A GENERALIZED CLASS OF CLOSE-TO-CONVEX FUNCTIONS

PARDEEP KAUR ${ }^{1}$ AND SUKHWINDER SINGH BILLING ${ }^{2}$

Abstract. Let $\mathcal{H}_{\alpha}^{\phi}(\beta)$ denote the class of functions f, analytic in the open unit disk \mathbb{E} which satisfy the condition

$$
\operatorname{Re}\left((1-\alpha) \frac{z f^{\prime}(z)}{\phi(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right)>\beta, \quad z \in \mathbb{E}
$$

where α, β are pre-assigned real numbers and $\phi(z)$ is a starlike function. The special cases of the class $\mathcal{H}_{\alpha}^{\phi}(\beta)$ have been studied in literature by different authors. In 2007, Singh et al. [5] studied the class $\mathcal{H}_{\alpha}^{z}(\beta)$ and they established that functions in $\mathcal{H}_{\alpha}^{z}(\beta)$ are univalent for all real numbers α, β satisfying the condition $\alpha \leq \beta<1$ and the result is sharp in the sense that constant β cannot be replaced by a real number smaller than α. Singh et al. [7] in 2005, proved that for $0<\alpha<1$ functions in class $\mathcal{H}_{\alpha}^{z}(\alpha)$ are univalent. In 1975, Al-Amiri and Reade [2] showed that functions in class $\mathscr{H}_{\alpha}^{z}(0)$ are univalent for all $\alpha \leq 0$ and also for $\alpha=1$ in \mathbb{E}. In the present paper, we prove that members of the class $\mathcal{H}_{\alpha}^{\phi}(\beta)$ are close-to-convex and hence univalent for real numbers α, β and for a starlike function ϕ satisfying the condition $\beta+\alpha-1<\alpha \operatorname{Re}\left(\frac{z \phi^{\prime}(z)}{\phi(z)}\right) \leq \beta<1$.

1. Introduction and Preliminary

Let \mathcal{A} be the class of functions f, analytic in the open unit disk $\mathbb{E}=\{z:|z|<1\}$ and normalized by the conditions $f(0)=f^{\prime}(0)-1=0$. Let \mathcal{S}^{*} and \mathcal{K} denote the classes of starlike and convex function respectively analytically defined as follows:

$$
\mathcal{S}^{*}=\left\{f \in \mathcal{A}: \operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0, z \in \mathbb{E}\right\},
$$

[^0]Received: June 30, 2017.
Accepted: June 19, 2018.
and

$$
\mathcal{K}=\left\{f \in \mathcal{A}: \operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0, z \in \mathbb{E}\right\} .
$$

It is well-known that

$$
\begin{equation*}
f \in \mathscr{K} \Leftrightarrow z f^{\prime} \in \mathcal{S}^{*} . \tag{1.1}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be close-to-convex if there is a real number $\alpha,-\pi / 2<$ $\alpha<\pi / 2$, and a convex function g (not necessarily normalized) such that

$$
\operatorname{Re}\left(e^{i \alpha} \frac{f^{\prime}(z)}{g^{\prime}(z)}\right)>0, \quad z \in \mathbb{E}
$$

In view of the relation (1.1), the above definition takes the following form in case g is normalized. A function $f \in \mathcal{A}$ is said to be close-to-convex if there is a real number $\alpha,-\pi / 2<\alpha<\pi / 2$, and a starlike function ϕ such that

$$
\operatorname{Re}\left(e^{i \alpha} \frac{f^{\prime}(z)}{\phi(z)}\right)>0, \quad z \in \mathbb{E} .
$$

It is well known that every close-to-convex function is univalent. In 1934/35, Noshiro [4] and Warchawski [8] independently obtained a simple but elegant criterion for univalence of analytic functions. They proved that if an analytic function f satisfies $\operatorname{Re} f^{\prime}(z)>0$ for all z in \mathbb{E}, then f is close-to-convex and hence univalent in \mathbb{E}.

