉〈e, f(p)〉
∥

∥

∥

+
∥

∥

∥〈f(p), Df(p)(a)〉 − 〈f(p), e〉〈e, Df(p)(a)〉
∥

∥

∥.

This inequality and Theorem 2.1 imply that

‖[f, f ]a‖ ≤1

4
|α′ − β′|2 +

1

4
|α − β|2 +

1

2
|α′ − β′||α − β|

=
1

4
(|α − β| + |α′ − β′|)2.

Similarly,

‖[g, g]a‖ ≤1

4
|λ′ − µ′|2 +

1

4
|λ − µ|2 +

1

2
|λ′ − µ′||λ − µ|

=
1

4
(|λ − µ| + |λ′ − µ′|)2. �

Let X be a semi-inner product C∗-module over C∗-algebra A. For every x ∈ X, we
define the map x̂ : A → Xn by x̂(a) = (xa, . . . , xa), a ∈ A.
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Lemma 2.2. Let X be a semi-inner product C∗-module, x0, y0, x1, y1 ∈ X and

(r1, r2, . . . , rn) ∈ Rn a probability vector. If p ∈ A and f = (f1, . . . , fn),
g = (g1, . . . , gn) ∈ Dp(A, Xn) such that

∥

∥

∥

∥

∥

Df(p) − x̂0 + y0

2

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

x0 − y0

2

∥

∥

∥

∥

and
∥

∥

∥

∥

∥

Dg(p) − x̂1 + y1

2

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

x1 − y1

2

∥

∥

∥

∥

,

then for all a ∈ A, we have
∥

∥

∥

∥

∥

n
∑

i=1

ri 〈Dfi(p)(a), Dgi(p)(a)〉 −
〈 n

∑

i=1

riDfi(p)(a),
n

∑

i=1

riDgi(p)(a)
〉

∥

∥

∥

∥

∥

≤1

4
‖x0 − y0‖‖x1 − y1‖‖a‖2.

Proof. For every a ∈ A, we define the map
(

·, ·
)

a
: Dp(A, Xn) × Dp(A, Xn) → A with

(

f, g
)

a
=

n
∑

i=1

ri

〈

Dfi(p)(a), Dgi(p)(a)
〉

−
〈 n

∑

i=1

riDfi(p)(a),
n

∑

i=1

riDgi(p)(a)
〉

.

The following Korkine type inequality for differentiable mappings holds:

(

f, g
)

a
=

1

2

n
∑

i=1,j=1

rirj

〈

Dfi(p)(a) − Dfj(p)(a), Dgi(p)(a) − Dgj(p)(a)
〉

,

Therefore,
(

f, f
)

a
≥ 0. It is easy to show that

(

·, ·
)

a
is a generalized semi-inner

product on Dp(A, Xn).
A simple calculation shows that

(

f, g
)

a
=

n
∑

i=1

ri

〈

Dfi(p)(a) − x0 + y0

2
a, Dgi(p)(a) − x1 + y1

2
a

〉

−
〈 n

∑

i=1

riDfi(p)(a) − x0 + y0

2
a,

n
∑

i=1

riDgi(p)(a) − x1 + y1

2
a

〉

.

From Schwartz inequality, we have

∥

∥

∥

(

f, g
)

a

∥

∥

∥

2 ≤
n

∑

i=1

ri

∥

∥

∥

∥

Dfi(p)(a) − x0 + y0

2
a

∥

∥

∥

∥

2 n
∑

i=1

ri

∥

∥

∥

∥

Dgi(p)(a) − x1 + y1

2
a

∥

∥

∥

∥

2

≤
∥

∥

∥

∥

∥

Df(p) − x̂0 + y0

2

∥

∥

∥

∥

∥

2 ∥

∥

∥

∥

∥

Dg(p) − x̂1 + y1

2

∥

∥

∥

∥

∥

2

‖a‖4

≤ 1

16
‖x0 − y0‖2‖x1 − y1‖2‖a‖4. �
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Corollary 2.1. Let X be a semi-inner product C∗-module, x0, y0 ∈ X, (α1, . . . , αn) ∈
Cn and (r1, r2, . . . , rn) ∈ Rn a probability vector. If p ∈ A and f = (f1, . . . , fn) ∈
Dp(A, Xn) such that

∥

∥

∥

∥

∥

Df(p) − x̂0 + y0

2

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

x0 − y0

2

∥

∥

∥

∥

,

then for all a ∈ A, we have
∥

∥

∥

∥

∥

n
∑

i=1

riαiDfi(p)(a) −
n

∑

i=1

riαi

n
∑

i=1

riDfi(p)(a)

∥

∥

∥

∥

∥

≤‖a‖
∥

∥

∥

∥

x0 − y0

2

∥

∥

∥

∥





n
∑

i=1

ri|αi|2 −
∣

∣

∣

∣

∣

n
∑

i=1

riαi

∣

∣

∣

∣

∣

2




1

2

.(2.1)

Proof. We have
∥

∥

∥

∥

∥

n
∑

i=1

riαiDfi(p)(a) −
n

∑

i=1

riαi

n
∑

i=1

riDfi(p)(a)

∥

∥

∥

∥

∥

=

∣

∣

∣

∣

∣

∣

n
∑

i=1

ri

(

αi −
n

∑

j=1

rjαj

)

∣

∣

∣

∣

∣

∣

∥

∥

∥

∥

Dfi(p)(a) − x0 + y0

2
a

∥

∥

∥

∥

≤
n

∑

i=1

ri

∣

∣

∣

∣

∣

∣

αi −
n

∑

j=1

rjαj

∣

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

Df(p) − x̂0 + y0

2

∥

∥

∥

∥

∥

‖a‖

≤‖a‖
∥

∥

∥

∥

x0 − y0

2

∥

∥

∥

∥





n
∑

i=1

ri|αi|2 −
∣

∣

∣

∣

∣

n
∑

i=1

riαi

∣

∣

∣

∣

∣

2




1

2

. �

Corollary 2.2. Let X be a semi-inner product C∗-module, x0, y0 ∈ X. If p ∈ A and

f = (f1, . . . , fn) ∈ Dp(A, Xn) such that
∥

∥

∥

∥

∥

Df(p) − x̂0 + y0

2

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

x0 − y0

2

∥

∥

∥

∥

,

then for all a ∈ A, we have

(2.2)
∥

∥

∥

∥

∥

n
∑

k=1

kDfk(p)(a) − n + 1

2
.

n
∑

k=1

Dfk(p)(a)

∥

∥

∥

∥

∥

≤ ‖a‖‖x0 − y0‖n

4

[

(n − 1)(n + 1)

3

]
1

2

,

and
∥

∥

∥

∥

∥

n
∑

k=1

k2Dfk(p)(a) − (n + 1)(2n + 1)

6
.

n
∑

k=1

Dfk(p)(a)

∥

∥

∥

∥

∥

(2.3)

≤‖a‖‖x0 − y0‖n

12
√

5

√

(n − 1)(n + 1)(2n + 1)(8n + 11).

Proof. If we put ri = 1

n
, αi = k in inequality (2.1), then we get (2.2), and if ri =

1

n
, αi = k2 in inequality (2.1), then we get (2.3). �
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3. Differentiable Mappings on Banach *-Algebras

Theorem 3.1. Let A, B be two Banach ∗-algebras and p ∈ A, then Dp(A, B) is a

Banach ∗-algebra with the point-wise operations and the involution f ∗(a) = (f(a))∗,

a ∈ A, and the norm

‖f‖ := max

{

sup
x∈U

‖Df(x)‖, sup
a∈A

‖f(a)‖
}

< ∞.

Proof. First we show that the involution f 7→ f ∗ is differentiable and Df ∗(x)(h) =
(Df(x)(h∗))∗, x, h ∈ U . It is trivial that Df ∗(x) is a bounded linear map with
‖Df ∗(x)‖ = ‖Df(x)‖ and

‖f ∗(x + h) − f ∗(x) − Df ∗(x)(h)‖
=‖

(

f(x + h) − f(x) − Df(x)(h∗)
)

∗‖
=‖f(x + h) − f(x) − Df(x)(h∗)‖
=‖f(x + h) − f(x) − Df(x)(h) + Df(x)(h) − Df(x)(h∗)‖
≤ǫ‖h‖ + ‖Df(x)(h − h∗)‖ ≤ ǫ‖h‖ + 2‖Df(x)‖‖h‖.

From ‖Df ∗(x)‖ = ‖Df(x)‖ and ‖f ∗(a)‖ = ‖f(a)‖, we obtain

‖f ∗‖ = max

{

sup
x∈U

‖Df ∗(x)‖, sup
a∈A

‖f ∗(a)‖
}

= max

{

sup
x∈U

‖Df(x)‖, sup
a∈A

‖f(a)‖
}

= ‖f‖.

Now, we show that Dp(A, B) is complete. There exists a bounded convex set V (=
B(p, r)) containing p such that V ⊆ U . Suppose that (fn) is a Cauchy sequence in
Dp(A, B), i.e.,

‖fn(a) − fm(a)‖ → 0, a ∈ A, and ‖Dfn(x) − Dfm(x)‖ → 0, x ∈ V.

Since B is complete, therefore L(A, B) the space of all bounded linear maps from A

into B, is complete. So, there are functions f, g such that supa∈A ‖fn(a) − f(a)‖ → 0
and supx∈V ‖Dfn(x) − g(x)‖ → 0. Given ε > 0, we can find N ∈ N such that for
m > n ≥ N one has

‖Dfm − Dfn‖∞ = sup
x∈V

‖Dfm(x) − Dfn(x)‖ <
ε

3
,

‖g − Dfn‖∞ = sup
x∈V

‖g(x) − Dfn(x)‖ <
ε

3
.(3.1)

We may suppose that there exist a ∈ A such that p + a ∈ V . Using Lipschitzian
functions fm − fn, we obtain that

‖fm(p + a) − fm(p) − (fn(p + a) − fn(p))‖
≤ sup

0<θ<1

‖Dfm(p + θa) − Dfn(p + θa)‖‖a‖ ≤ ε

3
‖a‖.
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Passing to the limit on m, we get

‖f(p + a) − f(p) − (fn(p + a) − fn(p))‖ ≤ ε

3
‖a‖.(3.2)

Utilizing differentiability fN and (3.1), we have

‖fN(p + a) − fN(p) − g(p)(a)‖ ≤‖fN(p + a) − fN(p) − DfN(p)(a)‖
+ ‖DfN(p)(a) − g(p)(a)‖ ≤ ε

3
‖a‖ +

ε

3
‖a‖.(3.3)

From (3.2) and (3.3), we obtain

‖f(p + a) − f(p) − g(p)(a)‖ ≤ ε‖a‖.

Therefore, Dp(A, B) is a Banach ∗-algebra. �
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THE ∂-CAUCHY PROBLEM ON WEAKLY q-CONVEX DOMAINS

IN CP n

SAYED SABER1,2

Abstract. Let D be a weakly q-convex domain in the complex projective space
CP n. In this paper, the (weighted) ∂-Cauchy problem with support conditions in
D is studied. Specifically, the modified weight function method is used to study the
L2 existence theorem for the ∂-Neumann problem on D. The solutions are used to
study function theory on weakly q-convex domains via the ∂-Cauchy problem.

1. Introduction and Main Results

The ∂-problem is one of the important central problems of complex variables. A
classical result due to Hörmander tells us that the ∂-problem is solvable in pseu-
doconvex domains, and hence, pseudoconvex domains has been widely accepted as
the standard domain which we can solve the ∂-problem. In [16], Ho extend this
problem to weakly q-convex domains. In fact, Ho is the first person to study the
∂-problem in q-convex domains in C

n. This paper is devoted to studying the L2 ∂
Cauchy problem and the ∂-closed extension problem for forms on a weakly q-convex
domain D in the complex projective space CP n. These problems were first studied
by Kohn and Rossi [20] (see also [12]). They proved the holomorphic extension of
smooth CR functions and the ∂-closed extension of smooth forms from the boundary
bD of a strongly pseudoconvex domain to the whole domain D. The L2 theory of
these problems has been obtained for pseudoconvex domains in C

n or, more generally,
for domains in complex manifolds with strongly plurisubharmonic weight functions
(see Chapter 9 in [6] and the references therein). The L2 ∂ Cauchy problem was
considered by Derridj [8, 9]. In [30,31] Shaw has obtained a solution to this problem
on a pseudoconvex domain with C1 boundary in C

n. Also, in the setting of strictly
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q-convex (or q-concave) domains, this problem has been studied by Sambou in his
thesis (see [29]). In [1], Abdelkader-Saber studied this problem on pseudoconvex
manifolds satisfing property B. In [26, 27], Saber studied this problem on a weakly
q-convex domain with C1-smooth boundary and on a q-pseudoconvex domain D in
C

n, 1 6 q 6 n, with Lipschitz boundary. Recently, Saber [28] studied this result
to a q-pseudoconvex domain D in a Stein manifold. On a pseudoconvex domain in
CP n, Cao-Shaw-Wang [4] (cf. also [5]) obtained the L2 existence theorem for the
∂-Neumann operator N and obtained the (weighted) L2 ∂ Cauchy-problem on such
domains. The aim of this paper is to extend this result to the situation in which the
boundaries are assumed weakly q-convex domain D in CP n. Moreover, the solutions
are used to study function theory on such domains via the ∂-Cauchy problem.

2. Notation and Preliminaries

Let (x0, x1, . . . , xn) be a (fixed) homogeneous coordinates of CP n. If U0 is the
open set in CP n defined by x0 6= 0 and if (z1, z2, . . . , zn), where zi = xi/x0, is the
homogeneous coordinates of U0, we assume that

ω =

∑n
i=1 | dzi|2

1 +
∑n

i=1 |zi|2
− | ∑n

i=1 zi dzi|2
(1 +

∑n
i=1 |zi|2)2

on U0.

The Fubini-Study metric of CP n determined by (x0, x1, . . . , xn). This is well-known
standard Kähler metric of CP n.

Let D be a bounded domain in CP n and let C∞
p,q(D) be the space of complex-valued

differential forms of class C∞ and of type (p, q) on D. Denote by L2(D) the space
of square integrable functions on D with respect to the Lebesgue measure in CP n,
L2

p,q(D) the space of (p, q)-forms with coefficients in L2(D) and L2
p,q(D, φ) the space

of (p, q)-forms with coefficients in L2( D) with respect to the weighted function e−φ.
For u, v ∈ L2

p,q(D), the inner product 〈u, v〉 and the norm ‖ u ‖ are denoted by:

〈u, v〉 =
∫

D
u ∧ ⋆ v and ‖ u ‖2= 〈u, u〉,

where ⋆ is the Hodge star operator. Let dist(z, bD) be the Fubini distance from z ∈ D
to the boundary bD and let δ be a C2 defining function for D normalized by |dδ| = 1
on bD such that

δ = δ(z) =







− dist(z, bD), if z ∈ D,

dist(z, bD), if z ∈ CP n\D.

Let φt = −t log |δ|, t > 0, for u, v ∈ L2
p,q(D, φt), the inner product 〈u, v〉φt

and the
norm ‖ u ‖φt

are denoted by:

〈u, v〉φt
= 〈u, v〉t =

∫

D
u ∧ ⋆(t) v,

‖u‖2
φt

=‖ u ‖2
t = 〈u, u〉t,



THE ∂-CAUCHY PROBLEM ON WEAKLY q-CONVEX DOMAINS IN CP n
583

where ⋆(t) = δt⋆ = ⋆ δt. Since φt is bounded on D, the two norms ‖ · ‖ and ‖ · ‖t are

equivalent. Let ∂ : dom ∂ ⊂ L2
p,q(D, φt) → L2

p,q+1(D, φt) be the maximal closure of the

Cauchy-Riemann operator and ∂
∗

φ be its Hilbert space adjoint. Let �t = ∂ ∂
∗

t + ∂
∗

t ∂

be the Laplace-Beltrami operator, where ∂
∗

t = ∂
∗

φt
.

Denote by ∇ the Levi-Civita connection of CP n with the standard Fubini-Study
metric ω. Let {ei} be an orthonormal basis of vector fields. For any two vector fields
f, g, the curvature operator of the connection ∇ is denoted by

R(f, g) = ∇f∇g − ∇g∇f − ∇[f,g].

By setting Rijkl = ω(R(ei, ej)ek, el), the Ricci tensor Rij is denoted by

Rij =
∑

k

εkRikkj,

which turns out to be self-adjoint with respect to ω and the scalar curvature

(2.1) Θ =
∑

i

Rii =
∑

i,j

εiεjRjiij

as the trace of the Ricci tensor.

Definition 2.1. Let D be an open set in an n-dimensional complex manifold X,
let k be an integer with 1 ≤ k ≤ n − 1 and put E = X\D. The set D is said
to be pseudoconvex of order k in X if, for every b ∈ E and for every coordinate
neighborhood (U, (z1, . . . , zn)) which contains b as the origin, the set







(z1, . . . , zn) ∈ U : zi = 0, 1 ≤ i ≤ k, 0 <
n

∑

i=k+1

|zi|2 < t







contains no points of E for some t > 0, then there exists ℓ > 0 such that for each
(z′

1, . . . , z′
k) with |z′

i| < ℓ, 1 ≤ i ≤ k, the set






(z1, . . . , zn) ∈ U : zi = z′
i, 1 ≤ i ≤ k,

n
∑

i=k+1

|zi|2 < t







contains at least one point of E.

Definition 2.2. Let D be an n-dimensional complex manifold and let q be an integer,
1 ≤ q ≤ n. By Fujita ([13], Proposition 8) a C2 function φ : D → R is pseudoconvex
of order n − q, if and only if its Levi form ∂∂φ has at least n − q + 1 non negative
eigenvalues at each point of D.

Definition 2.3. Let D be an open subset of an n-dimensional complex manifold X.
D is said to have C2 boundary in X if for all z ∈ bD there exist an open neighborhood
U of z and a C2 function δ : U → R, called a defining function of D at z such that
dδ(z) 6= 0 and D ∩ U = {z ∈ U : δ(z) < 0}. Following Ho [16], D is said to be a
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weakly q-convex (q > 1) if at every point x0 ∈ bD we have
′

∑

|K|

∑

j, k

∂2δ

∂zj∂zk

ujK ukK > 0, for every (0, q)-form,

where

u =
∑

|J |=q

uJ dzJ such that
n

∑

j=1

∂δ

∂zj

ujK = 0, for all |K| = q − 1.

Moreover, D is weakly q-convex if and only if for any z ∈ bD the sum of any q eigen-
values δi1

, . . . , δiq
, with distinct subscripts, of the Levi-form at z satisfies

∑q
j=1 δij

> 0
(cf. [15] and Lemma 4.7 in [34]).

