Kragujevac Journal of Mathematics Volume 44(4) (2020), Pages 581–591.

THE $\overline{\partial}$ -CAUCHY PROBLEM ON WEAKLY q-CONVEX DOMAINS IN $\mathbb{C}P^n$

SAYED SABER^{1,2}

ABSTRACT. Let D be a weakly q-convex domain in the complex projective space $\mathbb{C}P^n$. In this paper, the (weighted) $\overline{\partial}$ -Cauchy problem with support conditions in D is studied. Specifically, the modified weight function method is used to study the L^2 existence theorem for the $\overline{\partial}$ -Neumann problem on D. The solutions are used to study function theory on weakly q-convex domains via the $\overline{\partial}$ -Cauchy problem.

1. Introduction and Main Results

The ∂ -problem is one of the important central problems of complex variables. A classical result due to Hörmander tells us that the $\bar{\partial}$ -problem is solvable in pseudoconvex domains, and hence, pseudoconvex domains has been widely accepted as the standard domain which we can solve the ∂ -problem. In [16], Ho extend this problem to weakly q-convex domains. In fact, Ho is the first person to study the $\overline{\partial}$ -problem in q-convex domains in \mathbb{C}^n . This paper is devoted to studying the L^2 $\overline{\partial}$ Cauchy problem and the $\bar{\partial}$ -closed extension problem for forms on a weakly q-convex domain D in the complex projective space $\mathbb{C}P^n$. These problems were first studied by Kohn and Rossi [20] (see also [12]). They proved the holomorphic extension of smooth CR functions and the $\overline{\partial}$ -closed extension of smooth forms from the boundary bD of a strongly pseudoconvex domain to the whole domain D. The L^2 theory of these problems has been obtained for pseudoconvex domains in \mathbb{C}^n or, more generally, for domains in complex manifolds with strongly plurisubharmonic weight functions (see Chapter 9 in [6] and the references therein). The $L^2 \bar{\partial}$ Cauchy problem was considered by Derridj [8,9]. In [30,31] Shaw has obtained a solution to this problem on a pseudoconvex domain with C^1 boundary in \mathbb{C}^n . Also, in the setting of strictly

Key words and phrases. $\overline{\partial}$, $\overline{\partial}$ -Neumann operator, q-convex domains.

 $2010\ \textit{Mathematics Subject Classification}.\ \text{Primary: } 32\text{F}10.\ \text{Secondary: } 32\text{W}05.$

DOI 10.46793/KgJMat2004.581S

Received: April 23, 2017. Accepted: July 06, 2018.

q-convex (or q-concave) domains, this problem has been studied by Sambou in his thesis (see [29]). In [1], Abdelkader-Saber studied this problem on pseudoconvex manifolds satisfing property B. In [26,27], Saber studied this problem on a weakly q-convex domain with C^1 -smooth boundary and on a q-pseudoconvex domain D in \mathbb{C}^n , $1 \leq q \leq n$, with Lipschitz boundary. Recently, Saber [28] studied this result to a q-pseudoconvex domain D in a Stein manifold. On a pseudoconvex domain in $\mathbb{C}P^n$, Cao-Shaw-Wang [4] (cf. also [5]) obtained the L^2 existence theorem for the $\overline{\partial}$ -Neumann operator N and obtained the (weighted) L^2 $\overline{\partial}$ Cauchy-problem on such domains. The aim of this paper is to extend this result to the situation in which the boundaries are assumed weakly q-convex domain D in $\mathbb{C}P^n$. Moreover, the solutions are used to study function theory on such domains via the $\overline{\partial}$ -Cauchy problem.

2. NOTATION AND PRELIMINARIES

Let (x_0, x_1, \ldots, x_n) be a (fixed) homogeneous coordinates of $\mathbb{C}P^n$. If U_0 is the open set in $\mathbb{C}P^n$ defined by $x_0 \neq 0$ and if (z_1, z_2, \ldots, z_n) , where $z_i = x_i/x_0$, is the homogeneous coordinates of U_0 , we assume that

$$\omega = \frac{\sum_{i=1}^{n} |dz_i|^2}{1 + \sum_{i=1}^{n} |z_i|^2} - \frac{|\sum_{i=1}^{n} z_i d\overline{z}_i|^2}{(1 + \sum_{i=1}^{n} |z_i|^2)^2} \quad \text{on } U_0.$$

The Fubini-Study metric of $\mathbb{C}P^n$ determined by (x_0, x_1, \dots, x_n) . This is well-known standard Kähler metric of $\mathbb{C}P^n$.

