THE $\bar{\partial}$-CAUCHY PROBLEM ON WEAKLY q-CONVEX DOMAINS IN $\mathbb{C}P^n$

SAYED SABER1,2

ABSTRACT. Let D be a weakly q-convex domain in the complex projective space $\mathbb{C}P^n$. In this paper, the (weighted) $\bar{\partial}$-Cauchy problem with support conditions in D is studied. Specifically, the modified weight function method is used to study the L^2 existence theorem for the $\bar{\partial}$-Neumann problem on D. The solutions are used to study function theory on weakly q-convex domains via the $\bar{\partial}$-Cauchy problem.

1. INTRODUCTION AND MAIN RESULTS

The $\bar{\partial}$-problem is one of the important central problems of complex variables. A classical result due to Hörmander tells us that the $\bar{\partial}$-problem is solvable in pseudo-convex domains, and hence, pseudoconvex domains has been widely accepted as the standard domain which we can solve the $\bar{\partial}$-problem. In [16], Ho extend this problem to weakly q-convex domains. In fact, Ho is the first person to study the $\bar{\partial}$-problem in q-convex domains in \mathbb{C}^n. This paper is devoted to studying the $L^2 \bar{\partial}$ Cauchy problem and the $\bar{\partial}$-closed extension problem for forms on a weakly q-convex domain D in the complex projective space $\mathbb{C}P^n$. These problems were first studied by Kohn and Rossi [20] (see also [12]). They proved the holomorphic extension of smooth CR functions and the $\bar{\partial}$-closed extension of smooth forms from the boundary bD of a strongly pseudoconvex domain to the whole domain D. The L^2 theory of these problems has been obtained for pseudoconvex domains in \mathbb{C}^n or, more generally, for domains in complex manifolds with strongly plurisubharmonic weight functions (see Chapter 9 in [6] and the references therein). The $L^2 \bar{\partial}$ Cauchy problem was considered by Derridj [8,9]. In [30,31] Shaw has obtained a solution to this problem on a pseudoconvex domain with C^1 boundary in \mathbb{C}^n. Also, in the setting of strictly

Key words and phrases. $\bar{\partial}$, $\bar{\partial}$-Neumann operator, q-convex domains.

2010 Mathematics Subject Classification. Primary: 32F10. Secondary: 32W05.

DOI 10.46793/KgJMat2004.581S

Received: April 23, 2017.

Accepted: July 06, 2018.
q-convex (or q-concave) domains, this problem has been studied by Sambou in his thesis (see [29]). In [1], Abdelkader-Saber studied this problem on pseudoconvex manifolds satisfying property B. In [26,27], Saber studied this problem on a weakly q-convex domain with C^1-smooth boundary and on a q-pseudoconvex domain D in \mathbb{C}^n, $1 < q \leq n$, with Lipschitz boundary. Recently, Saber [28] studied this result to a q-pseudoconvex domain D in a Stein manifold. On a pseudoconvex domain in $\mathbb{C}P^n$, Cao-Shaw-Wang [4] (cf. also [5]) obtained the L^2 existence theorem for the $\bar{\partial}$-Neumann operator N and obtained the (weighted) $L^2 \bar{\partial}$ Cauchy-problem on such domains. The aim of this paper is to extend this result to the situation in which the boundaries are assumed weakly q-convex domain D in $\mathbb{C}P^n$. Moreover, the solutions are used to study function theory on such domains via the $\bar{\partial}$-Cauchy problem.

2. Notation and Preliminaries

Let (x_0, x_1, \ldots, x_n) be a (fixed) homogeneous coordinates of $\mathbb{C}P^n$. If U_0 is the open set in $\mathbb{C}P^n$ defined by $x_0 \neq 0$ and if (z_1, z_2, \ldots, z_n), where $z_i = x_i/x_0$, is the homogeneous coordinates of U_0, we assume that

$$\omega = \frac{\sum_{i=1}^n |dz_i|^2}{1 + \sum_{i=1}^n |z_i|^2} - \frac{|\sum_{i=1}^n z_i d\bar{z}_i|^2}{(1 + \sum_{i=1}^n |z_i|^2)^2} \text{ on } U_0.$$

The Fubini-Study metric of $\mathbb{C}P^n$ determined by (x_0, x_1, \ldots, x_n). This is well-known standard Kähler metric of $\mathbb{C}P^n$.