Definition 2.4. Let D be a smooth domain in C
n, D is said to be a weakly q-concave

if D
c

is weakly q-convex.

Lemma 2.1 ([16]). Let D be a smooth domain in C
n and ρ be its defining function.

The following two conditions are equivalent.

(1) D is weakly q-convex.

(2) For any z ∈ bD the sum of any q eigenvalues ρi1
, . . . , ρiq

, with distinct sub-

scripts, of the Levi-form at z satisfies
∑q

j=1 ρij
> 0.

It follows from Lemma 2.1 that D is weakly q-concave if and only if for any q
eigenvalues ρi1

, . . . , ρiq
of the Levi-form at z ∈ bD with distinct subscripts we have

∑q
j=1 ρij

6 0.

Example 2.1. Let D be an open subset of an n-dimensional complex manifold X and
suppose that the boundary bD is a real hypersurface of class C2 in X, that is, there
exist, for each z ∈ bD, a neighborhood U of z and a C2 function ρ : U → R such that
dρ(z) 6= 0 and D ∩ U = {z ∈ U : ρ(z) < 0}. Then D is pseudoconvex of order n − q
in X, if and only if the Levi form ∂∂ρ has at least n − q non-negative eigenvalues
on T ′

z(bD) for each defining function ρ of D near z, where T ′
z(bD)(⊂ Tz(bD)) is the

holomorphic tangent space of the real hypersurface bD at z (cf. [10, 35] called such a
subset D a (q − 1)-pseudoconvex open subset with C2 boundary).

Theorem 2.1 ([23]). Let D ⋐ CP n be a pseudoconvex domain of order n − q, 1 ≤
q ≤ n. Let d(z, bD) be the Fubini distance from z ∈ D to the boundary bD. Then the

function − log d(z, bD) is (q − 1)-pluirsubharmonic in D.

Lemma 2.2 ([17], Lemma 2.6). Let φ be a real valued function of class C2 defined in

an n-dimensional complex manifold D. Then φ is (q−1)-plurisubharmonic, 1 ≤ q ≤ n,

in D if and only if φ is weakly q-convex in D.

Remark 2.1. Pseudoconvex open sets in the original sense are pseudoconvex of or-
der n − 1.

Remark 2.2. The pseudoconvexity of order n − q of an open subset D in X is a local
property of the boundary bD ⊂ X of D. More precisely, D is pseudoconvex of order
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n − q in X if, for each p ∈ bD, there exists a neighborhood U ⊂ X of p such that
D ∩ U is pseudoconvex of order n − q in U .

Remark 2.3. If an open set D in an n-dimensional complex manifold X is weakly
q-convex, 1 ≤ q ≤ n, then D is pseudoconvex of order n − q in X. However, the
converse is not valid even if X = C

n (see [10] and [22]). By Fujita [13], an open subset
D of Cn is pseudoconvex of order n − q in C

n, if and only if D has an exhaustion
function which is pseudoconvex of order n − q on D. Thus, by the approximation
theorem of Bungart [3], an open subset D of X is pseudoconvex of order n − q in X,
if and only if D is locally q-complete with corners in X in the sense of Peternell [24].

Proposition 2.1 (Bochner-Hörmander-Kohn-Morrey formula). Let D be a compact

domain with C2-smooth boundary bD and δ(x) = −d(x, bD). Suppose that Θ is the

curvature term defined in (2.1) with respect to the Fubini-Study metric ω. Then, for

any u ∈ C∞
p,q(D) ∩ dom∂

∗

φ with 1 6 q 6 n − 1, and φ ∈ C2(D), we have

∂u‖2
φ + ‖ ∂

∗

φu‖2
φ =〈Θu, u〉φ +

∥

∥

∥

∥

∥

∂uIJ

∂zk

∥

∥

∥

∥

∥

2

φ

+ 〈(i∂∂φ)u, u〉φ(2.2)

+
∫

bD
((i∂∂δ)u, u) e−φds.

This formula is known (cf. [2, 7, 15, 18, 19,32, 36]) for some special cases, although it

has not been stated in the literature in the form (2.2). If u has compact support in

the interior of D, the (2.2) was proved in [2], Chapter 8 of [7] and (2.12) of [36]. The

boundary term had been computed in [14], Chapter 3 by combining the Morrey-Kohn

technique on the boundary with non-trivial weight function. If one combines the results

of [15] and [37] with the interior formulae discussed above, one can prove that (2.2)
holds for the general case with a weight function e−φ and the curvature term. Specially,

for φ = 0, (2.2) was proved in [32].

Proposition 2.2. For any (p, q)-form u of D ⋐ CP n with q > 1,

(Θu, u) = q(2n + 1)|u|2, when u is a (0, q)-form,

(Θu, u) = 0, for any (n, q)-form u,

(Θu, u) ≥ 0, when p ≥ 1 and u is a (p, q)-form.

The statement for (0, q)-forms and (n, q)-forms was computed in [32] and [36]. Also,

following Lemma 3.3 of Henkin-Iordan [14] and its proof showed that the curvature

operator Θ acting on L2
p,q(D) is a non-negative operator.

3. The ∂-Cauchy Problem on Weakly q-Convex Domains

This section is devoted to showing the existence of the ∂-Neumann operator on a
weakly q-convex domain D in CP n, 1 6 q 6 n, and by applying these existence to
solve the ∂ problem with support conditions on D. The boundary integral in (2.2) is
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non-negative for q > 1 by the assumption on D. Also, by taking φ ≡ 0 in (2.2) and
using Proposition 2.2, we find the fundamental estimate

‖u‖2
6 c

(

‖∂u‖2 + ‖∂
∗
u‖2

)

.

This means that � has closed range and ker� = {0}. Thus, one can establish the
L2-existence theorem of the ∂-Neumann operator N .

Theorem 3.1. Let D ⋐ CP n be a weakly q-convex domain with C2 smooth boundary.

Then, for each 0 6 p 6 n, 1 6 q 6 n, there exists a bounded linear operator

N : L2
p,q(D) → L2

p,q(D) with the following properties:

(i) RangeN ⊂ dom�, �N = N � = Id on dom�;

(ii) for f ∈ L2
p,q(D),

f = ∂ ∂
∗
Nf ⊕ ∂

∗
∂Nf ;

(iii) N ∂ = ∂ N on dom∂, 1 6 q 6 n − 1;

(iv) ∂
∗
N = N ∂

∗
on dom∂

∗
, 2 6 q 6 n;

(v) N , ∂N and ∂
∗
N are bounded linear operators on L2

p,q(D).

Using the duality relations pertaining to the ∂-Neumann problem, one solve the L2

∂ Cauchy problem on weakly q-convex domains in CP n, 1 6 q 6 n. This method was
first used by Kohn-Rossi [20] for smooth forms on strongly pseudoconvex domains.
More precisely, we prove the following L2 Cauchy problem for ∂ in CP n:

Theorem 3.2. Let D ⋐ CP n be a weakly q-convex domain, 1 6 q 6 n with C2

smooth boundary. Then, for f ∈ L2
p,q(CP n), supp f ⊂ D, 1 6 q 6 n − 1, satisfying

∂f = 0 in the distribution sense in CP n, there exists u ∈ L2
p,q−1(CP n), supp u ⊂ D

such that ∂u = f in the distribution sense in CP n.

Proof. Let f ∈ L2
p,q(CP n), supp f ⊂ D, then f ∈ L2

p,q(D). From Theorem 3.1,

Nn−p,n−q exists for n − q > 1. Since Nn−p,n−q = �−1
n−p,n−q on Range�n−p,n−q and

Range Nn−p,n−q ⊂ dom�n−p,n−q, then Nn−p,n−q ⋆ f ∈ dom�n−p,n−q ⊂ L2
n−p,n−q(D),

for q 6 n − 1. Thus, we can define u ∈ L2
p,q−1(D) by

u = − ⋆ ∂ Nn−p,n−q ⋆ f.

Thus supp u ⊂ D and u vanishes on bD. Now, we extend u to CP n by defining u = 0
in CP n \ D. It follows from the same arguments of Theorem 9.1.2 in [6] and Theorem
2.2 in [1] that the form u satisfies the equation ∂u = f in the distribution sense in
CP n. Thus the proof follows. �

4. The Weighted ∂-Cauchy Problem

In this section, we assume that D is a weakly q-convex domain, 1 6 q 6 n, with
C2 smooth boundary in CP n. Also, we will choose φt = −t log |δ|, t > 0 in (2.2),
and using Remark 2.3 and by using Proposition 2.2, the inequality (2.2) implies the
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weighted L2-existence for the ∂. Also, for u ∈ Dom(�t) of degree q > 1 and for t > 0,
we have

t‖u‖2
t 6 (‖∂u‖2

t + ‖∂
∗

t u‖2
t )

= 〈�tu, u〉t

6 ‖�tf‖t‖u‖t,

i.e.,

t‖u‖t 6 ‖�tu‖t.

Since �t is a linear closed densely defined operator, then, from [15, Theorem 1.1.1],
Range(�t) is closed. Thus, from (1.1.1) in [15] and the fact that �t is self adjoint, we
have the Hodge decomposition

L2
p,q(D, φt) = ∂ ∂

∗

t dom(�t) ⊕ ∂
∗

t ∂ dom(�t).

Since �t is one to one on dom(�t) from (1.5.3) in [15], then there exists a unique
bounded inverse operator

Nt : Ran(�t) → dom(�t) ∩ (ker(�t))
⊥

such that Nt�tf = f on dom(�t). Therefore, we can establish the existence theorem
of the inverse of �t the so called weighted ∂-Neumann operator Nt.

Theorem 4.1. For any 1 6 q 6 n and t > 0, there exists a bounded linear operator

Nt : L2
p,q(D, φt) → L2

p,q(D, φt) satisfies the following properties:

(i) Range (Nt) ⊂ dom(�t), Nt�t = I on dom(�t);
(ii) for f ∈ L2

p,q(D, φt), we have u = ∂ ∂
∗

t Ntf ⊕ ∂
∗

t ∂Ntf ;

(iii) ∂Nt = Nt∂, 1 6 q 6 n − 1;

(iv) ∂
∗
Nt = Nt ∂

∗
, 2 6 q 6 n;

(v) for all f ∈ L2
p,q(D, φt), we have the estimates

t‖Ntf‖t 6‖f‖t,√
t‖∂Ntf‖t +

√
t‖∂

∗

t Ntf‖t 6‖f‖t;

(vi) if ∂f = 0, then ut = ∂
∗

t Ntf solves the equation ∂ut = f .

Theorem 4.2. For f ∈ L2
p,q(D, φt), 1 6 q 6 n − 1, supp f ⊂ D, satisfying ∂f = 0 in

the distribution sense in CP n, there exists u ∈ L2
p,q−1(D, φt), supp u ⊂ D such that

∂u = f in the distribution sense in CP n.

Proof. Following Theorem 4.1, Nt exists for forms in L2
n−p,n−q(D, φt). Thus, one can

defines ut ∈ L2
p,q−1(D, φt) by

(4.1) u(t) = − ⋆(t) ∂ Nn−p,n−q ⋆(−t) f.

Thus supp ut ⊂ D and ut vanishes on bD. Now, we extend ut to CP n by defining
ut = 0 in CP n \ D. We want to prove that the extended form ut satisfies the equation
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∂ut = f in the distribution sense in CP n. For η ∈ L2
n−p,n−q−1(D, −φt) ∩ dom ∂, we

have

〈∂ η, ⋆(t) f〉D =
∫

D
∂ η ∧ ⋆(−t)(⋆(t) f)

=
∫

D
∂ η ∧ ⋆(−t) ⋆(t) f

= (−1)p+q

∫

D
∂ η ∧ f

= (−1)p+q〈f, ⋆(−t)∂ η〉D

= (−1)p+q〈f, ⋆(−t)∂ η〉CP n ,

because supp f ⊂ D. Since ϑ|D = ∂
∗|D, when ϑ acts in the distribution sense (see

[15]), then we obtain
〈∂η, ⋆(t) f〉D = 〈f, ϑ ⋆(−t) η〉CP n

= 〈∂ f, ⋆(−t)η〉CP n

= 0.

It follows that ∂
∗

t (⋆(t) f) = 0 on D. Using Theorem 4.1 (iv), we have

(4.2) ∂
∗

t Nt(⋆(t) f) = Nt∂
∗

t (⋆(t) f) = 0.

Thus, from (4.1) and (4.2), one obtains

∂ut = − ∂ ⋆−t ∂Nn−p,n−q ⋆t f

= (−1)p+q+1 ⋆ ⋆ ∂ ⋆ ∂Nn−p,n−q ⋆ f

= (−1)p+q⋆∂
∗
∂Nn−p,n−q ⋆ f

= (−1)p+q⋆ (∂
∗
∂ + ∂ ∂

∗
) Nn−p,n−q ⋆ f

= (−1)p+q⋆ ⋆ f

= f,

in the distribution sense in D. Since u = 0 in CP n\D, then for u ∈ L2
p,q(CP n)∩dom ∂

∗
,

one obtains
< u, ∂

∗
u >CP n =< u, ∂

∗
u >D

=< ⋆∂
∗
u, ⋆(−t)u >(t)D

= (−1)p+q < ∂ ⋆ u, ⋆(−t)u >(t)D

= (−1)p+q < ⋆u, ∂
∗

⋆(−t) u >(t)D

=< ⋆u, ⋆(−t)∂u >(t)D

=< f, u >D

=< f, u >CP n ,

where the third equality holds since ⋆u = (−1)q+1 ∂Nn−p,n−q ⋆ f ∈ dom ∂
∗
. Thus

∂ut = f in the distribution sense in CP n. �
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As in [5], we prove the following results.

Proposition 4.1. Let D be the same as in Theorem 3.1. Put Ω = CP n\D. Then,

for any f ∈ W 1+ε
p,q (Ω), ∂f = 0, 0 ≤ ε < 1

2
, there exists F ∈ W ε

p,q(CP n) such that

F |Ω = f and ∂F = 0 in CP n.

Proof. Since D has C2 smooth boundary, there exists a bounded extension operator
from W s

p,q(Ω) to W s
p,q(CP n) for all s > 0 (cf. e.g. [33]). Let f̃ ∈ W 1+ε

p,q (CP n) be the

extension of f so that f̃ |Ω = f with

‖f̃‖W 1+ε(CP n) 6 C‖f‖W 1+ε(Ω).

Furthermore, we can choose an extension such that ∂f̃ ∈ W ε(D) ∩ L2(D, φ2ε).
One defines T f̃ by T f̃ = − ⋆2ε ∂N2ε(⋆−2ε∂f̃) in Ω. As in Theorem 4.2, T f̃ ∈

L2(D, φ2ε). But for a C2-smooth domain, we have that T f̃ ∈ L2(D, φ2ε) is comparable
to W ε(Ω) for 0 6 ε < 1

2
. This gives that T f̃ ∈ W ε

p,q(Ω) and T f̃ satisfies ∂T f̃ = ∂f̃ in

CP n in the distribution sense if we extend T f̃ to be zero outside Ω.
Since 0 6 ε < 1

2
, the extension by 0 outside Ω is a continuous operator from W ε(Ω)

to W ε(CP n) (cf. e.g. [21]). Thus we have T f̃ ∈ W ε(CP n).
Define

F =







f, if z ∈ D,

f̃ − T f̃ , if z ∈ Ω.

Then F ∈ W ε
p,q(CP n) and F is ∂-closed extension of f to CP n. �

Corollary 4.1. Let D ⋐ CP n be a weakly q-concave domain, n > 2 with C2 smooth

boundary. Then W 1+ε
p,0 (D) ∩ ker ∂ = {0}, 1 ≤ p ≤ n and W 1+ε

0,0 (D) ∩ ker ∂ = C.

Proof. Using Proposition 4.1 for q = 0, we have that any holomorphic (p, 0)-form
on D extends to be a holomorphic (p, 0) in CP n, which are zero (when p > 0) or
constants (when p = 0). �

Corollary 4.2. Let D ⋐ CP n be a weakly q-concave domain, n > 2 with C2 smooth

boundary. Then, for any f ∈ W 1+ε
p,q (D), where 0 ≤ p ≤ n, 1 6 q 6 n − 2, p 6= q, and

0 6 ε < 1
2
, such that ∂f = 0 in D, there exists u ∈ W 1+ε

p,q−1(D) such that ∂u = f in D.

Proof. If p 6= q, we have that F = ∂u for some U ∈ W 1
p,q−1(CP n). Let u = U on D,

we have u ∈ W 1
p,q−1(D) satisfying ∂u = f in D. �
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JOHNSON PSEUDO-CONTRACTIBILITY AND

PSEUDO-AMENABILITY OF θ-LAU PRODUCT

M. ASKARI-SAYAH1, A. POURABBAS1, AND A. SAHAMI2

Abstract. Given Banach algebras A and B and θ ∈ ∆(B). We shall study the
Johnson pseudo-contractibility and pseudo-amenability of the θ-Lau product A×θ B.
We show that if A ×θ B is Johnson pseudo-contractible, then both A and B are
Johnson pseudo-contractible and A has a bounded approximate identity. In some
particular cases, a complete characterization of Johnson pseudo-contractibility of
A ×θ B is given. Also, we show that pseudo-amenability of A ×θ B implies the
approximate amenability of A and pseudo-amenability of B.

1. Introduction

Let A and B be two Banach algebras and θ ∈ ∆(B), where ∆(B) is the character
space of B. Then the Banach space A×B with the product

(a, b)(c, d) = (ac+ θ(d)a+ θ(b)c, bd), a, c ∈ A, b, d ∈ B,

and ℓ1-norm becomes a Banach algebra, which is called the θ-Lau product of A and B
which is denoted by A×θ B. The θ-Lau product was first introduce by A. T. Lau [14]
for F -algebras. Recently, this product was extended to general Banach algebras by
M. Monfared [15] for every Banach algebras A and B and every character θ ∈ ∆(B).
One may regard A (B) as a closed two sided ideal (Banach subalgebra) of A ×θ B
by identifying it with A × {0} ({0} × B), respectively. Therefore, if there is no
ambiguity, we may simply write a (b) instead of (a, 0) ((0, b)) for every a ∈ A (b ∈ B),
respectively. Monfared studied several properties of A×θ B including semisimpility,
Arens regularity, existence of approximate identity and amenability. We recall that the
concept of an amenable Banach algebra was introduced by Johnson in 1972. Indeed,
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a Banach algebra A is called amenable if there is an element M ∈ (A ⊗p A)∗∗ such
that a · M = M · a and π∗∗

A (M)a = a for every a ∈ A, where π : A ⊗p A → A is
the product morphism and A⊗p A is the projective tensor product of A. Motivated
by this construction of Johnson, some authors introduce several modifications of this
notion by relaxing some conditions in different versions of definitions of amenability.
The notion of pseudo-amenability was introduced by F. Ghahramani and Y. Zhang
[13]. A Banach algebra A is called pseudo-amenable if there is a net (mα) ⊆ A⊗p A
such that a · mα − mα · a → 0 and πA(mα)a → a for every a ∈ A. The concept of
approximately amenable Banach algebras was introduced by F. Ghahramani and R.
J. Loy in [11], see also [12]. A Banach algebra A is called approximately amenable if
there are nets (Mα) ⊆ A⊗p A, (Fα) ⊆ A and (Gα) ⊆ A such that for every a ∈ A

(i) a ·Mα −Mα · a+ Fα ⊗ a− a⊗Gα → 0;
(ii) aFα → a, Gαa → a and
(iii) πA(Mα)a− Fαa−Gαa → 0.