Let D be a bounded domain in $\mathbb{C}P^n$ and let $C_{p,q}^{\infty}(D)$ be the space of complex-valued differential forms of class C^{∞} and of type (p,q) on D. Denote by $L^2(D)$ the space of square integrable functions on D with respect to the Lebesgue measure in $\mathbb{C}P^n$, $L_{p,q}^2(D)$ the space of (p,q)-forms with coefficients in $L^2(D)$ and $L_{p,q}^2(D,\phi)$ the space of (p,q)-forms with coefficients in $L^2(D)$ with respect to the weighted function $e^{-\phi}$. For $u,v\in L_{p,q}^2(D)$, the inner product $\langle u,v\rangle$ and the norm $\|u\|$ are denoted by:

$$\langle u, v \rangle = \int_D u \wedge \star \overline{v} \quad \text{and} \quad || u ||^2 = \langle u, u \rangle,$$

where \star is the Hodge star operator. Let $\operatorname{dist}(z, bD)$ be the Fubini distance from $z \in D$ to the boundary bD and let δ be a C^2 defining function for D normalized by $|d\delta| = 1$ on bD such that

$$\delta = \delta(z) = \begin{cases} -\operatorname{dist}(z, bD), & \text{if } z \in D, \\ \operatorname{dist}(z, bD), & \text{if } z \in \mathbb{C}P^n \backslash D. \end{cases}$$

Let $\phi_t = -t \log |\delta|$, $t \ge 0$, for $u, v \in L^2_{p,q}(D, \phi_t)$, the inner product $\langle u, v \rangle_{\phi_t}$ and the norm $||u||_{\phi_t}$ are denoted by:

$$\langle u, v \rangle_{\phi_t} = \langle u, v \rangle_t = \int_D u \wedge \star_{(t)} \overline{v},$$

$$\|u\|_{\phi_t}^2 = \|u\|_t^2 = \langle u, u \rangle_t,$$

where $\star_{(t)} = \delta^t \star = \star \delta^t$. Since ϕ_t is bounded on \overline{D} , the two norms $\|\cdot\|$ and $\|\cdot\|_t$ are equivalent. Let $\overline{\partial}$: dom $\overline{\partial} \subset L^2_{p,q}(D,\phi_t) \to L^2_{p,q+1}(D,\phi_t)$ be the maximal closure of the Cauchy-Riemann operator and $\overline{\partial}^*_{\phi}$ be its Hilbert space adjoint. Let $\Box_t = \overline{\partial} \, \overline{\partial}^*_t + \overline{\partial}^*_t \overline{\partial}$ be the Laplace-Beltrami operator, where $\overline{\partial}^*_t = \overline{\partial}^*_{\phi_t}$.

Denote by ∇ the Levi-Civita connection of $\mathbb{C}P^n$ with the standard Fubini-Study metric ω . Let $\{e_i\}$ be an orthonormal basis of vector fields. For any two vector fields f, g, the curvature operator of the connection ∇ is denoted by

$$\mathcal{R}(f,g) = \nabla_f \nabla_g - \nabla_g \nabla_f - \nabla_{[f,g]}$$

By setting $\mathcal{R}_{ijkl} = \omega(\mathcal{R}(e_i, e_j)e_k, e_l)$, the Ricci tensor \mathcal{R}_{ij} is denoted by

$$\mathcal{R}_{ij} = \sum_{k} \varepsilon_k \mathcal{R}_{ikkj},$$

which turns out to be self-adjoint with respect to ω and the scalar curvature

(2.1)
$$\Theta = \sum_{i} \mathcal{R}_{ii} = \sum_{i,j} \varepsilon_{i} \varepsilon_{j} \mathcal{R}_{jiij}$$

as the trace of the Ricci tensor.

Definition 2.1. Let D be an open set in an n-dimensional complex manifold X, let k be an integer with $1 \le k \le n-1$ and put $E = X \setminus D$. The set D is said to be pseudoconvex of order k in X if, for every $b \in E$ and for every coordinate neighborhood $(U, (z_1, \ldots, z_n))$ which contains b as the origin, the set

$$\left\{ (z_1, \dots, z_n) \in U : z_i = 0, \ 1 \le i \le k, \ 0 < \sum_{i=k+1}^n |z_i|^2 < t \right\}$$

contains no points of E for some t > 0, then there exists $\ell > 0$ such that for each (z'_1, \ldots, z'_k) with $|z'_i| < \ell$, $1 \le i \le k$, the set

$$\left\{ (z_1, \dots, z_n) \in U : z_i = z_i', \ 1 \le i \le k, \sum_{i=k+1}^n |z_i|^2 < t \right\}$$

contains at least one point of E.

Definition 2.2. Let D be an n-dimensional complex manifold and let q be an integer, $1 \le q \le n$. By Fujita ([13], Proposition 8) a C^2 function $\phi: D \to \mathbb{R}$ is pseudoconvex of order n-q, if and only if its Levi form $\partial \overline{\partial} \phi$ has at least n-q+1 non negative eigenvalues at each point of D.

Definition 2.3. Let D be an open subset of an n-dimensional complex manifold X. D is said to have C^2 boundary in X if for all $z \in bD$ there exist an open neighborhood U of z and a C^2 function $\delta: U \to \mathbb{R}$, called a defining function of D at z such that $d\delta(z) \neq 0$ and $D \cap U = \{z \in U : \delta(z) < 0\}$. Following Ho [16], D is said to be a

weakly q-convex $(q \ge 1)$ if at every point $x_0 \in bD$ we have

$$\sum_{|K|}' \sum_{j,k} \frac{\partial^2 \delta}{\partial z_j \partial \overline{z}_k} u_{jK} \overline{u_{kK}} \geqslant 0, \quad \text{for every } (0,q) \text{-form},$$

where

$$u = \sum_{|J|=q} u_J d\overline{z}^J$$
 such that $\sum_{j=1}^n \frac{\partial \delta}{\partial z_j} u_{jK} = 0$, for all $|K| = q - 1$.

