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LOWER BOUNDS FOR INVERSE SUM INDEG INDEX OF
GRAPHS

I. GUTMAN1, M. MATEJIĆ2, E. MILOVANOVIĆ2, AND I. MILOVANOVIĆ2

Abstract. Let G = (V,E), V = {1, 2, . . . , n}, be a simple connected graph with n
vertices and m edges and let d1 ≥ d2 ≥ · · · ≥ dn > 0, be the sequence of its vertex
degrees. With i ∼ j we denote the adjacency of the vertices i and j in G. The
inverse sum indeg index is defined as ISI =

∑ di dj

di+dj
with summation going over

all pairs of adjacent vertices. We consider lower bounds for ISI. We first analyze
some lower bounds reported in the literature. Then we determine some new lower
bounds.

1. Introduction

Let G = (V,E), V = {1, 2, . . . , n}, E = {e1, e2, . . . , em}, be a simple connected
graph with n vertices and m edges, and let ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ > 0,
di = d(i), and d(e1) ≥ d(e2) ≥ · · · ≥ d(em), be sequences of its vertex and edge
degrees, respectively. We denote by ∆e1 = d(e1) + 2 and δe1 = d(em) + 2. If the
vertices i and j are adjacent, we write i ∼ j.

In graph theory, an invariant is a property of graphs that depends only on their
abstract structure, not on the labeling of vertices or edges, or on the drawing of the
graph. Such quantities are also referred to as topological indices. Topological indices
gained considerable popularity because of their applications in chemistry as molecular
structure descriptors [2, 24,25].

An important class of graph invariants are those whose general formula is
V DB = V DB(G) =

∑
i∼j

Φ(di, dj),
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which are usually referred to as vertex–degree based topological indices. Here Φ may
be any function satisfying the condition Φ(x, y) = Φ(y, x). A very large number of
particular VDB indices has been considered in the literature, some of which are listed
below. There are countless papers reporting relations for VDB indices, which includes
bounds (in terms of various graph parameters), characterization of graphs extremal
w.r.t. some particular VDB index (in some particular class of graphs), and inequalities
between various members of the VDB family. Readers interested in this topic may
consult the recent collections of review articles [12–14].

The present paper contributes to the theory of VDB indices, comparing some
previously known inequalities and challenging their validity, and offering a few new
results of the same kind.

The oldest VDB topological indices, the first and the second Zagreb indices are
defined as (see [8, 9])

M1 = M1(G) =
n∑
i=1

d2
i and M2 = M2(G) =

∑
i∼j

di dj ,

where the first Zagreb index can be expressed as

(1.1) M1 =
∑
i∼j

(di + dj) .

Bearing in mind that for the edge e connecting the vertices i and j,

d(e) = di + dj − 2 ,

the index M1 can also be considered as an edge–degree based invariant (see [17])

M1 =
m∑
i=1

[
d(ei) + 2

]
.

A so-called forgotten topological index is defined as (see [8])

F = F (G) =
n∑
i=1

d3
i =

∑
i∼j

(d2
i + d2

j) .

It can be easily observed that for the indices M2 and F the following identities hold:

F + 2M2 =
m∑
i=1

[
d(ei) + 2

]2
and F − 2M2 =

∑
i∼j

(di − dj)2 .

Multiplicative versions of the first and second Zagreb indices, denoted by Π1 and
Π2, respectively, were first considered in a paper [10] published in 2011, and were
promptly followed by numerous additional studies. These indices are defined as:

Π1 = Π1(G) =
n∏
i=1

d2
i and Π2 = Π2(G) =

∏
i∼j

di dj .



BOUNDS FOR INVERSE SUM INDEG INDEX 553

One year later, motivated by the identity (1.1), the multiplicative sum–Zagreb index
was conceived as [3]:

Π∗
1 = Π∗

1(G) =
∏
i∼j

(di + dj) .

Probably the most popular and most thoroughly investigated molecular–structure
descriptor is the classical Randić (or connectivity) index

(1.2) R = R(G) =
∑
i∼j

1√
di dj

,

invented by Randić in 1975 [21].
Replacing in (1.2) multiplication by summation, the so-called sum–connectivity

index was put forward as (see [32])

SCI = SCI(G) =
∑
i∼j

1√
di + dj

.

