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SHARP BOUNDS ON THE AUGMENTED ZAGREB INDEX OF
GRAPH OPERATIONS

N. DEHGARDI* AND H. ARAM?*

ABSTRACT. Let G be a finite and simple graph with edge set E(G). The augmented
Zagreb index of G is

B de(u)de(v)
AZIG) = 3 (da<u>+d0<v>—2>’

weE(G)

where dg(u) denotes the degree of a vertex u in G. In this paper, we give some
bounds of this index for join, corona, cartesian and composition product of graphs
by general sum-connectivity index and general Randi¢ index and compute the sharp
amount of that for the regular graphs.

1. INTRODUCTION

Let G be a finite and simple graph with vertex set V' = V(G) and edge set E = E(G).
The integers n = n(G) = |V(G)| and m = m(G) = |E(G)| are the order and the
size of the graph G, respectively. For a vertex v € V(G), the open neighborhood of
v, denoted by Ng(v) = N(v), is the set {u € V(G) | wv € E(G)}. The degree of
v € V(G), denoted by dg(v), is defined by dg(v) = |Ng(v)|. The maximum (resp.
minimum) degree of vertices of GG is denoted by A¢g (resp. d¢). We use Bondy and
Murty [10] for terminology and notation not defined here.

Several authors defined and studied more vertex degree-based graph invariants such
as [16]. One of them is augmented Zagreb index of G that is proposed in 2010 by
Furtula et al. [15] as
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510 N. DEHGARDI AND H. ARAM

AZI(G) = dG(u)dc(v)_ 2>3 |

weE(G) <dG<U) + dg(v)

where dg(u) denotes the degree of a vertex uw in G. The researchers give a good bounds

for it by using different graph parameters, investigate the impact of removing and

adding the edge for graph on the augmented Zagreb index. For details see [1,18,24,27].
In 2009, Zu and Trijnasti¢ [28] defined the sum-connectivity index as

X(G)= > de(u)+da(v)

weE(G)

and one year later, they in [29] introduced the general sum-connectivity indez as

W@ = Y (de(u) +da(v)), for AeR.
weE(G)
There are good results on general sum-connectivity index such as [22,23]. In 1975,
the chemist Milan Randi¢ [21] introduced a topological index R(G) under the name
branching index. The branching index was renamed the molecular connectivity index
and is often referred to as the Randi¢ index and later named second Zagreb indez. In

1998, Bollobas and Erdos [9] proposed the generealization state of it named general
Randi¢ index, R)\(G), as
R\(G) = Y (dg(u)da(v)), for AR
weE(G)

later that is named second general Zagreb index.

The relation between several indices and operations of graphs were very studied.
(see [2-8,11-14,17,19,20,25,26]). In this paper, we calculate bounds of the augmented
Zagreb index by two other indices, the general sum-connectivity index and the Randi¢
index for join, corona, cartesian and composition product of graphs and compute the
sharp amount of that for the regular graphs.

2. THE JOIN OF GRAPHS

The join G + H of graphs G and H with disjoint vertex sets V(G) and V(H)
and edge sets F(G) and E(H) is the graph union G U H together with all the
edges joining V(G) and V(H). Obviously, |V(G + H)| = |V(G)| + |V(H)| and
|E(G + H)| = [E(G)] + [EH)| + [V(G)[[V(H)].

Theorem 2.1. Let G be a graph of order ny and of size my and let H be a graph of
order ny and of size mo. Then
(Ag —1)’AZI(G) | n3xs(G) + (3n3AE + 3n3)x2(G) + 3n3xa(G)
(AG + no — 1)3 8(5@ + no — 1)3
N (6n2Ag + 3n3)Ro(G) + (12n3A¢ + 3n3) R (G) + myn§
8((5@ + ng — 1)3

AZI(G+ H) <
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(Ay — 1)3AZI(H)
(A +n —1)8
n nixs(H) + (3ni A% + 3n1)x2(H) + 3nixi (H)
8(51{ + ny — ].)3
8((5}[ +ny — 1)3
(Ag +n2)(Ag +m1) ’
dg+0m+ni+ns—2) "7

