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EXISTENCE OF RENORMALIZED SOLUTIONS FOR SOME
ANISOTROPIC QUASILINEAR ELLIPTIC EQUATIONS

T. AHMEDATT1, A. AHMED1, H. HJIAJ2, AND A. TOUZANI1

Abstract. In this paper, we consider a class of anisotropic quasilinear elliptic
equations of the type −

N∑
i=1

∂iai(x, u,∇u) + |u|s(x)−1u = f(x, u), in Ω,

u = 0 on ∂Ω,

where f(x, s) is a Carathéodory function which satisfies some growth condition. We
prove the existence of renormalized solutions for our Dirichlet problem, and some
regularity results are concluded.

1. Introduction

Let Ω be an open bounded subset of RN , N ≥ 2, with the smooth boundary ∂Ω.
Zhao et al. have studied in [17] the quasilinear elliptic problem

−div(a(x,∇u)) + |u|p−2u = λf(x, u), in Ω,∫
∂Ω
a(x,∇u) · nds = 0,

u = constant on ∂Ω,
They have proved the existence of weak solutions under some suitable growth assump-
tions on f(x, s), (see also [2, 7]). In the framework of Sobolev spaces with variable
exponents, Fan and Zhang [11] have considered the following nonlinear elliptic problem{

div(|∇u|p(x)−2∇u) = λf(x, u), in Ω,
u = 0, on ∂Ω,
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where λ > 0 and f(x, s) satisfies the growth condition |f(x, s)| ≤ η + θ|s|δ−1, where
1 ≤ δ ≤ p− and η, θ are two positive constants (we refer also to [6]). In [3], the authors
have proved the existence of weak solutions for the quasilinear p(x)-elliptic problem

−div a(x, u,∇u) = f(x, u,∇u),

by using the calculus of variations operators method, where f(x, s, ξ) is a Carathéodory
function which satisfies some growth condition.

In the framework of anisotropic Sobolev spaces, Di Nardo, Feo and Guibé have
studied in [9] the existence of renormalized solutions for some class of nonlinear
anisotropic elliptic problems of the type

−
N∑
i=1

∂xi(ai(x, u)|∂xiu|pi−2∂xiu) = f − div g, in Ω,

with f ∈ L1(Ω) and g ∈ ΠN
i=1L

p′i(Ω), the uniqueness of renormalized solution was
concluded under some local Lipschitz conditions on the function ai(x, s) with respect
to s, (see also [1] and [8]).

The aim of this paper is to study the existence and regularity of renormalized
solutions for the anisotropic quasilinear elliptic problem

(1.1)

 −
N∑
i=1

∂iai(x, u,∇u) + |u|s(x)−1u = f(x, u), in Ω,

u = 0, on ∂Ω,

where (ai(x, s, ξ))i=1,...,N are Carathéodory functions, the right-hand side f(x, s) is a
Carathéodory function satisfying only some nonstandard growth condition.

One of our motivations for studying (1.1) comes from these applications to electro-
rheological fluids as an important class of non-Newtonian fluids (sometimes referred
to as smart fluids). The electro-rheological fluids are characterized by their ability
to drastically change the mechanical properties under the influence of an external
electromagnetic field. A mathematical model of electro-rheological fluids was proposed
in [14,15], also in the robotics and space technology (we refer for example to [16]).

One of the difficulties in proving the existence of renormalized solutions stems
from the nonstandard growth of the Carathéodory function f(x, s), to overcome
the difficulty, we use the regularizing effect of the term |u|s(x)−1u with some special
technics.

The rest of this paper is structured as follows. In Section 2 we recall some definitions
and results on the anisotropic variable exponent Sobolev spaces. We introduce in
Section 3 some assumptions for which our problem has at least one renormalized
solution. Section 4 will be devoted to show the existence of renormalized solutions u
for the problem (1.1) in the anisotropic Sobolev space with variable exponents, and
we will give some regularity results, that is |u|s(x)−1u ∈ L1(Ω).
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2. Preliminary

Let Ω be a bounded open subset of RN , N ≥ 2, we denote
C+(Ω) = {measurable function p(·) : Ω→ R such that 1 < p− ≤ p+ < N},

where
p− = ess inf{p(x)/x ∈ Ω} and p+ = ess sup{p(x)/x ∈ Ω}.

We define the Lebesgue space with variable exponent Lp(·)(Ω) as the set of all mea-
surable functions u : Ω→ R for which the convex modular

ρp(·)(u) :=
∫

Ω
|u|p(x)dx

is finite. If the exponent is bounded, i.e., if p+ < +∞, then the expression
‖u‖p(·) = inf{λ > 0 : ρp(·)(u/λ) ≤ 1}

defines a norm in Lp(·)(Ω), called the Luxemburg norm. The space (Lp(·)(Ω), ‖ · ‖p(·))
is a separable Banach space. Moreover, if 1 < p− ≤ p+ < +∞, then Lp(·)(Ω) is
uniformly convex, hence reflexive, and its dual space is isomorphic to Lp′(·)(Ω), where

1
p(x) + 1

p′(x) = 1. Finally, we have the Hölder type inequality:∣∣∣∣∫
Ω
uvdx

∣∣∣∣ ≤
(

1
p−

+ 1
(p′)−

)
‖u‖p(·)‖v‖p′(·),

for any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω).
The Sobolev space with variable exponent W 1,p(·)(Ω) is defined by

W 1,p(·)(Ω) = {u ∈ Lp(·)(Ω) and |∇u| ∈ Lp(·)(Ω)},
which is a Banach space, equipped with the following norm

‖u‖1,p(·) = ‖u‖p(·) + ‖∇u‖p(·).

The space (W 1,p(·)(Ω), ‖ · ‖1,p(·)) is a separable and reflexive Banach space. We define
W

1,p(·)
0 (Ω) as the closure of C∞0 (Ω) inW 1,p(·)(Ω). For more details on variable exponent

Lebesgue and Sobolev spaces, we refer the reader to [10].
Now, we present the anisotropic variable exponent Sobolev space, used in the study

of our quasilinear anisotropic elliptic problem.
Let p1(·), p2(·), . . . , pN(·) be N variable exponents in C+(Ω). We denote

~p(·) = (p1(·), . . . , pN(·)) and Diu = ∂u

∂xi
, for i = 1, . . . , N,

and we define
p+ = max{p−1 , . . . , p−N} and p− = min{p−1 , . . . , p−N}, then 1 < p− ≤ p+.

