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A NOTE ON THE DEFINITION OF BOUNDED VARIATION OF
HIGHER ORDER FOR DOUBLE SEQUENCES

BHIKHA LILA GHODADRA1 AND VANDA FÜLÖP2

Abstract. In this study the definition of bounded variation of order p (p ∈ N) for
double sequences is considered. Some inclusion relations are proved and counter
examples are provided for ensuring proper inclusions.

1. Introduction

While studying convergence properties of double trigonometric and Walsh series,
many authors have considered double sequences which are of bounded variation or
more generally of bounded variation of order (p, 0), (0, p), and (p, p) (see, e.g., [1,
3]). Also, many results regarding the convergence of trigonometric and Walsh series
with coefficients of bounded variation of higher order are proved (see, e.g., [1, 3]).
But, it seems that showing the inclusion relations for such classes of sequences and
constructing counter examples for showing proper inclusions have not yet been done.

The main goal of this note is to prove such inclusion relations and constructing
examples for showing proper inclusions. We start with the one dimensional case. In
what follows, by a sequence (or a single sequence), we mean a function from Z to C,
and by a double sequence, we mean a function from Z× Z to C.

2. One Dimensional Case

We recall the definition of bounded variation of order p for a single sequence (see
[2, Defintion 1.4]).

Key words and phrases. Double sequence of bounded variation, double sequence of bounded
variation of order p (p ∈ N), double sequence of bounded variation of order (p, 0), double sequence
of bounded variation of order (0, p), double sequence of bounded variation of order (p, p).
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Definition 2.1. A null sequence {ak : k = . . . ,−1, 0, 1, . . . }, i.e., {ak} such that
ak → 0 as |k| → ∞, is said to be of bounded variation of order p (p ∈ N) if

∞∑
k=−∞

|∆pak| <∞,

where ∆pak = ∆(∆p−1ak) = ∆p−1ak −∆p−1ak+1 and ∆0ak = ak.
From this definition, it is clear that if {ak} is of bounded variation of order p, then

it is of bounded variation of order p + 1 also. Also, in [2] an example of a sequence is
given which is of bounded variation of order 2, but not of bounded variation.

3. Two Dimensional Case

In this section, we shall consider the definition of a double sequence of bounded
variation of order p. For that first we have the following definition of differences.
Definition 3.1. Let {c(j, k) : j, k = . . . ,−1, 0, 1, . . . } be a double sequence. Its
differences are defined by

∆00c(j, k) = c(j, k),
∆pqc(j, k) = ∆p−1,qc(j, k)−∆p−1,qc(j + 1, k), p ≥ 1,

∆pqc(j, k) = ∆p,q−1c(j, k)−∆p,q−1c(j, k + 1), q ≥ 1.

As is well-known, the two right-hand sides coincide if min(p, q) ≥ 1. Also, we mention
that that double induction argument gives

∆pqc(j, k) =
p∑

s=0

q∑
t=0

(−1)s+t

(
p

s

)(
q

t

)
c(j + s, k + t).

Definition 3.2. A double sequence {c(j, k) : j, k = . . . ,−1, 0, 1, . . . } of complex
numbers is called a null sequence, if it satisfies
(3.1) c(j, k)→ 0 as max(|j|, |k|)→∞.

Definition 3.3. A double null sequence {c(j, k) : j, k = . . . ,−1, 0, 1, . . . } is said to
be of bounded variation if

(3.2)
∞∑

j=−∞

∞∑
k=−∞

|∆11c(j, k)| <∞.

We shall denote the class of all double sequences of bounded variation by BV.
Now, we give an analogous definition of bounded variation of order p (p ≥ 2) for a

double sequence.
Definition 3.4. A double null sequence {c(j, k) : j, k = . . . ,−1, 0, 1, . . . } is said to
belong to the class (BV)p, i.e., of bounded variation of order p ≥ 2, if the following
three conditions are satisfied:

(3.3)
∞∑

j=−∞

∞∑
k=−∞

|∆ppc(j, k)| <∞,
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(3.4) lim
|k|→∞

∞∑
j=−∞

|∆p0c(j, k)| = 0,

and

(3.5) lim
|j|→∞

∞∑
k=−∞

|∆0pc(j, k)| = 0.