For pre-assigned real numbers α, β and $\phi \in \mathcal{S}^{*}$, the class $\mathscr{H}_{\alpha}^{\phi}(\beta)$ is defined as the class of functions $f \in \mathcal{A}$ as follows:

$$
\operatorname{Re}\left((1-\alpha) \frac{z f^{\prime}(z)}{\phi(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right)>\beta, \quad z \in \mathbb{E} .
$$

The following special cases of the class $\mathcal{H}_{\alpha}^{\phi}(\beta)$ have been studied in literature by different authors. In fact, the class $\mathcal{H}_{\alpha}^{z}(0)$ was first studied in 1975 by Al-Amiri and Reade [2]. They proved that for $\alpha \leq 0$, each function in $\mathcal{H}_{\alpha}^{z}(0)$ satisfies $\operatorname{Re}\left(f^{\prime}(z)\right)>0$ in \mathbb{E} and hence univalent in \mathbb{E}. They left the problem of univalence open for $\alpha>0$ (except for $\alpha=1$, where f is convex, obviously). Ahuja and Silverman [1] observed that the convex function $f(z)=z /(1-z)$ is not in $\mathcal{H}_{\alpha}^{z}(0)$ for any real $\alpha, \alpha \neq 1$. Further this problem pursued by Singh et al. [7] and they proved that for $0<\alpha<1$, the class $\mathcal{H}_{\alpha}^{z}(\alpha)$ consisting univalent functions. In 2007, Singh et al. [5] studied the class $\mathscr{H}_{\alpha}^{z}(\beta)$. They proved that if $f \in \mathcal{H}_{\alpha}^{z}(\beta)$, then $\operatorname{Re}\left(f^{\prime}(z)\right)>0$ in \mathbb{E} for all real numbers α, β satisfying $\alpha \leq \beta<1$ and the result is best possible one in the sense that β cannot be replaced by a real number smaller than α. Their result contains the previous result of Singh et al. [7] and improves the result of Al-Amiri and Reade [2].

In the present paper, we study a more general class $\mathcal{H}_{\alpha}^{\phi}(\beta)$ and establish that the functions in $\mathcal{H}_{\alpha}^{\phi}(\beta)$ are close-to-convex and consequently univalent subject to the condition

$$
\beta+\alpha-1<\alpha \operatorname{Re}\left(\frac{z \phi^{\prime}(z)}{\phi(z)}\right) \leq \beta<1
$$

where α, β are pre-assigned real numbers and ϕ is a starlike function. We claim that our results generalize the previous known results in this direction.

To prove our result, we shall need the following lemma of Miller [3].
Lemma 1.1. Let \mathbb{D} be a subset of $\mathbb{C} \times \mathbb{C}$, where \mathbb{C} is the complex plane and let $\Phi: \mathbb{D} \rightarrow \mathbb{C}$ be a complex function. For $u=u_{1}+i u_{2}, v=v_{1}+i v_{2}\left(u_{1}, u_{2}, v_{1}, v_{2}\right.$ are reals), let Φ satisfies the following conditions:
(i) $\Phi(u, v)$ is continuous in \mathbb{D};
(ii) $(1,0) \in \mathbb{D}$ and $\operatorname{Re}(\Phi(1,0))>0$ and
(iii) $\operatorname{Re} \Phi\left(i u_{2}, v_{1}\right) \leq 0$ for all $\left(\left(i u_{2}, v_{1}\right) \in \mathbb{D}\right.$ such that $v_{1} \leq-\left(1+u_{2}^{2}\right) / 2$.

Let $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$ be regular in the open unit disk \mathbb{E}, such that $\left(p(z), z p^{\prime}(z)\right) \in \mathbb{D}$ for all $z \in \mathbb{E}$. If

$$
\operatorname{Re}\left(\Phi\left(p(z), z p^{\prime}(z)\right)\right)>0, \quad z \in \mathbb{E},
$$

then $\operatorname{Re}(p(z))>0, z \in \mathbb{E}$.

2. Univalence of Functions in $\mathcal{H}_{\alpha}^{\phi}(\beta)$

Theorem 2.1. Let ϕ be a starlike function and let α, β be real numbers such that

$$
\begin{equation*}
\beta+\alpha-1<\alpha \operatorname{Re}\left(\frac{z \phi^{\prime}(z)}{\phi(z)}\right) \leq \beta<1 . \tag{2.1}
\end{equation*}
$$