Moreover, D is weakly q-convex if and only if for any $z \in bD$ the sum of any q eigenvalues $\delta_{i_1}, \ldots, \delta_{i_q}$, with distinct subscripts, of the Levi-form at z satisfies $\sum_{j=1}^q \delta_{i_j} \ge 0$ (cf. [15] and Lemma 4.7 in [34]).

Definition 2.4. Let D be a smooth domain in \mathbb{C}^n , D is said to be a weakly q-concave if \overline{D}^c is weakly q-convex.

Lemma 2.1 ([16]). Let D be a smooth domain in \mathbb{C}^n and ρ be its defining function. The following two conditions are equivalent.

- (1) D is weakly q-convex.
- (2) For any $z \in bD$ the sum of any q eigenvalues $\rho_{i_1}, \ldots, \rho_{i_q}$, with distinct subscripts, of the Levi-form at z satisfies $\sum_{j=1}^{q} \rho_{i_j} \geqslant 0$.

It follows from Lemma 2.1 that D is weakly q-concave if and only if for any q eigenvalues $\rho_{i_1}, \ldots, \rho_{i_q}$ of the Levi-form at $z \in bD$ with distinct subscripts we have $\sum_{j=1}^{q} \rho_{i_j} \leq 0$.

Example 2.1. Let D be an open subset of an n-dimensional complex manifold X and suppose that the boundary bD is a real hypersurface of class C^2 in X, that is, there exist, for each $z \in bD$, a neighborhood U of z and a C^2 function $\rho: U \to \mathbb{R}$ such that $d\rho(z) \neq 0$ and $D \cap U = \{z \in U : \rho(z) < 0\}$. Then D is pseudoconvex of order n - q in X, if and only if the Levi form $\partial \overline{\partial} \rho$ has at least n - q non-negative eigenvalues on $T'_z(bD)$ for each defining function ρ of D near z, where $T'_z(bD)(\subset T_z(bD))$ is the holomorphic tangent space of the real hypersurface bD at z (cf. [10,35] called such a subset D a (q-1)-pseudoconvex open subset with C^2 boundary).

Theorem 2.1 ([23]). Let $D \in \mathbb{C}P^n$ be a pseudoconvex domain of order n-q, $1 \le q \le n$. Let d(z,bD) be the Fubini distance from $z \in D$ to the boundary bD. Then the function $-\log d(z,bD)$ is (q-1)-pluirsubharmonic in D.

Lemma 2.2 ([17], Lemma 2.6). Let ϕ be a real valued function of class C^2 defined in an n-dimensional complex manifold D. Then ϕ is (q-1)-plurisubharmonic, $1 \leq q \leq n$, in D if and only if ϕ is weakly q-convex in D.

Remark 2.1. Pseudoconvex open sets in the original sense are pseudoconvex of order n-1.

Remark 2.2. The pseudoconvexity of order n-q of an open subset D in X is a local property of the boundary $bD \subset X$ of D. More precisely, D is pseudoconvex of order

n-q in X if, for each $p \in bD$, there exists a neighborhood $U \subset X$ of p such that $D \cap U$ is pseudoconvex of order n-q in U.

Remark 2.3. If an open set D in an n-dimensional complex manifold X is weakly q-convex, $1 \leq q \leq n$, then D is pseudoconvex of order n-q in X. However, the converse is not valid even if $X = \mathbb{C}^n$ (see [10] and [22]). By Fujita [13], an open subset D of \mathbb{C}^n is pseudoconvex of order n-q in \mathbb{C}^n , if and only if D has an exhaustion function which is pseudoconvex of order n-q on D. Thus, by the approximation theorem of Bungart [3], an open subset D of X is pseudoconvex of order n-q in X, if and only if D is locally q-complete with corners in X in the sense of Peternell [24].

Proposition 2.1 (Bochner-Hörmander-Kohn-Morrey formula). Let D be a compact domain with C^2 -smooth boundary bD and $\delta(x) = -d(x, bD)$. Suppose that Θ is the curvature term defined in (2.1) with respect to the Fubini-Study metric ω . Then, for any $u \in C_{p,q}^{\infty}(\overline{D}) \cap \text{dom}\overline{\partial}_{\phi}^*$ with $1 \leq q \leq n-1$, and $\phi \in C^2(\overline{D})$, we have

(2.2)
$$\overline{\partial}u\|_{\phi}^{2} + \|\overline{\partial}_{\phi}^{*}u\|_{\phi}^{2} = \langle\Theta u, \overline{u}\rangle_{\phi} + \left\|\frac{\partial u_{IJ}}{\partial\overline{z}^{k}}\right\|_{\phi}^{2} + \langle(i\partial\overline{\partial}\phi)u, \overline{u}\rangle_{\phi} + \int_{bD}((i\partial\overline{\partial}\delta)u, \overline{u}) e^{-\phi}ds.$$