Let D be a bounded domain in $\mathbb{C}P^n$ and let $C^\infty_{p,q}(D)$ be the space of complex-valued differential forms of class C^∞ and of type (p,q) on D. Denote by $L^2(D)$ the space of square integrable functions on D with respect to the Lebesgue measure in $\mathbb{C}P^n$, $L^2_{p,q}(D)$ the space of (p,q)-forms with coefficients in $L^2(D)$ and $L^2_{p,q}(D,\phi)$ the space of (p,q)-forms with coefficients in $L^2(D)$ with respect to the weighted function $e^{-\phi}$. For $u, v \in L^2_{p,q}(D)$, the inner product $\langle u, v \rangle$ and the norm $\| u \|$ are denoted by:

$$\langle u, v \rangle = \int_D u \wedge \ast \bar{v} \quad \text{and} \quad \| u \|^2 = \langle u, u \rangle,$$

where \ast is the Hodge star operator. Let $\text{dist}(z, bD)$ be the Fubini distance from $z \in D$ to the boundary bD and let δ be a C^2 defining function for D normalized by $|d\delta| = 1$ on bD such that

$$\delta = \delta(z) = \begin{cases} -\text{dist}(z, bD), & \text{if } z \in D, \\ \text{dist}(z, bD), & \text{if } z \in \mathbb{C}P^n \setminus D. \end{cases}$$

Let $\phi_t = -t \log |\delta|$, $t \geq 0$, for $u, v \in L^2_{p,q}(D, \phi_t)$, the inner product $\langle u, v \rangle_{\phi_t}$ and the norm $\| u \|_{\phi_t}$ are denoted by:

$$\langle u, v \rangle_{\phi_t} = \langle u, v \rangle_t = \int_D u \wedge \ast(t) \bar{v},$$

$$\| u \|_{\phi_t}^2 = \| u \|_{t}^2 = \langle u, u \rangle_t,$$
where \(*_{(t)} = \delta^* * = * \delta^t \). Since \(\phi_t \) is bounded on \(\overline{D} \), the two norms \(\| \cdot \| \) and \(\| \cdot \|_t \) are equivalent. Let \(\overline{\mathcal{D}} : \text{dom} \overline{\mathcal{D}} \subset L^2_{p,q}(D, \phi_t) \rightarrow L^2_{p,q+1}(D, \phi_t) \) be the maximal closure of the Cauchy-Riemann operator and \(\overline{\mathcal{D}}_\phi \) be its Hilbert space adjoint. Let \(\Box_t = \overline{\mathcal{D}}_t^* + \overline{\mathcal{D}}_t^* \) be the Laplace-Beltrami operator, where \(\overline{\mathcal{D}}_t^* = \overline{\mathcal{D}}_\phi^* \).

Denote by \(\nabla \) the Levi-Civita connection of \(\mathbb{C}P^n \) with the standard Fubini-Study metric \(\omega \). Let \(\{ e_i \} \) be an orthonormal basis of vector fields. For any two vector fields \(f, g \), the curvature operator of the connection \(\nabla \) is denoted by

\[
\mathcal{R}(f, g) = \nabla_f \nabla_g - \nabla_g \nabla_f - \nabla_{[f, g]}
\]

By setting \(\mathcal{R}_{ijkl} = \omega(\mathcal{R}(e_i, e_j)e_k, e_l) \), the Ricci tensor \(\mathcal{R}_{ij} \) is denoted by

\[
\mathcal{R}_{ij} = \sum_k \varepsilon_k \mathcal{R}_{ikkj},
\]

which turns out to be self-adjoint with respect to \(\omega \) and the scalar curvature

\[
(2.1) \quad \Theta = \sum_i \mathcal{R}_{ii} = \sum_{i,j} \varepsilon_i \varepsilon_j \mathcal{R}_{jjj}
\]

as the trace of the Ricci tensor.

Definition 2.1. Let \(D \) be an open set in an \(n \)-dimensional complex manifold \(X \), let \(k \) be an integer with \(1 \leq k \leq n - 1 \) and put \(E = X \setminus D \). The set \(D \) is said to be pseudoconvex of order \(k \) in \(X \) if, for every \(b \in E \) and for every coordinate neighborhood \((U, (z_1, \ldots, z_n)) \) which contains \(b \) as the origin, the set

\[
\left\{ (z_1, \ldots, z_n) \in U : z_i = 0, 1 \leq i \leq k, 0 < \sum_{i=k+1}^{n} |z_i|^2 < t \right\}
\]

contains no points of \(E \) for some \(t > 0 \), then there exists \(\ell > 0 \) such that for each \((z_1', \ldots, z_k') \) with \(|z_i'| < \ell, 1 \leq i \leq k \), the set

\[
\left\{ (z_1, \ldots, z_n) \in U : z_i = z_i', 1 \leq i \leq k, \sum_{i=k+1}^{n} |z_i|^2 < t \right\}
\]

contains at least one point of \(E \).