Recently the second and third authors [19] have defined a new concept related to
amenability called Johnson pseudo-contractibility. Indeed, a Banach algebra A is
called Johnson pseudo-contractible if there is a not necessarily bounded net (Mα) ⊆
(A⊗p A)∗∗ such that a ·Mα = Mα · a and π∗∗

A (Mα)a− a → 0 for every a ∈ A.
In the Section 2 we deal with Johnson pseudo-contractible Banach algebras. We

show that if A ×θ B is Johnson pseudo-contractible, then A is Johnson pseudo-
contractible and has a bounded approximate identity and B is Johnson pseudo-
contractible. Moreover, we show that in particular cases, for example when A is
Arens regular and weakly sequentially complete or when A is a dual Banach algebra,
Johnson pseudo-contractibility of A ×θ B is equivalent with amenability of A and
Johnson pseudo-contractibility of B. Some example are given at the end of the section.

In the Section 3 we focus on pseudo-amenability of A×θ B. Pseudo-amenability of
A×θ B was studied by E. Ghaderi et al. [10]. They showed that pseudo-amenability
of A ×θ B implies pseudo-amenability of B, and implies pseudo-amenability of A
whenever A has a bounded approximate identity. We show that the existence of
bounded approximate identity in this result is not a necessary condition. Indeed, we
show that if A×θ B is pseudo-amenable, then A is approximately amenable and B is
pseudo-amenable.

2. Johnson Pseudo-Contractibility of A×θ B

We state a result from [2] that will be used frequently in this section.

Theorem 2.1. Let A be a Johnson pseudo-contractible Banach algebra with an iden-

tity. Then A is amenable.

Lemma 2.1. Let A be a Johnson pseudo-contractible Banach algebra and let I be a

two sided closed ideal of A. If I has a bounded approximate identity, then I is Johnson

pseudo-contractible.
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Proof. By hypothesis there is a net (Mα) ⊆ (A ⊗p A)∗∗ such that a · Mα = Mα · a
and π∗∗

A (Mα)a− a → 0 for every a ∈ A. Let (eβ) be a bounded approximate identity
for I and let E be a weak* cluster point of (eβ) in I∗∗. Then by setting (Nα) =
(E ·Mα · E) ⊆ (I ⊗p I)∗∗, we have

x ·Nα = Nα · x,

and
π∗∗

I (Nα)x = π∗∗

A (E ·Mα · E)x = π∗∗

A (Mα)x → x,

for every x ∈ I. It follows that I is Johnson pseudo-contractible. �

Theorem 2.2. Let A and B be two Banach algebras and θ ∈ ∆(B). If A ×θ B is

Johnson pseudo-contractible, then the following statements hold.

(a) A is Johnson pseudo-contractible and has a bounded approximate identity.

(b) B is Johnson pseudo-contractible.

Proof. Suppose that Φ : (A×θB)⊗p (A×θB) → A×θB is the linear map determined
by

Φ((a, b) ⊗ (c, d)) = θ(d)(a, b), a, c ∈ A, b, d ∈ B.

Let (Uα) ⊆ ((A×θ B) ⊗p (A×θ B))∗∗ be such that

(a, b) · Uα = Uα · (a, b), π∗∗

A×θB(Uα)(a, b) → (a, b),

for every a ∈ A and b ∈ B. Then by Goldstine’s theorem for every α there exists
a net (uαβ

) in (A ×θ B) ⊗p (A ×θ B) such that w∗ − lim
β
uαβ

= Uα. Suppose that

uαβ
=

∞
∑

i=1
(a

αβ

i , b
αβ

i ) ⊗ (c
αβ

i , d
αβ

i ) for sequences (a
αβ

i ), (c
αβ

i ) ⊆ A and (b
αβ

i ), (d
αβ

i ) ⊆ B,

where
∞
∑

i=1
||(a

αβ

i , b
αβ

i )‖ · ||(c
αβ

i , d
αβ

i )|| < ∞. Note that θ has an extension θ̃ ∈ ∆(B∗∗)

given by θ̃(F ) = F (θ) for every F ∈ B∗∗. Since Φ and θ are bounded, Φ∗∗ and θ̃ are
weak* continuous maps. Now we have

〈(0, θ̃),Φ∗∗(Uα)〉 = w∗ − lim
β

〈(0, θ),Φ(uαβ
)〉

= w∗ − lim
β

∞
∑

i=1

θ(b
αβ

i )θ(b
αβ

i )

= w∗ − lim
β

〈(0, θ), πA×θB(uαβ
)〉

= 〈(0, θ̃), π∗∗

A×θB(Uα)〉 → 1.

Set Φ∗∗(Uα) = (φα, ψα), where φα ∈ A∗∗ and ψα ∈ B∗∗. We can see that θ̃(ψα) → 1.
Take α0 such that θ̃(ψα0

) 6= 0, for every a ∈ A we have

aΦ∗∗(Uα0
) = Φ∗∗(a · Uα0

) = Φ∗∗(Uα0
· a) = 0.

Also, we have

aΦ∗∗(Uα0
) = (a, 0)(φα0

, ψα0
) = (aφα0

+ θ̃(ψα0
)a, 0).
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Therefore aφα0
+ θ̃(ψα0

)a = 0, so a(−θ̃(ψα0
)−1φα0

) = a, where −θ̃(ψα0
)−1φα0

∈ A∗∗.
This shows that A has a bounded right approximate identity. A similar argument
shows that A has a bounded left approximate identity. It follows that A has a bounded
approximate identity. Since A is a two sided closed ideal of (A×θB) and has a bounded
approximate identity, by Lemma 2.1 it is Johnson pseudo-contractible.

It is well known that (A ×θ B)/A ∼= B and there is a surjective homomorphism
from A ×θ B onto (A ×θ B)/A. So, [19, Proposition 2.9] implies Johnson pseudo-
contractibility of B. �

We remark that the converse of the previous theorem does not hold in general. For
example, A(H), the Fourier algebra on the integer Heisenberg group H, is Johnson
pseudo-contractible and has a bounded approximate identity and M(H), the measure
algebra over H, is Johnson pseudo-contractible (H is discrete and amenable). But
A(H) ×θ M(H) is not Johnson pseudo-contractible for every θ ∈ ∆(M(H)). Indeed,
A(H) ×θ M(H) has an identity [15, Proposition 2.3]. If A(H) ×θ M(H) is Johnson
pseudo-contractible, then, by Theorem 2.1, A(H) ×θ M(H) is amenable and [15, page
285] implies the amenability of A(H). It gives a contradiction that H has an abelian
subgroup of finite index, see [9, Theorem 2.3].

From [15, page 285] and Theorem 2.1, we have the following corollary.

Corollary 2.1. If B has an identity, then the following statements are equivalent:

(a) A×θ B is Johnson pseudo-contractible;

(b) A×θ B is amenable;

(c) A and B are amenable.

Corollary 2.2. If A has an identity, then A×θ B is Johnson pseudo-contractible if

and only if A is amenable and B is Johnson pseudo-contractible.

Proof. In view of [3] A×θB is nothing but the ℓ1-direct sum A⊕B with coordinatewise
product whenever A has an identity. If A is amenable and B is Johnson pseudo-
contractible, then A⊕B is Johnson pseudo-contractible by [19, Theorem 2.11]. The
converse comes immediately from Theorem 2.2 and Theorem 2.1. �

A Banach algebra A is called dual if it is a dual space such that multiplication in
A is separately w∗-continuous. It is well known that a dual Banach algebra with a
bounded approximate identity has an identity [18, Proposition 1.2], so we have the
following corollary from Theorem 2.2 and Corollary 2.2.

Corollary 2.3. Let B be a Banach algebra and let A be a dual Banach algebra and

θ ∈ ∆(B). Then A×θ B is Johnson pseudo-contractible if and only if A is amenable

and B is Johnson pseudo-contractible.

A Banach algebra A is called Arens regular if the first and the second Arens products
on A∗∗ coincide. Also, a Banach algebra A is called weakly sequentially complete if
every weakly Cauchy sequence in A is weakly convergent.
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Proposition 2.1. Suppose that A and B are two Banach algebras and θ ∈ ∆(B). If

A is Arens regular and weakly sequentially complete, then A×θ B is Johnson pseudo-

contractible if and only if

(a) A is amenable and has an identity;

(b) B is Johnson pseudo-contractible.

Proof. If A ×θ B is Johnson pseudo-contractible, then, by Theorem 2.1, A has a
bounded approximate identity. Using Ülger theorem [4, Theorem 2.9.39], A has an
identity. Now apply Corollary 2.2. �

It seems that Johnson pseudo-contractibility of A×θ B is related with amenability
of A. We believe that Corollary 2.2 holds without the assumption that A has an
identity. However, it remains as a conjecture. We left it as an open problem in the
following questions.

Question 1. Does Johnson pseudo-contractibility of A ×θ B implies the amenability
of A?

Question 2. Suppose that A is an amenable Banach algebra and B is a Johnson pseudo-
contractible Banach algebra and θ ∈ ∆(B). Is A×θ B a Johnson pseudo-contractible
Banach algebra?

We finish this section with some examples. First we recall some concepts and
notations from semigroup theory. A semigroup S is called regular if for every s ∈ S
there exists an element t ∈ S such that sts = s and tst = t. A semigroup S is an
inverse semigroup if for every s ∈ S there exists a unique element t ∈ S such that
sts = s and tst = t. The set of idempotents of a semigroup S is denoted by E(S),
which is a partially ordered set with the following order

p ≤ q ⇔ p = pq = qp, p, q ∈ E(S).

For p ∈ E(S), we set (p] = {x : x ≤ p}. An inverse semigroup S is called uniformly
locally finite if sup{|(p]| : p ∈ E(S)} < ∞. It is well known that the discrete semigroup
algebra ℓ1(S) is weakly sequentially complete [4, Theorem A.4.4]. Our main reference
for semigroup theory is [5].

Example 2.1. Suppose that B is a Banach algebra and θ ∈ ∆(B).

(i) Let S be a uniformly locally finite inverse semigroup. Then Johnson pseudo-
contractibility of ℓ1(S) ×θ B implies that ℓ1(S) is Johnson pseudo-contractible
and has a bounded approximate identity. From [16, Proposition 2.1] E(S)
must be finite and from [20, Theorem 2.3] every maximal subgroup of S is
amenable, in other word ℓ1(S) is amenable, see [7].

(ii) Suppose that S is regular and ℓ1(S) is Arens regular. If ℓ1(S) ×θ B is Johnson
pseudo-contractible, then, by Proposition 2.1, ℓ1(S) is amenable and has an
identity. So, by [7], E(S) is finite. Now [5, Theorem 12.2] implies that S is a
unital finite semigroup. Indeed, ℓ1(S) ×θ B is Johnson pseudo-contractible if
and only if S is a unital finite semigroup and B is Johnson pseudo-contractible.
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Example 2.2. Using [8, Theorem 3.1] one can see that MI(C) (the Banach algebra of
I × I-matrices over C, with finite ℓ1-norm and matrix multiplication) has no bounded
approximate identity unless I is finite, but in this case MI(C) is amenable and has
an identity. So, for Banach algebra B and θ ∈ ∆(B), MI(C) ×θ B is Johnson pseudo-
contractible if and only if I is finite and B is Johnson pseudo-contractible.

A linear subspace S1(G) of L1(G) is said to be a Segal algebra on G if it satisfies
the following conditions:

(i) S1(G) is dense in L1(G);
(ii) S1(G) with a norm ‖·‖S1(G) is a Banach space and ‖f‖L1(G) ≤ ‖f‖S1(G) for

every f ∈ S1(G);
(iii) S1(G) is left translation invariant (that is, Lyf ∈ S1(G) for every f ∈ S1(G)

and y ∈ G) and the map y 7→ Ly(f) from G into S1(G) is continuous, where
Ly(f)(x) = f(y−1x);

(iv) ‖Ly(f)‖
S1(G) = ‖f‖S1(G), for every f ∈ S1(G) and y ∈ G.

Example 2.3. Suppose that B is a Banach algebra and θ ∈ ∆(B). Let S1(G) be a Segal
algebra on G. If S1(G) ×θ B is Johnson pseudo-contractible, then S1(G) = L1(G).

3. Pseudo-Amenability of A×θ B

Remark 3.1. Note that if U ∈ (A ×θ B) ⊗p (A ×θ B), then there are M ∈ A ⊗p A,
N ∈ A⊗p B, L ∈ B ⊗p A and H ∈ B ⊗p B such that

U = M +N + L+H

and
‖U‖(A×θB)⊗p(A×θB) = ‖M‖A⊗pA + ‖N‖A⊗pB + ‖L‖B⊗pA + ‖H‖B⊗pB .

Theorem 3.1. Suppose that A and B are Banach algebras and θ ∈ ∆(B). If A×θ B
is pseudo-amenable, then

(a) A is approximate amenable and

(b) B is pseudo-amenable.

Proof. It is well known that (A×θB)/A ∼= B and there is a surjective homomorphism
from A ×θ B onto (A ×θ B)/A. So [13, Proposition 2.2] implies pseudo-amenability
of B.

By assumption there is a net (Uα) ⊆ (A×θ B) ⊗p (A×θ B) such that

(x, y) · Uα − Uα · (x, y) → 0, π(Uα)(x, y) → (x, y),

for every x ∈ A, y ∈ B. Particularly for every x ∈ A we have

(3.1) x · Uα − Uα · x → 0, π(Uα)x → x.

Suppose that Uα =
∞
∑

i=1
(aα

i , b
α
i ) ⊗ (cα

i , d
α
i ) for sequences (aα

i ), (cα
i ) ⊆ A and (bα

i ), (dα
i ) ⊆

B, where
∞
∑

i=1
||(aα

i , b
α
i )|| · ||(cα

i , d
α
i )|| < ∞. Set Mα =

∞
∑

i=1
aα

i ⊗ cα
i , Fα = −

∞
∑

i=1
θ(dα

i )aα
i ,
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Gα = −
∞
∑

i=1
θ(bα

i )cα
i and Hα =

∞
∑

i=1
bα

i ⊗ dα
i . One can easily see that

πA×θB(Uα) = (πA(Mα) − Fα −Gα, πB(Hα)).

For an arbitrary element b in B, we have

πA×θB(Uα)(0, b) = (θ(b)(πA(Mα) − Fα −Gα), πB(Hα)b) → (0, b),

so
πA(Mα) − Fα −Gα → 0, θ(πB(Hα)) → 1.

Note that

x · Uα =
∞
∑

i=1

(x, 0)(aα
i , 0) ⊗ (cα

i , 0) +
∞
∑

i=1

(x, 0)(0, bα
i ) ⊗ (cα

i , 0)

+
∞
∑

i=1

(x, 0)(aα
i , 0) ⊗ (0, dα

i ) +
∞
∑

i=1

(x, 0)(0, bα
i ) ⊗ (0, dα

i )

=x ·

(

∞
∑

i=1

(aα
i ⊗ cα

i )

)

+
∞
∑

i=1

(x⊗ θ(bα
i )cα

i ) +
∞
∑

i=1

(xaα
i ⊗ dα

i ) +
∞
∑

i=1

(θ(bα
i )x⊗ dα

i )

=x ·Mα − x⊗Gα +
∞
∑

i=1

(xaα
i ⊗ dα

i ) +
∞
∑

i=1

(θ(bα
i )x⊗ dα

i ).

(3.2)

Similarly we have

(3.3) Uα · x = Mα · x− Fα ⊗ x+
∞
∑

i=1

(bα
i ⊗ cα

i x) +
∞
∑

i=1

(bα
i ⊗ θ(dα

i )x).

From (3.2), (3.3) and (3.1), by using Remark 3.1 we obtain

(a) x ·Mα −Mα · x+ Fα ⊗ x− x⊗Gα → 0;

(b)
∞
∑

i=1
(xaα

i ⊗ dα
i ) +

∞
∑

i=1
(θ(bα

i )x⊗ dα
i ) → 0;

(c)
∞
∑

i=1
(bα

i ⊗ cα
i x) +

∞
∑

i=1
(bα

i ⊗ θ(dα
i )x) → 0.

Define a bounded linear map φ : A⊗p B → A by φ(a⊗ b) = θ(b)a. From (b) we have

−xFα + θ(πB(Hα))x =x
∞
∑

i=1

θ(dα
i )aα

i +
∞
∑

i=1

θ(bα
i d

α
i )x

=φ

(

∞
∑

i=1

(xaα
i ⊗ dα

i

)

+
∞
∑

i=1

(θ(bα
i )x⊗ dα

i )) → 0,

now θ(πB(Hα)) → 1 implies that xFα → x. Similarly, by using (c) we have Gαx → x.
So we find (Mα) ⊆ A⊗p A, (Fα) ⊆ A and (Gα) ⊆ A such that

(a) x ·Mα −Mα · x+ Fα ⊗ x− x⊗Gα → 0;
(b) xFα → x, Gαx → x;
(c) πA(Mα)x− Fαx−Gαx → 0,
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for every x ∈ A. It follows that A is approximately amenable. �

Example 3.1. Let S be a uniformly locally finite inverse semigroup and let B be a
Banach algebra and θ ∈ ∆(B). If ℓ1(S)×θB is pseudo-amenable, then by Theorem 3.1
ℓ1(S) is approximately amenable. Theorem 4.3 of [17] shows that ℓ1(S) is amenable.

Example 3.2. Let G = SU(2) be the 2 × 2 unitary group, and suppose that S1(G) 6=
L1(G) is a Segal algebra on G. In [1] Alaghmandan showed that S1(G) is not approx-
imately amenable. Thus, by Theorem 3.1, S1(G) ×θ B is not pseudo-amenable for
every Banach algebra B and θ ∈ ∆(B).