+ NNy <

with equality if and only if G and H are reqular graphs.
Proof. By definition,

AZIGAH) = Y ( dG+H<u)dG+H<v>> 2)‘”’.

wEE(G+H) deym(u) + daym(v) —

We partition the edges of G + H in to three subset F;, Fy, and FEj, as follows:

:{e = uv | U,V € V(G)}7
:{e = uv ’ U,V € V(H>}7
Ez={e=wv|ueV(G),veV(H)}.

Let e = uv € Ey. Then dgyp(u) = dg(u) + ng and dgg(v) = dg(v) + ny. Hence

((da(u) +n2)(dg(v) +n2))* =(da(u)de (v))?[3n2(da(u) + de(v)) + 3n3)
+ (do(u)de(v))® + da(u)da(v)
x [6n5(da(u) + da(v)) + 3ny)
+n5(da(u) + dg(v))® + 3n5(d(u) + da(v))

+ (dg(u) + da(v))*[3n3de (u)de (v) + 3n5] + nj

and

( de i (W) des i (v) )
dG+H(U) + dg+H(U) -2

(y 2n ’ dg(u)dg(v) ’
= <1 do(0) T do(v) 1 2ms — 2) (d(;(u) +do(v) 2)

N n3(de(u) + dg(v))® + [3n3(de(u)de(v))® + 3n3)(de(u) + da(v))?
(dg(u) 4+ dg(v) + 2ny — 2)3
) + [3na(dg(u) + dg(v)) + 3n3)(dg(u)da(v))?
dg<u> + dg(v) + 2n2 - 2)3

N 3n5(dg(u) + dg(v)

(
[6n§(dg(u) + dg(?))) + 3n§]dg(u)dg(v) + ng
(d(;(u) + dg(’l}) + 2n9 — 2)3

511
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_ < Ag—1 )3 ( de(w)de(v) )3
“\Ag+ny—1 de(u) + dg(v) — 2
+naﬁﬂﬁ+ddmf+%&@ﬁé+3ﬁﬂ%ﬂﬁ+ddWV
8(5@ + ng — 1)3
+ 3n3(dg(u) + dg(v)) + (6n2Ag + 3n3) (dg (u)da(v))?
8((5G + ng — 1)3
(12n3Aq + 3n3)dg(u)dg(v) + nS
8(5@ + ng — 1)3 ’

Therefore,

ZE< dG+H<u>dG+H<v>_2>3§(AG—1>3AZI(G)+ -

dG+H(u) + dg+H<U) Ag+mny—1 8(5@ + no — 1)3
N n3x3(G) + (3n3A% 4 3n3)x2(G) + nixi(G)
8(5@ + no — 1)3
N (6n2Ag + 3n3)Rao(G) + (12n3 A6 + 3n3) Ri(G)
8(5(; + Ng — 1)‘3 '

(2.1)

Obviously, equality holds if and only if Ag = dg. Similarly

< derm(u)dayn(v) )3 < ( Ay —1 maon$
vactn \daym(u) +deym(v) —2) ~ \Ag+n —1 8(dg +mny —1)3
n nixs(H) + (3niA% + 3ni)x2(H) + 3nx. (H)
8(dg +mny —1)3
N (6n1Ag + 3n?)Ry(H)+ (1203 Ay + 3n}) Ry (H)
8(0g +mny—1)3 '

)3 AZI(H) +

(2.2)

Equality holds if and only if Ay = 0g. Let e = uv € Fj3 such that u € V(G) and
ve V(H). Then dgyp(u) = dg(u) + ne and dgig(v) = dg(v) + ny. Hence for every
edge e = uv € Fjs,

( don(w)dgin(v) ))3

dayr(u) +darm(v

( (de:(u) + n2) (dir (v) + 1) )
dg<u) + dH(’U) +n; +ng — 2

(Ag +n2)(Ag +n1) \° |
( )