In [1] (see also [11, 16]) a topological index called general Randić index, Rα, was
introduced as

Rα = Rα(G) =
∑
i∼j

(di dj)α ,

where α is an arbitrary real number. For α = −1/2 we have R = R−1/2, whereas for
α = 1/2, the reciprocal Randić index, RR, [11, 16] is obtained.

In order to improve the predictive power of the Randić index, a large number of
additional vertex–degree based topological descriptors was introduced. The geometric–
arithmetic index , introduced in [30], is defined as

GA = GA(G) =
∑
i∼j

2
√
di dj

di + dj
.

The harmonic index , introduced in [4], is defined as

H = H(G) =
∑
i∼j

2
di + dj

.

It should be noted that Π∗
1, SCI, and H can be considered as edge–degree based

topological indices as well, since the following identities hold:

Π∗
1 =

m∏
i=1

[
d(ei) + 2

]
, SCI =

m∑
i=1

1√
d(ei) + 2

, H =
m∑
i=1

2
d(ei) + 2 .

In a series of papers [26–28,31], Vukičević introduced the so-called Adriatic indices,
providing a general method for constructing vertex–degree based graph invariants;
for review see [29]. Vukičević himself restricted the considerations to some 148 such
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indices, although their possible number would be infinite. One of these Adriatic
indices, named symmetric division deg index , is

SDD = SDD(G) =
∑
i∼j

1
2

(
di
dj

+ dj
di

)
.

Another Adriatic index, the so-called inverse sum indeg index , was singled out in [26]
as being a significantly accurate predictor of total surface area of octane isomers. It
is defined as

ISI = ISI(G) =
∑
i∼j

di dj
di + dj

.

In this paper, we are interested in lower bounds on ISI. We first perform the
analysis of some earlier reported lower bounds for ISI [5, 19, 23]. Then we determine
some new lower bounds for it, in terms of some other vertex–degree based graph
invariants.

2. Preliminary considerations

In this section, we analyze some lower bounds for the inverse sum indeg index
reported in [5, 19,23].

In [23] the following inequality was proven

(2.1) ISI ≥ (n− 1)2

n
,

with equality if and only if G ∼= K1,n−1. This bound is the best possible in its class.
In [5] it was proven

(2.2) ISI ≥ m2

n
,

with equality if and only if the graph G is regular or biregular. This bound depends
on the parameters n and m, and it is the best one in its class, so far.

The bounds given by (2.1) and (2.2), although simple, are very important and,
as we shall demonstrate, are convenient for testing whether other lower bounds,
depending on some other parameters, have any sense. Of course, it is of interest to
determine other (lower) bounds that establish relationships between ISI and other
graph invariants. But, if these inequalities are weaker than inequalities (2.1) and (2.2),
the question of their purpose arises. In that sense we will analyze lower bounds for
ISI obtained in [5] and [19].

In [5] the following lower bounds for ISI were also established:

ISI ≥m
2 δ2

M1
,(2.3)

ISI ≥δ
2H

2 ,(2.4)
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ISI ≥M2

2∆ ,(2.5)

ISI ≥δ
2(SCI)2

m
,(2.6)

ISI ≥H,(2.7)

ISI ≥M1

2 −
F

4δ ,(2.8)

ISI ≥ m2
√
δ∆

(δ + ∆)R,(2.9)

ISI ≥(SCI)2

R−1
,(2.10)

ISI ≥m
(

Π2

Π∗
1

)1/m

,(2.11)

whereas in [19] it was proven that

(2.12) ISI ≥
√
δ∆HM2

m(δ + ∆) .

The inequalities (2.3)–(2.12) are all correct. However, it is questionable whether
any of the bounds given by (2.3)–(2.10) are worthy. In what follows we discuss this
matter.

Since

M1 =
n∑
i=1

d2
i ≥ nδ2 ,

we have that
m2

n
≥ m2 δ2

M1
.

Thus, the inequality (2.3) is a direct consequence of the inequality (2.2).
Since

n δ2H

2 = δ2

2
∑
i∼j

(
1
di

+ 1
dj

)∑
i∼j

2
di + dj

≤ δ2

2
2m
δ

m

δ
,

it holds
m2

n
≥ δ2H

2 .