The anisotropic variable exponent Sobolev space W 1,~p(·)(Ω) is defined as follow

W 1,~p(·)(Ω) = {u ∈ W 1,1(Ω) and Diu ∈ Lpi(·)(Ω) for i = 1, 2, . . . , N},



620 T. AHMEDATT, A. AHMED, H. HJIAJ, AND A. TOUZANI

endowed with the norm

(2.1) ‖u‖1,~p(·) = ‖u‖1,1 +
N∑
i=1
‖Diu‖pi(·).

We define also W 1,~p(·)
0 (Ω) as the closure of C∞0 (Ω) in W 1,~p(·)(Ω) with respect to the

norm (2.1). The space
(
W

1,~p(·)
0 (Ω), ‖u‖1,~p(·)

)
is a reflexive Banach space (cf. [13]).

Remark 2.1. In view of the continuous embedding W 1,~p(·)
0 (Ω) ↪→ W 1,1

0 (Ω) and the
Poincaré type inequality we conclude that the two norms ‖u‖1,~p(·) and

∑N
i=1 ‖Diu‖pi(·)

are equivalent in the anisotropic variable exponent Sobolev spaces.

Lemma 2.1. We have the following continuous and compact embeddings.
• If p− < N , then W 1,~p(·)

0 (Ω) ↪→↪→ Lq(Ω), for q ∈ [p−, p∗[, where p∗ = Np−

N−p− .

• If p− = N , then W 1,~p(·)
0 (Ω) ↪→↪→ Lq(Ω), for all q ∈ [p−,+∞[.

• If p− > N , then W 1,~p(·)
0 (Ω) ↪→↪→ L∞(Ω) ∩ C0(Ω).

The proof of this lemma follows from the fact that the embedding W 1,~p(·)
0 (Ω) ↪→

W
1,p−
0 (Ω) is continuous, and in view of the compact embedding theorem for Sobolev

spaces.

Proposition 2.1. The dual of W 1,~p(·)
0 (Ω) is denote by W−1,~p′(·)(Ω), where ~p′(·) =

(p′1(·), . . . , p′N(·)) and 1
p′i(x) + 1

pi(x) = 1 (cf. [5] for the constant exponent case). For
each F ∈ W−1,~p′(·)(Ω) there exists F0 ∈ (Lp+(Ω))′ and Fi ∈ Lp

′
i(·)(Ω) for i = 1, 2, . . . , N ,

such that F = F0 −
∑N
i=1D

iFi. Moreover, for any u ∈ W 1,~p(·)
0 (Ω), we have

〈F, u〉 =
N∑
i=0

∫
Ω
FiD

iudx.

We define a norm on the dual space by

‖F‖−1,~p′(·) = inf


N∑
i=0
‖Fi‖p′i(·) with F = F0 −

N∑
i=1

DiFi such that F0 ∈ (Lp+(Ω))′

and Fi ∈ Lp
′
i(·)(Ω)

.
Definition 2.1. Let k > 0, the truncation function Tk(·) : R→ R is defined by

Tk(s) =

 s, if |s| ≤ k,

k
s

|s|
, if |s| > k,

and we define
T

1,~p(·)
0 (Ω) := {u : Ω→ R measurable, such that Tk(u) ∈ W 1,~p(·)

0 (Ω) for any k > 0}.
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Proposition 2.2. Let u ∈ T
1,~p(·)
0 (Ω). For any i ∈ {1, . . . , N}, there exists a unique

measurable function vi : Ω→ R such that

DiTk(u) = vi.χ{|u|<k} a.e. x ∈ Ω, for all k > 0,

where χA denotes the characteristic function of a measurable set A. The functions vi
are called the weak partial derivatives of u and are still denoted Diu. Moreover, if u
belongs to W 1,1

0 (Ω), then vi coincides with the standard distributional derivative of u,
that is, vi = Diu.

3. Essential Assumptions

Let Ω be a bounded open subset of RN(N ≥ 2).We consider ~p(·) = (p1(·), . . . , pN(·))
the vector of exponents pi(·) ∈ C+(Ω) for i = 1, . . . , N, and let q(·), s(·) ∈ C+(Ω) where

q(x) < max(s(x), p+ − 1) a.e. in Ω.

We consider the Leray-Lions operatorA acted fromW
1,~p(·)
0 (Ω) into its dualW−1,~p′(·)(Ω),

defined by the formula

Au = −
N∑
i=1

∂iai(x, u,∇u),

where ai : Ω × R × RN → R are Carathéodory function which satisfy the following
conditions

|ai(x, s, ξ)| ≤β(Ki(x) + |s|pi(x)−1 + |ξ|pi(x)−1), for any i = 1, . . . , N,(3.1)
ai(x, s, ξ)ξi ≥α|ξi|pi(x), for any i = 1, . . . , N,(3.2)

for all ξ = (ξ1, . . . , ξN) and ξ′ = (ξ′1, . . . , ξ′N), we have

(3.3) [ai(x, s, ξ)− ai(x, s, ξ′)](ξi − ξ′i) > 0, for ξi 6= ξ′i,

for a.e. x ∈ Ω, all (s, ξ) ∈ R×RN , where Ki(x) is a positive function lying in Lp′i(·)(Ω)
and α, β > 0.

As a consequence of (3.2) and the continuity of the function ai(x, s, ·) with respect
to ξ, we have

ai(x, s, 0) = 0.
In this paper, we consider the following quasilinear anisotropic elliptic problem

(3.4)

 −
N∑
i=1

∂iai(x, u,∇u) + |u|s(x)−1u = f(x, u), in Ω,

u = 0, on ∂Ω,
where f : Ω× R→ R is a Carathéodory function satisfying

(3.5) |f(x, r)| ≤ g(x) + |r|q(x) a.e in Ω,

and g(·) is a measurable positive function in L1(Ω).
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Remark 3.1. The assumption (3.1) is used here to ensure that ai(x, u,∇u) belongs to
Lp
′
i(·)(Ω). In the other case where Au = −∑N

i=1 ∂
iai(x,∇u), the uniqueness of solution

can be concluded under some additional conditions on the Carathéodory function
f(x, s).

4. Main Results

We begin by recalling some important lemmas useful to prove our main result.

Lemma 4.1 ([3]). Let g ∈ Lr(·)(Ω) and gn ∈ Lr(·)(Ω) with ‖gn‖r(·) ≤ C for 1 < r(x) <
∞. If gn(x)→ g(x) a.e. on Ω, then gn ⇀ g in Lr(·)(Ω).