5G+(5H—I—n1+n2—2

VAN

Therefore,

(2.3) ( dayr(u)daym(v) >3 < nyng ( (Ag +n2)(Ag +n1) >3
woe Bs dg+H(u)+dG+H(U) 0c +0g +ny+ng9—2
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with equality if and only if Ag = dg and Ay = dy. By Equations (2.1), (2.2) and
(2.3), we have:

(A = 1)*AZI(G) | nixa(G) + (Bn3AL + 3nd)xe(G) + 303 (G)
(Ag +ns— 1)3 8(6¢ +ny — 1)3
(6n2A¢ + 3n3)Ra(GQ) + (12n3A¢ + 3n3)Ri(G) + myn
8(6g +mng —1)3
(Mg = 1PAZI(H)  ndxs(H) + (3n3AY + 3nd)xa(H) + 3ndx(H)
(A +ny— 1) 8(6y +ny —1)3
(6n1Ay + 3n2)Ry(H) + (12n3A 5 + 3n}) R (H) + man$
8(dy +ny—1)3

+n1n2< (AG+n2)(AH+n1) >3.

AZI(G+ H) <

+

+

0 + 0 +ni+nz —2
Equality holds if and only if G and H are regular graphs. U

Theorem 2.2. Let G be a graph of order ny and of size my and let H be a graph of
order ny and of size mo. Then

(b6~ VPAZIG)  nda(C) + (B + 3na(C) + 83 (C)
(6 +ny —1)3 8(Ag +ny —1)3
(6120 + 3n2)Ro(G) + (120366 + 3n3) Ry (G) + myn$

AZI(G + H) >

* 8(Ag -1y — 197
(0n = 1°AZI(H) | mixs(H) + (30707 + 3m)x2(H) + 3npx (H)
((5H—|—n1—1)3 S(AH+H1—1)3

N (61105 + 3n3)Ra(H) + (120305 + 3n}) Ry (H) + myn$

S(AH + ny — ].)3

3
¥ nyns (56‘ + ng)(éj-[ + nl) 7
Ac+Ag+ny+ng—2

with equality if and only if G and H are reqular graphs.

Proof. Using an argument similar to that described in proof of Theorem 2.1, we
obtained the result. O

Corollary 2.1. Let G be a k-reqular graph of order ny and let H be a r-regular graph
of order ny. Then

AZI(G + ) = k(k + ny)® r(r+mnp)® nina(k 4+ no)3(r + ny)?
C16(k4+mny—1)3  16(r4+n; —1)3 (k47 +ng +ng—2)3
3. THE CORONA PRODUCT OF GRAPHS

The corona product G o H of graphs G and H with disjoint vertex sets V(G) and
V(H) and edge sets F(G) and E(H) is as the graph obtained by taking one copy
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of G and |V(G)| copies of H and joining the i-th vertex of G to every vertex in
i-th copy of H. Obviously, |V (G o H)| = |V(G)|+ |[V(G)||V(H)| and |E(G o H)| =
[E(G)|+ V(GIEH)| + VG|V (H)|.
Theorem 3.1. Let G be a graph of order ny and of size my and let H be a graph of
order ny and of size mo. Then
Ag —1)PAZI(G) | n3xs(G) + (3n3AF + 3n5)x2(G) + 3n3x1(G)
(AG + No — 1)3 8((5@ + no — 1)3
N (6n2Ag + 3n3)Ra(G) + (12n3A¢ + 3n3) Ry (G) + min$

8(5@ + ng — 1)3
L (B = VPAZI(H) | xs(H) + BAF + 3)xa(H) + 3 (H)

AZI(G o H) !

A3, 8%,
8%,
(Ag +n2)(Ag +1)\°
+n1n2<5c+5H+n2—1 ’

with equality if and only if G and H are regular graphs.