If $f \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\operatorname{Re}\left((1-\alpha) \frac{z f^{\prime}(z)}{\phi(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right)>\beta, \quad z \in \mathbb{E} \tag{2.2}
\end{equation*}
$$

then $\operatorname{Re}\left(\frac{z f^{\prime}(z)}{\phi(z)}\right)>0$ in \mathbb{E}. So f is close-to-convex and hence univalent in \mathbb{E}.
Proof. Write $p(z)=\frac{z f^{\prime}(z)}{\phi(z)}$, where p is analytic in \mathbb{E} such that $p(0)=1$ and ϕ is a starlike in \mathbb{E}. Then

$$
(1-\alpha) \frac{z f^{\prime}(z)}{\phi(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=(1-\alpha) p(z)+\alpha\left(\frac{z p^{\prime}(z)}{p(z)}+\frac{z \phi^{\prime}(z)}{\phi(z)}\right) .
$$

Thus, condition (2.2) is equivalent to

$$
\begin{equation*}
\operatorname{Re}\left(\frac{1-\alpha}{1-\beta} p(z)+\frac{\alpha}{1-\beta} \frac{z p^{\prime}(z)}{p(z)}+\frac{\alpha \frac{z \phi^{\prime}(z)}{\phi(z)}-\beta}{1-\beta}\right)>0, \quad z \in \mathbb{E} . \tag{2.3}
\end{equation*}
$$

Let $\mathbb{D}=\mathbb{C} \backslash\{0\} \times \mathbb{C}$ and define $\Phi(u, v): \mathbb{D} \rightarrow \mathbb{C}$ as under:

$$
\Phi(u, v)=\frac{1-\alpha}{1-\beta} u+\frac{\alpha}{1-\beta} \frac{v}{u}+\frac{\alpha \frac{z \phi^{\prime}(z)}{\phi(z)}-\beta}{1-\beta} .
$$

Then $\Phi(u, v)$ is continuous in $\mathbb{D},(1,0) \in \mathbb{D}$ and in view of the given condition, we have

$$
\operatorname{Re}(\Phi(1,0))=\frac{1-\alpha\left(1-\operatorname{Re}\left(\frac{z \phi^{\prime}(z)}{\phi(z)}\right)\right)-\beta}{1-\beta}>0 .
$$

Further, from (2.3), we get $\operatorname{Re}\left[\Phi\left(p(z), z p^{\prime}(z)\right)\right]>0, z \in \mathbb{E}$. Let $u=u_{1}+i u_{2}, v=$ $v_{1}+i v_{2}$ where u_{1}, u_{2}, v_{1} and v_{2} are all reals. Then, for $\left(i u_{2}, v_{1}\right) \in \mathbb{D}$, with $v_{1} \leq-\frac{1+u_{2}^{2}}{2}$, we have

$$
\begin{aligned}
\operatorname{Re}\left(\Phi\left(i u_{2}, v_{1}\right)\right) & =\operatorname{Re}\left(\frac{1-\alpha}{1-\beta} i u_{2}+\frac{\alpha}{1-\beta} \frac{v_{1}}{i u_{2}}+\frac{\alpha\left(\frac{z \phi^{\prime}(z)}{\phi(z)}\right)-\beta}{1-\beta}\right) \\
& =\frac{\alpha \operatorname{Re}\left(\frac{z \phi^{\prime}(z)}{\phi(z)}\right)-\beta}{1-\beta} \leq 0 .
\end{aligned}
$$

The proof now follows from Lemma 1.1.
To illustrate the above result, we consider the following example.
Example 2.1. On selecting $\phi(z)=z e^{z}$ and $f(z)=z+\frac{z^{2}}{2}$ in Theorem 2.1, we can easily check that for $\alpha=-0.1$ and $\beta=0$, the condition (2.1) is satisfied as follows

$$
-1.1<-0.1 \operatorname{Re}(1+z) \leq 0<1
$$

and

$$
\operatorname{Re}\left((1-\alpha) \frac{z f^{\prime}(z)}{\phi(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right)=\operatorname{Re}\left(1.1 e^{-z}(1+z)-\frac{0.1+0.2 z}{1+z}\right)>0 .
$$

Therefore,

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{\phi(z)}\right)=\operatorname{Re}(1+z) e^{-z}>0
$$

thus f is close-to-convex and hence univalent in \mathbb{E}.
Theorem 2.2. Suppose that ϕ is starlike in \mathbb{E} and α, β are real numbers such that

$$
\beta+\alpha-1>\alpha \operatorname{Re}\left(\frac{z \phi^{\prime}(z)}{\phi(z)}\right) \geq \beta>1
$$

If $f \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\operatorname{Re}\left((1-\alpha) \frac{z f^{\prime}(z)}{\phi(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right)<\beta, \quad z \in \mathbb{E} \tag{2.4}
\end{equation*}
$$

then $\operatorname{Re}\left(\frac{z f^{\prime}(z)}{\phi(z)}\right)>0$ in \mathbb{E}. So, f is close-to-convex and hence univalent in \mathbb{E}.