Thus, the inequality (2.4) is a direct consequence of the inequality (2.2).



556 I. GUTMAN, M. MATEJIĆ, E. MILOVANOVIĆ, AND I. MILOVANOVIĆ

Using the arithmetic–harmonic mean inequality for real numbers (see for example
[18]), we get

1
2HM1 = 1

2
∑
i∼j

2
di + dj

∑
i∼j

(di + dj) ≥ m2

that is
δ2H

2 ≥ m2 δ2

M1
,

implying that the inequality (2.3) is a consequence of (2.4).
If m ≥ n, the inequality (2.5) is a consequence of (2.2).
Let m = n− 1, i.e., G is a tree. In [6] it was proven that

(2.13) M2(T ) ≤ ∆(2n−∆− 1− k) + k(k − 1),
where

k ≡ n− 1 (mod ∆− 1), 1 ≤ k ≤ n− 1.
From (2.13) it follows

M2(T ) ≤ ∆(2n−∆− 1− k) + k(k − 1) ≤ 2∆(n− 1)2

n
,

wherefrom we get
m2

n
= (n− 1)2

n
≥ M2(T )

2∆ .

This means that the inequality (2.5) is a consequence of (2.2) for every connected
graph G.

According to the inequality

(SCI)2 =
∑
i∼j

1√
di + dj

2

≤ m
∑
i∼j

1
di + dj

= mH

2 ,

it follows
m2

n
≥ δ2H

2 ≥ δ2(SCI)2

m
.

This means that the inequality (2.6) is a consequence of both (2.2) and (2.4).
Let m = n − 1, i.e., G is a tree of order n, and let n ≥ 3. Then di + dj ≥ 3 for

every i ∼ j. Therefore,
(n− 1)2

n
≥ 2

3(n− 1) ≥ H .

It follows that in this case the inequality (2.7) is a consequence of both (2.1) and (2.2).
Let m ≥ n. Then di + dj ≥ 2 for every i ∼ j. Then we have

m2

n
≥ m ≥ H .

Therefore, in this case, the inequality (2.7) is also a consequence of (2.2).
The inequality (2.2) is stronger than the inequality (2.8) when G is a biregular

graph, or G ∼= Pn, or G ∼= Kn − e, or G ∼= Kn−1 + e. When n ≥ 3 and G is not a
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regular graph, then we could not find any connected graph for which the inequality
(2.8) is stronger than the inequality (2.2). Moreover, if ∆ ≥ 2δ, then the right-hand
side of (2.8) can be negative. Therefore, the right-hand side of (2.8) should be avoided
when estimating lower bound for ISI.

Since
n =

∑
i∼j

(
1
di

+ 1
dj

)
=
∑
i∼j

di + dj
di dj

=
∑
i∼j

di + dj√
di dj

1√
di dj

and
di + dj√
di dj

=

√√√√di
dj

+
√
dj
di
≤
√

∆
δ

+
√
δ

∆ ,

for every edge in the graph G, it follows

n ≤ (∆ + δ)R√
∆δ

.

Therefore,
m2

n
≥ m2

√
∆δ

(∆ + δ)R .

Thus, the inequality (2.9) is a consequence of the inequality (2.2).
The inequality (2.2) is stronger than the inequality (2.10) when G ∼= Pn, or G ∼=

Kn − e or G ∼= Kn−1 + e, n ≥ 3. If n ≥ 3 and G is not a regular or biregular graph,
then we could not find any connected graph for which the inequality (2.10) is stronger
than the inequality (2.2). However, it remains an open question whether this is the
case for every connected graph under given conditions.

The inequality (2.11) is stronger than the inequality (2.2) for G ∼= Pn, G ∼= Kn − e
or G ∼= Kn−1 + e. Again, we could not find any connected graph which is not regular
or biregular for which the inequality (2.2) is stronger than the inequality (2.11). It is
still an open question if this is always the case.