Lemma 4.2 ([4]). Assuming that (3.1)-(3.3) hold, and let (un)n∈N be a sequence in
W

1,~p(·)
0 (Ω) such that un ⇀ u in W 1,~p(·)

0 (Ω) and∫
Ω

(|un|p0(x)−2un − |u|p0(x)−2u)(un − u)dx

+
N∑
i=1

∫
Ω

(ai(x, un,∇un)− ai(x, un,∇u))(Diun −Diu)dx→ 0,

then un → u in W 1,~p(·)
0 (Ω) for a subsequence.

Our objective is to prove the existence of renormalized solutions for the quasilinear
anisotropic elliptic problem (3.4).

Definition 4.1. A measurable function u is called renormalized solution of the quasi-
linear elliptic problem (3.4) if Tk(u) ∈ W 1,~p(·)

0 (Ω) for any k > 0, with f(x, u) ∈ L1(Ω),
and

(4.1) lim
h→∞

N∑
i=1

∫
{h<|u|≤h+1}

ai(x, u,∇u)Diudx = 0,

such that u satisfies the following equality
N∑
i=1

∫
Ω
ai(x, u,∇u)

(
S ′(u)ϕDiu+ S(u)Diϕ

)
dx+

∫
Ω
|u|s(x)−1uS(u)ϕdx

=
∫

Ω
f(x, u)S(u)ϕdx,

for every ϕ ∈ W 1,~p(·)
0 (Ω) ∩ L∞(Ω) and for any smooth function S(·) ∈ W 1,∞(R) with

a compact support.

Theorem 4.1. Assuming that the conditions (3.1)–(3.3) and (3.5) hold true, then the
quasilinear anisotropic elliptic problem (3.4) has at least one renormalized solution.
Moreover, we have

|u|s(x) ∈ L1(Ω).
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4.1. Proof of Theorem 4.1.

Step 1: approximate problems. Firstly, we consider the approximate problem

(4.2)
{
Anun + |Tn(un)|s(x)−1Tn(un) = fn(x, Tn(un)), in Ω,
un = 0, on ∂Ω,

where Anv = −∑N
i=1 ∂

iai(x, Tn(v),∇v) and fn(x, r) = Tn(f(x, r)). Thanks to (3.5),
it’s clear that

|fn(x, r)| ≤ n and |fn(x, r)| ≤ g(x) + |r|q(x).

We consider the operator Gn : W 1,~p(·)
0 (Ω)→ W−1,~p′(·)(Ω) by

〈Gnu, v〉 =
∫

Ω
|Tn(u)|s(x)−1Tn(u)vdx−

∫
Ω
fn(x, Tn(u))vdx,

for any u, v ∈ W 1,~p(·)
0 (Ω). In view of the generalized Hölder-type inequality, we have

|〈Gnu, v〉| ≤
∫

Ω
|Tn(u)|s(x) |v|dx+

∫
Ω
|fn(x, Tn(u))| |v|dx(4.3)

≤ ns
+
∫

Ω
|v|dx+ n

∫
Ω
|v|dx

= (ns+ + n)‖v‖1

≤ C1‖v‖1,~p(·).

Lemma 4.3. The bounded operator Bn = An + Gn acted from W
1,~p(·)
0 (Ω) into

W−1,~p′(·)(Ω) is pseudo-monotone. Moreover, Bn is coercive in the following sense:
〈Bnv, v〉
‖v‖1,~p(·)

→ +∞ as ‖v‖1,~p(·) →∞, for any v ∈ W 1,~p(·)
0 (Ω).

Proof. In view of the Hölder’s inequality and the growth condition (3.1), it’s easy to
see that the operator An is bounded, and by (4.3) we conclude that Bn is bounded.
For the coercivity, we have for any u ∈ W 1,~p(·)

0 (Ω),
〈Bnu, u〉 = 〈Anu, u〉+ 〈Gnu, u〉

=
N∑
i=1

∫
Ω
ai(x, Tn(u),∇u) Diudx+

∫
Ω
|Tn(u)|s(x)|u|dx

−
∫

Ω
|fn(x, Tn(u))||u|dx

≥ α
N∑
i=1

∫
Ω
|Diu|pi(x)dx+

∫
Ω
|Tn(u)|s(x)+1dx− C2n‖u‖p0(·)

≥ C0 ‖u‖
p−

1,~p(·) − αN |Ω| − C2n‖u‖1,~p(·),

it follows that
〈Bnu, u〉
‖u‖1,~p(·)

→ +∞ as ‖u‖1,~p(·) →∞.
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It remains to show thatBn is pseudo-monotone. Let (uk)k∈N be a sequence inW 1,~p(·)
0 (Ω)

such that

(4.4)


uk ⇀ u, in W 1,~p(·)

0 (Ω),
Bnuk ⇀ χn, in W−1,~p′(·)(Ω),
lim sup
k→∞

〈Bnuk, uk〉 ≤ 〈χn, u〉.

We will prove that

χn = Bnu and 〈Bnuk, uk〉 → 〈χn, u〉 as k →∞.

In view of the compact embedding W 1,~p(·)
0 (Ω) ↪→↪→ L1(Ω), we have uk → u in L1(Ω)

and a.e. Ω, for a subsequence still denoted (uk)k∈N.
We have (uk)k∈N is a bounded sequence in W 1,~p(·)

0 (Ω), using the growth condition
(3.1) it’s clear that the sequence (ai(x, Tn(uk),∇uk))k∈N is bounded in Lp′i(·)(Ω), then
there exists a function ϕi ∈ Lp

′
i(·)(Ω) such that

(4.5) ai(x, Tn(uk),∇uk) ⇀ ϕi in Lp
′
i(·)(Ω) as k →∞.

On the one hand we have

(4.6) |Tn(uk)|s(x)−1Tn(uk)→ |Tn(u)|s(x)−1Tn(u) weak−∗ in L∞(Ω),

and since fn(x, Tn(s)) is a Carathéodory function, then

(4.7) fn(x, Tn(uk))→ fn(x, Tn(u)) weak−∗ in L∞(Ω).

