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SANDWICH THEOREMS FOR MULTIVALENT ANALYTIC
FUNCTIONS ASSOCIATED WITH DIFFERENTIAL OPERATOR

ABBAS KAREEM WANAS! AND ALB LUPAS ALINA?

ABSTRACT. The purpose of this paper is to derive subordination and superordina-
tion results involving differential operator for multivalent analytic functions in the
open unit disk. These results are applied to obtain sandwich results. Our results
extend corresponding previously known results.

1. INTRODUCTION AND PRELIMINARIES

Let H = H (U) denote the class of analytic functions in the open unit disk U =
{z € C:|z] <1} and let H [a,p] be the subclass of H consisting of functions of the
form:

f(Z):a+CLpr+ap+1Zp+1+"'v aEC,pEN:{l,Q,---}-

Also, let A, be the subclass of H consisting of functions of the form:

flz)=2"+ > a2’, peN.
k=p+1

Let f,g € H. The function f is said to be subordinate to g, or ¢ is said to be
superordinate to f, if there exists a Schwarz function w analytic in U with w (0) = 0
and |w (z)| <1, z € U, such that f(z) = g (w(2)). This subordination is denoted by
f<gor f(z) <g(z), z€ U. It is well known that, if the function g is univalent in
U, then f < g if and only if f (0) = ¢ (0) and f(U) C g (U).

Key words and phrases. Multivalent functions, differential subordination, differential superoordi-
nation, dominant, subordinant, differential operator.
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8 A. K. WANAS AND A. L. MAJEED

Let £, h € Hand ¢ (r,s,t;2) : C3xU — C. If Eand ¥ (£ (2),2E (2), 22" (2) ; 2) are
univalent functions in U and if £ satisfies the second-order differential superordination

(1.1) h(z) =0 (6(2),2€ (2),2°¢" () 2),

then ¢ is called a solution of the differential superordination (1.1). (If f is subordinate
to g, then g is superordinate to f.) An analytic function ¢ is called a subordinant of
(1.1), if ¢ < & for all £ satisfying (1.1). An univalent subordinant ¢ that satisfies ¢ < ¢
for all the subordinants g of (1.1) is called the best subordinant.

Recently, Miller and Mocanu [11] obtained conditions on the functions h, g and v
for which the following implication holds:

h(z) < (6(2),26 (2),2°€" (2)12) = q(2) < £ (2).

Using the results due to Miller and Mocanu [11], Bulboaca [4] considered certain
classes of first order differential superordination as well as superordination-preserving
integral operators [5]. Ali et al. [1] have used the results of Bulboaca [4] to obtain
sufficient conditions for certain normalized analytic functions to satisfy

0 <15 <),

where ¢; and ¢o are given univalent functions in U with ¢ (0) = ¢2 (0) = 1.
Very recently, Shanmugam et al. [17-19] and Goyal et al. [9] have obtained sandwich
results for certain classes of analytic functions.
For m,n € Ng = NU{0}, A\; > Ay > 0 and f € A,, the differential operator D"\
(see [8]) is defined by

> lp+(>\1+)\2)(k‘—l?) mo(k n) a2

(L2 DRRf =+ 3 |\ =

where C' (k,n) = Fg,k(:;l)

It follows from (1.2) that

(1.3) Mz (D5, ,f (2) =@+ X (k—p) DRESLF (2)
- (p + Ay (/{3 — p) — p)\l) D;ﬁ’g\%pf (Z) , AL > 0.

Special cases of this operator includes the Ruscheweyh derivative operator [15], the
Salagean derivative operator [16], the generalized Salagean operator [2], the generalized
Ruscheweyh derivative operator [3], the generalized Al-Shaqgsi and Darus derivative
operator [6].

The main object of the present paper is to derive the several subordination and su-
perordination results for multivalent analytic functions involving differential operator
D g\?g\mp'

In order to prove our results, we make use of the following known results.
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Definition 1.1 ([10]). Denote by @ the set of all functions f that are analytic and
injective on U\ E (f), where

E(f) = {¢eou timf (z) = oo
and are such that f' () # 0 for ( € OU\E (f).

Lemma 1.1 ([10]). Let q be univalent in the unit disk U and let 6 and ¢ be analytic in a
domain D containing q (U) with ¢ (w) # 0 whenw € ¢ (U). SetQ (2) = z¢' (2) ¢ (q (2))
and h(z) =0(q(2)) + Q (2). Suppose that

(1) Q(2) is starlike univalent in U;

(2) Re (ZS'((;))) >0 forzeU.