Definition 2.2. Let \(D \) be an \(n \)-dimensional complex manifold and let \(q \) be an integer, \(1 \leq q \leq n \). By Fujita ([13], Proposition 8) a \(C^2 \) function \(\phi : D \rightarrow \mathbb{R} \) is pseudoconvex of order \(n - q \), if and only if its Levi form \(\partial \overline{\partial} \phi \) has at least \(n - q + 1 \) non negative eigenvalues at each point of \(D \).

Definition 2.3. Let \(D \) be an open subset of an \(n \)-dimensional complex manifold \(X \). \(D \) is said to have \(C^2 \) boundary in \(X \) if for all \(z \in bD \) there exist an open neighborhood \(U \) of \(z \) and a \(C^2 \) function \(\delta : U \rightarrow \mathbb{R} \), called a defining function of \(D \) at \(z \) such that \(d\delta(z) \neq 0 \) and \(D \cap U = \{ z \in U : \delta(z) < 0 \} \). Following Ho [16], \(D \) is said to be a
The following two conditions are equivalent. (cf. [15] and Lemma 4.7 in [34]).

Remark 2.2

2.1

Remark

Example 2.1

Theorem 2.1

Let \(D \) be a smooth domain in \(\mathbb{C}^n \), \(D \) is said to be a weakly \(q \)-concave if \(\overline{D} \) is weakly \(q \)-convex.

Lemma 2.1 ([16]). Let \(D \) be a smooth domain in \(\mathbb{C}^n \) and \(\rho \) be its defining function. The following two conditions are equivalent.

1. \(D \) is weakly \(q \)-convex.

2. For any \(z \in bD \) the sum of any \(q \) eigenvalues \(\rho_{i_1}, \ldots, \rho_{i_q} \), with distinct subscripts, of the Levi-form at \(z \) satisfies \(\sum_{j=1}^{q} \rho_{i_j} \geq 0 \) (cf. [15] and Lemma 4.7 in [34]).

Definition 2.4. Let \(D \) be a smooth domain in \(\mathbb{C}^n \), \(D \) is said to be a weakly \(q \)-concave if and only if for any \(z \in bD \) the sum of any \(q \) eigenvalues \(\delta_{i_1}, \ldots, \delta_{i_q} \), with distinct subscripts, of the Levi-form at \(z \) satisfies \(\sum_{j=1}^{q} \delta_{i_j} \geq 0 \) (cf. [15] and Lemma 4.7 in [34]).

Moreover, \(D \) is weakly \(q \)-convex if and only if for any \(z \in bD \) the sum of any \(q \) eigenvalues \(\delta_{i_1}, \ldots, \delta_{i_q} \), with distinct subscripts, of the Levi-form at \(z \) satisfies \(\sum_{j=1}^{q} \delta_{i_j} \geq 0 \) (cf. [15] and Lemma 4.7 in [34]).

Lemma 2.1 ([16]). Let \(D \) be a smooth domain in \(\mathbb{C}^n \) and \(\rho \) be its defining function. The following two conditions are equivalent.

1. \(D \) is weakly \(q \)-convex.

2. For any \(z \in bD \) the sum of any \(q \) eigenvalues \(\rho_{i_1}, \ldots, \rho_{i_q} \), with distinct subscripts, of the Levi-form at \(z \) satisfies \(\sum_{j=1}^{q} \rho_{i_j} \geq 0 \).

It follows from Lemma 2.1 that \(D \) is weakly \(q \)-concave if and only if for any \(q \) eigenvalues \(\rho_{i_1}, \ldots, \rho_{i_q} \) of the Levi-form at \(z \in bD \) with distinct subscripts we have \(\sum_{j=1}^{q} \rho_{i_j} \leq 0 \).

Example 2.1. Let \(D \) be an open subset of an \(n \)-dimensional complex manifold \(X \) and suppose that the boundary \(bD \) is a real hypersurface of class \(C^2 \) in \(X \), that is, there exist, for each \(z \in bD \), a neighborhood \(U \) of \(z \) and a \(C^2 \) function \(\rho : U \to \mathbb{R} \) such that \(d\rho(z) \neq 0 \) and \(D \cap U = \{ z \in U : \rho(z) < 0 \} \). Then \(D \) is pseudoconvex of order \(n - q \) in \(X \), if and only if the Levi form \(\partial \partial \rho \) has at least \(n - q \) non-negative eigenvalues on \(T'_z(bD) \) for each defining function \(\rho \) of \(D \) near \(z \), where \(T'_z(bD)(\subset T_z(bD)) \) is the holomorphic tangent space of the real hypersurface \(bD \) at \(z \) (cf. [10,35] called such a subset \(D \) a \((q-1) \)-pseudoconvex open subset with \(C^2 \) boundary).