Then, for any v ∈ W 1,~p(·)
0 (Ω) we have

(4.8)
〈χn, v〉 = lim

k→∞
〈Bnuk, v〉

= lim
k→∞

N∑
i=1

∫
Ω
ai(x, Tn(uk),∇uk)Divdx+ lim

k→∞

∫
Ω
|Tn(uk)|s(x)−1Tn(uk)vdx

− lim
k→∞

∫
Ω
fn(x, Tn(uk))vdx

=
N∑
i=1

∫
Ω
ϕi D

ivdx+
∫

Ω
|Tn(u)|s(x)−1Tn(u)vdx−

∫
Ω
fn(x, Tn(u))vdx.

Having in mind (4.4) and (4.8), we conclude that

lim sup
k→∞

〈Bn(uk), uk〉 = lim sup
k→∞

( N∑
i=1

∫
Ω
ai(x, Tn(uk),∇uk)Diukdx

+
∫

Ω
|Tn(uk)|s(x)−1Tn(uk)ukdx−

∫
Ω
fn(x, Tn(uk))ukdx

)
≤

N∑
i=1

∫
Ω
ϕi D

iudx+
∫

Ω
|Tn(u)|s(x)−1Tn(u)udx

−
∫

Ω
fn(x, Tn(u))udx.
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Since uk → u strongly in L1(Ω), and thanks to (4.6)–(4.7) we obtain

(4.9)
∫

Ω
|Tn(uk)|s(x)−1Tn(uk)ukdx→

∫
Ω
|Tn(u)|s(x)−1Tn(u)udx

and
(4.10)

∫
Ω
fn(x, Tn(uk))ukdx→

∫
Ω
fn(x, Tn(u))udx.

Therefore,

(4.11) lim sup
k→∞

N∑
i=1

∫
Ω
ai(x, Tn(uk),∇uk)Diukdx ≤

N∑
i=1

∫
Ω
ϕi D

iudx.

On the other hand, in view of (3.3) we have

(4.12)
N∑
i=1

∫
Ω

(ai(x, Tn(uk),∇uk)− ai(x, Tn(uk),∇u))(Diuk −Diu)dx ≥ 0,

then
N∑
i=1

∫
Ω
ai(x, Tn(uk),∇uk)Diukdx ≥

N∑
i=1

∫
Ω
ai(x, Tn(uk),∇uk)Diudx

+
N∑
i=1

∫
Ω
ai(x, Tn(uk),∇u)(Diuk −Diu)dx.

In view of Lebesgue’s dominated convergence theorem we have Tn(uk) → Tn(u) in
Lpi(·)(Ω), thus ai(x, Tn(uk),∇u) → ai(x, Tn(u),∇u) strongly in Lp

′
i(·)(Ω), and using

(4.5) we get

lim inf
k→∞

N∑
i=1

∫
Ω
ai(x, Tn(uk),∇uk)Diukdx ≥

N∑
i=1

∫
Ω
ϕi D

iudx.

Having in mind (4.11), we conclude that

(4.13) lim
k→∞

N∑
i=1

∫
Ω
ai(x, Tn(uk),∇uk)Diukdx =

N∑
i=1

∫
Ω
ϕi D

iudx.

Therefore, by combining (4.8) and (4.9)–(4.10), we conclude that
〈Bnuk, uk〉 → 〈χn, u〉 as k →∞.

Now, by (4.13) we can prove that

lim
k→∞

( N∑
i=1

∫
Ω

(ai(x, Tn(uk),∇uk)− ai(x, Tn(uk),∇u))(Diuk −Diu)dx

+
∫

Ω
(|uk|p

+−2uk − |u|p
+−2u)(uk − u)dx

)
= 0,

and so, by virtue of Lemma 4.2, we get

uk → u in W 1,~p(·)
0 (Ω) and Diuk → Diu a.e. in Ω,
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then

ai(x, Tn(uk),∇uk) ⇀ ai(x, Tn(u),∇u) in Lp′i(·)(Ω), for i = 1, . . . , N,

and thanks to (4.6)–(4.7), we obtain χn = Bnu, which conclude the proof of Lemma 4.3.
�

In view of Lemma 4.3, there exists at least one weak solution un ∈ W 1,~p(·)
0 (Ω) of

the approximate problem (4.2) (cf. [12], Theorem 2.7, page 180).

Step 2: a priori estimates. Choose 1 < θ < p− such that 1 ≤ q(x) < max(s(x), p+−θ).
By taking ϕ(un) =

(
1− 1

(1+|un|)θ−1

)
sign (un) ∈ W 1,~p(·)

0 (Ω) as a test function in (4.2),
we obtain

(θ − 1)
N∑
i=1

∫
Ω

ai(x, Tn(un),∇un) ·Diun
(1 + |un|)θ

dx+
∫

Ω
|Tn(un)|s(x)

(
1− 1

(1 + |un|)θ−1

)
dx

=
∫

Ω
fn(x, Tn(un))

(
1− 1

(1 + |un|)θ−1

)
sign (un)dx.

By using the coercivity (3.2) and the growth condition (3.5), we obtain

α(θ − 1)
N∑
i=1

∫
Ω

|Diun|pi(x)

(1 + |un|)θ
dx+

∫
Ω
|Tn(un)|s(x)

(
1− 1

(1 + |un|)θ−1

)
dx(4.14)

≤
∫

Ω
(|g(x)|+ |Tn(un)|q(x))

(
1− 1

(1 + |un|)θ−1

)
dx.

For the first term on the left hand side of (4.14), for any i = 1, . . . , N , we have

∫
Ω

|Diun|pi(x)

(1 + |un|)θ
dx ≥

∫
Ω

|Diun|p
−
i

(1 + |un|)θ
dx− |Ω|

=
∫

Ω

∣∣∣∣ Diun

(1 + |un|)
θ

p−
i

∣∣∣∣p−i dx− |Ω|
=
∫

Ω

∣∣∣∣Di
∫ |un|

0

ds

(1 + s)
θ

p−
i

∣∣∣∣p−i dx− |Ω|
≥ 1
Cp

∫
Ω

∣∣∣∣ ∫ |un|
0

ds

(1 + s)
θ

p−
i

∣∣∣∣p−i dx− |Ω|
≥ 1
Cp

∫
Ω

|un|p
−
i

(1 + |un|)θ
dx− |Ω|

≥ 1
2θCp

∫
Ω
|un|p

−
i −θdx− 2|Ω|,
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and since ϕ(un) ≥ 1
2 for |un| ≥ R, with R = 2

1
1−θ − 1. Using Young’s inequality it

follows that

α(θ − 1)
2θCp

N∑
i=1

∫
Ω
|un|p

−
i −θdx+ 1

2

∫
{|un|≥R}

|Tn(un)|s(x)dx(4.15)

≤
∫

Ω
|g(x)|dx+

∫
Ω
|Tn(un)|q(x)dx+ 2αN(θ − 1)|Ω|.