If & is analytic in U, with £ (0) = ¢ (0), £(U) C D and

(1.4) 0(£(2)) + 28 (2) 9 (£(2)) < 0(q(2)) + 24 (2) ¢ (q(2)),
then £ < q and q is the best dominant of (1.4).

Lemma 1.2 ([11]). Let ¢ be a convexr univalent function in U and let « € C, [ €

C\{0} with
2q" (2) o
Re <1 + 7 () ) > max {O, —Re (5) } )
If € is analytic in U and

(1.5) ag (z) + 28 (2) < aq(z) + Bzq (2),
then & < q and q is the best dominant of (1.5).

Lemma 1.3 ([11]). Let q be convex univalent in U and let § € C. Further assume
that Re (8) > 0. If £ € H[q(0),1]NQ and & (z) + Bz& (2) is univalent in U, then

(1.6) q(2)+ Bzq (2) < £(2) + B2 (2),
which implies that ¢ < & and q is the best subordinant of (1.6).

Lemma 1.4 ([4]). Let q be convex univalent in the unit disk U and let 6 and ¢ be
analytic in a domain D containing q (U). Suppose that

(1) Re (%) >0 forzeU;

(2) Q(2) = 2¢' (26 (q(2))) is starlike univalent in U.
If£ € Hig(0),1]NQ, with E(U) C D, ¢(£(2)) + 28 (2) ¢ (£ (2)) is univalent in U
and

(1.7) 0(q(2)) +2q (2) ¢ (q(2)) < 0(£(2) + 28" (2) 6 (£ (2))
then q < & and q 1is the best subordinant of (1.7).

—~
~
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2. MAIN RESULTS

Theorem 2.1. Let g be convex univalent in U with ¢ (0) =1, o € C\{0}, v > 0 and
suppose that q satisfies

!
(2.1) Re <1 + zq/ (Z)> > max {0, —Re (m)} :
7 (2) o
If f € A, satisfies the subordination
Ap 2P
o (ko — Dm,n o1 Dm—‘rl,n
+ 9 (p + Ag ( p)) ( )\1,)\27pf (Z)> )T\;,T)L\Q,pf (Z) =< q (Z) + izq/ (Z) ’
AP 2P Dy, 0 f (2) Y
then
Dm,n o
(2.3) “;I:JC(Z)> <q(2)
and q is the best dominant of (2.2).
Proof. Define the function & by
Dm,n o'
(2.4) £(z) = (W) . zel.

Differentiating (2.4) logarithmically with respect to z, we get

2 (2 2 (DX s p 2))
5()7( (D55, () p)_

¢ (2) DXepd (2)
Now, in view of (1.3), we obtain the following subordination

2(2) _yp+dak—p) (DRhf ()
) N Dibesl )]

Therefore,

% (2) _ (ptXa(k—p) (Dzizx,pf <z>>7 (Dz,az:’;f (2) 1) |

Y Aip 2P DY, o (2)

The subordination (2.2) from the hypothesis becomes
o o

E(2)+ —28(2) < q(2)+ —2¢ (2).

() + -2 (2) < a(z) + 224 (2)

Hence, an application of Lemma 1.2 with « =1 and g = %, we obtain (2.3). 0
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Theorem 2.2. Letn; € C,1=1,2,3,4,v>0, 6 € C\{0} and q be convezr univalent
in U with ¢(0) =1, q(2) #0 (2 € U) and assume that q satisfies

2 23 4 31 4 24" (2) _ 24 (2)
(2.5) Re (1 + 54 (2) + 5 1 (2) + 5 4 (2) + 7 al) > > 0.

Suppose that Z;JES) is starlike univalent in U. If f € A, satisfies

2q (2)
q(z)’

(2.6) Q1 (m:)7 (7, 0,m,n, Aty Ao, 3 2) <y + 12 (2) + 03¢ (2) + mag® (2) + 6
where
(27) Ql (nl)il (77 57 m,n, )\17 )\27p; Z) = Ql (T]la N2, M3, 4,7, 6; m,n, )\17 /\27]); Z)
m+1,n v m+1,n 2y m+1,n 3y
=11 + 1) D)\l—;\lz,pf (z) + 13 Dx\l—;\lz,pf (Z) + 1 D>\1—,|—>\127Pf (z)
=1 ma N A r 7N mn 7N
Dxl,,\Q,pf (2) D)\l,)\z,pf (2) D,\l,,\Q,pf (2)

L8R (k=) (DRALF(2) - DALS (2)
M Diinaf (2) - Dihapf ()

then

m n Y

D/\1—;\1277Pf (Z)

D (o) <q(2)
/\1,>\2,Pf (Z)

and q 1is the best dominant of (2.6).