Proof. We partition the edges of G in to three subset F;, E5 and Ej such that
Ei={e=w|u,veV(G)}, Ba={e=uwv|u,veV(H)}and E3={e=uv |u €
V(G),v e V(H)}.

If e = wv € Ey, then dgon(u) = de(u) + ne and dgop(v) = de(v) + ne and if
e =uv € By, then dgopy(u) = dg(u) + 1 and dgom (v) = du(v) + 1. By used of proof
of Theorem 2.1, we have,

> ( deorr (W) dgor (v) )3 _(Ag - 13AZ1(G)
degop(u) + dgog(v) =2 ) = (Ag+ny—1)3

n3xs(G) + (3n3AE + 3n3)x2(G) + nix1(G)

+
8((5G + ng — 1)3

(6n2Ag + 3n3)Rao(G) + (12n3A¢ + 3n3) Ri(G)

+
8((5@ + no — 1)3

uv€ Fq

6

(3.1) + oot lnj— 7
dgon(u)dgon (v) P (Ap—1)3AZI(H)
uvze:EQ (dGoH<u) + dgor (V) — 2) = A3
L a(H) + BAL +3)xa(H) +3x(H)
85%
(3.2) L (68 +3)Ro(H) + (12Ay + 3) Ry (H) + my

893
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Obviously, equalities hold if and only if Ag = d¢ and Ay = dg.
Let e = uv € E3 such that u € V(G) and v € V(H). Then dgoy(u) = dg(u) + ng
and dgop (v) = dy(v) + 1. Hence for every edge e = uv € Ej,

( deon (w)dcon (v) ) _ ( (do(u) + ) (s (v) +1) )
deon(u) + dgop (v) — 2 dg(u) +dg(v) +no+1—2

< (Ag +n2)(Apy +1) ’
- 0+ 0y +ngy—1 ’

Therefore,

Y

daon (w)dgon (V) S mna(Ag 4 n2)?(Ay + 1)3
(33) 2 (dGoH(u) + dgon(v) — 2) = (O +0u +ng — 1)°

uwveFEs3

with equality if and only if Ag = d¢ and Ay = dy. By Equations (3.1), (3.2) and
(3.3), we have:
(A — 1)°AZI(G) | n3xs(G) + (3n3A% + 3n3)x2(G) + 3n3x1(G)

(Ag +ng — 1)3 8(0g + ng — 1)3
(61206 + 3n2)Ra(G) + (12n3A¢ + 3n3)R1(G) + myn§

8(56' + Ng — 1)3
(Ag —1)AZI(H) N x3(H) + (3A% +3)x2(H) + 3x1(H)
A3, 8%
843

(Ag +n2)(Ag + 1))

og +0u +ma—1 )
Equality holds if and only if G and H are regular graphs. U

AZI(G o H) <

+

N

+ nin9 (

Theorem 3.2. Let G be a graph of order ny and of size my1 and let H be a graph of
order ny and of size mo. Then
o — 1)°AZI(G) | n3xa(G) + (3n30% + 3n3)xa(G) + 3n3x1(G)
(0g +ngy —1)3 8(Ag +mng—1)3

(61206 + 3n2) Ro(G) + (12n30¢ + 3n3) Ri(G) + myn$

AZI(G o H) >

+ S(AG —I— ng — 1)3
+ 3 + 3
(6851 + 3) Ro(H) + (1205 + 3)R1(H) + mo
* SA3
H

n1n2(5G + n2)3(5H —+ 1)3
(AG—|—AH+HQ— 1)3 ’
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with equality if and only if G and H are regular graphs.
Proof. The proof of the result is similar to this given in Theorem 3.1. O
Corollary 3.1. Let G be a k-reqular graph of order ny and let H be a r-regular graph

of order ny. Then
k(k + ng)® rir+1)%  nng(k+mng)3(r +1)>
16(k + ng — 1)3 1673 (k+7r+mng—1)3

AZI(Go H) =

4. THE CARTESIAN ProDUCT OF GRAPHS

The Cartesian product G x H of graphs G and H has the vertex set V(G x H) =
V(G) x V(H) and (u,z)(v,y) is an edge of G x H if wv € F(G) and x = y, or
u=wvand zy € E(H). Obviously, |V(G x H)| = |V(G)||V(H)| and |E(G x H)| =
[E(GVH)] + V(G EH).