Since 1 ≤ q(x) < max(s(x), p+ − θ), by using Young’s inequality we conclude that
(4.16)∫

Ω
|Tn(un)|q(x)dx ≤ α(θ − 1)

2θ+1Cp

N∑
i=1

∫
Ω
|un|p

−
i −θdx+ 1

4

∫
{|un|≥R}

|Tn(un)|s(x)dx+ C0.

It follows from (4.15) that there exists a constant C1 that does not depend on n, such
that

(4.17)
N∑
i=1

∫
Ω
|un|p

−
i −θdx+

∫
Ω
|Tn(un)|s(x)dx+

∫
Ω
|Tn(un)|q(x)dx ≤ C1.

Let k ≥ 1, in view of (4.14) we conclude that

(4.18) 1
(1 + k)θ

N∑
i=1

∫
Ω
|DiTk(un)|pi(x)dx ≤

N∑
i=1

∫
Ω

|Diun|pi(x)

(1 + |un|)θ
dx+

∫
Ω
|Tn(un)|s(x) ≤ C2.

Therefore, we obtain
N∑
i=1

∫
Ω
|DiTk(un)|pi(x)dx ≤ C2(1 + k)θ, for k ≥ 1.

Thus, the sequence (Tk(un))n is bounded in W 1,~p(·)
0 (Ω), and there exists a subsequence

still denoted (Tk(un))n and ηk ∈ W 1,~p(·)
0 (Ω) such that

(4.19)
{
Tk(un) ⇀ ηk in W 1,~p(·)

0 (Ω),
Tk(un)→ ηk in L1(Ω) and a.e. in Ω.

On the other hand, in view of Poincaré type inequality, for any i ∈ {1, . . . , N} we
have

kp
−
i meas{|un| > k} =

∫
{|un|>k}

|Tk(un)|p
−
i dx ≤

∫
Ω
|Tk(un)|p

−
i dx

≤ Cp−i
p

∫
Ω
|DiTk(un)|p

−
i dx

≤ Cp−i
p

∫
Ω
|DiTk(un)|pi(x)dx+ Cp−i

p |Ω|

≤ max
1≤i≤N

(Cp−i
p )

( N∑
i=1

∫
Ω
|DiTk(un)|pi(x)dx+ |Ω|

)
≤ C3(1 + k)θ,
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where C3 is a constant that does not depend on k and n. Since 1 < θ < p−, we
conclude that

(4.20) meas{|un| > k} ≤ C3(1 + k)θ

kp
+ → 0 as k →∞.

Now, we will show that (un)n is a Cauchy sequence in measure. Indeed, we have
for every δ > 0,

meas{|un − um| > δ} ≤ meas{|un| > k}+ meas{|um| > k}
+meas{|Tk(un)− Tk(um)| > δ}.

Let ε > 0, in view of (4.20) we may choose k = k(ε) large enough such that

(4.21) meas{|un| > k} ≤ ε

3 and meas{|um| > k} ≤ ε

3 .

Moreover, thanks to (4.19) we have
Tk(un)→ ηk in L1(Ω) and a.e. in Ω.

Thus (Tk(un))n∈N is a Cauchy sequence in measure, and for any k > 0 and δ, ε > 0,
there exists n0 = n0(k, δ, ε) such that

(4.22) meas{|Tk(un)− Tk(um)| > δ} ≤ ε

3 , for all m,n ≥ n0(k, δ, ε).

By combining (4.21) and (4.22), we conclude that for all δ, ε > 0, there exists n0 =
n0(δ, ε) such that

meas{|un − um| > δ} ≤ ε, for any n,m ≥ n0.

Thus (un)n is a Cauchy sequence in measure, and converges almost everywhere, for a
subsequence, to some measurable function u. Thanks to (4.19) we conclude that

Tk(un) ⇀ Tk(u) in W 1,~p(·)
0 (Ω).

In view of Lebesgue dominated convergence theorem, we obtain
Tk(un)→ Tk(u) in Lpi(·)(Ω), for i = 1, . . . , N.

Moreover, by taking Tk(un) as a test function in the approximate problem (4.2), we
have

N∑
i=1

∫
Ω
ai(x, Tn(un),∇un)DiTk(un)dx+

∫
Ω
|Tn(un)|s(x)|Tk(un)|dx

=
∫

Ω
fn(x, Tn(un)) Tk(un)dx.

In view of (3.2), (3.5), and using (4.17) we obtain

α
N∑
i=1

∫
Ω
|DiTk(un)|pi(x)dx ≤

∫
Ω
g(x) |Tk(un)|dx+

∫
Ω
|Tn(un)|q(x) |Tk(un)|dx

≤ k‖g(x)‖L1(Ω) + k‖|Tn(un)|q(x)‖L1(Ω)
≤ k(‖g(x)‖L1(Ω) + C1).
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It follows, for any i = 1, . . . , N, that

kp
−
i meas{|un| > k} ≤

∫
Ω
|Tk(un)|p

−
i dx

≤ Cp−i
p

∫
Ω
|DiTk(un)|p

−
i dx

≤ Cp−i
p

∫
Ω
|DiTk(un)|pi(x)dx+ Cp−i

p |Ω|
≤ C4k.

Thus, we conclude that

(4.23) kp
+−1 ·meas{|un| > k} ≤ C4, for any k ≥ 1,

where C4 is a constant that doesn’t depend on k and n.

Step 3: the equi-integrability of (|Tn(un)|s(x)−1Tn(un))n and (fn(x, Tn(un)))n. In the
sequel, we denote by εi(n), i = 1, 2, . . . , various real-valued functions of real variables
that converge to 0 as n tends to infinity. Similarly, we define εi(h) and εi(n, h).