Example 3.3. Let G be an infinite abelian compact group and let B be a Banach
algebra and θ ∈ ∆(B). We claim that L2(G) ×θ B is not pseudo-amenable. To
see this, suppose that L2(G) ×θ B is pseudo-amenable. Then Theorem 3.1 implies
that L2(G) is approximately amenable. But by the Plancherel theorem L2(G) is
isometrically isomorphism to ℓ2(Ĝ), where Ĝ is the dual group of G and ℓ2(Ĝ) is
equipped with the pointwise product. So ℓ2(Ĝ) is approximately amenable which is a
contradiction with the main result of [6].

Acknowledgements. The authors are grateful to the referee for carefully reading
the paper, pointing out a number of misprints and for some helpful comments.
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NEW EXPLICIT BOUNDS ON

GRONWALL-BELLMAN-BIHARI-GAMIDOV INTEGRAL

INEQUALITIES AND THEIR WEAKLY SINGULAR ANALOGUES

WITH APPLICATIONS

M. MEKKI1, K. BOUKERRIOUA1, B. KILANI2, AND M. L. SAHARI1

Abstract. In this paper we derive some generalizations of certain Gronwall-
Bellman-Bihari-Gamidov type integral inequalities and their weakly singular ana-
logues, which provide explicit bounds on unknown functions. To show the feasibility
of the obtained inequalities, two illustrative examples are also introduced.

1. Introduction

The integral inequalities which provide explicit bounds on unknown functions have
proved to be very useful in the study of qualitative properties of the solutions of differ-
ential and integral equations. During the past few years, many such new inequalities
have been discovered, which are motivated by certain applications. For example, see
in [1–4, 7–11, 14, 15] and the references therein. In particular, Sh. G. Gamidov [6],
while studying the boundary value problem for higher order differential equations,
initiated the study of obtaining explicit upper bounds on the integral inequalities of
the forms

(1.1) u(t) ≤ c +
∫ t

a
a(s)u(s)ds +

∫ b

a
b(s)u(s)ds,

for t ∈ [a, b], under some suitable conditions on the functions involved in (1.1). In
[12], Pachpatte established more general Gamidov inequalities as follows:

u(t) ≤ a(t) +
∫ t

a
b(t, s)u(s)ds +

∫ b

a
c(s)u(s)ds.

Key words and phrases. Integral inequality, weakly Singular inequality, explicit bounds, Bihari-
Gamidov inequality.
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On the other hand, Zheng [16] also established a weakly singular version of the
Gronwall-Bellman-Gamidov inequality as follows:

u(t) ≤ c +
1

Γ(α)

∫ t

0
(t − s)α−1f(s)u(s)ds +

1

Γ(α)

∫ T

0
(T − s)α−1f(s)u(s)ds.

Recently, Kelong Cheng el al. [5] studied the following inequality:

up(t) ≤a(t) + b(t)
∫ t

0
(tα1 − sα1)β1−1sγ1−1f (s)uq(s)ds

+ c(t)
∫ T

0
(T α2 − sα2)β2−1sγ2−1n(s)ur(s)ds,

where p ≥ q ≥ 0, p ≥ r ≥ 0 and [αi, βi, γi], i = 1, 2, is the ordered parameter
group. In this paper, motivated mainly by the work of Kelong Cheng el al. [5],
we discuss more general form of nonlinear weakly singular integral inequalities of
Gronwall-Bellman-Bihari-Gamidov

up(t) ≤a(t) + b(t)
∫ t

0
(tα1 − sα1)β1−1sγ1−1f(s)uq(s)ds

+ c(t)
∫ T

0
(T α2 − sα2)β2−1sγ2−1n(s) m1

√

g(ur(s))ds,

where g : R+ → R+ is a differentiable increasing function on R0 with continuous
non-increasing first derivative g′ on R0. Our paper is organized as follows. In Section
2 we prepare some tools needed to prove our theorems. Section 3, we discuss some
nonlinear Gamidov type integral inequalities and obtain new explicit bounds on these
inequalities. Section 4, we give explicit bounds to new nonlinear Gronwall-Bihari-
Gamidov integral inequalities with weakly singular integral kernel and in Section 5,
we give an examples to show boundedness and uniqueness of solutions of integral
equation with weakly singular kernel.

2. Preliminaries

Throughout the paper, R denotes the set of real numbers, R0 = (0, ∞), R+ =
[0, +∞) and I = [0, T ] (T ≥ 0 is a constant), C(X, Y ) denotes the collection of
continuous functions from the set X to the set Y , p, q, r are real constants such that
p 6= 0, 0 ≤ q, r ≤ p. For convenience, we give some lemmas which will be used in the
proof of the main results.

Lemma 2.1 ([1, page 16]). Let q(t) and p(t) be continuous functions for t ≥ α, let

z(t) be a differentiable function for t ≥ α, and suppose

z′(t) ≤ p (t) z (t) + q(t), t ≥ α,

z(α) ≤ z0.

Then

z(t) ≤ z(α) exp
(∫ t

α
p(s)ds

)

+

t
∫

α

q(s) exp
(∫ t

s
p(τ)dτ

)

ds, t ≥ α.
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Lemma 2.2 ([7]). Assume that a ≥ 0, p ≥ q ≥ 0 and p 6= 0, then

a
q

p ≤
q

p
K

q−p

p a +
p − q

p
K

q

p ,

for any K > 0.

Lemma 2.3 (Discrete Jensen inequality). Let A1, A2, A3, A4, . . . , An be nonnegative

real numbers and r > 1 a real number.Then

(A1 + · · · + An)r ≤ nr−1(Ar
1 + Ar

2 + · · · + Ar
n).

Lemma 2.4 ([8]). Let α, β, γ and m be positive constants. Then

∫ t

0
(tα − sα)m(β−1)sm(γ−1)ds =

tθ

α
β

[

m(γ − 1) + 1

α
, m(β − 1) + 1

]

, t ∈ R+

where

B [ζ, η] =
∫ 1

0
sζ−1(1 − s)η−1ds, Re ζ > 0, Re η > 0),

is the well-known beta function and

θ = m (α(β − 1) + γ − 1) + 1.

Assume that for the parameter group [αi, βi, γi]

(2.1) αi ∈ (0, 1] , βi ∈ (0, 1), γi > 1 −
1

m
,

such that

(2.2)
1

m
+ αi (βi − 1) + γi − 1 ≥ 0, m > 1, i = 1, 2.

Definition 2.1 ([13]). The Riemann-Liouville fractional integral of order α for a
function f is defined as

Iα
0 f(t) =

1

Γ(α)

∫ t

0
(t − s)α−1f(s)ds, α > 0,

provided that such integral exists.

Now we state the main results of this work.

3. Main Result

Lemma 3.1. Assume that u(t), m(t), l(t), n(t) ∈ C (I,R+) and g : R+ → R+ is a

differentiable increasing function on R0 with continuous non-increasing first derivative

g′ on R0. If

(3.1) u(t) ≤ m(t) + l(t)

T
∫

0

n(s)g(u(s))ds,
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then

(3.2) u(t) ≤ m(t) +
l(t)

T
∫

0
n(s)g(m(s))ds

1 −
T
∫

0
g′(m(s))n(s)l(s)ds

,

for all t ∈ I, provided that

(3.3)

T
∫

0

g′(m(s))n(s)l(s)ds < 1.

Proof. Let

Π =

T
∫

0

n(s)g(u(s))ds.

Obviously, Π is a constant. It follows from (3.1) that

(3.4) u(t) ≤ m(t) + l(t)Π.

Applying the mean value theorem for the function g, then for every x ≥ y > 0, there
exists c ∈]y, x[ such that

g(x) − g(y) = g′(c)(x − y) ≤ g′(y)(x − y),

which gives

(3.5) g(u(t)) ≤ g(m(t) + l(t)Π) ≤ g′(m(t))l(t)Π + g(m(t)).

Multiplying both sides of (3.5) by n(t), then integrating the result from 0 to T , it
yields

(3.6)

T
∫

0

n(s)g(u(s))ds ≤

T
∫

0

n(s)g(m(s))ds + Π

T
∫

0

g′(m(s))n(s)l(s)ds.

The inequality (3.6) can be restated as

Π ≤

T
∫

0

n(s)g(m(s))ds + Π

T
∫

0

g′(m(s))n(s)l(s)ds,

that is

Π



1 −

T
∫

0

g′(m(s))n(s)l(s)ds



 ≤

T
∫

0

n(s)g(m(s))ds.

From (3.3), we observe that

(3.7) Π ≤

T
∫

0
n(s)g(m(s))ds

1 −
T
∫

0
g′(m(s))n(s)l(s)ds

.
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Therefore, the desired inequality (3.2) follows from (3.7) and (3.4). �

Remark 3.1. If g(x) = x, then Lemma 3.1 reduces to [5, Lemma 3].

Corollary 3.1. Suppose that the hypotheses of Lemma 3.1 hold. If

u(t) ≤ m(t) + l(t)

T
∫

0

n(s) arctan(u(s))ds.

Then

u(t) ≤ m(t) +
l(t)

T
∫

0
n(s) arctan(m(s))ds

1 −
T
∫

0

n(s)l(s)

1 + m2(s)
ds

,

for all t ∈ I, provided that
T
∫

0

n(s)l(s)

1 + m2(s)
ds < 1.

And if

u(t) ≤ m(t) + l(t)

T
∫

0

n(s) ln(u(s) + 1)ds,

then

u(t) ≤ m(t) +
l(t)

T
∫

0
n(s) ln(m(s) + 1)ds

1 −
T
∫

0

n(s)l(s)

1 + m(s)
ds

,

for all t ∈ I, provided that
T
∫

0

n(s)l(s)

1 + m(s)
ds < 1.

Theorem 3.1. Assume that u(t), a(t), b(t), c(t), f(t), n(t) ∈ C(I,R+) and g : R+ →
R+ is a differentiable increasing function on R0 with continuous non-increasing first

derivative g′ on R0. If u(t) satisfies

(3.8) up(t) ≤ a(t) + b(t)

t
∫

0

f(s)uq(s)ds + c(t)

T
∫

0

n(s)g(ur(s))ds,

then, under the condition that

T
∫

0

g′(m(s))n(s)l(s)ds < 1,
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the following explicit estimate

(3.9) u(t) ≤











m(t) +
l(t)

T
∫

0
n(s)g(m(s))ds

1 −
T
∫

0
g′(m(s))n(s)l(s)ds











1

r

,

holds for all t ∈ I, where

m(t) =
r

p
K

r−p

p b(t)

t
∫

0
Q(s) exp

(∫ t

s
P (τ)dτ

)

ds +
r

p
K

r−p

p a(t) +
p − r

p
K

r
p ,

l(t) =
r

p
K

r−p

p b(t)
(

exp
∫ t

0
P (s)ds

)

,

b(t) = b(t) + c(t),(3.10)

and

P (t) =
q

p
K

q−p

p f(t) b(t),

Q(t) = f(t)

(

q

p
K

q−p

p a(t) +
p − q

p
K

q

p

)

.(3.11)

Proof. The inequality (3.8) can be rewritten as

(3.12) up(t) ≤ a(t) + (b(t) + c(t))





t
∫

0

f(s)uq(s)ds +

T
∫

0

n(s)g(ur(s))ds



 .

Define a function z(t) by

(3.13) z(t) =

t
∫

0

f(s)uq(s)ds +

T
∫

0

n(s)g(ur(s))ds.

Then, from (3.12), we have

up(t) ≤ a(t) + b(t)z(t),

b(t) = b(t) + c(t),

u(t) ≤ (a(t) + b(t)z(t))
1

p .(3.14)

Applying Lemma 2.2 to inequality (3.14), for any K > 0, we obtain

ur(t) ≤ (a(t) + b(t)z(t))
r
p ≤

r

p
K

r−p

p (a(t) + b(t)z(t)) +
p − r

p
K

r
p = w(t),

uq(t) ≤ (a(t) + b(t)z(t))
q

p ≤
q

p
K

q−p

P (a(t) + b(t)z(t)) +
p − q

p
K

q

p ,(3.15)

z (0) =

T
∫

0

n(s)g(ur(s))ds ≤

T
∫

0

n(s)g(w(s))ds.
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From (3.13) and (3.15), we get

z′(t) ≤ f(t)

(

q

p
K

q−p

p (a(t) + b(t)z(t)) +
p − q

p
K

q

p

)

.

Then

(3.16) z′(t) ≤
q

p
K

q−p

p f(t)b(t)z(t) + f(t)

(

q

p
K

q−p

p a(t) +
p − q

p
K

q

p

)

,

the inequality (3.16) can be restated as

(3.17) z′(t) ≤ P (t)z(t) + Q(t),

where P and Q are defined as in (3.11). Applying Lemma 2.1 to the inequality (3.17),
we have

(3.18) z(t) ≤ z(0) exp
(∫ t

0
P (s)ds

)

+

t
∫

0

Q(s) exp
(∫ t

s
P (τ)dτ

)

ds.

Substituting (3.15) in (3.18), we get

z(t) ≤

t
∫

0

Q(s) exp
(∫ t

s
P (τ)dτ

)

ds+

+
(

exp
∫ t

0
P (s)ds

)

T
∫

0

n(s)g(w(s))ds.(3.19)

Then we can write the inequality (3.19) in the following form

w(t) ≤
r

p
K

r−p

p b(t)

t
∫

0
α

Q(s) exp
(∫ t

s
P (τ)dτ

)

ds +
r

p
K

r−p

p a(t) +
p − r

p
K

r
p

+
r

p
K

r−p

p b(t)
(

exp
∫ t

0
P (s)ds

)

T
∫

0

n(s)g(w(s))ds,(3.20)

where w(t) is defined as (3.15). The inequality (3.20) can be restated as

(3.21) w(t) ≤ m(t) + l(t)

T
∫

0

n(s)g(w(s))ds,

where m, l are defined as in (3.10).
Applying Lemma 3.1 to the inequality (3.21) and using (3.15), we get the required

inequality in (3.9). �

Remark 3.2. If g(x) = x, inequality (3.8) can be reduced to the case discussed by
Kelong Cheng el al. [5, Theorem 7].
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4. Nonlinear Weakly Singular Integral Inequalities

Theorem 4.1. Let a(t), b(t), c(t), f(t), n(t) and g be as in Theorem 3.1. Suppose

that u(t) ∈ C(I,R+) satisfies

up(t) ≤a(t) + b(t)
∫ t

0
(tα1 − sα1)β1−1sγ1−1f(s)uq(s)ds

+ c(t)
∫ T

0
(T α2 − sα2)β2−1sγ2−1n(s) m1

√

g(ur(s))ds,(4.1)

if
T
∫

0

g′(m(s))nm1(s)l(s)ds < 1,

then

(4.2) u(t) ≤











m(t) +
l(t)

T
∫

0
nm1(s)g(m(s))ds

1 −
T
∫

0
g′(m(s))nm1(s)l(s)ds











1

r

,

for t ∈ I, where p ≥ q ≥ 0, p ≥ r ≥ 0, m1, m2, p, q and r are constants, such that
1

m1
+ 1

m2
= 1, and

m(t) =
r

pm1

K

r
m1

−p

p b∗(t)

t
∫

0
Q(s) exp(

∫ t

s
P (τ)dτ)ds+

+
r

pm1

K

r
m1

−p

p a∗(t) +
p − r

m1

p
K

r
pm1 ,

l(t) =
r

pm1

K

r
m1

−p

p b∗(t) exp(
∫ t

0
P (s)ds),

b∗(t) =b∗(t) + c∗(t),

P (t) =
q

p
K

q−p

P fm1(t)b∗(t),

Q(t) =fm1(t)

(

q

p
K

q−p

p a∗(t) +
p − q

p
K

q

p

)

.(4.3)

a∗(t) =3m1−1am1(t),

b∗(t) =3m1−1b(t)m1(M1t
θ1)

m1
m2 ,

c∗(t) =3m1−1c(t)m1(M2T
θ2)

m1
m2

,(4.4)

Mi =
1

αi

B

[

m2(γi − 1) + 1

αi

, m2(βi − 1) + 1

]

,

θi =m2 [αi(βi − 1) + γi − 1] + 1, i = 1, 2,(4.5)

where the parameter group [αi, βi, γi] satisfies (2.1)-(2.2).
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Proof. From assumptions (2.1)-(2.2), using the Hölder inequality with indices m1, m2

to (4.1), we get

up(t) ≤a(t) + b(t)
(∫ t

0
(tα1 − sα1)m2(β1−1)

sm2(γ1−1)ds

)

1

m2

×
(∫ t

0
fm1(s)uqm1(s)ds

)

1

m1

+ c(t)

(

∫ T

0
(T α2 − sα2)m2(β2−1)

sm2(γ2−1)ds

)
1

m2

×

(

∫ T

0
nm1(s)g(ur(s))ds

)
1

m1

.(4.6)

By using Lemmas 2.3 and 2.4, the inequality (4.6) can be rewritten as

upm1(t) ≤3m1−1am1(t)

+ 3m1−1bm1(t) ×
(∫ t

0
(tα1 − sα1)m2(β1−1)

sm2(γ1−1)ds

)

m1
m2

×
(∫ t

0
fm1(s)uqm1(s)ds

)

+ 3m1−1cm1(t)

(

∫ T

0
(T α2 − sα2)m2(β2−1)sm2(γ2−1)ds

)

m1
m2

×

(

∫ T

0
nm1(s)g(ur(s))ds

)

=3m1−1am1(t) + 3m1−1bm1(t)
(

M1t
θ1

)

m1
m2

×
(∫ t

0
fm1(s)uqm1(s)ds

)

+ 3m1−1cm1(t)
(

M2T
θ2

)

m1
m2

(

∫ T

0
nm1(s)g(ur(s))ds

)

,

where Mi, θi, i = 1, 2, are given in (4.5).
Letting um1(t) = w(t), we have

wp(t) ≤ a∗(t) + b∗(t)
∫ t

0
fm1(s)wq(s)ds + c∗(t)

∫ T

0
nm1(s)g(wr1(s))ds,

where r1 = r
m1

, which is similar to inequality (3.8), where a∗(t), b∗(t) and c∗(t) are

given in (4.4). An application of Theorem 3.1 to the inequality above gives that

w(t) ≤











m(t) +
l(t)

T
∫

0
nm1(s)g(m(s))ds

1 −
T
∫

0
g′(m(s))nm1(s)l(s)ds











m1
r

,
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holds for t ∈ I, where m(t) and l(t) are given in (4.3). Since um1(t) = w(t), we can
get (4.2). �

Remark 4.1. If g(x) = x, inequality (4.1) can be reduced to the case discussed by
Kelong Cheng el al. [5, Theorem 12].