Some authors (see, e.g., [1, 3]) call conditions (3.3)–(3.5) as conditions of bounded
variation of order (p, p), (p, 0), and (0, p), respectively.

Our main aim is to prove that the following chain of inclusion relations holds:
BV = (BV)1 ⊂ (BV)2 ⊂ · · · ⊂ (BV)p ⊂ (BV)p+1 ⊂ · · · .

We also show that each of above relation is proper.

Theorem 3.1. If {c(j, k)} ∈ BV, then {c(j, k)} ∈ (BV)2.

Proof. Suppose {c(j, k)} ∈ BV. Then, we write

(3.6)
∞∑

j=−∞

∞∑
k=−∞

|∆11c(j, k)| <∞.

Since
∆22c(j, k) = ∆12c(j, k)−∆12c(j + 1, k)

= ∆11c(j, k)−∆11c(j, k + 1)−∆11c(j + 1, k) + ∆11c(j + 1, k + 1),
it follows from (3.6) that

∞∑
j=−∞

∞∑
k=−∞

|∆22c(j, k)| ≤ 4
∞∑

j=−∞

∞∑
k=−∞

|∆11c(j, k)| <∞.

So, {c(j, k)} satisfies (3.3) for p = 2. Now, as {c(j, k)} is of bounded variation, that is,
{c(j, k)} is a double sequence satisfying (3.1) and (3.2), it follows (see, e.g., [4, Proof
of Lemma 1]) that

∆10c(j, k0) =
∞∑

k=k0

∆11c(j, k) and ∆10c(j, k0) = −
k0−1∑

k=−∞
∆11c(j, k),

for each fixed k0 ∈ Z. Therefore, for each fixed k0 ∈ Z, we have
|∆20c(j, k0)| = |∆10c(j, k0)−∆10c(j + 1, k0)|

=

∣∣∣∣∣∣
∞∑

k=k0

∆11c(j, k)−
∞∑

k=k0

∆11c(j + 1, k)

∣∣∣∣∣∣
≤

∞∑
k=k0

|∆11c(j, k)|+
∞∑

k=k0

|∆11c(j + 1, k)|

and
|∆20c(j, k0)| = |∆10c(j, k0)−∆10c(j + 1, k0)|
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=

∣∣∣∣∣∣−
k0−1∑

k=−∞
∆11c(j, k) +

k0−1∑
k=−∞

∆11c(j + 1, k)

∣∣∣∣∣∣
≤

k0−1∑
k=−∞

|∆11c(j, k)|+
k0−1∑

k=−∞
|∆11c(j + 1, k)| .

Therefore, in view of (3.6), we have
∞∑

j=−∞
|∆20c(j, k0)| ≤

∞∑
j=−∞

∞∑
k=k0

|∆11c(j, k)|+
∞∑

j=−∞

∞∑
k=k0

|∆11c(j + 1, k)|

→ 0 as k0 →∞
and

∞∑
j=−∞

|∆20c(j, k0)| ≤
∞∑

j=−∞

k0−1∑
k=−∞

|∆11c(j, k)|+
∞∑

j=−∞

k0−1∑
k=−∞

|∆11c(j + 1, k)|

→ 0 as k0 → −∞.

Therefore, {c(j, k)} satisfies (3.4) for p = 2. Similarly, it satisfies (3.5) for p = 2.
Thus, {c(j, k)} ∈ (BV)2. This completes the proof. �

Theorem 3.2. If {c(j, k)} ∈ (BV)p, p ≥ 2, then {c(j, k)} ∈ (BV)p+1.

Proof. Suppose {c(j, k)} ∈ (BV)p. Then, (3.3)–(3.5) hold true. Since
∆p+1,p+1c(j, k) = ∆p,p+1c(j, k)−∆p,p+1c(j + 1, k)

= ∆ppc(j, k)−∆ppc(j, k + 1)−∆ppc(j + 1, k) + ∆ppc(j + 1, k + 1),
it follows from (3.3) that

∞∑
j=−∞

∞∑
k=−∞

|∆p+1,p+1c(j, k)| ≤ 4
∞∑

j=−∞

∞∑
k=−∞

|∆ppc(j, k)| <∞.