In order to pass to the limit in the approximate equation, we shall show that
(4.24) |Tn(un)|s(x)−1Tn(un)→ |u|s(x)−1u strongly in L1(Ω)
and
(4.25) fn(x, Tn(un))→ f(x, u) strongly in L1(Ω).
We have |Tn(un)|s(x)−1Tn(un)→ |u|s(x)−1u and fn(x, Tn(un))→ f(x, u) a.e. in Ω. Thus,
in view of Vitali’s theorem, to show the convergence (4.24)− (4.25), it is suffices to
prove that(fn(x, Tn(un)))n and (|Tn(un)|s(x)−1Tn(un))n are uniformly equi-integrable.
Let h ≥ R, by taking vn = ϕ(un)|Th+1(un)− Th(un)| as a test function in (4.2), and
since vn have the same sign as un, we have

N∑
i=1

∫
Ω
ai(x, Tn(un),∇un)(DiTh+1(un)−DiTh(un))ϕ(un)dx

+ (θ − 1)
N∑
i=1

∫
Ω

ai(x, Tn(un),∇un)Diun
(1 + |un|)θ

|Th+1(un)− Th(un)|dx

+
∫

Ω
|Tn(un)|s(x)|Th+1(un)− Th(un)| |ϕ(un)|dx

≤
∫

Ω
|fn(x, Tn(un))| |Th+1(un)− Th(un) |ϕ(un)|dx.

We have |ϕ(un)| ≥ 1
2 on the set {h ≤ |un|}, and thanks to (3.2) we obtain

N∑
i=1

∫
Ω
ai(x, Tn(un),∇un)(DiTh+1(un)−DiTh(un)) |ϕ(un)|dx

+ (θ − 1)
N∑
i=1

∫
Ω

ai(x, Tn(un),∇un)Diun
(1 + |un|)θ

|Th+1(un)− Th(un)|dx
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≥1
4

N∑
i=1

∫
{h<|un|≤h+1}

ai(x, Tn(un),∇un)Diundx+ α

4

N∑
i=1

∫
{h<|un|≤h+1}

|Diun|pi(x)dx

+ α(θ − 1)
N∑
i=1

∫
{h+1≤|un|}

|Diun|pi(x)

(1 + |un|)θ
dx

≥1
4

N∑
i=1

∫
{h<|un|≤h+1}

ai(x, Tn(un),∇un)Diundx+ C5

N∑
i=1

∫
{h+1≤|un|}

|Diun|pi(x)

(1 + |un|)θ
dx,

with C5 = α ·min
{1

4 , (θ − 1)
}
. Having in mind (3.5) we conclude that

1
4

N∑
i=1

∫
{h<|un|≤h+1}

ai(x, Tn(un),∇un)Diundx+ C5

N∑
i=1

∫
{h+1≤|un|}

|Diun|pi(x)

(1 + |un|)θ
dx(4.26)

+
∫

Ω
|Tn(un)|s(x)|Th+1(un)− Th(un)|ϕ(un)dx

≤
∫
{h<|un|}

|g(x)||Th+1(un)− Th(un)|dx

+
∫
{h<|un|}

|Tn(un)|q(x)|Th+1(un)− Th(un)| |ϕ(un)|dx.

For the second term on the left-hand side of (4.26), thanks to Poincaré’s inequality
we have

C5

N∑
i=1

∫
{h≤|un|}

|Diun|pi(x)

(1 + |un|)θ
dx

≥C5

N∑
i=1

∫
{h≤|un|}

|Diun|p
−
i

(1 + |un|)θ
dx− C5Nmeas{h ≤ |un|}

=C5

N∑
i=1

∫
Ω

∣∣∣∣Di
∫ |un|
|Th(un)|

ds

(1 + s)
θ

p−
i

∣∣∣∣p−i dx− C5Nmeas{h ≤ |un|}

≥C6

N∑
i=1

∫
Ω

∣∣∣∣ ∫ |un|
|Th(un)|

ds

(1 + s)
θ

p−
i

∣∣∣∣p−i dx− C5Nmeas{h ≤ |un|}

≥C6

N∑
i=1

∫
{h≤|un|}

(|un| − |Th(un)|)p−i
(1 + |un|)θ

dx− C5Nmeas{h ≤ |un|}

≥C7

N∑
i=1

∫
{h≤|un|}

|un|p
−
i −θdx− C6

N∑
i=1

∫
{h≤|un|}

hp
−
i

(1 + |un|)θ
dx

− C5Nmeas{h ≤ |un|}.
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Having in mind (4.26), we conclude that
1
4

N∑
i=1

∫
{h<|un|≤h+1}

ai(x, Tn(un),∇un)Diundx+ C7

N∑
i=1

∫
{h≤|un|}

|un|p
−
i −θdx

+
∫
{h<|un|}

|Tn(un)|s(x)|Th+1(un)− Th(un)|ϕ(un)dx

≤
∫
{h<|un|}

|g(x)|dx+
∫
{h<|un|}

|Tn(un)|q(x)|Th+1(un)− Th(un)| |ϕ(un)|dx

+ C6

N∑
i=1

∫
{h<|un|}

hp
−
i

(1 + |un|)θ
dx+ C5Nmeas{h ≤ |un|}.

Since q(x) < max(s(x), p+ − θ), and in view of Young’s inequality we have∫
{h<|un|}

|Tn(un)|q(x)|Th+1(un)− Th(un)| |ϕ(un)|dx

≤C7

2

N∑
i=1

∫
{h≤|un|}

|un|p
−
i −θdx+ C8

∫
{h<|un|}

|Th+1(un)− Th(un)|dx

+ 1
2

∫
{h<|un|}

|Tn(un)|s(x)|Th+1(un)− Th(un)| |ϕ(un)|dx,

and thanks to (4.23), we have

ε1(h) =
N∑
i=1

∫
{h<|un|}

hp
−
i

(1 + |un|)θ
dx ≤

N∑
i=1

hp
−
i −θ meas{h < |un|}

≤Nhp+−θ meas{h < |un|}

=Nh
p+−1 meas{h < |un|}

hθ−1

≤NC4

hθ−1 → 0 as h→∞.

Also, we have meas{|un| > h} goes to zero, as h tends to infinity, and since g(x) ∈
L1(Ω) we conclude that

ε2(h) =
∫
{h<|un|}

|g(x)|dx+ C5N meas{h ≤ |un|} → 0 as h→∞.

It follows that
1
4

N∑
i=1

∫
{h<|un|≤h+1}

ai(x, Tn(un),∇un)Diundx(4.27)

+ C7

2

N∑
i=1

∫
{h≤|un|}

|un|p
−
i −θdx+ 1

2

∫
{h+1<|un|}

|Tn(un)|s(x)dx

≤C8

∫
{h<|un|}

|Th+1(un)− Th(un)|dx+ ε3(h)

≤ε4(h).



