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A NEW CLASS OF INTEGRALS INVOLVING GENERALIZED
HYPERGEOMETRIC FUNCTION AND MULTIVARIABLE
ALEPH-FUNCTION

DINESH KUMAR!, FREDERIC AYANT?3 AND DEVENDRA KUMAR*

ABSTRACT. The aim of this paper is to evaluate an interesting integral involving
generalized hypergeometric function and the multivariable Aleph-function. The
integral is evaluated with the help of an integral involving generalized hypergeometric
function obtained recently by Kim et al. [8]. The integral is further used to evaluate
an interesting summation formula concerning the multivariable Aleph-function. A
few interesting special cases and corollaries have also been discussed.

1. INTRODUCTION AND PRELIMINARIES

Hypergeometric function is an important and useful tool for special functions that
plays an important role in the field of analysis. Transformation theory plays a major
role to provide a platform for the development of beautiful transformation. It is
important to mention that whenever generalized hypergeometric function reduces to
a gamma function, the results are very important from application point of view in
mathematics, statistics and mathematical physics [2,11,22]. Recently Rohira et al.
[17] have evaluated a class of integrals involving generalized hypergeometric function
and the H-function defined by Fox [5] (see also, [16]). In this paper, we aim to
present a class of integrals involving generalized hypergeometric function and the
multivariable Aleph-function.

The multivariable Aleph-function is an extension of the multivariable I-function
defined by Sharma and Ahmad [20], which is a generalization of the multivariable H-
function defined by Srivastava et al. [24,25] (see also, [3,4,10,23]). The multivariable
Aleph-function is defined by means of the multiple contour integral given by the
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following manner:
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For more details, reader can refer to recent works [1,18]. The condition for absolute
convergence of multiple Mellin-Barnes type contour can be obtained by extension of
the corresponding conditions for multivariable H-function given as | arg z;| < %AE’“)W,
where

n Pi g
= o —m > ) —m Yy +Z% = T Z vﬂ<k>+z5k)
j=1

j=n+1 7j=1 Jj=ng+1
q,(k)
— T Y. 0 Z(k) >0, withk=1,...,r,i=1,...,R, i® =1,... R®,
J=mp+1
where k=1,...,r,i= R, %) =1,... R®,

The complex numbers 2 7& 0. Throughout the paper, we assume the existence
and absolute convergence conditions of the multivariable Aleph-function. Here and
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in the following, let Re(a) be the real part of a complex number a. We establish the
asymptotic expansion in the convenient form, below

N (2z1,...,2.) =0(|z1]*, ..., ]2 *), max (|z],...,]z]) =0,
N(z1,..02) =0 (|20, 2], min (|2, ]z]) = oo,
where & = 1,...,r, «a = min [Re (d§k)/5§k)>}, j = 1,...,my and
r = max [Re ((cgk) — 1) /fyj(k))}, j = 1,...,n. For convenience, we will also use
the following notations in this paper:
V:m17n1;"';m7“7n’r7
(1.2) W =p,w, 00, Ty Rm% <o Dim) s Qi) 5 T R(T);

(1.3)

A={(al o) A agal o a) M (@),
{Tim (cggn;7§3<)1))n1+17pi(1> } MU {(cg»r); %(-T))Lm} ) {Tw) (C§~:<)T>;ngﬁ)nrﬂmi(r) } :
(1.4)

p (o). ) {60),.)
{n(n (dﬁ(w 5,(;)1))%“7%(1) } Seees {(dy); 5](r)>1 mr} ) {Tm <d§:2r>§ 6;:()T))mr+l,qi(r) } '

2. REQUIRED FORMULA

Recently, Kim et al. [8] have obtained the following integral formula involving
generalized hypergeometric function which will be required in our present study. Here
and in the following, let C and Z; be the sets of complex numbers and non-positive
integers, respectively.

Lemma 2.1. For Re(2¢c —a —b) > —1 and d € C\Z; , we have the following integral
formula, given by

IR PP
B WF(C)ZI_CF(%CL—FIZ)—F )F(c—%a—fb—i- )
T(la+ T (+ 1) (c—ta+ )T (c—Lb+1)
2¢—d\ ' (c)4~ F(a—i—lb—i- )F(c—fa—fb—i- )
( d ) F(3a0)T(30) T (c—3a+1)T(c—4b+1)
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3. MAIN INTEGRALS

In this section, we evaluate the following interesting integral involving generalized
hypergeometric function and the multivariable Aleph-function.