So, {c(j, k)} satisfies (3.3) for p + 1 in place of p. Also, for a fixed k ∈ Z, we have
∞∑

j=−∞
|∆p+1,0c(j, k)| =

∞∑
j=−∞

|∆p,0c(j, k)−∆p,0c(j + 1, k)|

≤
∞∑

j=−∞
|∆p,0c(j, k)|+

∞∑
j=−∞

|∆p,0c(j + 1, k)|

→ 0 as |k| → ∞,

in view of (3.4). So, {c(j, k)} satisfies (3.4) for p+1 in place of p. Similarly, in view of
(3.5), {c(j, k)} satisfies (3.5) for p + 1 in place of p. Therefore, {c(j, k)} is of bounded
variation of order p + 1. �

Now, we will prove that the inclusion relations proved in above theorems are proper.
In the following example, we give an example of a double sequence defined on Z× Z,
which is of bounded variation of of order 2, but not of bounded variation.
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Example 3.1. We consider {aj} and {bk} to be single sequences as in [2, Example, p.
424]. That is, for j, k = 1, 2, . . . , and −j ≤ p < j, −k ≤ q < k, we put

aj2+p = j − |p|
j2 , bk2+q = k − |q|

k2 .

As argued in [2], the sequences {aj} and {bk} are well-defined on N ∪ {0} as j2 + j =
(j + 1)2 − (j + 1) and k2 + k = (k + 1)2 − (k + 1). We also put aj = 0 if j ≤ −1, and
bk = 0 if k ≤ −1. Then, {aj} and {bk} are well-defined sequences on Z.

Now, we put
c(j, k) = ajbk, j, k ∈ Z.

Then, {c(j, k)} is a well-defined double sequence on Z×Z. Actually, it is proved in [2]
that these single sequences are of bounded variation of order 2, but not of bounded
variation. We claim that the double sequence {c(j, k)} is of bounded variation of
order 2, but not of bounded variation.

We first observe that

∆11c(j, k) = c(j, k)− c(j + 1, k)− c(j, k + 1) + c(j + 1, k + 1)
= ajbk − aj+1bk − ajbk+1 + aj+1bk+1

= (aj − aj+1)bk − (aj − aj+1)bk+1

= (∆aj)bk − (∆aj)bk+1

= (∆aj)(∆bk)

and therefore, we also have

∆22c(j, k) = ∆12c(j, k)−∆12c(j + 1, k)
= ∆11c(j, k)−∆11c(j, k + 1)−∆11c(j + 1, k) + ∆11c(j + 1, k + 1)
= (∆aj)(∆bk)− (∆aj)(∆bk+1)− (∆aj+1)(∆bk) + (∆aj+1)(∆bk+1)
= (∆aj)(∆bk −∆bk+1)− (∆aj+1)(∆bk −∆bk+1)
= (∆2aj)(∆2bk).

Now, by definition of {aj},

∆aj2+p = aj2+p − aj2+p+1 = j − |p|
j2 − j − |p + 1|

j2 = |p + 1| − |p|
j2

=


1
j2 , if p ≥ 0,

−1
j2 , if p ≤ −1.

Therefore, |∆aj2+p| = 1/j2 and similarly |∆bk2+q| = 1/k2. Next, we have
∞∑

j=0
|∆aj| =

∞∑
j=1

j−1∑
p=−j

|∆aj2+p| =
∞∑

j=1

j−1∑
p=−j

1
j2 =

∞∑
j=1

2j

j2 =
∞∑

j=1

2
j
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and similarly
∞∑

k=0
|∆bk| =

∞∑
k=1

2
k

.