632 T. AHMEDATT, A. AHMED, H. HJIAJ, AND A. TOUZANI

We conclude that

(4.28) lim
h→∞

( ∫
{h+1<|un|}

|Tn(un)|s(x)dx+
∫
{h+1<|un|}

|Tn(un)|q(x)dx
)

= 0,

therefore, thanks to (4.28) we have for any δ > 0, there exists h(δ) > 1 such that

(4.29)
∫
{h(δ)<|un|}

|Tn(un)|s(x)dx+
∫
{h(δ)<|un|}

|Tn(un)|q(x)dx ≤ δ

2 .

On the other hand, for any measurable subset E ⊆ Ω we have∫
E
|Tn(un)|s(x)dx+

∫
E
|Tn(un)|q(x)dx(4.30)

≤
∫
{h(δ)<|un|}

|Tn(un)|s(x)dx+
∫
{h(δ)<|un|}

|Tn(un)|q(x)dx

+
∫
E
|Th(δ)(un)|s(x)dx+

∫
E
|Th(δ)(un)|q(x)dx.

It’s clear that, there exists β(δ) > 0 such that for any E ⊆ Ω with meas(E) ≤ β(δ)
we have

(4.31)
∫
E
|Th(δ)(un)|s(x)dx+

∫
E
|Th(δ)(un)|q(x)dx ≤ δ

2 .

Finally, by combining (4.29), (4.30) and (4.31), we obtain
(4.32)∫
E
|Tn(un)|s(x)dx+

∫
E
|Tn(un)|q(x)dx ≤ δ for any E ⊂ Ω such that meas(E) ≤ β(δ).

Consequently, (|Tn(un)|s(x)−1Tn(un))n and (|Tn(un)|q(x)−1Tn(un))n are uniformly equi-
integrable, and in view of the growth condition (3.5) we have

|fn(x, Tn(un))| ≤ g(x) + |Tn(un)|q(x),

with g(x) ∈ L1(Ω), then (fn(x, Tn(un)))n is also uniformly equi-integrable. According
to Vitali’s theorem, the statements (4.24) and (4.25) are concluded. Moreover, in
view of (4.27) we have

(4.33) lim
h→∞

lim sup
n→∞

N∑
i=1

∫
{h<|un|≤h+1}

ai(x, Tn(un),∇un)Diundx = 0.

Step 4: strong convergence of truncations. Let h > k ≥ 1, and we set ψh(un) =
(1 − |T1(un − Th(un))|). By taking (Tk(un) − Tk(u))ψh(un) ∈ W

1,~p(·)
0 (Ω) as a test

function in (4.2) we obtain
N∑
i=1

∫
Ω
ai(x, Tn(un),∇un)(DiTk(un)−DiTk(u))ψh(un)dx

−
N∑
i=1

∫
{h≤|un|≤h+1}

ai(x, Tn(un),∇un)Diun|Tk(un)− Tk(u)|dx

+
∫

Ω
|Tn(un)|s(x)−1Tn(un)(Tk(un)− Tk(u))ψh(un)dx
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=
∫

Ω
fn(x, Tn(un))(Tk(un)− Tk(u))ψh(un)dx.

It follows that
N∑
i=1

∫
Ω
ai(x, Tn(un),∇un)(DiTk(un)−DiTk(u))ψh(un)dx(4.34)

≤
∫

Ω
|fn(x, Tn(un))| |Tk(un)− Tk(u)|dx+

∫
Ω
|Tn(un)|s(x) |Tk(un)− Tk(u)|dx

+
N∑
i=1

∫
{h≤|un|≤h+1}

ai(x, Tn(un),∇un)Diun|Tk(un)− Tk(u)|dx.

For the first and second terms on the right-hand side of (4.34), we have Tk(un) ⇀ Tk(u)
weak−? in L∞(Ω), and thanks to (4.24)–(4.25) we have |Tn(un)|s(x) → |u|s(x) and
fn(x, Tn(un))→ f(x, u) strongly in L1(Ω), then

(4.35) ε5(n) =
∫

Ω
|Tn(un)|s(x)|Tk(un)− Tk(u)|dx→ 0 as n→∞

and

(4.36) ε6(n) =
∫

Ω
|fn(x, Tn(un))| |Tk(un)− Tk(u)|dx→ 0 as n→∞.

On the other hand, according to (4.33) we have

ε7(h) =
N∑
i=1

∫
{h<|un|≤h+1}

ai(x, Tn(un),∇un)Diun|Tk(un)− Tk(u)|dx(4.37)

≤2k
N∑
i=1

∫
{h<|un|≤h+1}

ai(x, Tn(un),∇un)Diundx→ 0 as h→∞.

By combining (4.34) and (4.35)–(4.37) we conclude that

(4.38)
N∑
i=1

∫
Ω
ai(x, Tn(un),∇un)(DiTk(un)−DiTk(u))ψh(un)dx ≤ ε7(n, h).

For the term on the left-hand side of (4.38), since ai(x, s, 0) = 0, it follows that

N∑
i=1

∫
Ω
ai(x, Tn(un),∇un)(DiTk(un)−DiTk(u))ψh(un)dx

(4.39)

=
N∑
i=1

∫
{|un|≤k}

ai(x, Tk(un),∇Tk(un))(DiTk(un)−DiTk(u))dx

−
N∑
i=1

∫
{k<|un|≤h+1}

ai(x, Th+1(un),∇Th+1(un))DiTk(u) ψh(un)dx

=
N∑
i=1

∫
Ω

(
ai(x, Tk(un),∇Tk(un))− ai(x, Tk(un),∇Tk(u))

)
(DiTk(un)−DiTk(u))dx
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+
N∑
i=1

∫
Ω
ai(x, Tk(un),∇Tk(u))(DiTk(un)−DiTk(u))dx

−
N∑
i=1

∫
{k<|un|≤h+1}

ai(x, Th+1(un),∇Th+1(un))DiTk(u) ψh(un)dx.

For the second term on the right-hand side of (4.39), we have Tk(un) → Tk(u) in
Lpi(·)(Ω), then, ai(x, Tk(un),∇Tk(u))→ ai(x, Tk(u),∇Tk(u)) strongly in Lp′i(·)(Ω), and
since DiTk(un) converges to DiTk(u) weakly in Lpi(·)(Ω), we obtain

(4.40) ε8(n) =
N∑
i=1

∫
Ω
ai(x, Tk(un),∇Tk(u))(DiTk(un)−DiTk(u))dx→ 0 as n→∞.