Theorem 4.1. Let G be a graph of order ny and of size my and let H be a graph of
order ny and of size mo. Then
no(Ag + Ay — 6 — 1)3AZI(G) + ni(Ag + Ay — dg — 1)3AZI(H)
(Ag+ Ay —1)3
naAdxs(G) + na(3A% AL + 3A%) x2(G) + 3na A% x1(G) + A&my
8(dg + oy — 1)3
A xs(H) + ni(3A% A% + 3A%)x2(H) + 3ni AL x1(H) + AYmy
8(d¢ + o — 1)3
na(6ArAg + 3A%)Ra(G) + na(12A% A + 3A%)R1(G)
* 3(0G + o — 1)
N n1(6AgAg + 3A%)Ry(H) + ny (12A8 Ay + 3AL) Ry (H)
8(dg + oy — 1)3 ’
with equality if and only if G and H are reqular graphs.

AZI(G x H) <

+

+

Proof. By definition,

3
AZI(G x H) = 3 ( de (u, 2)dexn (0, y) ) .
(u,z)(v,y)EE(GxH) dGXH(“: 37) + dGXH(U7 y) -2

We partition the edges of G x H in to two subset E; and FEs, as follows:
By ={e = (u,2)(v,y) | w € E(G),z =y},
Ey ={e=(u,z)(v,y) | xzy € E(H),u = v}.
Let e = (u,z)(v,x) € Ey. Then dgwxp(u,x) = dg(u) + dg(z) and dgxp(v,x) =
dg(v) + dy(x). By used of proof of Theorem 2.1, we have

( descrr(u, %) dgrr (v, ) )3 (Dot Ay = by — 1) ( dg(u)dg (v) )3
dGXH(U'y l‘) + dGXH(’U,QT) -2 B (AG + AH — 1)3 dg(u) + dg(v) -2
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L Alde(w) + d6(v))*)(da(u) + do(v))”

8(0c + 0 — 1)?
(BAHAZ + 3A%)(dg (u) + da(v))?
8(0c + 0 — 1)
3A% (dg(u) + de(v))
R(0c + 0 — 1)3
(6A1AG + 3A% ) (de(u)de(v))?
8(dg + oy — 1)3

(12A%{AG + 3A§1)dG(u)dG(v) + A%

R(0c + 0 — 1)3 '

Therefore,

Z ( dGXH(u7:1:)dGXH(v,x)_ 2>3

(u,z)(v,x)EE dGXH(u7$> + dG’XH(ng)

<n2(AG + Ay — 0y —1)PAZI(G)  naAxs(G) + 3neAfxa (G)

= (Aot Ay — 1) 800G 1 0 — 1)
n2(BAHAE + 3A%)x2(G) - n2(6AgAg + 3A%) Ry (G)
8((561 + 0y — 1)3 8((5@ + 0y — 1)3

8(d¢ + o — 1)3
Obviously, equality holds if and only if Ag = d¢ and Ay = dy. Similarly,

(4.1)

3 < daxr(u, x)dasm(u, y) >3 <n1(AG +Axg —6q — 1)*AZI(H)
doxg(u,x) +daxg(u,y) —2/) — (Ag + Ay —1)3
ni A3 (H) + 3ni Ay (H)
8(0g + oy — 1)3
11 (303, A% + AL o)
8(0cr + 0 — 1)3
n (6AgAg + 3AL)Ry(H)
8(0g + oy — 1)3

(u,z)(u,y)EE2

517

(4.2) + ey —_

Equality holds if and only if Ag = dg and Ay = dy. By Equations (4.1) and (4.2),

we have:

