Kragujevac Journal of Mathematics Volume 44(4) (2020), Pages 533–538.

A GENERALIZED CLASS OF CLOSE-TO-CONVEX FUNCTIONS

PARDEEP KAUR¹ AND SUKHWINDER SINGH BILLING²

ABSTRACT. Let $\mathcal{H}^{\phi}_{\alpha}(\beta)$ denote the class of functions f, analytic in the open unit disk \mathbb{E} which satisfy the condition

$$\operatorname{Re}\left((1-\alpha)\frac{zf'(z)}{\phi(z)} + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right)\right) > \beta, \quad z \in \mathbb{E},$$

where α , β are pre-assigned real numbers and $\phi(z)$ is a starlike function. The special cases of the class $\mathcal{H}^{\phi}_{\alpha}(\beta)$ have been studied in literature by different authors. In 2007, Singh et al. [5] studied the class $\mathcal{H}^z_{\alpha}(\beta)$ and they established that functions in $\mathcal{H}^z_{\alpha}(\beta)$ are univalent for all real numbers α , β satisfying the condition $\alpha \leq \beta < 1$ and the result is sharp in the sense that constant β cannot be replaced by a real number smaller than α . Singh et al. [7] in 2005, proved that for $0 < \alpha < 1$ functions in class $\mathcal{H}^z_{\alpha}(\alpha)$ are univalent. In 1975, Al-Amiri and Reade [2] showed that functions in class $\mathcal{H}^z_{\alpha}(0)$ are univalent for all $\alpha \leq 0$ and also for $\alpha = 1$ in \mathbb{E} . In the present paper, we prove that members of the class $\mathcal{H}^\phi_{\alpha}(\beta)$ are close-to-convex and hence univalent for real numbers α , β and for a starlike function ϕ satisfying the condition $\beta + \alpha - 1 < \alpha \mathrm{Re}\left(\frac{z\phi'(z)}{\phi(z)}\right) \leq \beta < 1$.

1. Introduction and Preliminary

Let \mathcal{A} be the class of functions f, analytic in the open unit disk $\mathbb{E} = \{z : |z| < 1\}$ and normalized by the conditions f(0) = f'(0) - 1 = 0. Let \mathcal{S}^* and \mathcal{K} denote the classes of starlike and convex function respectively analytically defined as follows:

$$S^* = \left\{ f \in \mathcal{A} : \operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > 0, \ z \in \mathbb{E} \right\},$$

 $\label{lem:keywords} \textit{Key words and phrases}. \ \ \text{Analytic function, univalent function, close-to-convex function} \\ 2010 \ \textit{Mathematics Subject Classification}. \ \ \text{Primary: 30C80. Secondary: 30C45}.$

DOI 10.46793/KgJMat2004.533K

Received: June 30, 2017. Accepted: June 19, 2018. and

$$\mathcal{K} = \left\{ f \in \mathcal{A} : \operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > 0, \ z \in \mathbb{E} \right\}.$$

It is well-known that

$$(1.1) f \in \mathcal{K} \Leftrightarrow zf' \in \mathcal{S}^*.$$

A function $f \in \mathcal{A}$ is said to be close-to-convex if there is a real number α , $-\pi/2 < \alpha < \pi/2$, and a convex function g (not necessarily normalized) such that

$$\operatorname{Re}\left(e^{i\alpha}\frac{f'(z)}{g'(z)}\right) > 0, \quad z \in \mathbb{E}.$$

In view of the relation (1.1), the above definition takes the following form in case g is normalized. A function $f \in \mathcal{A}$ is said to be close-to-convex if there is a real number α , $-\pi/2 < \alpha < \pi/2$, and a starlike function ϕ such that

$$\operatorname{Re}\left(e^{i\alpha}\frac{f'(z)}{\phi(z)}\right) > 0, \quad z \in \mathbb{E}.$$

It is well known that every close-to-convex function is univalent. In 1934/35, Noshiro [4] and Warchawski [8] independently obtained a simple but elegant criterion for univalence of analytic functions. They proved that if an analytic function f satisfies $\operatorname{Re} f'(z) > 0$ for all z in \mathbb{E} , then f is close-to-convex and hence univalent in \mathbb{E} .