5. Applications

In this section, we present applications of the inequalities (4.1) in Theorem 4.1 for
studying the boundedness of certain fractional integral equation with the Riemann-
Liouville (R-L) fractional operator. Consider the following fractional integral equation:

(5.1) u(t) = a(t) + Iα
0 (F (t, u(t))) +

1

Γ(α)

∫ T

0
(T − s)α−1N(s, u(s))ds,

where 0 < α < 1 and F, N ∈ C(R × R, R), a(t) ∈ C(I, R+).

Theorem 5.1. Consider the fractional integral equation (5.1) and suppose that F

and N satisfy the following conditions

|F (t, z)| ≤ f(t) |z|q ,(5.2)

|N(t, z)| ≤ n(t) m1

√

g(zr),

where f, n ∈ C(I,R+) and g is defined as in Theorem 3.1, m1 > 1 ≥ q, r ≥ 0. Under

the condition
T
∫

0

g′(m(s))nm1(s)l(s)ds < 1,

the following estimate

(5.3) u(t) ≤











m(t) +
l(t)

T
∫

0
nm1(s)g(m(s))ds

1 −
T
∫

0
g′(m(s))nm1(s)l(s)ds











1

r

,

holds, where

m(t)=
r

m1

K
r

m1
−1

b∗(t)

t
∫

0
α

Q(s) exp
(∫ t

s
P (τ)dτ

)

ds +
r

m1

K
r

m1
−1

a∗(t)

+
(

1 −
r

m1

)

K
r

m1 ,

l(t) =
r

m1

K
r

m1
−1

b∗(t) exp
(∫ t

0
P (s)ds

)

,

b∗(t) =b∗(t) + c∗(t),

P (t) =qKq−1fm1(t)b∗(t),

Q(t) =fm1(t)(qKq−1a∗(t) + (1 − q)Kq)
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and

a∗(t) = 3m1−1am1(t),

b∗(t) =
3m1−1

Γm1(α)
(M1t

θ1)
m1
m2 ,

c∗(t) =
3m1−1

Γm1(α)
(M2T

θ2)
m1
m2 ,

M1 = M2 = B [1, m2(α − 1) + 1] ,

θ1 = θ2 = m2(α − 1) + 1.

Proof. According to Definition 2.1, from (5.1)-(5.2), we have

u(t) = a(t) +
1

Γ(α)

∫ t

0
(t − s)α−1(F (s, u(s))ds +

1

Γ(α)

∫ T

0
(T − s)α−1N(s, u(s))ds,

for t ∈ I. Hence,

|u(t)| ≤a(t) +
1

Γ(α)

∫ t

0
(t − s)α−1 |(F (s, u(s))| ds +

1

Γ(α)

∫ T

0
(T − s)α−1 |N(s, u(s))| ds

≤a(t) +
1

Γ(α)

∫ t

0
(t − s)α−1f(s) |u(s)|q ds

+
1

Γ(α)

∫ T

0
(T − s)α−1n(s) m1

√

g(ur(s))ds.

Letting α1 = α2 = 1, γ1 = γ2 = 1, β1 = β2 = α, p = 1, b(t) = 1
Γ(α)

and c(t) = 1
Γ(α)

,

and applying Theorem 4.1, we get the desired estimate in (5.3). �

Proposition 5.1. Assume that the functions F and N in (5.2) satisfy the conditions

|F (t, z) − F (t, z)| ≤ f(t) |z − z| ,

|N(t, z)| − N(t, z) ≤ n(t) 1+ǫ

√

|z − z|,(5.4)

where f(t) and n(t) are defined as in Theorem 4.1, ǫ > 0 and z(t) is a solution of

(5.1). Then (5.1) has at most one solution.

Proof. Let z(t) and z(t) be two solutions of (5.1), it is easy to see from (5.4) that

|z(t) − z(t)| ≤
1

Γ(α)

∫ t

0
(t − s)α−1f(s) |z(s) − z(s)| ds

+
1

Γ(α)

∫ T

0
(T − s)α−1n(s) 1+ε

√

|z(s) − z(s)|ds.
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Letting α1 = α2 = 1, γ1 = γ2 = 1, β1 = β2 = α, p = q = r = 1, m1 = 1+ǫ, a(t) = 0,
g(t) = t and applying Theorem 4.1, we obtain that

|z(t) − z(t)| ≤











(

1 −
1

1 + ǫ

)

K
1

1+ǫ +

(

1 − 1
1+ǫ

)

K
1

1+ǫ l(t)
T
∫

0
n1+ǫ(s)ds

1 −
T
∫

0
n1+ǫ(s)l(s)ds











,

letting ǫ → 0, we obtain the uniqueness of solution of equation (5.1). �
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EXISTENCE OF RENORMALIZED SOLUTIONS FOR SOME

ANISOTROPIC QUASILINEAR ELLIPTIC EQUATIONS

T. AHMEDATT1, A. AHMED1, H. HJIAJ2, AND A. TOUZANI1

Abstract. In this paper, we consider a class of anisotropic quasilinear elliptic
equations of the type











−
N
∑

i=1

∂iai(x, u, ∇u) + |u|s(x)−1u = f(x, u), in Ω,

u = 0 on ∂Ω,

where f(x, s) is a Carathéodory function which satisfies some growth condition. We
prove the existence of renormalized solutions for our Dirichlet problem, and some
regularity results are concluded.

1. Introduction

Let Ω be an open bounded subset of RN , N ≥ 2, with the smooth boundary ∂Ω.
Zhao et al. have studied in [17] the quasilinear elliptic problem















−div(a(x,∇u)) + |u|p−2u = λf(x, u), in Ω,
∫

∂Ω
a(x,∇u) · nds = 0,

u = constant on ∂Ω,

They have proved the existence of weak solutions under some suitable growth assump-
tions on f(x, s), (see also [2, 7]). In the framework of Sobolev spaces with variable
exponents, Fan and Zhang [11] have considered the following nonlinear elliptic problem

{

div(|∇u|p(x)−2∇u) = λf(x, u), in Ω,
u = 0, on ∂Ω,

Key words and phrases. Anisotropic Sobolev spaces, variable exponents, quasilinear elliptic equa-
tions, renormalized solutions.
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where λ > 0 and f(x, s) satisfies the growth condition |f(x, s)| ≤ η + θ|s|δ−1, where
1 ≤ δ ≤ p− and η, θ are two positive constants (we refer also to [6]). In [3], the authors
have proved the existence of weak solutions for the quasilinear p(x)-elliptic problem

−div a(x, u,∇u) = f(x, u,∇u),

by using the calculus of variations operators method, where f(x, s, ξ) is a Carathéodory
function which satisfies some growth condition.

In the framework of anisotropic Sobolev spaces, Di Nardo, Feo and Guibé have
studied in [9] the existence of renormalized solutions for some class of nonlinear
anisotropic elliptic problems of the type

−
N
∑

i=1

∂xi
(ai(x, u)|∂xi

u|pi−2∂xi
u) = f − div g, in Ω,

with f ∈ L1(Ω) and g ∈ ΠN
i=1L

p′

i(Ω), the uniqueness of renormalized solution was
concluded under some local Lipschitz conditions on the function ai(x, s) with respect
to s, (see also [1] and [8]).

The aim of this paper is to study the existence and regularity of renormalized
solutions for the anisotropic quasilinear elliptic problem

(1.1)











−
N
∑

i=1

∂iai(x, u,∇u) + |u|s(x)−1u = f(x, u), in Ω,

u = 0, on ∂Ω,

where (ai(x, s, ξ))i=1,...,N are Carathéodory functions, the right-hand side f(x, s) is a
Carathéodory function satisfying only some nonstandard growth condition.

One of our motivations for studying (1.1) comes from these applications to electro-
rheological fluids as an important class of non-Newtonian fluids (sometimes referred
to as smart fluids). The electro-rheological fluids are characterized by their ability
to drastically change the mechanical properties under the influence of an external
electromagnetic field. A mathematical model of electro-rheological fluids was proposed
in [14,15], also in the robotics and space technology (we refer for example to [16]).

One of the difficulties in proving the existence of renormalized solutions stems
from the nonstandard growth of the Carathéodory function f(x, s), to overcome
the difficulty, we use the regularizing effect of the term |u|s(x)−1u with some special
technics.

The rest of this paper is structured as follows. In Section 2 we recall some definitions
and results on the anisotropic variable exponent Sobolev spaces. We introduce in
Section 3 some assumptions for which our problem has at least one renormalized
solution. Section 4 will be devoted to show the existence of renormalized solutions u
for the problem (1.1) in the anisotropic Sobolev space with variable exponents, and
we will give some regularity results, that is |u|s(x)−1u ∈ L1(Ω).
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2. Preliminary

Let Ω be a bounded open subset of RN , N ≥ 2, we denote

C+(Ω) = {measurable function p(·) : Ω → R such that 1 < p− ≤ p+ < N},

where

p− = ess inf{p(x)/x ∈ Ω} and p+ = ess sup{p(x)/x ∈ Ω}.

We define the Lebesgue space with variable exponent Lp(·)(Ω) as the set of all mea-
surable functions u : Ω → R for which the convex modular

ρp(·)(u) :=
∫

Ω
|u|p(x)dx

is finite. If the exponent is bounded, i.e., if p+ < +∞, then the expression

‖u‖p(·) = inf{λ > 0 : ρp(·)(u/λ) ≤ 1}

defines a norm in Lp(·)(Ω), called the Luxemburg norm. The space (Lp(·)(Ω), ‖ · ‖p(·))

is a separable Banach space. Moreover, if 1 < p− ≤ p+ < +∞, then Lp(·)(Ω) is
uniformly convex, hence reflexive, and its dual space is isomorphic to Lp′(·)(Ω), where

1
p(x)

+ 1
p′(x)

= 1. Finally, we have the Hölder type inequality:

∣

∣

∣

∣

∫

Ω
uvdx

∣

∣

∣

∣

≤

(

1

p−
+

1

(p′)−

)

‖u‖p(·)‖v‖p′(·),

for any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω).
The Sobolev space with variable exponent W 1,p(·)(Ω) is defined by

W 1,p(·)(Ω) = {u ∈ Lp(·)(Ω) and |∇u| ∈ Lp(·)(Ω)},

which is a Banach space, equipped with the following norm

‖u‖1,p(·) = ‖u‖p(·) + ‖∇u‖p(·).

The space (W 1,p(·)(Ω), ‖ · ‖1,p(·)) is a separable and reflexive Banach space. We define

W
1,p(·)
0 (Ω) as the closure of C∞

0 (Ω) in W 1,p(·)(Ω). For more details on variable exponent
Lebesgue and Sobolev spaces, we refer the reader to [10].

Now, we present the anisotropic variable exponent Sobolev space, used in the study
of our quasilinear anisotropic elliptic problem.

Let p1(·), p2(·), . . . , pN(·) be N variable exponents in C+(Ω). We denote

~p(·) = (p1(·), . . . , pN(·)) and Diu =
∂u

∂xi

, for i = 1, . . . , N,

and we define

p+ = max{p−
1 , . . . , p

−
N} and p− = min{p−

1 , . . . , p
−
N}, then 1 < p− ≤ p+.

The anisotropic variable exponent Sobolev space W 1,~p(·)(Ω) is defined as follow

W 1,~p(·)(Ω) = {u ∈ W 1,1(Ω) and Diu ∈ Lpi(·)(Ω) for i = 1, 2, . . . , N},
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endowed with the norm

(2.1) ‖u‖1,~p(·) = ‖u‖1,1 +
N
∑

i=1

‖Diu‖pi(·).

We define also W
1,~p(·)
0 (Ω) as the closure of C∞

0 (Ω) in W 1,~p(·)(Ω) with respect to the

norm (2.1). The space
(

W
1,~p(·)
0 (Ω), ‖u‖1,~p(·)

)

is a reflexive Banach space (cf. [13]).

Remark 2.1. In view of the continuous embedding W
1,~p(·)
0 (Ω) →֒ W 1,1

0 (Ω) and the
Poincaré type inequality we conclude that the two norms ‖u‖1,~p(·) and

∑N
i=1 ‖Diu‖pi(·)

are equivalent in the anisotropic variable exponent Sobolev spaces.

Lemma 2.1. We have the following continuous and compact embeddings.

• If p− < N , then W
1,~p(·)
0 (Ω) →֒→֒ Lq(Ω), for q ∈ [p−, p∗[, where p∗ =

Np−

N−p−
.

• If p− = N , then W
1,~p(·)
0 (Ω) →֒→֒ Lq(Ω), for all q ∈ [p−,+∞[.

• If p− > N , then W
1,~p(·)
0 (Ω) →֒→֒ L∞(Ω) ∩ C

0(Ω).

The proof of this lemma follows from the fact that the embedding W
1,~p(·)
0 (Ω) →֒

W
1,p−

0 (Ω) is continuous, and in view of the compact embedding theorem for Sobolev
spaces.

Proposition 2.1. The dual of W
1,~p(·)
0 (Ω) is denote by W−1,~p′(·)(Ω), where ~p′(·) =

(p′
1(·), . . . , p

′
N(·)) and 1

p′

i
(x)

+ 1
pi(x)

= 1 (cf. [5] for the constant exponent case). For

each F ∈ W−1,~p′(·)(Ω) there exists F0 ∈ (Lp+

(Ω))′ and Fi ∈ Lp′

i
(·)(Ω) for i = 1, 2, . . . , N ,

such that F = F0 −
∑N

i=1 D
iFi. Moreover, for any u ∈ W

1,~p(·)
0 (Ω), we have

〈F, u〉 =
N
∑

i=0

∫

Ω
FiD

iudx.

We define a norm on the dual space by

‖F‖−1,~p′(·) = inf







N
∑

i=0

‖Fi‖p′

i
(·) with F = F0 −

N
∑

i=1

DiFi such that F0 ∈ (Lp+

(Ω))′

and Fi ∈ Lp′

i
(·)(Ω)







.

Definition 2.1. Let k > 0, the truncation function Tk(·) : R → R is defined by

Tk(s) =







s, if |s| ≤ k,

k
s

|s|
, if |s| > k,

and we define

T
1,~p(·)
0 (Ω) := {u : Ω → R measurable, such that Tk(u) ∈ W

1,~p(·)
0 (Ω) for any k > 0}.
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Proposition 2.2. Let u ∈ T
1,~p(·)
0 (Ω). For any i ∈ {1, . . . , N}, there exists a unique

measurable function vi : Ω → R such that

DiTk(u) = vi.χ{|u|<k} a.e. x ∈ Ω, for all k > 0,

where χA denotes the characteristic function of a measurable set A. The functions vi

are called the weak partial derivatives of u and are still denoted Diu. Moreover, if u
belongs to W 1,1

0 (Ω), then vi coincides with the standard distributional derivative of u,

that is, vi = Diu.

3. Essential Assumptions

Let Ω be a bounded open subset of RN(N ≥ 2). We consider ~p(·) = (p1(·), . . . , pN(·))
the vector of exponents pi(·) ∈ C+(Ω) for i = 1, . . . , N, and let q(·), s(·) ∈ C+(Ω) where

q(x) < max(s(x), p+ − 1) a.e. in Ω.

We consider the Leray-Lions operatorA acted fromW
1,~p(·)
0 (Ω) into its dualW−1,~p′(·)(Ω),

defined by the formula

Au = −
N
∑

i=1

∂iai(x, u,∇u),

where ai : Ω × R × R
N → R are Carathéodory function which satisfy the following

conditions

|ai(x, s, ξ)| ≤β(Ki(x) + |s|pi(x)−1 + |ξ|pi(x)−1), for any i = 1, . . . , N,(3.1)

ai(x, s, ξ)ξi ≥α|ξi|
pi(x), for any i = 1, . . . , N,(3.2)

for all ξ = (ξ1, . . . , ξN) and ξ′ = (ξ′
1, . . . , ξ

′
N), we have

(3.3) [ai(x, s, ξ) − ai(x, s, ξ
′)](ξi − ξ′

i) > 0, for ξi 6= ξ′
i,

for a.e. x ∈ Ω, all (s, ξ) ∈ R×R
N , where Ki(x) is a positive function lying in Lp′

i
(·)(Ω)

and α, β > 0.
As a consequence of (3.2) and the continuity of the function ai(x, s, ·) with respect

to ξ, we have

ai(x, s, 0) = 0.

In this paper, we consider the following quasilinear anisotropic elliptic problem

(3.4)











−
N
∑

i=1

∂iai(x, u,∇u) + |u|s(x)−1u = f(x, u), in Ω,

u = 0, on ∂Ω,

where f : Ω × R → R is a Carathéodory function satisfying

(3.5) |f(x, r)| ≤ g(x) + |r|q(x) a.e in Ω,

and g(·) is a measurable positive function in L1(Ω).
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Remark 3.1. The assumption (3.1) is used here to ensure that ai(x, u,∇u) belongs to
Lp′

i
(·)(Ω). In the other case where Au = −

∑N
i=1 ∂

iai(x,∇u), the uniqueness of solution
can be concluded under some additional conditions on the Carathéodory function
f(x, s).

4. Main Results

We begin by recalling some important lemmas useful to prove our main result.

Lemma 4.1 ([3]). Let g ∈ Lr(·)(Ω) and gn ∈ Lr(·)(Ω) with ‖gn‖r(·) ≤ C for 1 < r(x) <

∞. If gn(x) → g(x) a.e. on Ω, then gn ⇀ g in Lr(·)(Ω).

Lemma 4.2 ([4]). Assuming that (3.1)-(3.3) hold, and let (un)n∈N be a sequence in

W
1,~p(·)
0 (Ω) such that un ⇀ u in W

1,~p(·)
0 (Ω) and

∫

Ω
(|un|p0(x)−2un − |u|p0(x)−2u)(un − u)dx

+
N
∑

i=1

∫

Ω
(ai(x, un,∇un) − ai(x, un,∇u))(Diun −Diu)dx → 0,

then un → u in W
1,~p(·)
0 (Ω) for a subsequence.

Our objective is to prove the existence of renormalized solutions for the quasilinear
anisotropic elliptic problem (3.4).

Definition 4.1. A measurable function u is called renormalized solution of the quasi-

linear elliptic problem (3.4) if Tk(u) ∈ W
1,~p(·)
0 (Ω) for any k > 0, with f(x, u) ∈ L1(Ω),

and

(4.1) lim
h→∞

N
∑

i=1

∫

{h<|u|≤h+1}
ai(x, u,∇u)Diudx = 0,

such that u satisfies the following equality

N
∑

i=1

∫

Ω
ai(x, u,∇u)

(

S ′(u)ϕDiu+ S(u)Diϕ
)

dx+
∫

Ω
|u|s(x)−1uS(u)ϕdx

=
∫

Ω
f(x, u)S(u)ϕdx,

for every ϕ ∈ W
1,~p(·)
0 (Ω) ∩ L∞(Ω) and for any smooth function S(·) ∈ W 1,∞(R) with

a compact support.