Proof. Write $\frac{z f^{\prime}(z)}{\phi(z)}=p(z)$, where p is analytic in \mathbb{E} such that $p(0)=1$ and ϕ is starlike in \mathbb{E}. Note that $1-\beta<0$, thus the condition (2.4) reduces to

$$
\operatorname{Re}\left(\frac{1-\alpha}{1-\beta} p(z)+\frac{\alpha}{1-\beta} \frac{z p^{\prime}(z)}{p(z)}+\frac{\alpha \frac{z \phi^{\prime}(z)}{\phi(z)}-\beta}{1-\beta}\right)>0, \quad z \in \mathbb{E} .
$$

The proof can now be completed on the same lines as the proof of Theorem 2.1.
In a special case when $\phi(z)=z$ in Theorem 2.1, we obtain the following result of Singh et al. [5].
Theorem 2.3. Let α and β be real numbers such that $\alpha \leq \beta<1$. Assume that an analytic function $f \in \mathcal{A}$ satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left((1-\alpha) f^{\prime}(z)+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right)>\beta, \quad z \in \mathbb{E} \tag{2.5}
\end{equation*}
$$

Then $\operatorname{Re} f^{\prime}(z)>0$ in \mathbb{E}. So, f is close-to-convex and hence univalent in \mathbb{E}. The result is sharp in the sense that the constant β on the right hand side of (2.5) cannot be replaced by a constant smaller than α.

Selecting $\phi(z)=z$ in Theorem 2.2, we obtain the following result of Singh et al. [6].
Theorem 2.4. For real numbers α and β such that $\alpha \geq \beta>1$, if $f \in \mathcal{A}$ satisfies the inequality

$$
\operatorname{Re}\left((1-\alpha) f^{\prime}(z)+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right)<\beta, \quad z \in \mathbb{E}
$$

Then $\operatorname{Re} f^{\prime}(z)>0$ in \mathbb{E}. So, f is close-to-convex and hence univalent in \mathbb{E}.
Acknowledgements. The authors are thankful to the reviewer for valuable comments.

References

[1] O. P. Ahuja and H. Silverman, Classes of functions whose derivatives have positive real part, J. Math. Anal. Appl. 138(2) (1989), 385-392.
[2] H. S. Al-Amiri and M. O. Reade, On a linear combination of some expressions in the theory of univalent functions, Monatshefto für Mathematik 80 (1975), 257-264.
[3] S. S. Miller, Differential inequalities and Carathéodory functions, Bull. Amer. Math. Soc. 81 (1975), 79-81.
[4] K. Noshiro, On the theory of schlicht functions, Journal of the Faculty of Science, Hokkaido University 2(3) (1934), 129-155.
[5] S. Singh, S. Gupta and S. Singh, On a problem of univalence of functions satisfying a differential inequality, Math. Inequal. Appl. 10(1) (2007), 95-98.
[6] S. Singh, S. Gupta and S. Singh, On a problem in the theory of univalent functions, General Mathematics 17 (3) (2009), 135-139.
[7] V. Singh, S. Singh and S. Gupta, A problem in the theory of univalent functions, Integral Transforms Spec. Funct. 16(2) (2005), 179-186.
[8] S. E. Warchawski, On the higher derivatives at the boundary in conformal mappings, Trans. Amer. Math. Soc. 38 (1935), 310-340.
${ }^{1}$ Department of Applied Sciences, Baba Banda Singh Bahadur Engg. College, Fatehgarh Sahib-140407, Punjab, INDIA
Email address: aradhitadhiman@gmail.com
${ }^{2}$ Department of Mathematics,
Sri Guru Granth Sahib World University, Fatehgarh Sahib-140407, Punjab, INDIA
Email address: ssbilling@gmail.com

[^0]: Key words and phrases. Analytic function, univalent function, close-to-convex function 2010 Mathematics Subject Classification. Primary: 30C80. Secondary: 30C45.
 DOI 10.46793/KgJMat2004.533K