712(
<
AZI(G x H) < I

8(0c + 65 — 1)?
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+
8(dg + oy — 1)3
n2(6AgAg + 3A% )Ry (G) + na(12A% A + 3A% )R (G)
8(dg + o — 1)3
8(dg + oy — 1)3 ’
with equality if and only if G and H are regular graphs. U

Theorem 4.2. Let G be a graph of order ny and of size my and let H be a graph of
order ny and of size mo. Then
no(0c + 0y — Ay — 1)2AZI(G) +n1(0¢ + 05 — Ag — 1)2AZI(H)
(0g + 0y —1)3
N n203x3(G) + no(30%0% + 355)x2(G) + 3n20%x1(G)
8(Ag+ Ay —1)3
N9 (600 + 30%)Ra(GQ) + na(120%0¢ + 30%) Ri(G) + 64my
8(Ag+ Ay —1)3
108X (H) + 11 (363,05 + 30¢) X2 (H) + 31108 x:1 (H)
8(Ag + Ay —1)3
n1(6050c + 304) Ro(H) + ny (126805 + 304) Ry (H) + 6&mea
8(Ag + Ay —1)3 ’
with equality if and only if G and H are reqular graphs.

AZI(G x H) >

_|_

Proof. Using an argument similar to that described in proof of Theorem 4.1, we
obtained the result. 0J

Corollary 4.1. Let G be a k-reqular graph of order ny and let H be a r-reqular graph

of order ny. Then AZI(G x H) = %,

5. THE COMPOSITION PRODUCT OF GRAPHS

The composition G[H] of graphs G and H has the vertex set V(G[H]) = V(G) %
V(H) and (u,x)(v,y) is an edge of G[H] if (uv € E(G)) or (xy € E(H) and
u = v). Obviously, |[V(G[H])| = |V(G)||V(H)| and |E(G[H])| = |[E(G)|V(H)]* +
|E(H)|[V(G)].
Theorem 5.1. Let G be a graph of order ny and of size my and let H be a graph of
order ny and of size mo. Then

AZI(G[H])

ng(ngAG + Ay — 0 — n2)3AZI(G) + nl(AH + noAg — nadg — 1)3AZI(H)
- (ngAG + AH — 1)3
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n3A%X3(G) + n3(Bny AL AL + 3n3AL)X2(G) + 3n3A%L X (G)
* 8(n2dc: + 051 — 1)
N nn3Adx3(H) + ni(3n3A%AZ + 3ndAL) xo(H) + 3nin3Adx (H)
8(ngdg + oy — 1)3
N n3(6n3ArAg + 3n3AL) Ry (G) + n2(12n3A% A + 3n2A%) R (G) + n2m AY
8(77,256' + 0 — 1)3
N ny (6n2AgAg + 3n3AZ)Ry(H) + ny(12n3A4 Ay + 3n3AL) Ry (H) + nymanSAS,
8(n9dg + 0y — 1)3 ’
with equality if and only if G and H are regular graphs.

Proof. We partition the edges of G[H] in to two subset E; and Fy, as follows:
Ey :{6 = ('Ll,, .%')(U,y) ‘ uv € E(G)}7
Ey ={e = (u,2)(v,y) | ay € E(H),u = v},

Let e = (u,2)(v,y) € Ey. Then dgim(u,r) = nede(u) + dg(z) and dagim(v,y) =
nade(v) + dy(y). By used of proof of Theorem 2.1, we have,

( derm) (u, 2)dam (v, y) >3 <ng(n2AG +Ap—0g—ny)? < dg(u)dg(v) )3
dem (u, ) + depm (v, y) — 2 (neAg + Ay —1)3 dg(u) +dg(v) — 2
N n3A3 (da(u) + dg(v))3+3n.A% (dg(u) +da(v))
8(nedg + oy — 1)3
(3np A% AZ + 3n3A%) (dg(u) + da(v))?
8(n2dg + oy — 1)3
(6n5ARAG + 3n3A%) (dg(u)dg(v))?
8(n2dg + oy — 1)3
(12%%A?{AG + 3%%A%)da(u)d0(’v) + A%
8(nodg + 0 — 1)3 '