Proof. Define the function & by

Dm-‘,—l,n P v

(2.8) £(z) = j,m*—pf() , zel.
D)xl,)\z,pf (2)

By a straightforward computation and using (1.3), we have

(2.9) m +mE (2) +n3E (2) +nal’ (2) + 5Z§(S) = O ()] (7.6, m,m, A1, Ao, s 2)

where Q; (Ui)il (7,8, m,n, A\, Ao, p; 2) is given by (2.7).
From (2.6) and (2.9), we obtain

2§ (2) 2q (2)

¢ (2) q(2)
By setting 6 (w) = n1 + now + npzw? + muw® and ¢ (w) = £, w # 0, we see that 6 (w)
is analytic in C, ¢ (w) is analytic in C\{0} and that ¢ (w) # 0, w € C\{0}. Also, we
get

M+ (2) + 038 (2) +mu€’ (2) +6 < +102q (2) +m3¢° (2) +1ag” (2) +6
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and

zq ()

q(z)

h(z)=0(q(2) +Q(2) = m +mq (2) +13¢° (2) + maq’ () + 6
It is clear that @ (z) is starlike univalent in U,

)\ _ R M2y o 2oy 3 sy 200 (2) 2 (2)
Re(Q(z)>_R <1+5q()+6q()+5q()+ 7 q(2)>>().

Thus, by Lemma 1.1, we get £ (2) < ¢(z). By using (2.8), we obtain the desired
result. 0J

Theorem 2.3. Letn; € C,1=1,2,3,4, v >0, 6 € C\{0} and q be convezr univalent
in U with q(0) =1, q(2) # 0, z € U, and assume that q satisfies (2.5). Suppose that

Z;]ES) is starlike univalent in U. If f € A, satisfies

zq' (2)

q(z) "

(2.10) Qo (1)} (7, 6, M1, My Aoy 3 2) <+ 12q (2) + m36? (2) + mag® (2) + 6
where

(2-11) 0 (Uz‘)i1 (% 0, m,n, A1, A2, p; Z) = (7717 N2, M3, N4, V5 0, M, 1, A1, A2, D; Z)

m,n v m,n 2y m,n 3
S DYt (2) + s Dl (2) + 4 DYinopf (2)
m+1,n m+1,n m+1,n
D)\l:i;\g,pf (Z) DA1:&2,pf (Z) D)\l:i;\g,pf (Z>
L8 de (k=) (DROLF(2) - DALS (2)
A Dot (2)  DYNLf(2))

then

N

D" z

Dhuseal O ()
D)q,)\g,pf (2)

and q is the best dominant of (2.10).
Proof. The proof is similar to that of Theorem 2.2. 0

Theorem 2.4. Letn; € C, i =1,2,3,4, § € C\{0} and q be convex univalent in U
with ¢ (0) =1, q(2) # 0, z € U, and assume that q satisfies (2.5). Suppose that %
is starlike univalent in U. If f € A, satisfies

zq' (2)

(212) Q3 (771)411 (5a m,n, )\17 )\27p; Z) = Ui + T2q (Z) + 773q2 (Z) + 774(]3 (Z) + 0 q (Z) )
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where
(213) Qg (m)y (6,m,m, M, Ao, p; 2) = Qg (1,712, 73, M, Y5 6,70, 10, M, Ao, 3 2)
=M 2 (D;nlr;\iff (Z))2 + 73 <ng\27pf <Z))4 5 T (D@j}\?’pf (2))6 3
2Dy ol (2) 2% (Dﬁt\zfgj (z)) 2P (DﬁJC\IQZf (z))
Slsten) (DO DL )
A D\ hpf (2) DR F(2) ’

then
m,n 2
(‘D>\1,>\2,pf (Z>)
@D (2)

and q is the best dominant of (2.12).

< q(z)

Proof. Define the function £ by
m,n 2
(DM:)\%PJC <Z))

T , zel.
ZPDZ,,\QZJ (2)

(2.14) §(2) =

By a straightforward computation and using (1.3), we have
2§ (2)
£ (2)

where Qg (1,)7 (5,m,7, M\, Ag, p; 2) is given by (2.13). From (2.12) and (2.15), we
obtain

(2.15) 4 € () + m3E (2) + &’ (2) + 6 = Q3 (0:)7 (6,m, 1, A1, Ao, 5 2)

< +n2q (2) +13¢° (2) +1aq’ (2) +6 Zjl(S) '