Therefore, as ∆aj = 0 for j ≤ −1, and ∆bk = 0 for k ≤ −1, we have
∞∑

j=−∞

∞∑
k=−∞

|∆11c(j, k)| =
∞∑

j=−∞

∞∑
k=−∞

|(∆aj)(∆bk)| =
∞∑

j=0

∞∑
k=0
|(∆aj)(∆bk)|

=
 ∞∑

j=0
|∆aj|

( ∞∑
k=0
|∆bk|

)

=
 ∞∑

j=1

2
j

( ∞∑
k=1

2
k

)
=∞,

which proves that {c(j, k)} is not of bounded variation.
But, for −j ≤ p ≤ −2,

∆2aj2+p = ∆aj2+p −∆aj2+p+1 =
(
−1
j2

)
−
(
−1
j2

)
= 0,

for 0 ≤ p ≤ j − 1,

∆2aj2+p = ∆aj2+p −∆aj2+p+1 =
(

1
j2

)
−
(

1
j2

)
= 0,

and, for p = −1 we have

∆2aj2−1 = ∆aj2−1 −∆aj2 =
(
−1
j2

)
−
(

1
j2

)
= −2

j2 .

Similarly, ∆2bk2+q = 0, for −k ≤ q ≤ −2, for 0 ≤ q ≤ k − 1, and ∆2bk2−1 = −2/k2.
Hence, as ∆2aj = 0, for j ≤ −2, and ∆2bk = 0, for k ≤ −2, we have

∞∑
j=−∞

∞∑
k=−∞

|∆22c(j, k)| =
∞∑

j=−∞

∞∑
k=−∞

∣∣∣(∆2aj

) (
∆2bk

)∣∣∣ =
∞∑

j=−1

∞∑
k=−1

∣∣∣(∆2aj

) (
∆2bk

)∣∣∣
=
∣∣∣(∆2a−1)(∆2b−1)

∣∣∣+ ∣∣∣(∆2a−1)(∆2b0)
∣∣∣+ ∣∣∣(∆2a0)(∆2b−1)

∣∣∣
+
 ∞∑

j=0

∣∣∣∆2aj

∣∣∣
( ∞∑

k=0

∣∣∣∆2bk

∣∣∣)

= |1 · 1|+ |1 · (−2)|+ |(−2) · 1|+
 ∞∑

j=1

j−1∑
p=−j

∣∣∣∆2aj2+p

∣∣∣
 ∞∑

k=1

k−1∑
q=−k

∣∣∣∆2bk2+q

∣∣∣


=5 +
 ∞∑

j=1

2
j2

( ∞∑
k=1

2
k2

)
<∞.



BOUNDED VARIATION OF HIGHER ORDER 569

So, {c(j, k)} satisfies (3.3) for p = 2. Now, for each fixed k0 ∈ Z, we have

∞∑
j=0
|∆20c(j, k0)| =

∞∑
j=0

∣∣∣∆2ajbk0

∣∣∣ =
 ∞∑

j=0
|∆2aj|

 |bk0 | =
 ∞∑

j=1

2
j2

 |bk0 | <∞

and in view of |bk0 | → 0 as |k0| → ∞, it follows that {c(j, k)} satisfies (3.4) for p = 2.
Similarly, {c(j, k)} satisfies (3.5) also for p = 2. Thus, {c(j, k)} is of bounded variation
of order 2.

Example 3.2. Consider the sequences {aj} and {bk} defined in Example 3.1. Let {a′j}
and {b′k} be sequences defined on Z such that a′0 = 0, b′0 = 0, and ∆a′j = aj and
∆b′k = bk, for j, k ∈ Z. These sequences {a′j} and {b′k} can be constructed as follows.
By our definition, we have ai = 0, if i ≤ −1, and the elements a0, a1, a2, . . . are:

0
1 ,

1
1; 0

4 ,
1
4 ,

2
4 ,

1
4; 0

9 ,
1
9 ,

2
9 ,

3
9 ,

2
9 ,

1
9 , . . . .

In view of 0 = a0 = ∆a′0 = a′0 − a′1 and a′0 = 0, we calculate a′1 = 0. Then, from
1 = a1 = ∆a′1 = a′1 − a′2 and from a′1 = 0, we calculate a′2 = −1. Similarly, we can
calculate all other elements of {a′j} and {b′k}.

Now, we put c′(j, k) = a′jb
′
k, for j, k ∈ Z. Then, as in Example 3.1, we can easily

see that {c′(j, k)} is of bounded variation of order 3 but not of bounded variation of
order 2.

Continuing in this way, for each p ∈ N, we can construct a sequence of bounded
variation of order p + 1 which not of bounded variation of order p.

This shows that (BV)p is a proper subset of (BV)p+1 for each p ∈ N.
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