For pre-assigned real numbers α , β and $\phi \in S^*$, the class $\mathcal{H}^{\phi}_{\alpha}(\beta)$ is defined as the class of functions $f \in \mathcal{A}$ as follows:

$$\operatorname{Re}\left((1-\alpha)\frac{zf'(z)}{\phi(z)} + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right)\right) > \beta, \quad z \in \mathbb{E}.$$

The following special cases of the class $\mathcal{H}_{\alpha}^{\phi}(\beta)$ have been studied in literature by different authors. In fact, the class $\mathcal{H}_{\alpha}^{z}(0)$ was first studied in 1975 by Al-Amiri and Reade [2]. They proved that for $\alpha \leq 0$, each function in $\mathcal{H}_{\alpha}^{z}(0)$ satisfies $\operatorname{Re}(f'(z)) > 0$ in \mathbb{E} and hence univalent in \mathbb{E} . They left the problem of univalence open for $\alpha > 0$ (except for $\alpha = 1$, where f is convex, obviously). Ahuja and Silverman [1] observed that the convex function f(z) = z/(1-z) is not in $\mathcal{H}_{\alpha}^{z}(0)$ for any real α , $\alpha \neq 1$. Further this problem pursued by Singh et al. [7] and they proved that for $0 < \alpha < 1$, the class $\mathcal{H}_{\alpha}^{z}(\alpha)$ consisting univalent functions. In 2007, Singh et al. [5] studied the class $\mathcal{H}_{\alpha}^{z}(\beta)$. They proved that if $f \in \mathcal{H}_{\alpha}^{z}(\beta)$, then $\operatorname{Re}(f'(z)) > 0$ in \mathbb{E} for all real numbers α , β satisfying $\alpha \leq \beta < 1$ and the result is best possible one in the sense that β cannot be replaced by a real number smaller than α . Their result contains the previous result of Singh et al. [7] and improves the result of Al-Amiri and Reade [2].

In the present paper, we study a more general class $\mathcal{H}^{\phi}_{\alpha}(\beta)$ and establish that the functions in $\mathcal{H}^{\phi}_{\alpha}(\beta)$ are close-to-convex and consequently univalent subject to the condition

$$\beta + \alpha - 1 < \alpha \operatorname{Re}\left(\frac{z\phi'(z)}{\phi(z)}\right) \le \beta < 1.$$

where α, β are pre-assigned real numbers and ϕ is a starlike function. We claim that our results generalize the previous known results in this direction.

To prove our result, we shall need the following lemma of Miller [3].

Lemma 1.1. Let \mathbb{D} be a subset of $\mathbb{C} \times \mathbb{C}$, where \mathbb{C} is the complex plane and let $\Phi : \mathbb{D} \to \mathbb{C}$ be a complex function. For $u = u_1 + iu_2$, $v = v_1 + iv_2$ (u_1 , u_2 , v_1 , v_2 are reals), let Φ satisfies the following conditions:

- (i) $\Phi(u,v)$ is continuous in \mathbb{D} ;
- (ii) $(1,0) \in \mathbb{D}$ and $Re(\Phi(1,0)) > 0$ and
- (iii) Re $\Phi(iu_2, v_1) \leq 0$ for all $((iu_2, v_1) \in \mathbb{D} \text{ such that } v_1 \leq -(1 + u_2^2)/2$.

Let $p(z) = 1 + p_1 z + p_2 z^2 + \cdots$ be regular in the open unit disk \mathbb{E} , such that $(p(z), zp'(z)) \in \mathbb{D}$ for all $z \in \mathbb{E}$. If

$$\operatorname{Re}(\Phi(p(z), zp'(z))) > 0, \quad z \in \mathbb{E},$$

then $\operatorname{Re}(p(z)) > 0, z \in \mathbb{E}$.

2. Univalence of Functions in $\mathcal{H}^{\phi}_{\alpha}(\beta)$

Theorem 2.1. Let ϕ be a starlike function and let α , β be real numbers such that

(2.1)
$$\beta + \alpha - 1 < \alpha \operatorname{Re}\left(\frac{z\phi'(z)}{\phi(z)}\right) \le \beta < 1.$$

If $f \in \mathcal{A}$ satisfies

(2.2)
$$\operatorname{Re}\left((1-\alpha)\frac{zf'(z)}{\phi(z)} + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right)\right) > \beta, \quad z \in \mathbb{E},$$

then $\operatorname{Re}\left(\frac{zf'(z)}{\phi(z)}\right) > 0$ in \mathbb{E} . So f is close-to-convex and hence univalent in \mathbb{E} .