Theorem 3.1.
(3.1)

s (1—a)™
1 :
-1 (1 e a,b,d+ 1, : _
/Ox (1—2x) 3F2[;(a+b+1),d;x]}z . de = A4
zoahr (1—2)"
214_h1 (1_c;hla"'vh‘r)7(§+§a+%b_c;h1""’hr)’A

NO n+2 1%
Di+2,q;+2,7; R:W

ZT4_hr (%‘i‘%a_c;hfl?"'ah’?“)7(%+%b_c;hlv"'7hr>78
214*}11 (1—C;hl,...,hr),(d—2c;2h1,...,2h7«>,

0On+3:V
+ Ay Np +3,¢;4+3,7; R:W

zTZJ;_hT (%a—c;hl,...,hr> ;(;b—c;hl,...,hr),
(L+ta+ib—chi,... .h), A

(1+d—2¢;2h,...,2h,), B
where A and B are given by (1.3) and (1.4) respectively. Also,
T4~ F( a—+ 1b + )

(3.2) Ay =
' F(§a+§)1“(§b+§>
and
w4l (Sa+ b+ })
(3:3) A= (sa)T(20)

Provided that
h;i >0, fori=1,...,7, Re(c)>0,de C\Z,,

r d
Re (¢) + ) h; min Re<6]1>>0 fori=1,...,r,

J

1 (k) -
< ZA;
2 7 7

‘arg zpal™ (1 —x)™

where AE’“) is defined by (1.2) fork=1,...,r
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Proof. To prove (3.1), first we assume the left side of (3.1) by the notation F, and
then express the Aleph-function of several variables involved on the left hand side
of (3.1) in terms of Mellin-Barnes contour integral with the help of (1.1), and next
change the order of integrations which is permissible under the stated conditions, so
we obtain

_ 1 : Sk ! c+2f_lhisifl
sfl—(m)r/ﬁl.../Twsl,...,sr)gek(sk)zk [

% ( B )C+le iSi £2[ (abd—i—l

a+b+1),d ]dx} ds;y ...ds,

Now, we evaluate the inner integral with the help of lemma 2.1, after algebraic
manipulations, we have

N :7T4_CF<G—|- b—|- / / (s s)ﬁe (3)2
4723:1h”’1j(0+2¢:1h¢8i) <C+Z hSz—*a_*b‘f‘)
F(c+2§1h43i—la+l)F(c+Zi1h45i—%b—|—§)

T4~ CF( a—i—lb—l— r ) )
+ df(ia)F@ Gmw) /L1 r@/} 31,...,sr)]£[1 k (sk) 2
4_Z::1hisir(c+2i=1hi3i) (C+Z phisi — 3 a_7b+ )
T (et X hisi = sa+ 1) T (c+ Xi hisi — 3b+1)
I'(2c—d+2%7  his; + 1)
T(2c—d+257 his:)

and reinterpreting the multiple Mellin-Barnes contour integral in terms of Aleph-
functions of r-variables, we obtain the desired result (3.1). O

X ds;...ds,

X

ds;...ds,,

Theorem 3.2.
zoah (1—a2)t
1 . .
/ 2 (1—z)" R dz
0 .
zeal (1 — )
21 (1—Oé;h1,...,h7«),(1—5;11,...,ZT>,A
(3.4) _Ng :—+22q:/+1 T3 R:W )
2 (1—a—-p;h+1l,...,~h.+1.), B
here provided that
hi>0, l; >0, fOTi:L.‘.,’I“,
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R J
Re (a) + ;:1 hi min Re (6(i)) > 0,

<j<m; \
J

mi J .
Re(ﬁ)—l—;lllmm Re(é(i))>0, i=1,...,m,

<j<m; \
J

‘arg zpa™ (1 — ) ;

1
< §A(-k)ﬂ',

where AE’“) is given by (1.2) fork=1,...,r.