Theorem 4.1. Assuming that the conditions (3.1)–(3.3) and (3.5) hold true, then the

quasilinear anisotropic elliptic problem (3.4) has at least one renormalized solution.

Moreover, we have

|u|s(x) ∈ L1(Ω).
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4.1. Proof of Theorem 4.1.

Step 1: approximate problems. Firstly, we consider the approximate problem

(4.2)

{

Anun + |Tn(un)|s(x)−1Tn(un) = fn(x, Tn(un)), in Ω,
un = 0, on ∂Ω,

where Anv = −
∑N

i=1 ∂
iai(x, Tn(v),∇v) and fn(x, r) = Tn(f(x, r)). Thanks to (3.5),

it’s clear that

|fn(x, r)| ≤ n and |fn(x, r)| ≤ g(x) + |r|q(x).

We consider the operator Gn : W
1,~p(·)
0 (Ω) → W−1,~p′(·)(Ω) by

〈Gnu, v〉 =
∫

Ω
|Tn(u)|s(x)−1Tn(u)vdx−

∫

Ω
fn(x, Tn(u))vdx,

for any u, v ∈ W
1,~p(·)
0 (Ω). In view of the generalized Hölder-type inequality, we have

|〈Gnu, v〉| ≤
∫

Ω
|Tn(u)|s(x) |v|dx+

∫

Ω
|fn(x, Tn(u))| |v|dx(4.3)

≤ ns+

∫

Ω
|v|dx+ n

∫

Ω
|v|dx

= (ns+

+ n)‖v‖1

≤ C1‖v‖1,~p(·).

Lemma 4.3. The bounded operator Bn = An + Gn acted from W
1,~p(·)
0 (Ω) into

W−1,~p′(·)(Ω) is pseudo-monotone. Moreover, Bn is coercive in the following sense:

〈Bnv, v〉

‖v‖1,~p(·)

→ +∞ as ‖v‖1,~p(·) → ∞, for any v ∈ W
1,~p(·)
0 (Ω).

Proof. In view of the Hölder’s inequality and the growth condition (3.1), it’s easy to
see that the operator An is bounded, and by (4.3) we conclude that Bn is bounded.

For the coercivity, we have for any u ∈ W
1,~p(·)
0 (Ω),

〈Bnu, u〉 = 〈Anu, u〉 + 〈Gnu, u〉

=
N
∑

i=1

∫

Ω
ai(x, Tn(u),∇u) Diudx+

∫

Ω
|Tn(u)|s(x)|u|dx

−
∫

Ω
|fn(x, Tn(u))||u|dx

≥ α
N
∑

i=1

∫

Ω
|Diu|pi(x)dx+

∫

Ω
|Tn(u)|s(x)+1dx− C2n‖u‖p0(·)

≥ C0 ‖u‖
p−

1,~p(·) − αN |Ω| − C2n‖u‖1,~p(·),

it follows that
〈Bnu, u〉

‖u‖1,~p(·)

→ +∞ as ‖u‖1,~p(·) → ∞.
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It remains to show thatBn is pseudo-monotone. Let (uk)k∈N be a sequence inW
1,~p(·)
0 (Ω)

such that

(4.4)



















uk ⇀ u, in W
1,~p(·)
0 (Ω),

Bnuk ⇀ χn, in W−1,~p′(·)(Ω),
lim sup

k→∞
〈Bnuk, uk〉 ≤ 〈χn, u〉.

We will prove that

χn = Bnu and 〈Bnuk, uk〉 → 〈χn, u〉 as k → ∞.

In view of the compact embedding W
1,~p(·)
0 (Ω) →֒→֒ L1(Ω), we have uk → u in L1(Ω)

and a.e. Ω, for a subsequence still denoted (uk)k∈N.

We have (uk)k∈N is a bounded sequence in W
1,~p(·)
0 (Ω), using the growth condition

(3.1) it’s clear that the sequence (ai(x, Tn(uk),∇uk))k∈N is bounded in Lp′

i
(·)(Ω), then

there exists a function ϕi ∈ Lp′

i
(·)(Ω) such that

(4.5) ai(x, Tn(uk),∇uk) ⇀ ϕi in Lp′

i
(·)(Ω) as k → ∞.

On the one hand we have

(4.6) |Tn(uk)|s(x)−1Tn(uk) → |Tn(u)|s(x)−1Tn(u) weak−∗ in L∞(Ω),

and since fn(x, Tn(s)) is a Carathéodory function, then

(4.7) fn(x, Tn(uk)) → fn(x, Tn(u)) weak−∗ in L∞(Ω).

Then, for any v ∈ W
1,~p(·)
0 (Ω) we have

(4.8)
〈χn, v〉 = lim

k→∞
〈Bnuk, v〉

= lim
k→∞

N
∑

i=1

∫

Ω
ai(x, Tn(uk),∇uk)Divdx+ lim

k→∞

∫

Ω
|Tn(uk)|s(x)−1Tn(uk)vdx

− lim
k→∞

∫

Ω
fn(x, Tn(uk))vdx

=
N
∑

i=1

∫

Ω
ϕi D

ivdx+
∫

Ω
|Tn(u)|s(x)−1Tn(u)vdx−

∫

Ω
fn(x, Tn(u))vdx.

Having in mind (4.4) and (4.8), we conclude that

lim sup
k→∞

〈Bn(uk), uk〉 = lim sup
k→∞

( N
∑

i=1

∫

Ω
ai(x, Tn(uk),∇uk)Diukdx

+
∫

Ω
|Tn(uk)|s(x)−1Tn(uk)ukdx−

∫

Ω
fn(x, Tn(uk))ukdx

)

≤
N
∑

i=1

∫

Ω
ϕi D

iudx+
∫

Ω
|Tn(u)|s(x)−1Tn(u)udx

−
∫

Ω
fn(x, Tn(u))udx.
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Since uk → u strongly in L1(Ω), and thanks to (4.6)–(4.7) we obtain

(4.9)
∫

Ω
|Tn(uk)|s(x)−1Tn(uk)ukdx →

∫

Ω
|Tn(u)|s(x)−1Tn(u)udx

and

(4.10)
∫

Ω
fn(x, Tn(uk))ukdx →

∫

Ω
fn(x, Tn(u))udx.

Therefore,

(4.11) lim sup
k→∞

N
∑

i=1

∫

Ω
ai(x, Tn(uk),∇uk)Diukdx ≤

N
∑

i=1

∫

Ω
ϕi D

iudx.

On the other hand, in view of (3.3) we have

(4.12)
N
∑

i=1

∫

Ω
(ai(x, Tn(uk),∇uk) − ai(x, Tn(uk),∇u))(Diuk −Diu)dx ≥ 0,

then
N
∑

i=1

∫

Ω
ai(x, Tn(uk),∇uk)Diukdx ≥

N
∑

i=1

∫

Ω
ai(x, Tn(uk),∇uk)Diudx

+
N
∑

i=1

∫

Ω
ai(x, Tn(uk),∇u)(Diuk −Diu)dx.

In view of Lebesgue’s dominated convergence theorem we have Tn(uk) → Tn(u) in
Lpi(·)(Ω), thus ai(x, Tn(uk),∇u) → ai(x, Tn(u),∇u) strongly in Lp′

i
(·)(Ω), and using

(4.5) we get

lim inf
k→∞

N
∑

i=1

∫

Ω
ai(x, Tn(uk),∇uk)Diukdx ≥

N
∑

i=1

∫

Ω
ϕi D

iudx.

Having in mind (4.11), we conclude that

(4.13) lim
k→∞

N
∑

i=1

∫

Ω
ai(x, Tn(uk),∇uk)Diukdx =

N
∑

i=1

∫

Ω
ϕi D

iudx.

Therefore, by combining (4.8) and (4.9)–(4.10), we conclude that

〈Bnuk, uk〉 → 〈χn, u〉 as k → ∞.

Now, by (4.13) we can prove that

lim
k→∞

( N
∑

i=1

∫

Ω
(ai(x, Tn(uk),∇uk) − ai(x, Tn(uk),∇u))(Diuk −Diu)dx

+
∫

Ω
(|uk|p

+−2uk − |u|p
+−2u)(uk − u)dx

)

= 0,

and so, by virtue of Lemma 4.2, we get

uk → u in W
1,~p(·)
0 (Ω) and Diuk → Diu a.e. in Ω,
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then

ai(x, Tn(uk),∇uk) ⇀ ai(x, Tn(u),∇u) in Lp′

i
(·)(Ω), for i = 1, . . . , N,

and thanks to (4.6)–(4.7), we obtain χn = Bnu, which conclude the proof of Lemma 4.3.
�

In view of Lemma 4.3, there exists at least one weak solution un ∈ W
1,~p(·)
0 (Ω) of

the approximate problem (4.2) (cf. [12], Theorem 2.7, page 180).

Step 2: a priori estimates. Choose 1 < θ < p− such that 1 ≤ q(x) < max(s(x), p+−θ).

By taking ϕ(un) =
(

1 − 1
(1+|un|)θ−1

)

sign (un) ∈ W
1,~p(·)
0 (Ω) as a test function in (4.2),

we obtain

(θ − 1)
N
∑

i=1

∫

Ω

ai(x, Tn(un),∇un) ·Diun

(1 + |un|)θ
dx+

∫

Ω
|Tn(un)|s(x)

(

1 −
1

(1 + |un|)θ−1

)

dx

=
∫

Ω
fn(x, Tn(un))

(

1 −
1

(1 + |un|)θ−1

)

sign (un)dx.

By using the coercivity (3.2) and the growth condition (3.5), we obtain

α(θ − 1)
N
∑

i=1

∫

Ω

|Diun|pi(x)

(1 + |un|)θ
dx+

∫

Ω
|Tn(un)|s(x)

(

1 −
1

(1 + |un|)θ−1

)

dx(4.14)

≤
∫

Ω
(|g(x)| + |Tn(un)|q(x))

(

1 −
1

(1 + |un|)θ−1

)

dx.

For the first term on the left hand side of (4.14), for any i = 1, . . . , N , we have

∫

Ω

|Diun|pi(x)

(1 + |un|)θ
dx ≥

∫

Ω

|Diun|p
−

i

(1 + |un|)θ
dx− |Ω|

=
∫

Ω

∣

∣

∣

∣

Diun

(1 + |un|)
θ

p
−

i

∣

∣

∣

∣

p−

i

dx− |Ω|

=
∫

Ω

∣

∣

∣

∣

Di

∫ |un|

0

ds

(1 + s)
θ

p
−

i

∣

∣

∣

∣

p−

i

dx− |Ω|

≥
1

Cp

∫

Ω

∣

∣

∣

∣

∫ |un|

0

ds

(1 + s)
θ

p
−

i

∣

∣

∣

∣

p−

i

dx− |Ω|

≥
1

Cp

∫

Ω

|un|p
−

i

(1 + |un|)θ
dx− |Ω|

≥
1

2θCp

∫

Ω
|un|p

−

i
−θdx− 2|Ω|,
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and since ϕ(un) ≥ 1
2

for |un| ≥ R, with R = 2
1

1−θ − 1. Using Young’s inequality it
follows that

α(θ − 1)

2θCp

N
∑

i=1

∫

Ω
|un|p

−

i
−θdx+

1

2

∫

{|un|≥R}
|Tn(un)|s(x)dx(4.15)

≤
∫

Ω
|g(x)|dx+

∫

Ω
|Tn(un)|q(x)dx+ 2αN(θ − 1)|Ω|.

Since 1 ≤ q(x) < max(s(x), p+ − θ), by using Young’s inequality we conclude that
(4.16)

∫

Ω
|Tn(un)|q(x)dx ≤

α(θ − 1)

2θ+1Cp

N
∑

i=1

∫

Ω
|un|p

−

i
−θdx+

1

4

∫

{|un|≥R}
|Tn(un)|s(x)dx+ C0.

It follows from (4.15) that there exists a constant C1 that does not depend on n, such
that

(4.17)
N
∑

i=1

∫

Ω
|un|p

−

i
−θdx+

∫

Ω
|Tn(un)|s(x)dx+

∫

Ω
|Tn(un)|q(x)dx ≤ C1.

Let k ≥ 1, in view of (4.14) we conclude that

(4.18)
1

(1 + k)θ

N
∑

i=1

∫

Ω
|DiTk(un)|pi(x)dx ≤

N
∑

i=1

∫

Ω

|Diun|pi(x)

(1 + |un|)θ
dx+

∫

Ω
|Tn(un)|s(x) ≤ C2.

Therefore, we obtain

N
∑

i=1

∫

Ω
|DiTk(un)|pi(x)dx ≤ C2(1 + k)θ, for k ≥ 1.

Thus, the sequence (Tk(un))n is bounded in W
1,~p(·)
0 (Ω), and there exists a subsequence

still denoted (Tk(un))n and ηk ∈ W
1,~p(·)
0 (Ω) such that

(4.19)

{

Tk(un) ⇀ ηk in W
1,~p(·)
0 (Ω),

Tk(un) → ηk in L1(Ω) and a.e. in Ω.

On the other hand, in view of Poincaré type inequality, for any i ∈ {1, . . . , N} we
have

kp−

i meas{|un| > k} =
∫

{|un|>k}
|Tk(un)|p

−

i dx ≤
∫

Ω
|Tk(un)|p

−

i dx

≤ Cp−

i
p

∫

Ω
|DiTk(un)|p

−

i dx

≤ Cp−

i
p

∫

Ω
|DiTk(un)|pi(x)dx+ Cp−

i
p |Ω|

≤ max
1≤i≤N

(Cp−

i
p )

( N
∑

i=1

∫

Ω
|DiTk(un)|pi(x)dx+ |Ω|

)

≤ C3(1 + k)θ,
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where C3 is a constant that does not depend on k and n. Since 1 < θ < p−, we
conclude that

(4.20) meas{|un| > k} ≤
C3(1 + k)θ

kp+ → 0 as k → ∞.

Now, we will show that (un)n is a Cauchy sequence in measure. Indeed, we have
for every δ > 0,

meas{|un − um| > δ} ≤ meas{|un| > k} + meas{|um| > k}
+meas{|Tk(un) − Tk(um)| > δ}.

Let ε > 0, in view of (4.20) we may choose k = k(ε) large enough such that

(4.21) meas{|un| > k} ≤
ε

3
and meas{|um| > k} ≤

ε

3
.

Moreover, thanks to (4.19) we have

Tk(un) → ηk in L1(Ω) and a.e. in Ω.

Thus (Tk(un))n∈N is a Cauchy sequence in measure, and for any k > 0 and δ, ε > 0,
there exists n0 = n0(k, δ, ε) such that

(4.22) meas{|Tk(un) − Tk(um)| > δ} ≤
ε

3
, for all m,n ≥ n0(k, δ, ε).

By combining (4.21) and (4.22), we conclude that for all δ, ε > 0, there exists n0 =
n0(δ, ε) such that

meas{|un − um| > δ} ≤ ε, for any n,m ≥ n0.

Thus (un)n is a Cauchy sequence in measure, and converges almost everywhere, for a
subsequence, to some measurable function u. Thanks to (4.19) we conclude that

Tk(un) ⇀ Tk(u) in W
1,~p(·)
0 (Ω).

In view of Lebesgue dominated convergence theorem, we obtain

Tk(un) → Tk(u) in Lpi(·)(Ω), for i = 1, . . . , N.

Moreover, by taking Tk(un) as a test function in the approximate problem (4.2), we
have

N
∑

i=1

∫

Ω
ai(x, Tn(un),∇un)DiTk(un)dx+

∫

Ω
|Tn(un)|s(x)|Tk(un)|dx

=
∫

Ω
fn(x, Tn(un)) Tk(un)dx.

In view of (3.2), (3.5), and using (4.17) we obtain

α
N
∑

i=1

∫

Ω
|DiTk(un)|pi(x)dx ≤

∫

Ω
g(x) |Tk(un)|dx+

∫

Ω
|Tn(un)|q(x) |Tk(un)|dx

≤ k‖g(x)‖L1(Ω) + k‖|Tn(un)|q(x)‖L1(Ω)

≤ k(‖g(x)‖L1(Ω) + C1).
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It follows, for any i = 1, . . . , N, that

kp−

i meas{|un| > k} ≤
∫

Ω
|Tk(un)|p

−

i dx

≤ Cp−

i
p

∫

Ω
|DiTk(un)|p

−

i dx

≤ Cp−

i
p

∫

Ω
|DiTk(un)|pi(x)dx+ Cp−

i
p |Ω|

≤ C4k.

Thus, we conclude that

(4.23) kp+−1 · meas{|un| > k} ≤ C4, for any k ≥ 1,

where C4 is a constant that doesn’t depend on k and n.

Step 3: the equi-integrability of (|Tn(un)|s(x)−1Tn(un))n and (fn(x, Tn(un)))n. In the
sequel, we denote by εi(n), i = 1, 2, . . . , various real-valued functions of real variables
that converge to 0 as n tends to infinity. Similarly, we define εi(h) and εi(n, h).

In order to pass to the limit in the approximate equation, we shall show that

(4.24) |Tn(un)|s(x)−1Tn(un) → |u|s(x)−1u strongly in L1(Ω)

and

(4.25) fn(x, Tn(un)) → f(x, u) strongly in L1(Ω).

We have |Tn(un)|s(x)−1Tn(un) → |u|s(x)−1u and fn(x, Tn(un)) → f(x, u) a.e. in Ω. Thus,
in view of Vitali’s theorem, to show the convergence (4.24) − (4.25), it is suffices to
prove that(fn(x, Tn(un)))n and (|Tn(un)|s(x)−1Tn(un))n are uniformly equi-integrable.
Let h ≥ R, by taking vn = ϕ(un)|Th+1(un) − Th(un)| as a test function in (4.2), and
since vn have the same sign as un, we have

N
∑

i=1

∫

Ω
ai(x, Tn(un),∇un)(DiTh+1(un) −DiTh(un))ϕ(un)dx

+ (θ − 1)
N
∑

i=1

∫

Ω

ai(x, Tn(un),∇un)Diun

(1 + |un|)θ
|Th+1(un) − Th(un)|dx

+
∫

Ω
|Tn(un)|s(x)|Th+1(un) − Th(un)| |ϕ(un)|dx

≤
∫

Ω
|fn(x, Tn(un))| |Th+1(un) − Th(un) |ϕ(un)|dx.