Theorem 2.1 ([23]). Let \(D \subset \mathbb{C}P^n \) be a pseudoconvex domain of order \(n - q \), \(1 \leq q \leq n \). Let \(d(z,bD) \) be the Fubini distance from \(z \in D \) to the boundary \(bD \). Then the function \(-\log d(z,bD) \) is \((q-1) \)-plurisubharmonic in \(D \).

Lemma 2.2 ([17], Lemma 2.6). Let \(\phi \) be a real valued function of class \(C^2 \) defined in an \(n \)-dimensional complex manifold \(D \). Then \(\phi \) is \((q-1) \)-plurisubharmonic, \(1 \leq q \leq n \), in \(D \) if and only if \(\phi \) is weakly \(q \)-convex in \(D \).

Remark 2.1. Pseudoconvex open sets in the original sense are pseudoconvex of order \(n - 1 \).

Remark 2.2. The pseudoquasiconvexity of order \(n - q \) of an open subset \(D \) in \(X \) is a local property of the boundary \(bD \subset X \) of \(D \). More precisely, \(D \) is pseudoconvex of order...
n – q in X if, for each p ∈ bD, there exists a neighborhood U ⊂ X of p such that D ∩ U is pseudoconvex of order n – q in U.

Remark 2.3. If an open set D in an n-dimensional complex manifold X is weakly q-convex, 1 ≤ q ≤ n, then D is pseudoconvex of order n – q in X. However, the converse is not valid even if X = \mathbb{C}^n (see [10] and [22]). By Fujita [13], an open subset D of \mathbb{C}^n is pseudoconvex of order n – q in \mathbb{C}^n, if and only if D has an exhaustion function which is pseudoconvex of order n – q on D. Thus, by the approximation theorem of Bungart [3], an open subset D of X is pseudoconvex of order n – q in X, if and only if D is locally q-complete with corners in X in the sense of Peternell [24].

Proposition 2.1 (Bochner-Hörmander-Kohn-Morrey formula). Let D be a compact domain with C^2-smooth boundary bD and δ(x) = −d(x, bD). Suppose that Θ is the curvature term defined in (2.1) with respect to the Fubini-Study metric ω. Then, for any u ∈ C^{p,q}_{bD}(\overline{D}) ∩ dom\overline{\partial}_φ with 1 ≤ q ≤ n – 1, and φ ∈ C^2(\overline{D}), we have

\begin{equation}
(2.2) \quad ||\overline{\partial}u||_φ^2 + ||\overline{\partial}_φ^*u||_φ^2 = (\Theta u, \overline{u})_φ + \left\langle \left\langle \frac{\partial u_{IJ}}{\partial \overline{z}_k} \right\rangle_φ \right\rangle^2 + \left\langle (i\partial \overline{\partial} \phi)u, \overline{u} \right\rangle_φ + \int_{bD} ((i\partial \overline{\partial} \delta)u, \overline{u}) e^{-\phi} ds.
\end{equation}

This formula is known (cf. [2, 7, 15, 18, 19, 32, 36]) for some special cases, although it has not been stated in the literature in the form (2.2). If u has compact support in the interior of D, the (2.2) was proved in [2], Chapter 8 of [7] and (2.12) of [36]. The boundary term had been computed in [14], Chapter 3 by combining the Morrey-Kohn technique on the boundary with non-trivial weight function. If one combines the results of [15] and [37] with the interior formulae discussed above, one can prove that (2.2) holds for the general case with a weight function e^{−\phi} and the curvature term. Specially, for φ = 0, (2.2) was proved in [32].

Proposition 2.2. For any (p.q) -form u of D ⊂ \mathbb{C}P^n with q ≥ 1,

(\Theta u, \overline{u}) = q(2n + 1)|u|^2, \quad \text{when u is a (0,q)-form},

(\Theta u, \overline{u}) = 0, \quad \text{for any (n,q)-form u},

(\Theta u, \overline{u}) ≥ 0, \quad \text{when p ≥ 1 and u is a (p,q)-form}.

The statement for (0,q)-forms and (n,q)-forms was computed in [32] and [36]. Also, following Lemma 3.3 of Henkin-Iordan [14] and its proof showed that the curvature operator Θ acting on L^2_{p,q}(D) is a non-negative operator.