This formula is known (cf. [2,7,15,18,19,32,36]) for some special cases, although it has not been stated in the literature in the form (2.2). If u has compact support in the interior of D, the (2.2) was proved in [2], Chapter 8 of [7] and (2.12) of [36]. The boundary term had been computed in [14], Chapter 3 by combining the Morrey-Kohn technique on the boundary with non-trivial weight function. If one combines the results of [15] and [37] with the interior formulae discussed above, one can prove that (2.2) holds for the general case with a weight function $e^{-\phi}$ and the curvature term. Specially, for $\phi = 0$, (2.2) was proved in [32].

Proposition 2.2. For any (p,q)-form u of $D \in \mathbb{C}P^n$ with $q \geqslant 1$,

$$(\Theta u, \overline{u}) = q(2n+1)|u|^2$$
, when u is $a(0,q)$ -form,
 $(\Theta u, \overline{u}) = 0$, for any (n,q) -form u ,
 $(\Theta u, \overline{u}) \ge 0$, when $p \ge 1$ and u is $a(p,q)$ -form.

The statement for (0,q)-forms and (n,q)-forms was computed in [32] and [36]. Also, following Lemma 3.3 of Henkin-Iordan [14] and its proof showed that the curvature operator Θ acting on $L^2_{p,q}(D)$ is a non-negative operator.

3. The $\overline{\partial}$ -Cauchy Problem on Weakly q-Convex Domains

This section is devoted to showing the existence of the $\overline{\partial}$ -Neumann operator on a weakly q-convex domain D in $\mathbb{C}P^n$, $1 \leq q \leq n$, and by applying these existence to solve the $\overline{\partial}$ problem with support conditions on D. The boundary integral in (2.2) is

non-negative for $q \ge 1$ by the assumption on D. Also, by taking $\phi \equiv 0$ in (2.2) and using Proposition 2.2, we find the fundamental estimate

$$||u||^2 \leqslant c \left(||\overline{\partial}u||^2 + ||\overline{\partial}^*u||^2 \right).$$

This means that \square has closed range and $\ker \square = \{0\}$. Thus, one can establish the L^2 -existence theorem of the $\overline{\partial}$ -Neumann operator N.

Theorem 3.1. Let $D \in \mathbb{C}P^n$ be a weakly q-convex domain with C^2 smooth boundary. Then, for each $0 \leq p \leq n$, $1 \leq q \leq n$, there exists a bounded linear operator $N: L^2_{p,q}(D) \to L^2_{p,q}(D)$ with the following properties:

- (i) Range $N \subset \text{dom } \square$, $\square N = N \square = Id \text{ on } \text{dom } \square$;
- (ii) for $f \in L^2_{p,q}(D)$,

$$f = \overline{\partial} \, \overline{\partial}^* N f \, \oplus \, \overline{\partial}^* \overline{\partial} N f;$$

- (iii) $N \overline{\partial} = \overline{\partial} N \text{ on } \operatorname{dom} \overline{\partial}, 1 \leqslant q \leqslant n-1;$
- (iv) $\overline{\partial}^* N = N \overline{\partial}^*$ on $\operatorname{dom} \overline{\partial}^*$, $2 \leqslant q \leqslant n$;
- (v) N, $\overline{\partial}N$ and $\overline{\partial}^*N$ are bounded linear operators on $L^2_{p,q}(D)$.

Using the duality relations pertaining to the $\overline{\partial}$ -Neumann problem, one solve the L^2 $\overline{\partial}$ Cauchy problem on weakly q-convex domains in $\mathbb{C}P^n$, $1 \leq q \leq n$. This method was first used by Kohn-Rossi [20] for smooth forms on strongly pseudoconvex domains. More precisely, we prove the following L^2 Cauchy problem for $\overline{\partial}$ in $\mathbb{C}P^n$:

Theorem 3.2. Let $D \in \mathbb{C}P^n$ be a weakly q-convex domain, $1 \leq q \leq n$ with C^2 smooth boundary. Then, for $f \in L^2_{p,q}(\mathbb{C}P^n)$, supp $f \subset \overline{D}$, $1 \leq q \leq n-1$, satisfying $\overline{\partial} f = 0$ in the distribution sense in $\mathbb{C}P^n$, there exists $u \in L^2_{p,q-1}(\mathbb{C}P^n)$, supp $u \subset \overline{D}$ such that $\overline{\partial} u = f$ in the distribution sense in $\mathbb{C}P^n$.