Concerning the third term on the right-hand side of (4.39), we have (|ai(x, Th+1(un),
∇Th+1(un))|)n is bounded in Lp

′
i(·)(Ω), then there exists νi ∈ Lp

′
i(·)(Ω) such that

|ai(x, Th+1(un),∇Th+1(un))|⇀ νi weakly in Lp′i(·)(Ω) for any i = 1, . . . , N . Therefore,

ε9(n) ≤
∣∣∣∣ N∑
i=1

∫
{k<|un|≤h+1}

ai(x, Th+1(un),∇Th+1(un))DiTk(u) ψh(un)dx
∣∣∣∣(4.41)

≤
N∑
i=1

∫
{k<|un|≤h+1}

|ai(x, Th+1(un),∇Th+1(un))| |DiTk(u)|dx

→
N∑
i=1

∫
{k<|u|≤h+1}

νi |DiTk(u)|dx = 0 as n→∞.

By combining (4.38)–(4.41), we conclude that

N∑
i=1

∫
Ω

(
ai(x, Tk(un),∇Tk(un))− ai(x, Tk(un),∇Tk(u))

)
(DiTk(un)−DiTk(u))dx

≤ε10(n, h).

In view of Lebesgue dominated convergence theorem, we have Tk(un)→ Tk(u) strongly
in Lp+(Ω). Thus, by letting n then h tend to infinity we deduce that

N∑
i=1

∫
Ω

(
ai(x, Tk(un),∇Tk(un))− ai(x, Tk(un),∇Tk(u))

)
(DiTk(un)−DiTk(u))dx

+
∫

Ω
(|Tk(un)|p+−2Tk(un)− |Tk(u)|p+−2Tk(u))(Tk(un)− Tk(u))dx→ 0 as n→∞.

In view of Lemma 4.2, we conclude that

(4.42)
{
Tk(un)→ Tk(u) strongly in W 1,~p(·)

0 (Ω),
Diun → Diu a.e. in Ω for i = 1, . . . , N.
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Moreover, we have ai(x, Tn(un),∇un)Diun tends to ai(x, u,∇u)Diu almost everywhere
in Ω, and in view of Fatou’s lemma and (4.33), we conclude that

lim
h→∞

N∑
i=1

∫
{h<|u|<h+1}

ai(x, u,∇u)Diudx

≤ lim
h→∞

lim inf
n→∞

N∑
i=1

∫
{h<|un|<h+1}

ai(x, Tn(un),∇un)Diundx

≤ lim
h→∞

lim sup
n→∞

N∑
i=1

∫
{h<|un|<h+1}

ai(x, Tn(un),∇un)Diundx = 0,

which prove (4.1).

Step 5: passage to the limit. Let ϕ ∈ W
1,~p(·)
0 (Ω) ∩ L∞(Ω), and choosing S(·) be a

smooth function in C1
0(R) such that supp (S(·)) ⊆ [−M,M ] for some M ≥ 0.

By taking S(un)ϕ ∈ W
1,~p(·)
0 (Ω) ∩ L∞(Ω) as a test function in the approximate

problem (4.2), we obtain
N∑
i=1

∫
Ω
ai(x, Tn(un),∇un)

(
DiunS

′(un)ϕ+ S(un)Diϕ
)
dx(4.43)

+
∫

Ω
|Tn(un)|s(x)−1Tn(un)S(un)ϕdx =

∫
Ω
fn(x, Tn(un))S(un)ϕdx.

For the first term on the left-hand side of (4.43), we have
N∑
i=1

∫
Ω
ai(x, Tn(un),∇un)

(
DiunS

′(un)ϕ+ S(un)Diϕ
)
dx

=
N∑
i=1

∫
Ω
ai(x, TM(un),∇TM(un))

(
S ′(un)ϕDiTM(un) + S(TM(un))Diϕ

)
dx,

in view of (4.42), we have (ai(x, TM(un),∇TM(un)))n is bounded in Lp
′
i(·)(Ω), and

since ai(x, TM(un),∇TM(un)) tends to ai(x, TM(u),∇TM(u)) almost everywhere in Ω,
it follows that

ai(x, TM(un),∇TM(un)) ⇀ ai(x, TM(u),∇TM(u)) in Lp′i(·)(Ω),
and since (S ′(un)ϕDiTM(un) + S(TM(un))Diϕ) → (S ′(u)ϕDiTM(u) + S(TM(u))Diϕ)
strongly in Lpi(·)(Ω), we deduce that

lim
n→∞

N∑
i=1

∫
Ω
ai(x, Tn(un),∇un)

(
DiunS

′(un)ϕ+ S(un)Diϕ
)
dx(4.44)

= lim
n→∞

N∑
i=1

∫
Ω
ai(x, TM(un),∇TM(un))

(
DiTM(un)S ′(un)ϕ+ S(TM(un))Diϕ

)
dx

=
N∑
i=1

∫
Ω
ai(x, TM(u),∇TM(u))

(
DiTM(u)S ′(u)ϕ+ S(TM(u))Diϕ

)
dx
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=
N∑
i=1

∫
Ω
ai(x, u,∇u)

(
DiuS ′(u)ϕ+ S(u)Diϕ

)
dx.

Concerning the second term on the right-hand side of (4.43), we have S(TM(un))ϕ ⇀
S(TM(u))ϕ weak−∗ in L∞(Ω), and thanks to (4.24), we have |Tn(un)|s(x)−1Tn(un)→
|u|s(x)−1u strongly in L1(Ω), it follows that

lim
n→∞

∫
Ω
|Tn(un)|s(x)−1Tn(un)S(TM(un))ϕdx =

∫
Ω
|u|s(x)−1uS(TM(u))ϕdx(4.45)

=
∫

Ω
|u|s(x)−1uS(u)ϕdx.

Similarly, thanks to (4.25) we have fn(x, Tn(un))→ f(x, u) strongly in L1(Ω) then
(4.46)

lim
n→∞

∫
Ω
fn(x, Tn(un))S(TM(un))ϕdx =

∫
Ω
f(x, u)S(TM(u))ϕdx =

∫
Ω
f(x, u)S(u)ϕdx.

By combining (4.43) and (4.44)–(4.46), we conclude that
N∑
i=1

∫
Ω
ai(x, u,∇u)

(
DiuS ′(u)ϕ+ S(u)Diϕ

)
dx+

∫
Ω
|u|s(x)−1uS(u)ϕdx

=
∫

Ω
f(x, u)S(u)ϕdx.

which complete the proof of the Theorem 4.1.
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