The inequalities (2.2) and (2.12) are not comparable. Thus, for example, if the
connected graph is biregular or G ∼= Kn−1 + e, then the inequality (2.2) is stronger
than the inequality (2.12). If, however, G ∼= Pn or G ∼= Kn − e, then the inequality
(2.12) is stronger than (2.2).

3. Main Results

Before we establish some new lower bounds for ISI, we recall some discrete inequal-
ities for real number sequences that will be used subsequently.

Let p = (pi) and a = (ai), i = 1, 2, . . . ,m, be positive real number sequences with
the properties p1 + p2 + · · ·+ pm = 1 and 0 < a ≤ ai ≤ A < +∞. In [22] the following
inequality was proven

(3.1)
m∑
i=1

pi ai + aA
m∑
i=1

pi
ai
≤ a+ A .
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Equality holds if and only if ai = A or ai = a, for every i = 1, 2, . . . ,m.
Let x = (xi) and a = (ai), i = 1, 2, . . . ,m, be positive real number sequences. In

[20] it was proven that for any r ≥ 0 holds

(3.2)
m∑
i=1

xr+1
i

ari
≥

(
m∑
i=1

xi

)r+1

(
m∑
i=1

ai

)r ,

with equality if and only if a1
x1

= · · · = am

xm
.

If a = (ai), i = 1, 2, . . . ,m, is a positive real number sequence, then [15]

(3.3)
(

m∑
i=1

√
ai

)2

≥
m∑
i=1

ai +m(m− 1)
(
m∏
i=1

ai

)1/m

.

Equality holds if and only if a1 = a2 = · · · = am.

Theorem 3.1. Let G be a simple connected graph. Then

(3.4) ISI ≥ 4R−1M2 + ∆e1δe1H
2

4(∆e1 + δe1)R−1
.

Equality holds if and only if G is regular or biregular.

Proof. For pi := di dj

(di+dj)ISI , ai := di + dj, a = δe1 , A = ∆e1 , where summation is
performed over all pairs of adjacent vertices of G, the inequality (3.1) becomes∑

i∼j
di dj + ∆e1δe1

∑
i∼j

di dj
(di + dj)2 ≤ (∆e1 + δe1)ISI,

i.e.,

(3.5) M2 + ∆e1δe1

∑
i∼j

di dj
(di + dj)2 ≤ (∆e1 + δe1)ISI.

For r = 1, xi := 1
di+dj

, ai := 1
di dj

, where summation goes over all pairs of adjacent
vertices, the inequality (3.2) transforms into

∑
i∼j

di dj
(di + dj)2 ≥

∑
i∼j

1
di + dj

2

∑
i∼j

1
di dj

,

that is

(3.6)
∑
i∼j

di dj
(di + dj)2 ≥

H2

4R−1
.

In view of (3.5) and (3.6), we obtain (3.4).
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The equality in (3.6) holds if and only if for any two pairs of adjacent vertices i ∼ j
and u ∼ v

(3.7) 1
di

+ 1
dj

= 1
du

+ 1
dv
.

Let j and u be two vertices adjacent to i, that is i ∼ j and i ∼ u. Then, from the
above identity, it follows dj = du. Since G is a connected graph, equality in (3.6)
holds if and only if G is regular or biregular.

Equality in (3.5) holds if and only if di + dj = ∆e1 or di + dj = δe1 , for every edge
of G. This means that equality in (3.5) holds if and only if G is regular or biregular
or for some edges di + dj = ∆e1 holds whereas for the remaining edges di + dj = δe1 .
This means that equality in (3.4) holds if and only if G is regular or biregular. �

In the next theorem we obtain a lower bound for ISI in terms of the parameters
m, ∆e1 , δe1 , and the topological indices M2 and SDD.

Theorem 3.2. Let G be a simple connected graph with m edges. Then

(3.8) ISI ≥ 2M2(SDD +m) +m2∆e1δe1

2(SDD +m)(∆e1 + δe1) .

Equality is attained if and only if for any two pairs of adjacent vertices i ∼ j and
u ∼ v the identity

(3.9) di
dj

+ dj
di

= du
dv

+ dv
du

holds.

Proof. By the arithmetic–harmonic mean inequality (see e.g. [18]), we have

(3.10)
∑
i∼j

di dj
(di + dj)2

∑
i∼j

(di + dj)2

di dj
≥ m2 .