Proof. Let $f \in L^2_{p,q}(\mathbb{C}P^n)$, supp $f \subset \overline{D}$, then $f \in L^2_{p,q}(D)$. From Theorem 3.1, $N_{n-p,n-q}$ exists for $n-q \geqslant 1$. Since $N_{n-p,n-q} = \Box_{n-p,n-q}^{-1}$ on Range $\Box_{n-p,n-q}$ and Range $N_{n-p,n-q} \subset \operatorname{dom} \Box_{n-p,n-q}$, then $N_{n-p,n-q} \star \overline{f} \in \operatorname{dom} \Box_{n-p,n-q} \subset L^2_{n-p,n-q}(D)$, for $q \leqslant n-1$. Thus, we can define $u \in L^2_{p,q-1}(D)$ by

$$u = -\star \overline{\overline{\partial} N_{n-p,n-q} \star \overline{f}}.$$

Thus supp $u \subset \overline{D}$ and u vanishes on bD. Now, we extend u to $\mathbb{C}P^n$ by defining u = 0 in $\mathbb{C}P^n \setminus D$. It follows from the same arguments of Theorem 9.1.2 in [6] and Theorem 2.2 in [1] that the form u satisfies the equation $\overline{\partial}u = f$ in the distribution sense in $\mathbb{C}P^n$. Thus the proof follows.

4. The Weighted $\overline{\partial}$ -Cauchy Problem

In this section, we assume that D is a weakly q-convex domain, $1 \le q \le n$, with C^2 smooth boundary in $\mathbb{C}P^n$. Also, we will choose $\phi_t = -t \log |\delta|$, t > 0 in (2.2), and using Remark 2.3 and by using Proposition 2.2, the inequality (2.2) implies the

weighted L^2 -existence for the $\overline{\partial}$. Also, for $u \in \text{Dom}(\Box_t)$ of degree $q \ge 1$ and for t > 0, we have

$$t||u||_t^2 \leqslant (||\overline{\partial}u||_t^2 + ||\overline{\partial}_t^*u||_t^2)$$

$$= \langle \Box_t u, u \rangle_t$$

$$\leqslant ||\Box_t f||_t ||u||_t,$$

i.e.,

$$t||u||_t \leqslant ||\Box_t u||_t.$$

Since \square_t is a linear closed densely defined operator, then, from [15, Theorem 1.1.1], Range(\square_t) is closed. Thus, from (1.1.1) in [15] and the fact that \square_t is self adjoint, we have the Hodge decomposition

$$L_{p,q}^{2}(D,\phi_{t}) = \overline{\partial} \, \overline{\partial}_{t}^{*} \operatorname{dom}(\Box_{t}) \oplus \overline{\partial}_{t}^{*} \overline{\partial} \operatorname{dom}(\Box_{t}).$$

Since \Box_t is one to one on dom(\Box_t) from (1.5.3) in [15], then there exists a unique bounded inverse operator

$$N_t : \operatorname{Ran}(\square_t) \to \operatorname{dom}(\square_t) \cap (\ker(\square_t))^{\perp}$$

such that $N_t \square_t f = f$ on dom(\square_t). Therefore, we can establish the existence theorem of the inverse of \square_t the so called weighted $\overline{\partial}$ -Neumann operator N_t .

Theorem 4.1. For any $1 \le q \le n$ and t > 0, there exists a bounded linear operator $N_t : L_{p,q}^2(D,\phi_t) \to L_{p,q}^2(D,\phi_t)$ satisfies the following properties:

- (i) Range $(N_t) \subset \text{dom}(\square_t)$, $N_t \square_t = I$ on $\text{dom}(\square_t)$;
- (ii) for $f \in L^2_{p,q}(D,\phi_t)$, we have $u = \overline{\partial} \, \overline{\partial}_t^* N_t f \oplus \overline{\partial}_t^* \overline{\partial} N_t f$;
- (iii) $\overline{\partial} N_t = N_t \overline{\partial}, \ 1 \leqslant q \leqslant n-1;$
- (iv) $\overline{\partial}^* N_t = N_t \overline{\partial}^*, \ 2 \leqslant q \leqslant n;$
- (v) for all $f \in L^2_{p,q}(D,\phi_t)$, we have the estimates

$$t||N_t f||_t \leqslant ||f||_t,$$

$$\sqrt{t} \|\overline{\partial} N_t f\|_t + \sqrt{t} \|\overline{\partial}_t^* N_t f\|_t \leqslant \|f\|_t;$$

(vi) if $\overline{\partial} f = 0$, then $u_t = \overline{\partial}_t^* N_t f$ solves the equation $\overline{\partial} u_t = f$.

Theorem 4.2. For $f \in L^2_{p,q}(D, \phi_t)$, $1 \leq q \leq n-1$, supp $f \subset \overline{D}$, satisfying $\overline{\partial} f = 0$ in the distribution sense in $\mathbb{C}P^n$, there exists $u \in L^2_{p,q-1}(D, \phi_t)$, supp $u \subset \overline{D}$ such that $\overline{\partial} u = f$ in the distribution sense in $\mathbb{C}P^n$.