Proof. Write $p(z) = \frac{zf'(z)}{\phi(z)}$, where p is analytic in \mathbb{E} such that p(0) = 1 and ϕ is a starlike in \mathbb{E} . Then

$$(1-\alpha)\frac{zf'(z)}{\phi(z)} + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right) = (1-\alpha)p(z) + \alpha\left(\frac{zp'(z)}{p(z)} + \frac{z\phi'(z)}{\phi(z)}\right).$$

Thus, condition (2.2) is equivalent to

(2.3)
$$\operatorname{Re}\left(\frac{1-\alpha}{1-\beta}p(z) + \frac{\alpha}{1-\beta}\frac{zp'(z)}{p(z)} + \frac{\alpha\frac{z\phi'(z)}{\phi(z)} - \beta}{1-\beta}\right) > 0, \quad z \in \mathbb{E}.$$

Let $\mathbb{D} = \mathbb{C} \setminus \{0\} \times \mathbb{C}$ and define $\Phi(u, v) : \mathbb{D} \to \mathbb{C}$ as under:

$$\Phi(u,v) = \frac{1-\alpha}{1-\beta}u + \frac{\alpha}{1-\beta}\frac{v}{u} + \frac{\alpha\frac{z\phi'(z)}{\phi(z)} - \beta}{1-\beta}.$$

Then $\Phi(u,v)$ is continuous in \mathbb{D} , $(1,0) \in \mathbb{D}$ and in view of the given condition, we have

$$\operatorname{Re}(\Phi(1,0)) = \frac{1 - \alpha \left(1 - \operatorname{Re}\left(\frac{z\phi'(z)}{\phi(z)}\right)\right) - \beta}{1 - \beta} > 0.$$

Further, from (2.3), we get $\text{Re}[\Phi(p(z), zp'(z))] > 0$, $z \in \mathbb{E}$. Let $u = u_1 + iu_2$, $v = v_1 + iv_2$ where u_1 , u_2 , v_1 and v_2 are all reals. Then, for $(iu_2, v_1) \in \mathbb{D}$, with $v_1 \leq -\frac{1+u_2^2}{2}$, we have

$$\operatorname{Re}(\Phi(iu_2, v_1)) = \operatorname{Re}\left(\frac{1-\alpha}{1-\beta}iu_2 + \frac{\alpha}{1-\beta}\frac{v_1}{iu_2} + \frac{\alpha\left(\frac{z\phi'(z)}{\phi(z)}\right) - \beta}{1-\beta}\right)$$
$$= \frac{\alpha\operatorname{Re}\left(\frac{z\phi'(z)}{\phi(z)}\right) - \beta}{1-\beta} \le 0.$$

The proof now follows from Lemma 1.1.

To illustrate the above result, we consider the following example.

Example 2.1. On selecting $\phi(z)=ze^z$ and $f(z)=z+\frac{z^2}{2}$ in Theorem 2.1, we can easily check that for $\alpha=-0.1$ and $\beta=0$, the condition (2.1) is satisfied as follows

$$-1.1 < -0.1 \operatorname{Re}(1+z) \le 0 < 1$$

and

$$\operatorname{Re}\left((1-\alpha)\frac{zf'(z)}{\phi(z)} + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right)\right) = \operatorname{Re}\left(1.1e^{-z}(1+z) - \frac{0.1 + 0.2z}{1+z}\right) > 0.$$

Therefore,

$$\operatorname{Re}\left(\frac{zf'(z)}{\phi(z)}\right) = \operatorname{Re}(1+z)e^{-z} > 0,$$

thus f is close-to-convex and hence univalent in \mathbb{E} .