Proof. To prove (3.4), we express the Aleph-function of several variables involved on
the left hand side of (3.4) in the terms of Mellin-Barnes contour integral with the
help of (1.1), and change the order of integrations which is permissible under the
stated conditions and use the formula concerning beta-integral to evaluate the inner
integral. Now reinterpreting the multiple Mellin-Barnes contour integrals in terms of
Aleph-functions of r-variables, we obtain the desired result (3.4). O

4. APPLICATION IN OBTAINING A NEW SUMMATION FORMULA

We have the following summation formula concerning the multivariable Aleph-
function, defined as

Theorem 4.1.
(4.1)

= (a),(b),(d+1),
S (3a+b+1) (), s
21 | (1—c—=s;h1,... h), (—¢c;hyy .o b)), A

0,n+2:V . . .
X Npi+2,qz'+1,Ti;RiW . = A

2 (—2c —s;2hy,...,2h,), B

214—h1 (1—C;h1,..-,hr),(%—F%a“‘%b_c;hl,---,hr),A

NO,n+2:V
pit+2,qi+2,7; R:W

2, 47 (%+%a_c;h1,,,,,hr),(%+%b—c;h1,...,hr),B
214—h1 (1—C;hl,...,hr),(d—QC;th,...,Zhr),
+ AN e .

zréi_h" (%a—c; hl,...,hr> ,.(lb—c; hl,...,hr>,

2
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(A+3a+ib—chy,... h), A

(1+d—2c¢;2hy,...,2h,), B

where Ay and As are defined in (3.2) and (3.3) respectively, also the validity conditions
can easily be obtained from (3.1).

Proof. We have the following integral denoted by IJ (say), given as

zah (1—a2)t
1 .
_ c—1 i c a, b, d + 1, .
_/Ox (1—x) 3F2[;(a+b+1>’d;x]?‘2 ' dz.
2 (1 — x)lr
Expressing the generalized hypergeometric function 3F5 as a series, and after algebraic
manipulations we have
2 (1 - :zt)l1
> b) . (d+1 1
J = - (a), (b), (d + 1), / (1 - 2)° R ' dz.
S (Sa+b+1)) (@), 8! o

zeal (1 — x)lr
Finally, evaluating the above integral with the help of (3.4), we arrive at

= (a), (b), (d+1),
S (3a+b+1)) (d), s
2 | (1—c—=s8;hy,...,h), (—¢c;hyy . hy), A

j:

(42) X< N e | ,
2 (—2c¢ — s;2hy,...,2h,), B

Hence, the summation formula (4.1) follows from equating the two integrals (3.1) and
(4.2). O

When d = 2¢, then above result reduces to the following interesting relation:
s (a), (b), (2c+1),
5=0 (% (a+b+ 1))5 (2¢), s!

21 | l=c—=s;hy, ... he),(—c;hy, ... hy) A

0,n42:V . ) B
X Npi+274i+17T¢;RZW . ) = Ay,
2 (—=2¢ — s;2hy,...,2h,), B
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aah | U=chy k) (S e+ ib—ch, b)), A

NO,n+2ZV
pi+2,qi+2,7; R:W

Zr4_hr (%—}—%a—c;hl,,,,,hr),(%—i—%b—c;hl,...,hr),B
214—}11 (1—C;hl,...,hr),(O;th,...,Qhr),

0,n+3:V
+ Ao NS g po i mew

Zrzi—hr (%a—c;hl,...,hr) ,'(éb—Cthw-th)’
<%+%a+%b—c;h1,...,hr>,fl

(1:2h,...,2h,), B

5. SPECIAL CASES

In this section, we will see the interesting special cases of integral formula (3.1) and
summation formula (4.1).

Let b = —2s and replace a by a + 2s, where s is zero or a positive integer. In such
case, one of the two terms on the right hand side of (3.1) will be vanished and we get
the following interesting result, as concerning by the following corollary.

Corollary 5.1.

2 (1 — x)hl

1 .

c—1 - c a+23,—23,d+1, '

/0 vl l %(a—l—l),d; di ' dx

Z’r‘ l'hT (1 _ .T)hT
1 7 47 (I=c hyy.o o hy),

:M NO,n+2:V '
4e la+ 1 Di+2,q;+2,7; RW ] ‘

(30+1), At | (4 dats—chy,. . ),

(%—F%a—c;hl,...,h,«),fl

(%—s—c;hl,...,hr),B
provided that the condition easily obtainable from (3.1) is satisfied.