Proof. Following Theorem 4.1, N_t exists for forms in $L^2_{n-p,n-q}(D,\phi_t)$. Thus, one can defines $u_t \in L^2_{p,q-1}(D,\phi_t)$ by

(4.1)
$$u_{(t)} = -\star_{(t)} \overline{\partial} N_{n-p,n-q} \star_{(-t)} \overline{f}.$$

Thus supp $u_t \subset \overline{D}$ and u_t vanishes on bD. Now, we extend u_t to $\mathbb{C}P^n$ by defining $u_t = 0$ in $\mathbb{C}P^n \setminus D$. We want to prove that the extended form u_t satisfies the equation

 $\overline{\partial} u_t = f$ in the distribution sense in $\mathbb{C}P^n$. For $\eta \in L^2_{n-p,n-q-1}(D,-\phi_t) \cap \operatorname{dom} \overline{\partial}$, we have

$$\langle \overline{\partial} \eta, \star_{(t)} f \rangle_D = \int_D \overline{\partial} \eta \wedge \star_{(-t)} (\star_{(t)} f)$$

$$= \int_D \overline{\partial} \eta \wedge \star_{(-t)} \star_{(t)} f$$

$$= (-1)^{p+q} \int_D \overline{\partial} \eta \wedge f$$

$$= (-1)^{p+q} \langle f, \star_{(-t)} \overline{\partial} \eta \rangle_D$$

$$= (-1)^{p+q} \langle f, \star_{(-t)} \overline{\partial} \eta \rangle_{\mathbb{C}P^n},$$

because supp $f \subset \overline{D}$. Since $\vartheta|_D = \overline{\partial}^*|_D$, when ϑ acts in the distribution sense (see [15]), then we obtain

$$\langle \overline{\partial} \eta, \star_{(t)} f \rangle_D = \langle f, \vartheta \star_{(-t)} \eta \rangle_{\mathbb{C}P^n}$$
$$= \langle \overline{\partial} f, \star_{(-t)} \eta \rangle_{\mathbb{C}P^n}$$
$$= 0.$$

It follows that $\overline{\partial}_t^*(\star_{(t)} f) = 0$ on D. Using Theorem 4.1 (iv), we have

(4.2)
$$\overline{\partial}_t^* N_t(\star_{(t)} f) = N_t \overline{\partial}_t^* (\star_{(t)} f) = 0.$$

Thus, from (4.1) and (4.2), one obtains

$$\overline{\partial} u_t = -\overline{\partial} \star_{-t} \overline{\partial} N_{n-p,n-q} \star_t \overline{f}
= (-1)^{p+q+1} \overline{\star} \star \overline{\partial} \star \overline{\partial} N_{n-p,n-q} \star \overline{f}
= (-1)^{p+q} \overline{\star} \overline{\overline{\partial}^* \overline{\partial}} N_{n-p,n-q} \star \overline{f}
= (-1)^{p+q} \overline{\star} (\overline{\overline{\partial}^* \overline{\partial}} + \overline{\overline{\partial}} \overline{\overline{\partial}^*}) N_{n-p,n-q} \star \overline{f}
= (-1)^{p+q} \overline{\star} \overline{\overline{f}}
= f,$$

in the distribution sense in D. Since u=0 in $\mathbb{C}P^n\backslash D$, then for $u\in L^2_{p,q}(\mathbb{C}P^n)\cap\mathrm{dom}\ \overline{\partial}^*$, one obtains

$$\langle u, \overline{\partial}^* u \rangle_{\mathbb{C}P^n} = \langle u, \overline{\partial}^* u \rangle_D$$

$$= \langle \star \overline{\partial}^* u, \star_{(-t)} u \rangle_{(t)D}$$

$$= (-1)^{p+q} \langle \overline{\partial} \star u, \star_{(-t)} u \rangle_{(t)D}$$

$$= (-1)^{p+q} \langle \star u, \overline{\partial}^* \star_{(-t)} u \rangle_{(t)D}$$

$$= \langle \star u, \star_{(-t)} \overline{\partial} u \rangle_{(t)D}$$

$$= \langle f, u \rangle_D$$

$$= \langle f, u \rangle_{\mathbb{C}P^n},$$

where the third equality holds since $\star u = (-1)^{q+1} \overline{\partial} N_{n-p,n-q} \star f \in \text{dom } \overline{\partial}^*$. Thus $\overline{\partial} u_t = f$ in the distribution sense in $\mathbb{C}P^n$.

As in [5], we prove the following results.

Proposition 4.1. Let D be the same as in Theorem 3.1. Put $\Omega = \mathbb{C}P^n \setminus \overline{D}$. Then, for any $f \in W_{p,q}^{1+\varepsilon}(\Omega)$, $\overline{\partial}f = 0$, $0 \le \varepsilon < \frac{1}{2}$, there exists $F \in W_{p,q}^{\varepsilon}(\mathbb{C}P^n)$ such that $F|_{\Omega} = f$ and $\overline{\partial}F = 0$ in $\mathbb{C}P^n$.