2§ (2)
¢ (2)
The remaining part of Theorem 2.4 is similar to that of Theorem 2.2 and hence we
omit it. U

m A€ (2) + 1582 (2) + s’ (2) +6

Theorem 2.5. Let q be convex univalent in U with ¢ (0) =1, v > 0 and Re(o) > 0.
Let f € A, satisfying

(WYEH@(O)JMQ

zp

and

(1- 2l e o)) (Dol 1)

Ap 2P
Lot (k—p) (D;Z:’;Q,pf <z>>7 (D;"E;Zf <z>>

Ap 2P Dt (2)
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be univalent in U. If
(2.16) q(2) + ;zq/ (2) < (1 _ ot A (k- p))) (Dﬁ’ﬁz,pf <Z)>”

Ap zP
Lot e (k= p)) (DTJKQ,pf (Z))Y Dyt (2)
A1p 2P Dy, (2) )7
then
D F ()Y
(2.17) q(z) < <A’>‘Z’§>

and q 1is the best subordinant of (2.16).
Proof. Define the function & by

D;\?’Kg,pf (2)\"
(2.18) (z) = (Zp :
Differentiating (2.18) logarithmically with respect to z, we get
m,n /
(2.19) ) _ |2 (D3, 0f (2)) )
§(2) D;ﬁ’f;\z,pf (2)

After some computations and using (1.3), from (2.19), we have

(2.20) (1 _ otk p))> (sz,pf (Z))”

Ap zP

o (pt+da(k=p) (DR3,F )\ (DihS (2)) _ "
+ " < o ) (DT{KQ,pf(Z) =¢(2) + —2€'(2).

From (2.16) and (2.20), we get
o o
q(2)+ —2q (2) < E(2) + —2£ (2).
(2) o (2) <& (2) s (2)
Hence, an application of Lemma 1.3 with « =1 and 8 = %, we obtain (2.17). O

Theorem 2.6. Letn, € C,i=1,2,3,4, v> 0, 6 € C\{0} and q be convex univalent
in U with q(0) =1, q(2) #0, 2 € U and assume that q satisfies

2 3
(2.21) Re (T?q () + 2B (2) + 2 (z)) >0,
2q'(2)

g(i) is starlike univalent in U. Let f € A, satisfying
m—+1,n

D,\:,\Q,pf (2)

Diinf (2)

Suppose that

) € Hlg(0),1]NEQ
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and 0 (m)i1 (v, 0,m, n, A1, Ao, p; 2) be univalent in U, where
(1)) (7,8, m,m, A1, Mg, p; 2) is given by (2.7). If
2q (z

(2.22) m + 102 (2) + m3q® (2) + g’ (2) + 55(2)) < Q0 (mi)y (7, 6,m,m, A1, Aay s 2),
then X 3

DYt (2)

q(z) < | o
Dx\l,)\g,pf (2)

and q 1is the best subordinant of (2.22).
Proof. Define the function & by

_ (D @)

By a straightforward computation, we have
2§’ (2)

(2.24) Qi ()} (7, 6,m,m, M, Aa, i 2) = 1+ o€ (2) + 032 (2) + ma&® (2) + 6 ACR

where €; (772-)411 (7,9, m,n, A1, A2, p; z) is given by (2.7).
From (2.22) and (2.24), we obtain
¢ (2)
q(2)
2§ (2)
£(2)
By setting 6 (w) = n1 + now + nzw? + muw? and ¢ (w) = £, w # 0, we see that 6 (w)
is analytic in C, ¢ (w) is analytic in C\{0} and that ¢ (w) # 0, w € C\{0}. Also, we
get

M+ 1m2q (2) +03¢° (2) + mag® (z) + 6

< + € (2) + 03 (2) + m&® (2) + 6

Q) =2 (2)$(q(2) = 525

It is clear that @ (z) is starlike univalent in U,
0 (q (2))> (772 ;3 4 31
Re| —/———= ) =Re|—=q(2)+ —q¢ () + —q z)>0.
(fine 20+ 2B () + 2gp o)
Thus, by Lemma 1.4, we get ¢ (2) < £(z). By using (2.23), we obtain the desired
result. O

Theorem 2.7. Letn; € C,1=1,2,3,4, v >0, 6 € C\{0} and q be convezr univalent
in U with ¢(0) =1, q(z2) # 0 (z € U) and assume that q satisfies (2.21). Suppose
that Z;IES) is starlike univalent in U. Let f € A, satisfying

(Dﬁ’,%,pf (2)

1,
Diiapd ()

) € Hlg(0),1]N@Q
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and Qs (m)i1 (v, 0,m, n, A1, Ao, p; 2) be univalent n U, where
Qs (m);l (7,9, m,n, A1, Ao, p; 2) is given by (2.11). If

z2q' (2
(225) Ui + n2q (Z) + 773q2 (Z) + 774(13 (Z) + 0 qq(i)) < QQ (771);L (77 67 m,n, >\17 >\27p; Z) )

then

.
D" z
o) < [ el )
D)\l,)\z,pf (2)
and q 1is the best subordinant of (2.25).