3. THE \overline{\partial}-CAUCHY PROBLEM ON WEAKLY q-CONVEX DOMAINS

This section is devoted to showing the existence of the \overline{\partial}-Neumann operator on a weakly q-convex domain D in \mathbb{C}P^n, 1 ≤ q ≤ n, and by applying these existence to solve the \overline{\partial} problem with support conditions on D. The boundary integral in (2.2) is
non-negative for \(q \geq 1 \) by the assumption on \(D \). Also, by taking \(\phi \equiv 0 \) in (2.2) and using Proposition 2.2, we find the fundamental estimate
\[
\|u\|^2 \leq c \left(\|\mathcal{D}u\|^2 + \|\mathcal{D}^+ u\|^2 \right).
\]
This means that \(\Box \) has closed range and \(\ker \Box = \{0\} \). Thus, one can establish the \(L^2 \)-existence theorem of the \(\overline{\partial} \)-Neumann operator \(N \).

Theorem 3.1. Let \(D \Subset \mathbb{C}^p \) be a weakly \(q \)-convex domain with \(C^2 \) smooth boundary. Then, for each \(0 \leq p \leq n \), \(1 \leq q \leq n \), there exists a bounded linear operator \(N : L^2_{p,q}(D) \rightarrow L^2_{p,q}(D) \) with the following properties:

(i) \(\text{Range} N \subset \text{dom} \Box, \Box N = N \Box = \text{Id} \) on \(\text{dom} \Box \);
(ii) for \(f \in L^2_{p,q}(D) \),
\[
f = \mathcal{D} \mathcal{D}^+ N f + \mathcal{D}^+ \mathcal{D} N f;
\]
(iii) \(N \mathcal{D} = \mathcal{D} N \) on \(\text{dom} \mathcal{D} \), \(1 \leq q \leq n - 1 \);
(iv) \(\mathcal{D}^+ N = N \mathcal{D}^+ \) on \(\text{dom} \mathcal{D}^+ \), \(2 \leq q \leq n \);
(v) \(N, \mathcal{D} N \) and \(\mathcal{D}^+ N \) are bounded linear operators on \(L^2_{p,q}(D) \).

Using the duality relations pertaining to the \(\overline{\partial} \)-Neumann problem, one solve the \(L^2 \) \(\overline{\partial} \) Cauchy problem on weakly \(q \)-convex domains in \(\mathbb{C}^p \), \(1 \leq q \leq n \). This method was first used by Kohn-Rossi [20] for smooth forms on strongly pseudoconvex domains. More precisely, we prove the following \(L^2 \) Cauchy problem for \(\overline{\partial} \) in \(\mathbb{C}^p \):

Theorem 3.2. Let \(D \Subset \mathbb{C}^p \) be a weakly \(q \)-convex domain, \(1 \leq q \leq n \) with \(C^2 \) smooth boundary. Then, for \(f \in L^2_{p,q}(\mathbb{C}^p) \), \(\text{supp} f \subset \overline{D} \), \(1 \leq q \leq n - 1 \), satisfying \(\overline{\partial} f = 0 \) in the distribution sense in \(\mathbb{C}^p \), there exists \(u \in L^2_{p,q-1}(\mathbb{C}^p) \), \(\text{supp} u \subset \overline{D} \) such that \(\overline{\partial} u = f \) in the distribution sense in \(\mathbb{C}^p \).

Proof. Let \(f \in L^2_{p,q}(\mathbb{C}^p) \), \(\text{supp} f \subset \overline{D} \), then \(f \in L^2_{p,q}(D) \). From Theorem 3.1, \(N_{n-p,n-q} \) exists for \(n - q \geq 1 \). Since \(N_{n-p,n-q} = \Box_{n-p,n-q} \) on \(\text{Range} \Box_{n-p,n-q} \) and \(\text{Range} N_{n-p,n-q} \subset \text{dom} \Box_{n-p,n-q} \), then \(N_{n-p,n-q} \Box f \in \text{dom} \Box_{n-p,n-q} \subset L^2_{n-p,n-q}(D) \), for \(q \leq n - 1 \). Thus, we can define \(u \in L^2_{p,q-1}(D) \) by
\[
u = -\star \overline{\partial} N_{n-p,n-q} \star f.
\]
Thus \(\text{supp} u \subset \overline{D} \) and \(u \) vanishes on \(bD \). Now, we extend \(u \) to \(\mathbb{C}^p \) by defining \(u = 0 \) in \(\mathbb{C}^p \setminus D \). It follows from the same arguments of Theorem 9.1.2 in [6] and Theorem 2.2 in [1] that the form \(u \) satisfies the equation \(\overline{\partial} u = f \) in the distribution sense in \(\mathbb{C}^p \). Thus the proof follows.