Proof. Since D has C^2 smooth boundary, there exists a bounded extension operator from $W^s_{p,q}(\Omega)$ to $W^s_{p,q}(\mathbb{C}P^n)$ for all $s \geq 0$ (cf. e.g. [33]). Let $\tilde{f} \in W^{1+\varepsilon}_{p,q}(\mathbb{C}P^n)$ be the extension of f so that $\tilde{f}|_{\Omega} = f$ with

$$\|\tilde{f}\|_{W^{1+\varepsilon}(\mathbb{C}P^n)} \leqslant C\|f\|_{W^{1+\varepsilon}(\Omega)}.$$

Furthermore, we can choose an extension such that $\bar{\partial} \tilde{f} \in W^{\varepsilon}(D) \cap L^{2}(D, \phi_{2\varepsilon})$.

One defines $T\tilde{f}$ by $T\tilde{f} = -\star_{2\varepsilon} \overline{\partial} N_{2\varepsilon} (\star_{-2\varepsilon} \overline{\partial} \tilde{f})$ in Ω . As in Theorem 4.2, $T\tilde{f} \in L^2(D, \phi_{2\varepsilon})$. But for a C^2 -smooth domain, we have that $T\tilde{f} \in L^2(D, \phi_{2\varepsilon})$ is comparable to $W^{\varepsilon}(\Omega)$ for $0 \leq \varepsilon < \frac{1}{2}$. This gives that $T\tilde{f} \in W^{\varepsilon}_{p,q}(\Omega)$ and $T\tilde{f}$ satisfies $\overline{\partial} T\tilde{f} = \overline{\partial} \tilde{f}$ in $\mathbb{C}P^n$ in the distribution sense if we extend $T\tilde{f}$ to be zero outside Ω .

Since $0 \leq \varepsilon < \frac{1}{2}$, the extension by 0 outside Ω is a continuous operator from $W^{\varepsilon}(\Omega)$ to $W^{\varepsilon}(\mathbb{C}P^n)$ (cf. e.g. [21]). Thus we have $T\tilde{f} \in W^{\varepsilon}(\mathbb{C}P^n)$.

Define

$$F = \begin{cases} f, & \text{if } z \in \overline{D}, \\ \tilde{f} - T\tilde{f}, & \text{if } z \in \Omega. \end{cases}$$

Then $F \in W_{p,q}^{\varepsilon}(\mathbb{C}P^n)$ and F is $\overline{\partial}$ -closed extension of f to $\mathbb{C}P^n$.

Corollary 4.1. Let $D \in \mathbb{C}P^n$ be a weakly q-concave domain, $n \geqslant 2$ with C^2 smooth boundary. Then $W_{p,0}^{1+\varepsilon}(D) \cap \ker \overline{\partial} = \{0\}, \ 1 \leq p \leq n \ and \ W_{0,0}^{1+\varepsilon}(D) \cap \ker \overline{\partial} = \mathbb{C}$.

Proof. Using Proposition 4.1 for q=0, we have that any holomorphic (p,0)-form on D extends to be a holomorphic (p,0) in $\mathbb{C}P^n$, which are zero (when p>0) or constants (when p=0).

Corollary 4.2. Let $D \in \mathbb{C}P^n$ be a weakly q-concave domain, $n \geqslant 2$ with C^2 smooth boundary. Then, for any $f \in W^{1+\varepsilon}_{p,q}(D)$, where $0 \le p \le n$, $1 \le q \le n-2$, $p \ne q$, and $0 \le \varepsilon < \frac{1}{2}$, such that $\overline{\partial} f = 0$ in D, there exists $u \in W^{1+\varepsilon}_{p,q-1}(D)$ such that $\overline{\partial} u = f$ in D.

Proof. If $p \neq q$, we have that $F = \overline{\partial} u$ for some $U \in W^1_{p,q-1}(\mathbb{C}P^n)$. Let u = U on D, we have $u \in W^1_{p,q-1}(D)$ satisfying $\overline{\partial} u = f$ in D.

Acknowledgements. The author is grateful to the referee for several helpful remarks and comments.

References

- [1] O. Abdelkader and S. Saber, Solution to $\overline{\partial}$ -equations with exact support on pseudoconvex manifolds, Int. J. Geom. Methods Mod. Phys. 4 (2007), 339–348.
- [2] A. Andreotti and E. Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Publ. Math. Inst. Hautes Etudes Sci. (1965), 81–150.