Since ∑
i∼j

(di + dj)2

di dj
=
∑
i∼j

d2
i + d2

j + 2di dj
di dj

=
∑
i∼j

d2
i + d2

j

di dj
+ 2m = 2(SDD +m) ,

from (3.10) and the above it follows
∑
i∼j

di dj
(di + dj)2 ≥

m2

2(SDD +m) .

From this and inequality (3.5) we obtain (3.8).
Equality in (3.10) is attained if and only if for any two pairs of adjacent vertices

i ∼ j and u ∼ v the equality (3.9) holds. Consequently, equality in (3.8) holds if and
only if for any two pairs of adjacent vertices i ∼ j and u ∼ v the equality (3.9) is
valid. �
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In the following theorem we determine a lower bound for ISI in terms of the
parameters m, ∆e1 , δe1 , and the topological indices M2 and GA.

Theorem 3.3. Let G be a simple connected graph with m edges. Then

(3.11) ISI ≥ 4mM2 + ∆e1δe1(GA)2

4m(∆e1 + δe1) .

Equality in (3.11) holds if and only if for any two pairs of adjacent vertices i ∼ j and
u ∼ v, the equality (3.9) is valid.

Proof. Since

∑
i∼j

di dj
(di + dj)2 =

∑
i∼j


√
di dj

di + dj

2

≥ 1
m

∑
i∼j

√
di dj

di + dj

2

,

it follows ∑
i∼j

di dj
(di + dj)2 ≥

1
m

(
GA

2

)2
.

From this inequality and (3.5) we obtain (3.11).
The equality case in Theorem 3.3 is proved in a same way as in the case of Theo-

rem 3.2. �

In the following theorem we determine a lower bound for ISI in terms of M1 and
RR.

Theorem 3.4. Let G be a simple connected graph with m edges. Then

(3.12) ISI ≥ (RR)2

M1
.

Equality holds if and only if for any two pairs of adjacent vertices i ∼ j and u ∼ v,
the equality (3.9) is valid.

Proof. For r = 1, xi :=
√
di dj, ai := di + dj, where summation goes over all pairs of

adjacent vertices of G, the inequality (3.2) transforms into

∑
i∼j

(√
di dj

)2

di + dj
≥

∑
i∼j

√
di dj

2

∑
i∼j

(di + dj)
,

that is

ISI ≥ (RR)2

M1
.

The equality case in (3.12) is proved in a same way as in the case of Theorem 3.2. �
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The inequalities (3.4), (3.8), (3.11) and (3.12) are stronger than the inequality (2.2)
when G ∼= Pn, G ∼= Kn − e or G ∼= Kn−1 + e. We could not find any connected graph
for which the inequality (2.2) is stronger than these inequalities. However, it is an
open question whether these inequalities are always stronger than (2.2).

References
[1] B. Bollobás and P. Erdos̋, Graphs of extremal weights, Ars Combin. 50 (1998), 225–233.
[2] J. Devillers and A. T. Balaban (Eds.), Topological Indices and Related Descriptors in QSAR

and QSPR, Gordon & Breach, New York, 1999.
[3] M. Eliasi, A. Iranmanesh and I. Gutman, Multiplicative versions of first Zagreb index, MATCH

Commun. Math. Comput. Chem. 68 (2012), 217–230.
[4] S. Fajtlowicz, On conjectures on Graffiti-II , Congr. Numer. 60 (1987), 187–197.
[5] F. Falahati–Nezhad, M. Azari and T. Došlić, Sharp bounds on the inverse sum indeg index,

Discrete Appl. Math. 217 (2017), 185–195.
[6] C. M. Fonseca and D. Stevanović, Further properties of the second Zagreb index, MATCH

Commun. Math. Comput. Chem. 72 (2014), 655–668.
[7] B. Furtula and I. Gutman, A forgotten topological index , J. Math. Chem. 53 (2015), 1184–1190.
[8] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of

alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535–538.
[9] I. Gutman, B. Ruščić, N. Trinajstić and C. F. Wilcox, Graph theory and molecular orbitals. XII.