Theorem 2.2. Suppose that ϕ is starlike in \mathbb{E} and α , β are real numbers such that

$$\beta + \alpha - 1 > \alpha \operatorname{Re}\left(\frac{z\phi'(z)}{\phi(z)}\right) \ge \beta > 1.$$

If $f \in \mathcal{A}$ satisfies

(2.4)
$$\operatorname{Re}\left((1-\alpha)\frac{zf'(z)}{\phi(z)} + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right)\right) < \beta, \quad z \in \mathbb{E},$$

then $\operatorname{Re}\left(\frac{zf'(z)}{\phi(z)}\right) > 0$ in \mathbb{E} . So, f is close-to-convex and hence univalent in \mathbb{E} .

Proof. Write $\frac{zf'(z)}{\phi(z)} = p(z)$, where p is analytic in \mathbb{E} such that p(0) = 1 and ϕ is starlike in \mathbb{E} . Note that $1 - \beta < 0$, thus the condition (2.4) reduces to

$$\operatorname{Re}\left(\frac{1-\alpha}{1-\beta}p(z) + \frac{\alpha}{1-\beta}\frac{zp'(z)}{p(z)} + \frac{\alpha\frac{z\phi'(z)}{\phi(z)} - \beta}{1-\beta}\right) > 0, \quad z \in \mathbb{E}.$$

The proof can now be completed on the same lines as the proof of Theorem 2.1. \Box

In a special case when $\phi(z) = z$ in Theorem 2.1, we obtain the following result of Singh et al. [5].

Theorem 2.3. Let α and β be real numbers such that $\alpha \leq \beta < 1$. Assume that an analytic function $f \in \mathcal{A}$ satisfies the condition

(2.5)
$$\operatorname{Re}\left((1-\alpha)f'(z) + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right)\right) > \beta, \quad z \in \mathbb{E}.$$

Then $\operatorname{Re} f'(z) > 0$ in \mathbb{E} . So, f is close-to-convex and hence univalent in \mathbb{E} . The result is sharp in the sense that the constant β on the right hand side of (2.5) cannot be replaced by a constant smaller than α .

Selecting $\phi(z) = z$ in Theorem 2.2, we obtain the following result of Singh et al. [6].

Theorem 2.4. For real numbers α and β such that $\alpha \geq \beta > 1$, if $f \in \mathcal{A}$ satisfies the inequality

$$\operatorname{Re}\left((1-\alpha)f'(z) + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right)\right) < \beta, \quad z \in \mathbb{E}.$$

Then $\operatorname{Re} f'(z) > 0$ in \mathbb{E} . So, f is close-to-convex and hence univalent in \mathbb{E} .

Acknowledgements. The authors are thankful to the reviewer for valuable comments.

References

- [1] O. P. Ahuja and H. Silverman, Classes of functions whose derivatives have positive real part, J. Math. Anal. Appl. 138(2) (1989), 385–392.
- [2] H. S. Al-Amiri and M. O. Reade, On a linear combination of some expressions in the theory of univalent functions, Monatshefto für Mathematik 80 (1975), 257–264.
- [3] S. S. Miller, Differential inequalities and Carathéodory functions, Bull. Amer. Math. Soc. 81 (1975), 79–81.
- [4] K. Noshiro, On the theory of schlicht functions, Journal of the Faculty of Science, Hokkaido University 2(3) (1934), 129–155.
- [5] S. Singh, S. Gupta and S. Singh, On a problem of univalence of functions satisfying a differential inequality, Math. Inequal. Appl. **10**(1) (2007), 95–98.
- [6] S. Singh, S. Gupta and S. Singh, On a problem in the theory of univalent functions, General Mathematics 17(3) (2009), 135–139.
- [7] V. Singh, S. Singh and S. Gupta, A problem in the theory of univalent functions, Integral Transforms Spec. Funct. **16**(2) (2005), 179–186.

[8] S. E. Warchawski, On the higher derivatives at the boundary in conformal mappings, Trans. Amer. Math. Soc. 38 (1935), 310–340.

¹DEPARTMENT OF APPLIED SCIENCES, BABA BANDA SINGH BAHADUR ENGG. COLLEGE, FATEHGARH SAHIB-140407, PUNJAB, INDIA Email address: aradhitadhiman@gmail.com

²DEPARTMENT OF MATHEMATICS, SRI GURU GRANTH SAHIB WORLD UNIVERSITY, FATEHGARH SAHIB-140407, PUNJAB, INDIA Email address: ssbilling@gmail.com