We have |ϕ(un)| ≥
1

2
on the set {h ≤ |un|}, and thanks to (3.2) we obtain

N
∑

i=1

∫

Ω
ai(x, Tn(un),∇un)(DiTh+1(un) −DiTh(un)) |ϕ(un)|dx

+ (θ − 1)
N
∑

i=1

∫

Ω

ai(x, Tn(un),∇un)Diun

(1 + |un|)θ
|Th+1(un) − Th(un)|dx
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≥
1

4

N
∑

i=1

∫

{h<|un|≤h+1}
ai(x, Tn(un),∇un)Diundx+

α

4

N
∑

i=1

∫

{h<|un|≤h+1}
|Diun|pi(x)dx

+ α(θ − 1)
N
∑

i=1

∫

{h+1≤|un|}

|Diun|pi(x)

(1 + |un|)θ
dx

≥
1

4

N
∑

i=1

∫

{h<|un|≤h+1}
ai(x, Tn(un),∇un)Diundx+ C5

N
∑

i=1

∫

{h+1≤|un|}

|Diun|pi(x)

(1 + |un|)θ
dx,

with C5 = α · min
{

1

4
, (θ − 1)

}

. Having in mind (3.5) we conclude that

1

4

N
∑

i=1

∫

{h<|un|≤h+1}
ai(x, Tn(un),∇un)Diundx+ C5

N
∑

i=1

∫

{h+1≤|un|}

|Diun|pi(x)

(1 + |un|)θ
dx(4.26)

+
∫

Ω
|Tn(un)|s(x)|Th+1(un) − Th(un)|ϕ(un)dx

≤
∫

{h<|un|}
|g(x)||Th+1(un) − Th(un)|dx

+
∫

{h<|un|}
|Tn(un)|q(x)|Th+1(un) − Th(un)| |ϕ(un)|dx.

For the second term on the left-hand side of (4.26), thanks to Poincaré’s inequality
we have

C5

N
∑

i=1

∫

{h≤|un|}

|Diun|pi(x)

(1 + |un|)θ
dx

≥C5

N
∑

i=1

∫

{h≤|un|}

|Diun|p
−

i

(1 + |un|)θ
dx− C5Nmeas{h ≤ |un|}

=C5

N
∑

i=1

∫

Ω

∣

∣

∣

∣

Di

∫ |un|

|Th(un)|

ds

(1 + s)
θ

p
−

i

∣

∣

∣

∣

p−

i

dx− C5Nmeas{h ≤ |un|}

≥C6

N
∑

i=1

∫

Ω

∣

∣

∣

∣

∫ |un|

|Th(un)|

ds

(1 + s)
θ

p
−

i

∣

∣

∣

∣

p−

i

dx− C5Nmeas{h ≤ |un|}

≥C6

N
∑

i=1

∫

{h≤|un|}

(|un| − |Th(un)|)p−

i

(1 + |un|)θ
dx− C5Nmeas{h ≤ |un|}

≥C7

N
∑

i=1

∫

{h≤|un|}
|un|p

−

i
−θdx− C6

N
∑

i=1

∫

{h≤|un|}

hp−

i

(1 + |un|)θ
dx

− C5Nmeas{h ≤ |un|}.
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Having in mind (4.26), we conclude that

1

4

N
∑

i=1

∫

{h<|un|≤h+1}
ai(x, Tn(un),∇un)Diundx+ C7

N
∑

i=1

∫

{h≤|un|}
|un|p

−

i
−θdx

+
∫

{h<|un|}
|Tn(un)|s(x)|Th+1(un) − Th(un)|ϕ(un)dx

≤
∫

{h<|un|}
|g(x)|dx+

∫

{h<|un|}
|Tn(un)|q(x)|Th+1(un) − Th(un)| |ϕ(un)|dx

+ C6

N
∑

i=1

∫

{h<|un|}

hp−

i

(1 + |un|)θ
dx+ C5Nmeas{h ≤ |un|}.

Since q(x) < max(s(x), p+ − θ), and in view of Young’s inequality we have
∫

{h<|un|}
|Tn(un)|q(x)|Th+1(un) − Th(un)| |ϕ(un)|dx

≤
C7

2

N
∑

i=1

∫

{h≤|un|}
|un|p

−

i
−θdx+ C8

∫

{h<|un|}
|Th+1(un) − Th(un)|dx

+
1

2

∫

{h<|un|}
|Tn(un)|s(x)|Th+1(un) − Th(un)| |ϕ(un)|dx,

and thanks to (4.23), we have

ε1(h) =
N
∑

i=1

∫

{h<|un|}

hp−

i

(1 + |un|)θ
dx ≤

N
∑

i=1

hp−

i
−θ meas{h < |un|}

≤Nhp+−θ meas{h < |un|}

=
Nhp+−1 meas{h < |un|}

hθ−1

≤
NC4

hθ−1
→ 0 as h → ∞.

Also, we have meas{|un| > h} goes to zero, as h tends to infinity, and since g(x) ∈
L1(Ω) we conclude that

ε2(h) =
∫

{h<|un|}
|g(x)|dx+ C5N meas{h ≤ |un|} → 0 as h → ∞.

It follows that

1

4

N
∑

i=1

∫

{h<|un|≤h+1}
ai(x, Tn(un),∇un)Diundx(4.27)

+
C7

2

N
∑

i=1

∫

{h≤|un|}
|un|p

−

i
−θdx+

1

2

∫

{h+1<|un|}
|Tn(un)|s(x)dx

≤C8

∫

{h<|un|}
|Th+1(un) − Th(un)|dx+ ε3(h)

≤ε4(h).
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We conclude that

(4.28) lim
h→∞

(
∫

{h+1<|un|}
|Tn(un)|s(x)dx+

∫

{h+1<|un|}
|Tn(un)|q(x)dx

)

= 0,

therefore, thanks to (4.28) we have for any δ > 0, there exists h(δ) > 1 such that

(4.29)
∫

{h(δ)<|un|}
|Tn(un)|s(x)dx+

∫

{h(δ)<|un|}
|Tn(un)|q(x)dx ≤

δ

2
.

On the other hand, for any measurable subset E ⊆ Ω we have
∫

E
|Tn(un)|s(x)dx+

∫

E
|Tn(un)|q(x)dx(4.30)

≤
∫

{h(δ)<|un|}
|Tn(un)|s(x)dx+

∫

{h(δ)<|un|}
|Tn(un)|q(x)dx

+
∫

E
|Th(δ)(un)|s(x)dx+

∫

E
|Th(δ)(un)|q(x)dx.

It’s clear that, there exists β(δ) > 0 such that for any E ⊆ Ω with meas(E) ≤ β(δ)
we have

(4.31)
∫

E
|Th(δ)(un)|s(x)dx+

∫

E
|Th(δ)(un)|q(x)dx ≤

δ

2
.

Finally, by combining (4.29), (4.30) and (4.31), we obtain
(4.32)
∫

E
|Tn(un)|s(x)dx+

∫

E
|Tn(un)|q(x)dx ≤ δ for any E ⊂ Ω such that meas(E) ≤ β(δ).

Consequently, (|Tn(un)|s(x)−1Tn(un))n and (|Tn(un)|q(x)−1Tn(un))n are uniformly equi-
integrable, and in view of the growth condition (3.5) we have

|fn(x, Tn(un))| ≤ g(x) + |Tn(un)|q(x),

with g(x) ∈ L1(Ω), then (fn(x, Tn(un)))n is also uniformly equi-integrable. According
to Vitali’s theorem, the statements (4.24) and (4.25) are concluded. Moreover, in
view of (4.27) we have

(4.33) lim
h→∞

lim sup
n→∞

N
∑

i=1

∫

{h<|un|≤h+1}
ai(x, Tn(un),∇un)Diundx = 0.

Step 4: strong convergence of truncations. Let h > k ≥ 1, and we set ψh(un) =

(1 − |T1(un − Th(un))|). By taking (Tk(un) − Tk(u))ψh(un) ∈ W
1,~p(·)
0 (Ω) as a test

function in (4.2) we obtain

N
∑

i=1

∫

Ω
ai(x, Tn(un),∇un)(DiTk(un) −DiTk(u))ψh(un)dx

−
N
∑

i=1

∫

{h≤|un|≤h+1}
ai(x, Tn(un),∇un)Diun|Tk(un) − Tk(u)|dx

+
∫

Ω
|Tn(un)|s(x)−1Tn(un)(Tk(un) − Tk(u))ψh(un)dx
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=
∫

Ω
fn(x, Tn(un))(Tk(un) − Tk(u))ψh(un)dx.

It follows that
N
∑

i=1

∫

Ω
ai(x, Tn(un),∇un)(DiTk(un) −DiTk(u))ψh(un)dx(4.34)

≤
∫

Ω
|fn(x, Tn(un))| |Tk(un) − Tk(u)|dx+

∫

Ω
|Tn(un)|s(x) |Tk(un) − Tk(u)|dx

+
N
∑

i=1

∫

{h≤|un|≤h+1}
ai(x, Tn(un),∇un)Diun|Tk(un) − Tk(u)|dx.

For the first and second terms on the right-hand side of (4.34), we have Tk(un) ⇀ Tk(u)
weak−⋆ in L∞(Ω), and thanks to (4.24)–(4.25) we have |Tn(un)|s(x) → |u|s(x) and
fn(x, Tn(un)) → f(x, u) strongly in L1(Ω), then

(4.35) ε5(n) =
∫

Ω
|Tn(un)|s(x)|Tk(un) − Tk(u)|dx → 0 as n → ∞

and

(4.36) ε6(n) =
∫

Ω
|fn(x, Tn(un))| |Tk(un) − Tk(u)|dx → 0 as n → ∞.

On the other hand, according to (4.33) we have

ε7(h) =
N
∑

i=1

∫

{h<|un|≤h+1}
ai(x, Tn(un),∇un)Diun|Tk(un) − Tk(u)|dx(4.37)

≤2k
N
∑

i=1

∫

{h<|un|≤h+1}
ai(x, Tn(un),∇un)Diundx → 0 as h → ∞.

By combining (4.34) and (4.35)–(4.37) we conclude that

(4.38)
N
∑

i=1

∫

Ω
ai(x, Tn(un),∇un)(DiTk(un) −DiTk(u))ψh(un)dx ≤ ε7(n, h).

For the term on the left-hand side of (4.38), since ai(x, s, 0) = 0, it follows that

N
∑

i=1

∫

Ω
ai(x, Tn(un),∇un)(DiTk(un) −DiTk(u))ψh(un)dx

(4.39)

=
N
∑

i=1

∫

{|un|≤k}
ai(x, Tk(un),∇Tk(un))(DiTk(un) −DiTk(u))dx

−
N
∑

i=1

∫

{k<|un|≤h+1}
ai(x, Th+1(un),∇Th+1(un))DiTk(u) ψh(un)dx

=
N
∑

i=1

∫

Ω

(

ai(x, Tk(un),∇Tk(un)) − ai(x, Tk(un),∇Tk(u))
)

(DiTk(un) −DiTk(u))dx
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+
N
∑

i=1

∫

Ω
ai(x, Tk(un),∇Tk(u))(DiTk(un) −DiTk(u))dx

−
N
∑

i=1

∫

{k<|un|≤h+1}
ai(x, Th+1(un),∇Th+1(un))DiTk(u) ψh(un)dx.

For the second term on the right-hand side of (4.39), we have Tk(un) → Tk(u) in
Lpi(·)(Ω), then, ai(x, Tk(un),∇Tk(u)) → ai(x, Tk(u),∇Tk(u)) strongly in Lp′

i
(·)(Ω), and

since DiTk(un) converges to DiTk(u) weakly in Lpi(·)(Ω), we obtain

(4.40) ε8(n) =
N
∑

i=1

∫

Ω
ai(x, Tk(un),∇Tk(u))(DiTk(un) −DiTk(u))dx → 0 as n → ∞.

Concerning the third term on the right-hand side of (4.39), we have (|ai(x, Th+1(un),
∇Th+1(un))|)n is bounded in Lp′

i
(·)(Ω), then there exists νi ∈ Lp′

i
(·)(Ω) such that

|ai(x, Th+1(un),∇Th+1(un))| ⇀ νi weakly in Lp′

i
(·)(Ω) for any i = 1, . . . , N . Therefore,

ε9(n) ≤

∣

∣

∣

∣

N
∑

i=1

∫

{k<|un|≤h+1}
ai(x, Th+1(un),∇Th+1(un))DiTk(u) ψh(un)dx

∣

∣

∣

∣

(4.41)

≤
N
∑

i=1

∫

{k<|un|≤h+1}
|ai(x, Th+1(un),∇Th+1(un))| |DiTk(u)|dx

→
N
∑

i=1

∫

{k<|u|≤h+1}
νi |DiTk(u)|dx = 0 as n → ∞.

By combining (4.38)–(4.41), we conclude that

N
∑

i=1

∫

Ω

(

ai(x, Tk(un),∇Tk(un)) − ai(x, Tk(un),∇Tk(u))
)

(DiTk(un) −DiTk(u))dx

≤ε10(n, h).

In view of Lebesgue dominated convergence theorem, we have Tk(un) → Tk(u) strongly

in Lp+

(Ω). Thus, by letting n then h tend to infinity we deduce that

N
∑

i=1

∫

Ω

(

ai(x, Tk(un),∇Tk(un)) − ai(x, Tk(un),∇Tk(u))
)

(DiTk(un) −DiTk(u))dx

+
∫

Ω
(|Tk(un)|p

+−2Tk(un) − |Tk(u)|p
+−2Tk(u))(Tk(un) − Tk(u))dx → 0 as n → ∞.

In view of Lemma 4.2, we conclude that

(4.42)

{

Tk(un) → Tk(u) strongly in W
1,~p(·)
0 (Ω),

Diun → Diu a.e. in Ω for i = 1, . . . , N.
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Moreover, we have ai(x, Tn(un),∇un)Diun tends to ai(x, u,∇u)Diu almost everywhere
in Ω, and in view of Fatou’s lemma and (4.33), we conclude that

lim
h→∞

N
∑

i=1

∫

{h<|u|<h+1}
ai(x, u,∇u)Diudx

≤ lim
h→∞

lim inf
n→∞

N
∑

i=1

∫

{h<|un|<h+1}
ai(x, Tn(un),∇un)Diundx

≤ lim
h→∞

lim sup
n→∞

N
∑

i=1

∫

{h<|un|<h+1}
ai(x, Tn(un),∇un)Diundx = 0,

which prove (4.1).

Step 5: passage to the limit. Let ϕ ∈ W
1,~p(·)
0 (Ω) ∩ L∞(Ω), and choosing S(·) be a

smooth function in C1
0(R) such that supp (S(·)) ⊆ [−M,M ] for some M ≥ 0.

By taking S(un)ϕ ∈ W
1,~p(·)
0 (Ω) ∩ L∞(Ω) as a test function in the approximate

problem (4.2), we obtain

N
∑

i=1

∫

Ω
ai(x, Tn(un),∇un)

(

DiunS
′(un)ϕ+ S(un)Diϕ

)

dx(4.43)

+
∫

Ω
|Tn(un)|s(x)−1Tn(un)S(un)ϕdx =

∫

Ω
fn(x, Tn(un))S(un)ϕdx.

For the first term on the left-hand side of (4.43), we have

N
∑

i=1

∫

Ω
ai(x, Tn(un),∇un)

(

DiunS
′(un)ϕ+ S(un)Diϕ

)

dx

=
N
∑

i=1

∫

Ω
ai(x, TM(un),∇TM(un))

(

S ′(un)ϕDiTM(un) + S(TM(un))Diϕ
)

dx,

in view of (4.42), we have (ai(x, TM(un),∇TM(un)))n is bounded in Lp′

i
(·)(Ω), and

since ai(x, TM(un),∇TM(un)) tends to ai(x, TM(u),∇TM(u)) almost everywhere in Ω,
it follows that

ai(x, TM(un),∇TM(un)) ⇀ ai(x, TM(u),∇TM(u)) in Lp′

i
(·)(Ω),

and since (S ′(un)ϕDiTM(un) + S(TM(un))Diϕ) → (S ′(u)ϕDiTM(u) + S(TM(u))Diϕ)
strongly in Lpi(·)(Ω), we deduce that

lim
n→∞

N
∑

i=1

∫

Ω
ai(x, Tn(un),∇un)

(

DiunS
′(un)ϕ+ S(un)Diϕ

)

dx(4.44)

= lim
n→∞

N
∑

i=1

∫

Ω
ai(x, TM(un),∇TM(un))

(

DiTM(un)S ′(un)ϕ+ S(TM(un))Diϕ
)

dx

=
N
∑

i=1

∫

Ω
ai(x, TM(u),∇TM(u))

(

DiTM(u)S ′(u)ϕ+ S(TM(u))Diϕ
)

dx
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=
N
∑

i=1

∫

Ω
ai(x, u,∇u)

(

DiuS ′(u)ϕ+ S(u)Diϕ
)

dx.

Concerning the second term on the right-hand side of (4.43), we have S(TM(un))ϕ ⇀
S(TM(u))ϕ weak−∗ in L∞(Ω), and thanks to (4.24), we have |Tn(un)|s(x)−1Tn(un) →
|u|s(x)−1u strongly in L1(Ω), it follows that

lim
n→∞

∫

Ω
|Tn(un)|s(x)−1Tn(un)S(TM(un))ϕdx =

∫

Ω
|u|s(x)−1uS(TM(u))ϕdx(4.45)

=
∫

Ω
|u|s(x)−1uS(u)ϕdx.

Similarly, thanks to (4.25) we have fn(x, Tn(un)) → f(x, u) strongly in L1(Ω) then
(4.46)

lim
n→∞

∫

Ω
fn(x, Tn(un))S(TM(un))ϕdx =

∫

Ω
f(x, u)S(TM(u))ϕdx =

∫

Ω
f(x, u)S(u)ϕdx.

By combining (4.43) and (4.44)–(4.46), we conclude that

N
∑

i=1

∫

Ω
ai(x, u,∇u)

(

DiuS ′(u)ϕ+ S(u)Diϕ
)

dx+
∫

Ω
|u|s(x)−1uS(u)ϕdx

=
∫

Ω
f(x, u)S(u)ϕdx.

which complete the proof of the Theorem 4.1.
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CERTAIN CLASSES OF BI-UNIVALENT FUNCTIONS OF

COMPLEX ORDER ASSOCIATED WITH

QUASI-SUBORDINATION INVOLVING (p, q)-DERIVATIVE

OPERATOR

Ş. ALTINKAYA1 AND S. YALÇIN1

Abstract. In this present paper, as applications of the post-quantum calculus
known as the (p, q)-calculus, we construct a new class D

k
p,q (γ, ζ, Ψ) of bi-univalent

functions of complex order defined in the open unit disk. Coefficients inequalities
and several special consequences of the results are obtained.