4. **The Weighted \(\overline{\partial} \)-Cauchy Problem**

In this section, we assume that \(D \) is a weakly \(q \)-convex domain, \(1 \leq q \leq n \), with \(C^2 \) smooth boundary in \(\mathbb{C}^p \). Also, we will choose \(\phi_t = -t \log |\delta| \), \(t > 0 \) in (2.2), and using Remark 2.3 and by using Proposition 2.2, the inequality (2.2) implies the
weighted L^2-existence for the $\overline{\partial}$. Also, for $u \in \text{Dom}(\Box_t)$ of degree $q \geq 1$ and for $t > 0$, we have

$$t\|u\|_t^2 \leq (\|\overline{\partial}u\|_t^2 + \|\overline{\partial}_tu\|_t^2)$$

$$= \langle \Box_t u, u \rangle_t$$

$$\leq \|\Box_t f\|_t\|u\|_t,$$

i.e.,

$$t\|u\|_t \leq \|\Box_t u\|_t.$$

Since \Box_t is a linear densely defined operator, then, from [15, Theorem 1.1.1], $\text{Range}(\Box_t)$ is closed. Thus, from (1.1.1) in [15] and the fact that \Box_t is self adjoint, we have the Hodge decomposition

$$L^2_{p,q}(D, \phi_t) = \overline{\partial}\overline{\partial}^*\text{dom}(\Box_t) \oplus \overline{\partial}_t^*\overline{\partial}\text{dom}(\Box_t).$$

Since \Box_t is one to one on $\text{dom}(\Box_t)$ from (1.5.3) in [15], then there exists a unique bounded inverse operator

$$N_t : \text{Range}(\Box_t) \rightarrow \text{dom}(\Box_t) \cap (\ker(\Box_t))^\perp$$

such that $N_t \Box_t f = f$ on $\text{dom}(\Box_t)$. Therefore, we can establish the existence theorem of the inverse of \Box_t the so called weighted $\overline{\partial}$-Neumann operator N_t.

Theorem 4.1. For any $1 \leq q \leq n$ and $t > 0$, there exists a bounded linear operator $N_t : L^2_{p,q}(D, \phi_t) \rightarrow L^2_{p,q}(D, \phi_t)$ satisfies the following properties:

(i) $\text{Range}(N_t) \subset \text{dom}(\Box_t)$, $N_t \Box_t = I$ on $\text{dom}(\Box_t)$;

(ii) for $f \in L^2_{p,q}(D, \phi_t)$, we have $u = \overline{\partial}\overline{\partial}^*N_tf \oplus \overline{\partial}_t^*\overline{\partial}N_tf$;

(iii) $\overline{\partial}N_t = N_t\overline{\partial}$, $1 \leq q \leq n - 1$;

(iv) $\overline{\partial}N_t = N_t\overline{\partial}$, $2 \leq q \leq n$;

(v) for all $f \in L^2_{p,q}(D, \phi_t)$, we have the estimates

$$t\|N_t f\|_t \leq \|f\|_t,$$

$$\sqrt{t}\|\overline{\partial}N_t f\|_t + \sqrt{t}\|\overline{\partial}_t^* N_t f\|_t \leq \|f\|_t;$$

(vi) if $\overline{\partial}f = 0$, then $u_t = \overline{\partial}_t^*N_t f$ solves the equation $\overline{\partial}u_t = f$.

Theorem 4.2. For $f \in L^2_{p,q}(D, \phi_t)$, $1 \leq q \leq n - 1$, supp $f \subset \overline{D}$, satisfying $\overline{\partial}f = 0$ in the distribution sense in $\mathbb{C}P^n$, there exists $u \in L^2_{p,q-1}(D, \phi_t)$, supp $u \subset \overline{D}$ such that $\overline{\partial}u = f$ in the distribution sense in $\mathbb{C}P^n$.