- [3] L. Bungart, Piecewise smooth approximations to q-plurisubharmonic functions, Pacific J. Math. 142 (1990), 227–244.
- [4] J. Cao, M. C.-Shaw and L. Wang, Estimates for the $\bar{\partial}$ -Neumann problem and nonexistence of C^2 Levi-flat hypersurfaces in X, Math. Z 248 (2004), 183–221.
- [5] J. Cao and M.-C. Shaw, The $\overline{\partial}$ -Cauchy problem and nonexistence of Lipschitz Levi-flat hypersurfaces in $\mathbb{C}P^n$ with $n \geq 3$, Math. Z. **256** (2007), 175–192.
- [6] S.-C. Chen and M.-C. Shaw, Partial Differential Equations in Several Complex Variables, AMS/IP Stud. Adv. Math. 19, AMS, Providence, Rhodes Island, 2001.
- [7] J.-P. Demailly, Complex analytic and differential geometry, American Math. Society (to appear).
- [8] M. Derridj, Regularité pour $\bar{\partial}$ dans quelques domaines faiblement pseudo-convexes, J. Differential Geom. 13 (1978), 559–576.
- [9] M. Derridj, *Inégatés de Carleman et extension locale des fonctions holomorphes*, Ann. Sc. Norm. Super. Pisa Cl. Sci. **15** (1981), 645–669.
- [10] K. Diederich and J. E. Fornaess, Smoothing q-convex functions and vanishing theorems, Invent. Math. 82 (1985), 291–305.
- [11] M. G. Eastwood and G. V. Suria, Cohomologically complete and pseudoconvex domains, Comment. Math. Helv. 55 (1980), 413–426.
- [12] G. B. Folland and J. J. Kohn, *The Neumann problem for the Cauchy-Riemann complex*, Princeton Math. Ser. **75** (1972).
- [13] O. Fujita, Domaines pseudoconvexes d'ordre général et fonctions pseudoconvexes d'ordre général, Kyoto J. Math. **30** (1990), 637–649.
- [14] G. M. Henkin and A. Iordan, Regularity of $\overline{\partial}$ on pseudococave compacts and applications, Asian J. Math. 4 (2000), 855–884.
- [15] L. Hörmander, L^2 -estimates and existence theorems for the $\overline{\partial}$ -operator, Acta Math. 113 (1965), 89–152.
- [16] L. Ho, $\bar{\partial}$ -problem on weakly q-convex domains, Math. Ann. 290 (1991), 3–18.
- [17] L. R. Hunt and J. J. Murray, q-plurisubharmonic functions and a generalized Dirichlet problem, Michigan Math. J. 25 (1978), 299–316.
- [18] J. J. Kohn, Harmonic integrals on strongly pseudoconvex manifolds I, Ann. of Math. **78** (1963), 112-148.
- [19] J. J. Kohn, Harmonic integrals on strongly pseudoconvex manifolds II, Ann. of Math. **79** (1964), 450–472.
- [20] J. J. Kohn and H. Rossi, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. of Math. 81 (1965), 451–472.
- [21] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer-Verlag, Berlin Heidelberg, New York, 1972.
- [22] K. Matsumoto, *Pseudoconvex domains of general order in Stein manifolds*, Memoirs of the Faculty of Science, Kyushu University, Series A, Mathematics **43**(2) (1989), 67–76.
- [23] K. Matsumoto, Pseudoconvex domains of general order and q-convex domains in the complex projective space, Kyoto J. Math. 33 (1993), 685–695.
- [24] M. Peternell, Continuous q-convex exhaustion functions, Invent. Math. 85 (1986), 249–262
- [25] R. M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Springer, Berlin, Heidelberg, New York, 1986.
- [26] S. Saber, Solution to ∂̄ problem with exact support and regularity for the ∂̄-Neumann operator on weakly q-convex domains, Int. J. Geom. Methods Mod. Phys. 7(1) (2010), 135–142.
- [27] S. Saber, The $\overline{\partial}$ problem on q-pseudoconvex domains with applications, Math. Slovaca **63**(3) (2013), 521–530.
- [28] S. Saber, The L^2 $\overline{\partial}$ -Cauchy problem on weakly q-pseudoconvex domains in Stein manifolds, Czechoslovak Math. J. **65**(3) (2015), 739–745.

- [29] S. Sambou, Résolution du $\overline{\partial}$ pour les courants prolongeables définis dans un anneau, Annales de la Faculté des sciences de Toulouse: Mathématiques $\mathbf{11}(1)$ (2002), 105–129.
- [30] M. C. Shaw, Local existence theorems with estimates for $\overline{\partial}_b$ on weakly pseudo-convex boundaries, Math. Ann. **294** (1992), 677–700.
- [31] M. C. Shaw, The closed range property for $\overline{\partial}$ on domains with pseudoconcave boundary, Complex Analysis Trends in Mathematics (2010), 307–320.
- [32] Y. T. Siu, Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Differential Geom. 17 (1982), 55–138.
- [33] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Math. Series 30, Princeton University Press, Princeton, New Jersey, 1970.
- [34] E. J. Straube, Lectures on the L^2 -Sobolev Theory of the $\overline{\partial}$ -Neumann Problem, ESI Lectures in Mathematics and Physics, Freiburg, Germany, 2010.
- [35] G. V. Suria, q-pseudoconvex and q-complete domains, Compos. Math. 53 (1984), 105-111.
- [36] H. H. Wu, The Bochner Technique in Differential Geometry, Harwood Academic, New York, 1988.
- [37] G. Zampier, Complex Analysis and CR Geometry, AMS 43, Providence, Rhode Island, 2008.

¹DEPARTMENT OF MATHEMATICAL SCIENCES, FACULTY OF APPLIED SCIENCES, UMM AL-QURA UNIVERSITY, SAUDI ARABIA

²DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, FACULTY OF SCIENCE, BENI-SUEF UNIVERSITY, BENI SUEF, EGYPT Email address: sayedkay@yahoo.com