Acyclic polyenes, J. Chem. Phys. 62 (1975), 3399–3405.
[10] I. Gutman, Multiplicative Zagreb indices of trees, Bull. Int. Math. Virtual Inst. 1 (2011), 13–19.
[11] I. Gutman and B. Furtula (Eds.), Recent Results in the Theory of Randić Index, University of

Kragujevac, Kragujevac, 2008.
[12] I. Gutman, B. Furtula, K. C. Das, E. Milovanović and I. Milovanović (Eds.), Bounds in Chemical

Graph Theory – Basics, University of Kragujevac, Kragujevac, 2017.
[13] I. Gutman, B. Furtula, K. C. Das, E. Milovanović and I. Milovanović (Eds.), Bounds in Chemical

Graph Theory – Mainstreams, University of Kragujevac, Kragujevac, 2017.
[14] I. Gutman, B. Furtula, K. C. Das, E. Milovanović and I. Milovanović (Eds.), Bounds in Chemical

Graph Theory – Advances, University of Kragujevac, Kragujevac, 2017.
[15] H. Kober, On the arithmetic and geometric means and on Hölder’s inequality, Proc. Amer.

Math. Soc. 9 (1958), 452–459.
[16] X. Li and I. Gutman, Mathematical Aspects of Randić–Type Molecular Structure Descriptors,

University of Kragujevac, Kragujevac, 2006.
[17] I. Ž. Milovanović, E. I. Milovanović, I. Gutman and B. Furtula, Some inequalities for the

forgotten topological index, International Journal of Applied Graph Theory 1 (2017), 1–15.
[18] D. S. Mitrinović and P. M. Vasić, Analytic Inequalities, Springer, Berlin, 1970.
[19] K. Pattabiraman, Inverse sum indeg index of graphs, AKCE Int. J. Graphs Comb. (to appear).
[20] J. Radon, Theorie und Anwendungen der Absolut Additiven Mengenfunktionen, Sitzungsber.

Acad. Wissen. Wien 122, 1913, 1295–1438.
[21] M. Randić, On characterization of molecular branching, J. Amer. Chem. Soc. 97 (1975), 6609–

6615.
[22] B. C. Rennie, On a class of inequalities, J. Aust. Math. Soc. 3 (1963), 442–448.
[23] J. Sedlar, D. Stevanović and A. Vasilyev, On the inverse sum indeg index, Discrete Appl. Math.

184 (2015), 202–212.
[24] R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley–VCH, Weinheim,

2000.
[25] R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley–VCH,

Weinheim, 2009.



562 I. GUTMAN, M. MATEJIĆ, E. MILOVANOVIĆ, AND I. MILOVANOVIĆ

[26] D. Vukičević, Bond additive modeling 2. Mathematical properties of max-min rodeg index, Croat.
Chem. Acta 83 (2010), 261–273.

[27] D. Vukičević, Bond additive modeling 4. QSPR and QSAR studies of variable adriatic indices,
Croat. Chem. Acta 84 (2011), 87–91.

[28] D. Vukičević, Bond additive modeling 5. Mathematical properties of the variable sum exdeg
index, Croat. Chem. Acta 84 (2011), 93–101.

[29] D. Vukičević, Bond additive modeling. Adriatic indices – overview of results, in: I. Gutman, B.
Furtula (Eds.), Novel Molecular Structure Descriptors – Theory and Applications II , University
of Kragujevac, Kragujevac, 2010, pp. 269-302.

[30] D. Vukičević and B. Furtula, Topological index based on the ratios of geometrical and arithmetical
means of end-vertex degrees of edges, J. Math. Chem. 46 (2009), 1369–1376.

[31] D. Vukičević and M. Gašperov, Bond additive modeling 1. Adriatic indices, Croat. Chem. Acta
83 (2010), 243–260.

[32] B. Zhou and N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009), 1252–1270.

1Faculty of Science,
University of Kragujevac,
Kragujevac, Serbia
Email address: gutman@kg.ac.rs

2Faculty of Electronic Engineering,
University of Niš,
Niš, Serbia
Email address: {marjan.matejic, ema, igor}@elfak.ni.ac.rs


	1. Introduction
	2. Preliminary considerations
	3. Main Results
	References