Let b = —2s — 1 and replace a by a + 2s + 1, where s is zero or a positive integer.
Then, one of the two terms on the right hand side of (3.1) will vanish and we get the
following corollary.
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Corollary 5.2. By assuming that the validity condition easily obtainable from (3.1)
is satisfied, then we have

aah (1—a)™

a—i—28—|—1,—28—1,d—|—1;x]N da

1
c—1 _ c
/O:L‘ (1 ZL‘) fQ[ %(CL—I—l),d; .
zoahr (1—2)"
—h (I —=c;hyy... hy)
o1 . 214 s 101, s Tor )
_ (=) vm (%)S O3V :

] 92c+1 (1a+ ;) Pit3,i+3,7; RW
20T 3),

2, 4= (%+%a+3—c;h1,...,h,«>,
(3+3a—chy,... hy),(d=2c2h,. .., 2h,), A

(_l_S—C;hl,...,hr>,(1+d—20;2h1,...,2hr),B

2

Next, we will provide the special cases of the summation formula (4.1).
Concerning the following corollary, we consider the Aleph-function of one variable
defined by Siidland et al. [26,27] (see also, Saxena et al. [18]).

Corollary 5.3.
(1 —=c—=s;h1),(=c;hy), A

21

io: b) (d + 1)3 le,n1+2

1 p1+2,q1+1,7.1 ’R(l)
nga+b+ d), s! iV :
(2 )> (@) (—2c—s;2hy), B

(1—ch), (3+3a+3b—ch), A

mi,n1+2 P 4—h1
P1+2,q1+2,7, (1), R 1

(%+%G—C,h1),(%+%b—c,h1),B

(1= cihi),(d—2c;2h), (3 +3a+3b—chi), A
mi,n1+3 —hy .

+A2 Np1+3 Q13,70 RO | A1 4 '
(%a—c;m),(%b—c;hl),(1—|—d—20;2h1),B

where

_ 1. @) (SN EY)
A = {(Cj 77‘7 )17711} ) {T1,<1) (Cjz‘(l)77ji(1>)n1+17pi<1)}

and

_ (1), (1) 1 . s
B= {(dj 10, )1,m1}’ {Ti(l) (dﬂ“>’ 6JZ(1>)m1+1,qi(1)} '
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Provided that:
hy >0, Re(¢) >0, d#0,—1,-2

g e ey

(i(l)
Re(c) + hy min Re (51)) > 0, ’argzlxhl (1—x)h1

1<i<my )

<1
—T
27

Jj=ni+1 j=mi+1

n1 q;(1)
(Zvﬁ- S VDL 6ﬂ<1>)>0
j=1

Now, we consider the [-function defined by Saxena [19]. We have the following
result.

Corollary 5.4.

(1—c—s;h1),(—c;hy), A
S (a)s (b)s (d+ 1)5 ™ n1+2 ( .
+

1 101-|-2 qa+1LRM
sol(z(a+b+1 d), s! :
<2( )>s (4) (—2¢ —s;2hy), B

(1 —c; hy), % % c;h1>,A’

l
2
_ mi,n1+2 —h1

=4 p1+2,q1+2;RM) a4

(%‘F;G—C%]h),(;+;b—c;h1),B/
(1= cihy),(d—2c;2h), (3 +3a+ 3b—chi), A’

mi,n1+3 —hy
+ A2 Ip1+3 @1+3;RM “1 4

(%a—c; h1> , (%b— c; h;),(l—i—d—Qc;Zhl), B’

= {0, L), )

o (1), ¢(1) 1) . 5(1)
B - {(d] ) 5] )Lml} ? { <djl(1) ’ 5j’i(1))m1+1,qi(1) } '
Provided that

hi >0, Re(c) >0, d#0,—1,-2,..

where

and

*

(i(l)
Re(¢) + hy min Re( ) > 0, ’argzlx (1—xz)™

1
1<i<m. 5l1) < §7T’

ni Py
(Z VR D! z(l) + 25 Z 5]1(1))
j=1

j=ni+1 J=mi+l

Remark 5.1. By the similar methods, we can obtain the similar summation formula
with the Aleph-function of two variables (see [9]), the I-function of two variables
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(see [12,21]), the multivariable I-function (see [13,15]), the multivariable A-function
(see [7]), the A-function [6], the modified multivariable H-function (see [14]) and the
multivariable H-function (see [3,4,10,24,25]).

6. CONCLUDING REMARKS

In this paper, we have established two integrals formulas and one summation formula
involving the generalized hypergeometric function and Aleph-function of r-variables.
On account of the most general character of the multivariable Aleph-function in
Theorems 3.1, 3.2 and 4.1, numerous other special cases associated with potentially
useful higher transcendental functions, orthogonal polynomials of one and several
variables can be deduced.
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