Therefore,
dg[H] (u, l’)dg[]ﬂ (’U7 l’) 3 <ng(n2AG + AH — 5H — TLQ)?’AZ](G)
By derm(u, ) + dgpm (v, 2) =27 (noAg + Ay —1)3
8(%2(5@ + 5H - 1)3
n5(3nsALAG + 3n3A%4)x(G)
8(”256: + 5H — 1)3
ns A% x3(G) N 3n3 A% xa (G)
8(712(50 + (5H - 1)3 I 8(n25G + 5H - 1)3
n3(12n3A3 Aq + 3n3A%)Ri(G)
8(712(5G + (SH — 1)3

(w,z) (v,y
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2 AG
(5.1) M
8(n25g + (SH 1)
Obviously, equality holds if and only if Ag = d¢ and Ay = dy. Similarly,

( deym)(u, x)deym (v, y) )3 _m1(An + n2Ag — nadg — 1)°AZI(H)
(u,2)(u,y)EE> dG[H] (U, LU) + dG[H](u7 y) —2 N (nQAG + AH - 1>3

n1(6naAgAg + 3n3AZ) Ry (H)

8(7”&256' + 0 — 1)3

(30303, A% + 3ndA)xa(H)
8(n9dg + oy — 1)3

mnsALXs(H)  3mn3Agxi (H)

8(0¢ + 0 — 1)3 8(ngdg + 05 — 1)3

ny(12n3 AL Ay + 3n3AL) Ry (H)
8(’/12(5@ + (SH — 1)3

(5.2) 5 ngmng% .
n90a + 0 1)

Equality holds if and only if Ag = d¢ and Ay = dy. By Equations (5.1) and (5.2),
we have:

AZI(G[H])
<ng(n2AG + AH - 5H - n2)3AZ](G) + nl(AH + HQAG - n2(5G - 1)3AZ[<H)
- (TlgAG + AH — 1)3
L 13AXs(G) + (35 AG + 3m AL )xa(G) + 31545 (6)
8(7126@ + 5H — 1)3
N nn3Adx3(H) + ni(3n2A%AZ + 3n3AL) xo(H) + 3nin3Adx1 (H)
8(%256' + 5H — 1)3
N n3(6n3AgAg + 3niA%) Ro(G) + n2(12n3 A% Ag + 3n3A%) Ry (G) + nami AY
8(’”25@ + (SH — 1)3
8(712(56' + (SH — 1)3 ’
with equality if and only if G and H are regular graphs. U

Theorem 5.2. Let G be a graph of order ni and of size my1 and let H be a graph of
order ny and of size mo. Then

AZI(G[H))

>ng(n2(5g + (SH — AH — n2)3AZI(G) -+ nl((SH -+ n2(5G — ngAG — 1)3AZ[(H)
- (n25G + (SH — 1)3
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303 x3(G) + n3(3n30%,08 + 3n305)x2(G) + 30303 x1 (G)
8(n2AG + Ay — 1)3
N nin30gxs(H) + nq(3n30%02% + 3n368)x2(H) + 3nin30%x:1 (H)
8(n2AG + AH — 1)3
n3(6n30gdc + 3n30% ) Ro(G) + n2(12n36%06 + 3n30% ) Ri(G) + namy6%
+
S(nQAG + Ag — 1)3
n1(6n2050c + 3n202) Ro(H) + ny (12036305 + 3n30k) Ry (H) + nymanSe
+ ;
8(n2AG’ + AH — 1)3
with equality if and only if G and H are reqular graphs.

+

Proof. The proof of the result is similar to this given in Theorem 5.1. O

Corollary 5.1. Let G be a k-reqular graph of order ny and let H be a r-reqular graph

of order ny. Then AZI(G[H]) = %'
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