Proof. Following Theorem 4.1, N_t exists for forms in $L^2_{n-p,n-q}(D, \phi_t)$. Thus, one can defines $u_t \in L^2_{p,q-1}(D, \phi_t)$ by

$$(4.1) \quad u_{(t)} = -\ast(t) \overline{\partial}N_{n-p,n-q} \ast(-t) f.$$

Thus $\text{supp} u_t \subset \overline{D}$ and u_t vanishes on bD. Now, we extend u_t to $\mathbb{C}P^n$ by defining $u_t = 0$ in $\mathbb{C}P^n \setminus D$. We want to prove that the extended form u_t satisfies the equation
\(\overline{\partial} u_t = f\) in the distribution sense in \(\mathbb{C}P^n\). For \(\eta \in L^2_{n,p,n-q-1}(D, -\phi_t) \cap \text{dom} \overline{\partial}\), we have

\[
\langle \overline{\partial} \eta, \star(t) f \rangle_D = \int_D \overline{\partial} \eta \wedge \star(-t) (\star(t) f)
= \int_D \overline{\partial} \eta \wedge \star(-t) \star(t) f
= (-1)^{p+q} \int_D \overline{\partial} \eta \wedge f
= (-1)^{p+q} \langle f, \star(-t) \overline{\partial} \eta \rangle_D
= (-1)^{p+q} \langle f, \star(-t) \overline{\partial} \eta \rangle_{\mathbb{C}P^n},
\]

because \(\text{supp} f \subset \overline{D}\). Since \(\vartheta|_D = \overline{\partial}^\ast |_D\), when \(\vartheta\) acts in the distribution sense (see [15]), then we obtain

\[
\langle \overline{\partial} \eta, \star(t) f \rangle_D = \langle f, \vartheta \star(-t) \eta \rangle_{\mathbb{C}P^n}
= \langle \overline{\partial} f, \star(-t) \eta \rangle_{\mathbb{C}P^n}
= 0.
\]

It follows that \(\overline{\partial}_t' (\star(t) f) = 0\) on \(D\). Using Theorem 4.1 (iv), we have

(4.2) \[\overline{\partial}_t' N_t (\star(t) f) = N_t \overline{\partial}_t' (\star(t) f) = 0.\]

Thus, from (4.1) and (4.2), one obtains

\[
\overline{\partial} u_t = -\partial \star_{-t} \overline{\partial} N_{n-p,n-q} \star_{-t} \overline{f}
= (-1)^{p+q+1} \star \partial \star \overline{\partial} N_{n-p,n-q} \star \overline{f}
= (-1)^{p+q} \star \overline{\partial} \star \overline{\partial} N_{n-p,n-q} \star \overline{f}
= (-1)^{p+q} \star (\overline{\partial}^2 + \overline{\partial} \overline{\partial}^\ast) N_{n-p,n-q} \star \overline{f}
= (-1)^{p+q} \star \overline{f}
= f,
\]

in the distribution sense in \(D\). Since \(u = 0\) in \(\mathbb{C}P^n \setminus D\), then for \(u \in L^2_{p,q} (\mathbb{C}P^n) \cap \text{dom} \overline{\partial}^\ast\), one obtains

\[
< u, \overline{\partial}' u >_{\mathbb{C}P^n} =< u, \overline{\partial}' u >_D
= < \star \overline{\partial}' u, \star(-t) u >_{(t)D}
= (-1)^{p+q} < \overline{\partial} \star u, \star(-t) u >_{(t)D}
= (-1)^{p+q} < \star u, \overline{\partial}' \star(-t) u >_{(t)D}
= < \star u, \star(-t) \overline{\partial} u >_{(t)D}
= < f, u >_{(t)D}
= < f, u >_{\mathbb{C}P^n},
\]

where the third equality holds since \(\star u = (-1)^q \overline{\partial} N_{n-p,n-q} \star f \in \text{dom} \overline{\partial}^\ast\). Thus \(\overline{\partial} u_t = f\) in the distribution sense in \(\mathbb{C}P^n\). \(\square\)
As in [5], we prove the following results.

Proposition 4.1. Let D be the same as in Theorem 3.1. Put $Ω = \mathbb{C}P^n \setminus \overline{D}$. Then, for any $f \in W^{1,ε}_{p,q}(Ω)$, $\overline{∂}f = 0$, $0 ≤ ε < \frac{1}{2}$, there exists $F \in W^{ε}_{p,q}(\mathbb{C}P^n)$ such that $F|_Ω = f$ and $∂F = 0$ in $\mathbb{C}P^n$.