1. Introduction and Preliminaries

The q-calculus as well as the fractional q-calculus provide important tools that
have been used in the fields of special functions and many other areas. Historically
speaking, a firm footing of the usage of the q-calculus in the context of Geometric
Function Theory was actually provided and the basic (or q-) hypergeometric functions
were first used in Geometric Function Theory in a book chapter by Srivastava (see,
for details, [30]). In fact, the theory of univalent functions can be described by using
the theory of the q-calculus. Moreover, in recent years, such q-calculus operators as
the fractional q-integral and fractional q-derivative operators were used to construct
several subclasses of analytic functions (see, for example, [3,19,21,26]). In particular,
Purohit and Raina [20] investigated applications of fractional q-calculus operators
to define several classes of functions which are analytic in the open unit disk. On
the other hand, Mohammed and Darus [14] studied approximation and geometric
properties of these q-operators in regard to some subclasses of analytic functions in a
compact disk.

Key words and phrases. Coefficient bounds, Bi-univalent functions, Quasi-subordination, q-
calculus, (p, q)-derivative operator.
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Further the possibility of extension of the q-calculus to post-quantum calculus
denoted by the (p, q)-calculus. The (p, q)-calculus which have many applications in
areas of science and engineering was introduced in order to generalize the q-series by
Gasper and Rahman [8]. The (p, q)-series is derived as corresponding extensions of
q-identities (for example [2, 6]).

We begin by providing some basic definitions and concept details of the (p, q)-
calculus which are used in this paper.

The (p, q)-number is given by

[n]p,q =
pn − qn

p − q
, p 6= q,

which is a natural generalization of the q-number (see [11]), that is

lim
p→1

[n]p,q = [n]q =
1 − qn

1 − q
, q 6= 1.

It is clear that the notation [n]p,q is symmetric, that is,

[n]p,q = [n]q,p .

Let p and q be elements of complex numbers and D = Dp,q ⊂ C such that x ∈ D
implies px ∈ D and qx ∈ D. Here, in this investigation, we give the following two
definitions which involve a post-quantum generalization of Sofonea’s work [27].

Definition 1.1. Let 0 < |q| < |p| ≤ 1. A given function f : Dp,q → C is called
(p, q)-differentiable under the restriction that, if 0 ∈ Dp,q, then f ′(0) exists.

Definition 1.2. Let 0 < |q| < |p| ≤ 1. A given function f : Dp,q → C is called
(p, q)-differentiable of order n, if and only if 0 ∈ Dp,q, then f (n)(0) exists.

Definition 1.3 ([6]). The (p, q)-derivative of a function f is defined as

(Dp,qf)(x) =
f(px) − f(qx)

(p − q)x
, x 6= 0,

and (Dp,qf)(0) = f ′(0), provided f ′(0) exists.

As with ordinary derivative, the action of the (p, q)-derivative of a function is a
linear operator. More precisely, for any constants a and b,

Dp,q(af(z) + bg(z)) = aDp,qf(z) + bDp,qg(z).

The (p, q)-derivative fulfils the following product rules

Dp,q(f(z)g(z)) =f(pz)Dp,qg(z) + g(qz)Dp,qf(z),

Dp,q(f(z)g(z)) =g(pz)Dp,qf(z) + f(qz)Dp,qg(z).
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Further, the (p, q)-derivative fulfils the following product rules

Dp,q

(

f(z)

g(z)

)

=
g(qz)Dp,qf(z) − f(qz)Dp,qg(z)

g(pz)g(qz)
,

Dp,q

(

f(z)

g(z)

)

=
g(pz)Dp,qf(z) − f(pz)Dp,qg(z)

g(pz)g(qz)
.

Let A indicate an analytic function family, which is normalized under the condition
of f(0) = f ′(0) − 1 = 0 in ∆ = {z : z ∈ C and |z| < 1} and given by the following
Taylor-Maclaurin series:

(1.1) f(z) = z +
∞
∑

n=2

anzn.

Further, by S we shall denote the class of all functions in A which are univalent in ∆.
If f is of the form (1.1), then

(Dp,qf)(z) = 1 +
∞
∑

n=2

[n]p,q anzn−1.

With a view to recalling the principle of subordination between analytic functions,
let the functions f and g be analytic in ∆. Then we say that the function f is
subordinate to g if there exists a Schwarz function w (z), analytic in ∆ with

w (0) = 0, |w (z)| < 1, z ∈ ∆,

such that

f (z) = g (w (z)) , z ∈ ∆.

We denote this subordination by

f ≺ g or f (z) ≺ g (z) , z ∈ ∆.

In particular, if the function g is univalent in ∆, the above subordination is equivalent
to

f(0) = g(0), f(∆) ⊂ g(∆).

In the year 1970, Robertson [23] introduced the concept of quasi-subordination. For
two analytic functions f and g, the function f is said to be quasi-subordinate to g in
∆ and written as

f(z) ≺ρ g(z), z ∈ ∆,

if there exists an analytic function |h(z)| ≤ 1 such that f(z)
h(z)

analytic in ∆ and

f(z)

h(z)
≺ g(z), z ∈ ∆,

that is, there exists a Schwarz function w(z) such that f(z) = h(z)g(w(z)). Observe
that if h(z) = 1, then f(z) = g(w(z)) so that f(z) ≺ g(z) in ∆. Also notice that
if w(z) = z, then f(z) = h(z)g(z) and it is said that is majorized by g and written
f(z) ≪ g(z) in ∆. Hence it is obvious that quasi-subordination is a generalization
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of subordination as well as majorization (see, e.g., [13, 22, 23] for works related to
quasi-subordination).

The Koebe-One Quarter Theorem [7] ensures that the image of ∆ under every
univalent function f ∈ A contains a disk of radius 1/4. Thus every univalent
function f has an inverse f−1 satisfying f−1 (f (z)) = z and f (f−1 (w)) = w
(

|w| < r0 (f) , r0 (f) ≥ 1
4

)

, where

(1.2) f−1 (w) = w − a2w
2 +

(

2a2
2 − a3

)

w3 −
(

5a3
2 − 5a2a3 + a4

)

w4 + · · · .

A function f ∈ A is said to be bi-univalent in ∆ if both f and f−1 are univalent
in ∆. Let Σ denote the class of bi-univalent functions in ∆ given by (1.1). For
a brief history and interesting examples in the class Σ, see [29] (see also [4, 5, 12,
16]). Furthermore, judging by the remarkable flood of papers on the subject (see,
for example, [10, 17, 28]). Not much is known about the bounds on the general
coefficient |an| . In the literature, there are only a few works determining the general
coefficient bounds |an| for the analytic bi-univalent functions ([1, 9, 15, 31]). The
coefficient estimate problem for each of |an| ( n ∈ N\ {1, 2} , N = {1, 2, 3, ...}) is still
an open problem.

Recently for f ∈ A, Selvaraj et al. [25] defined and discussed (p, q)-analogue of
Salagean differential operator as given below:

D
0
p,qf(z) =f(z)

D
1
p,qf(z) =z (Dp,qf(z))

...

D
k
p,qf(z) =zDp,q(D

k−1
p,q f(z))

D
k
p,qf(z) =z +

∞
∑

n=2

[n]kp,qanzn, k ∈ N0 = N ∪ {0}, z ∈ ∆.

If we let p = 1 and q → 1−, then D
k
p,qf(z) reduces to the well-known Salagean

differential operator (see [24]).
Making use of the differential operator D

k
p,q, we introduce a new class of analytic

bi-univalent functions as follows.

Definition 1.4. A function f ∈ Σ given by (1.1) is said to be in the class

D
k
p,q (γ, ζ, Ψ) , γ ∈ C\{0}, 0 ≤ ζ < 1, k ∈ N0, 0 < q < p ≤ 1, z, w ∈ ∆,

if the following conditions are satisfied:

1

γ







z
(

D
k
p,qf(z)

)

′

(1 − ζ)Dk
p,qf(z) + ζz

(

D
k
p,qf(z)

)

′
− 1





 ≺ρ (Ψ(z) − 1)
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and

1

γ







w
(

D
k
p,qg(w)

)

′

(1 − ζ)Dk
p,qg(w) + ζw

(

D
k
p,qg(w)

)

′
− 1





 ≺ρ (Ψ(w) − 1) ,

where the function g is given by (1.2).

Remark 1.1. For p = 1 and q → 1, a function f ∈ Σ given by (1.1) is said to be in the
class D

k (γ, ζ, Ψ), if the following conditions are satisfied:

1

γ







z
(

D
kf(z)

)

′

(1 − ζ)Dkf(z) + ζz
(

D
kf(z)

)

′
− 1





 ≺ρ (Ψ(z) − 1) , z ∈ ∆

and

1

γ







w
(

D
kg(w)

)

′

(1 − ζ)Dkg(w) + ζw
(

D
kg(w)

)

′
− 1





 ≺ρ (Ψ(w) − 1) , z ∈ ∆,

where γ ∈ C\{0}, 0 ≤ ζ < 1, k ∈ N0 and the function g is given by (1.2).

Remark 1.2. For ζ = 0 and γ ∈ C\{0}, a function f ∈ Σ given by (1.1) is said to be
in the class D

k
p,q (γ, Ψ), if the following conditions are satisfied:

1

γ







z
(

D
k
p,qf(z)

)

′

D
k
p,qf(z)

− 1





 ≺ρ (Ψ(z) − 1) , z ∈ ∆

and

1

γ







w
(

D
k
p,qg(w)

)

′

D
k
p,qg(w)

− 1





 ≺ρ (Ψ(w) − 1) , z ∈ ∆,

where k ∈ N0, 0 < q < p ≤ 1 and the function g is given by (1.2).

Remark 1.3. For ζ = k = 0 and γ ∈ C\{0}, a function f ∈ Σ given by (1.1) is said to
be in the class SΣ (γ, Ψ), if the following conditions are satisfied:

1

γ

(

zf ′(z)

f(z)
− 1

)

≺ρ (Ψ(z) − 1) , z ∈ ∆

and

1

γ

(

wg′(w)

g(w)
− 1

)

≺ρ (Ψ(w) − 1) , z ∈ ∆,

where the function g is given by (1.2).
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2. Main Result and its Consequences

Firstly, we will state the Lemma 2.1 to obtain our result.

Lemma 2.1 ([18]). If s ∈ P , then |si| ≤ 2 for each i, where P is the family of all

functions s, analytic in ∆, for which

Re (s(z)) > 0,

where

s(z) = 1 + s1z + s2z
2 + · · · .

Through out this paper it is assumed that Ψ is analytic in ∆ with Ψ(0) = 1 and let

(2.1) Ψ(z) = 1 + C1z + C2z
2 + · · · , C1 > 0.

Also let

(2.2) h(z) = D0 + D1z + D2z
2 + · · · , |h(z)| ≤ 1, z ∈ ∆.

We begin this section by finding the estimates on the coefficients |a2| and |a3| for
functions in the class D

k
p,q (γ, ζ, Ψ) proposed by Definition 1.4.

Theorem 2.1. Let f of the form (1.1) be in the class D
k
p,q (γ, ζ, Ψ) . Then

|a2| ≤ |γ| |D0| C1

√
C1

√

(1 − ζ)
∣

∣

∣2 [3]kp,q γC2
1D0 − [2]2k

p,q [(1 − ζ)(C2 − C1) + (1 + ζ)γC2
1D0]

∣

∣

∣

and

|a3| ≤ |γD0|2 C2
1

(1 − ζ)2 [2]2k

p,q

+
|γD1| C1

2(1 − ζ) [3]kp,q

+
|γD0| C1

2(1 − ζ) [3]kp,q

.

Proof. If f ∈ D
k
p,q (γ, ζ, Ψ) then, there are two analytic functions u, v : ∆ → ∆ with

u(0) = v(0) = 0, |u(z)| < 1, |v(w)| < 1 and a function h given by (2.2), such that

(2.3)
1

γ







z
(

D
k
p,qf(z)

)

′

(1 − ζ)Dk
p,qf(z) + ζz

(

D
k
p,qf(z)

)

′
− 1





 = h(z) (Ψ(u(z)) − 1)

and

(2.4)
1

γ







w
(

D
k
p,qg(w)

)

′

(1 − ζ)Dk
p,qg(w) + ζw

(

D
k
p,qg(w)

)

′
− 1





 = h(w) (Ψ(v(w)) − 1) .

Determine the functions s1 and s2 in P given by

s1(z) =
1 + u(z)

1 − u(z)
= 1 + t1z + t2z

2 + · · ·

and

s2(w) =
1 + v(w)

1 − v(w)
= 1 + q1w + q2w

2 + · · · .
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Thus,

(2.5) u(z) =
s1(z) − 1

s1(z) + 1
=

1

2

(

t1z +

(

t2 − t2
1

2

)

z2 + · · ·
)

and

(2.6) v(w) =
s2(w) − 1

s2(w) + 1
=

1

2

(

q1w +

(

q2 − q2
1

2

)

w2 + · · ·
)

.

The fact that s1 and s2 are analytic in ∆ with s1(0) = s2(0) = 1. Since u, v : ∆ → ∆,
the functions s1, s2 have a positive real part in ∆, and the relations |ti| ≤ 2 and
|qi| ≤ 2 are true. Using (2.5) and (2.6) together with (2.1) and (2.2) in the right
hands of the relations (2.3) and (2.4), we obtain

h(z) (Ψ (u(z)) − 1) =
1

2
D0C1t1z(2.7)

+

(

1

2
D1C1t1 +

1

2
D0C1

(

t2 − t2
1

2

)

+
1

4
D0C2t

2
1

)

z2 + · · ·

and

h(w) (Ψ (v(w)) − 1) =
1

2
D0C1q1w

(2.8)

+

(

1

2
D1C1q1 +

1

2
D0C1

(

q2 − q2
1

2

)

+
1

4
D0C2q

2
1

)

w2 + · · · .

In the light of (2.3) and (2.4), we get

(1 − ζ) [2]kp,q

γ
a2 =

D0C1t1

2
,(2.9)

2(1 − ζ) [3]kp,q a3 − (1 − ζ2) [2]2k

p,q a2
2

γ
=

D1C1t1

2
+

D0C1

2

(

t2 − t2
1

2

)

+
D0C2t

2
1

4
(2.10)

and

−
(1 − ζ) [2]kp,q

γ
a2 =

D0C1q1

2
,(2.11)

2(1 − ζ) [3]kp,q (2a2
2 − a3) − (1 − ζ2) [2]2k

p,q a2
2

γ
=

D1C1q1

2
+

D0C1

2

(

q2 − q2
1

2

)

+
D0C2q

2
1

4
.

(2.12)

Now, (2.9) and (2.11) give

(2.13) t1 = −q1

and

(2.14) 8(1 − ζ)2 [2]2k

p,q a2
2 = γ2D2

0C2
1

(

t2
1 + q2

1

)

.
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Adding (2.10) and (2.12), we get

(2.15)
4(1 − ζ) [3]kp,q − 2(1 − ζ2) [2]2k

p,q

γ
a2

2 =
D0C1 (t2 + q2)

2
+

D0 (C2 − C1) (t2
1 + q2

1)

4
.

By using (2.13), (2.14) and Lemma 2.1 in (2.15), we obtain

|a2| ≤ |γ| |D0| C1

√
C1

√

(1 − ζ)
∣

∣

∣2 [3]kp,q γC2
1D0 − [2]2k

p,q [(1 − ζ)(C2 − C1) + (1 + ζ)γC2
1D0]

∣

∣

∣

.

Next, to find the bound on |a3|, by subtracting (2.12) from (2.10), we have

(2.16)
4(1 − ζ) [3]kp,q

γ

(

a3 − a2
2

)

=
D0C1 (t2 − q2)

2
+

D1C1 (t1 − q1)

2
.

It follows from (2.13), (2.14) and (2.16) that

a3 =
γ2D2

0C2
1 (t2

1 + q2
1)

8(1 − ζ2) [2]2k

p,q

+
γD1C1 (t1 − q1)

8(1 − ζ) [3]kp,q

+
γD0C1 (t2 − q2)

8(1 − ζ) [3]kp,q

.

Applying Lemma 2.1 once again for the coefficients t1, t2, q1 and q2, we readily get

|a3| ≤ |γD0|2 C2
1

(1 − ζ)2 [2]2k

p,q

+
|γD1| C1

2(1 − ζ) [3]kp,q

+
|γD0| C1

2(1 − ζ) [3]kp,q

.

This completes the proof of Theorem 2.1. �

Corollary 2.1. Let f of the form (1.1) be in the class D
k (γ, ζ, Ψ). Then

|a2| ≤ |γ| |D0| C1

√
C1

√

(1 − ζ) |2γC2
1D03k − 22k [(1 − ζ)(C2 − C1) + (1 + ζ)γC2

1D0]|
and

|a3| ≤ |γD0|2 C2
1

(1 − ζ)222k
+

|γD1| C1

2(1 − ζ)3k
+

|γD0| C1

2(1 − ζ)3k
.

Corollary 2.2. Let f of the form (1.1) be in the class D
k
p,q (γ, Ψ). Then

|a2| ≤ |γ| |D0| C1

√
C1

√

∣

∣

∣2 [3]kp,q γC2
1D0 − [2]2k

p,q [(C2 − C1) + γC2
1D0]

∣

∣

∣

and

|a3| ≤ |γD0|2 C2
1

[2]2k

p,q

+
|γD1| C1

2 [3]kp,q

+
|γD0| C1

2 [3]kp,q

.

Corollary 2.3. Let f of the form (1.1) be in the class SΣ (γ, Ψ) . Then

|a2| ≤ |γD0| C1

√
C1

√

|C1 − C2 + γC2
1D0|
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and

|a3| ≤ |γD0|2 C2
1 +

(|D1| + |D0|) |γ| C1

2
.

3. Concluding Remark

Various choices of Ψ as mentioned above and suitably choosing the values of C1 and
C2, we state some interesting results analogous to Theorem 2.1 and the Corollaries
2.1 to 2.3. For example, the function Ψ is given by

Ψ (z) =
(

1 + z

1 − z

)θ

= 1 + 2θz + 2θ2z2 + · · · , 0 < θ ≤ 1,

which gives

C1 = 2θ and C2 = 2θ2.

By taking

Ψ (z) =
1 + (1 − 2µ) z

1 − z
= 1 + 2 (1 − µ) z + 2 (1 − µ) z2 + · · · , 0 ≤ µ < 1,

we have

C1 = C2 = 2 (1 − µ) .

On the other hand, for −1 ≤ B ≤ A < 1, if we let

Ψ (z) =
1 + Az

1 + Bz
= 1 + (A − B)z − B(A − B)z2 + · · · , 0 < θ ≤ 1,

then we have

C1 = (A − B) and C2 = −B(A − B).

The details involved may be left as an exercise for the interested reader.
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