Proof. Since D has C^2 smooth boundary, there exists a bounded extension operator from $W^{s}_{p,q}(Ω)$ to $W^{s}_{p,q}(\mathbb{C}P^n)$ for all $s ≥ 0$ (cf. e.g. [33]). Let $f \in W^{1,ε}_{p,q}(\mathbb{C}P^n)$ be the extension of f so that $\tilde{f}|_Ω = f$ with

$$∥\tilde{f}∥_{W^{1,ε}_{p,q}(\mathbb{C}P^n)} ≤ C∥f∥_{W^{1,ε}_{p,q}(Ω)}.$$

Furthermore, we can choose an extension such that $\overline{∂}\tilde{f} ∈ W^{ε}(D) \cap L^2(D, ϕ_{2ε}).$

One defines $T\tilde{f}$ by $T\tilde{f} = -\star_{2ε} \overline{∂}N_{2ε}(\star_{-2ε} \overline{∂}\tilde{f})$ in $Ω$. As in Theorem 4.2, $T\tilde{f} ∈ L^2(D, ϕ_{2ε})$. But for a C^2-smooth domain, we have that $T\tilde{f} ∈ L^2(D, ϕ_{2ε})$ is comparable to $W^{ε}(Ω)$ for $0 ≤ ε < \frac{1}{2}$. This gives that $\overline{∂}T\tilde{f} = \overline{∂}f$ in $\mathbb{C}P^n$ in the distribution sense if we extend $T\tilde{f}$ to be zero outside $Ω$.

Since $0 ≤ ε < \frac{1}{2}$, the extension by 0 outside $Ω$ is a continuous operator from $W^{ε}(Ω)$ to $W^{ε}(\mathbb{C}P^n)$ (cf. e.g. [21]). Thus we have $T\tilde{f} ∈ W^{ε}(\mathbb{C}P^n)$.

Define

$$F = \begin{cases} f, & \text{if } z ∈ \overline{D}, \\ \tilde{f} - T\tilde{f}, & \text{if } z ∈ Ω. \end{cases}$$

Then $F ∈ W^{ε}_{p,q}(\mathbb{C}P^n)$ and F is $\overline{∂}$-closed extension of f to $\mathbb{C}P^n$. □

Corollary 4.1. Let $D ⊂ \mathbb{C}P^n$ be a weakly q-concave domain, $n ≥ 2$ with C^2 smooth boundary. Then $W^{1,ε}_{p,0}(D) \cap \text{ker } \overline{∂} = \{0\}$, $1 ≤ p ≤ n$ and $W^{1,ε}_{0,0}(D) \cap \text{ker } \overline{∂} = \mathbb{C}$.

Proof. Using Proposition 4.1 for $q = 0$, we have that any holomorphic $(p,0)$-form on D extends to be a holomorphic $(p,0)$ in $\mathbb{C}P^n$, which are zero (when $p > 0$) or constants (when $p = 0$). □

Corollary 4.2. Let $D ⊂ \mathbb{C}P^n$ be a weakly q-concave domain, $n ≥ 2$ with C^2 smooth boundary. Then, for any $f ∈ W^{1,ε}_{p,q}(D)$, where $0 ≤ p ≤ n$, $1 ≤ q ≤ n - 2$, $p ≠ q$, and $0 ≤ ε < \frac{1}{2}$, such that $\overline{∂}f = 0$ in D, there exists $u ∈ W^{1,ε}_{p,q-1}(D)$ such that $\overline{∂}u = f$ in D.

Proof. If $p ≠ q$, we have that $F = \overline{∂}u$ for some $U ∈ W^{1}_{p,q-1}(\mathbb{C}P^n)$. Let $u = U$ on D, we have $u ∈ W^{1}_{p,q-1}(D)$ satisfying $\overline{∂}u = f$ in D. □

Acknowledgements. The author is grateful to the referee for several helpful remarks and comments.

References

15. L. Hörmander, L^2-estimates and existence theorems for the $\overline{\partial}$-operator, Acta Math. 113 (1965), 89–152.
22. K. Matsumoto, Pseudoconvex domains of general order in Stein manifolds, Memoirs of the Faculty of Science, Kyushu University, Series A, Mathematics 43(2) (1989), 67–76.
26. S. Saber, Solution to $\overline{\partial}$ problem with exact support and regularity for the $\overline{\partial}$-Neumann operator on weakly q-convex domains, Int. J. Geom. Methods Mod. Phys. 7(1) (2010), 135–142.

[34] E. J. Straube, Lectures on the L^2-Sobolev Theory of the $\bar{\partial}$-Neumann Problem, ESI Lectures in Mathematics and Physics, Freiburg, Germany, 2010.

1Department of Mathematical Sciences, Faculty of Applied Sciences, Umm Al-Qura University, Saudi Arabia

2Department of Mathematics and Computer Science, Faculty of Science, Beni-Suef University, Beni Suef, Egypt

Email address: sayedkay@yahoo.com