Proof. The proof is similar to that of Theorem 2.6. U

Theorem 2.8. Letn; € C, i =1,2,3,4, § € C\{0} and q be convex univalent in U

with ¢ (0) =1, q(2) # 0, z € U, and assume that q satisfies (2.21). Suppose that %

is starlike univalent in U. Let f € A, satisfying
m,n 2
(DAI’,AQ,pf (Z'))

DY) (2)
and €3 (771»)111 (0, m,n, A1, A2, p; z) be univalent in U, where Q3 (ni);l (6,m,m, A1, Ao, 3 2)
is given by (2.13). If

€ Hlq(0),1]n@

zq' (2
(2.26) 1+ 1m2q (2) + 1367 (2) + mag® (2) + 6 jé)) < Q3 ()] (8,m, 1, A1, Mg, p; 2)
then )
(D3, o (2))

q(z) <

and q is the best subordinant of (2.26).

#D3 T (2)

Proof. Define the function £ by

2
DY f(z

£(z) = ( Alé:iin( )) , z€U.
ZpD}\h)\mpf (Z)

By a straightforward computation and using (1.3), we have

' (2)
§(2)

(227)  Q3(n)y (0,m,m, M1, Ao, p; 2) = M+ 1€ (2) + ms€% (2) + ma€® (2) + 6
where (23 (m)zl1 (6,m,m, A1, A\, p; 2) is given by (2.13).

From (2.26) and (2.27), we obtain
¢ ()

q(2)

<+ € (2) + 03E (2) + &’ (2) + 6 Zg(g) .

m + 124 (2) + 13q® (2) + mug® (2) + 0
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The remaining part of Theorem 2.8 is similar to that of Theorem 2.6 and hence we
omit it. U

Concluding the results of differential subordination and superordination, we state
the following “sandwich results”.

Theorem 2.9. Let ¢1 and q» be convex um’valent in U with ¢ (0) = ¢2(0) = 1.
Suppose g satisfies (2.1), v > 0 and Re(o) > 0. Let f € A, satisfying

(DZK“’ ) € H[1,1]N

Lo )

0(p+)\2 (k_p)) (D)q,)\z,pf (Z)> D)rﬁJr)\lgrzl)f (Z)
A1p 2P DY, f(2) )7

and

be univalent in U. If
o g+ X (k—p)) DA1)\2pf(Z) !
1—
)+ Lot ()< o s

o (p+ A2 (k—p)) <D>\1 Dewf (Z)) Dyt (2)
Ap P Dot (2)

) <2 (2) + EZQQ (2),

then

0 (2) < (Dmf”) <)

2P

and g1 and qo are, respectively, the best subordinant and the best dominant.

Theorem 2.10. Let ¢; and qo be convex univalent in U with ¢ (0) = ¢ (0) = 1.
Suppose q satisfies (2.21) and g satisfies (2.5). Let f € A, satisfying
v

Dm+1 n
Droasl BN} i1
D,\l,,\Q,pf (2)
and 0 (771)411 (v, 6, m, n, A1, Ao, p; 2) be univalent in U, where

Qu ()5 (7,8, m, 1, Ai, Ao, p; 2) s given by (2.7). If
2qy (2)

¢ (2)

m +maq (2) + 134t (2) + magi (2) + 6 =< (77z) (7,0, m,m, A1, Ag, p; 2)

=<1 + 1gs (2) + 133 (2) + Mags (2)
N 5Zqé (2)
4z (Z)

Y
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then

Dm—‘rl,n v

and q; and qo are, respectively, the best subordinant and the best dominant.

Theorem 2.11. Let ¢, and go be convex univalent in U with ¢ (0) = ¢ (0) = 1.
Suppose q1 satisfies (2.21) and g satisfies (2.5). Let f € A, satisfying
il

Dmm
Dhidaal )y 10
Dy ot (2)
and Qy (771')411 (7,0, m,n, A1, Ao, p; 2) be univalent mn U, where

QQ (771)11l (77 57 m,n, >\17 )\Qap; Z) is given by (211) ]f

zq) (2
m+ meq (2) +m3q; (2) + mag; (2) + 0 qqll((z)) =€y (771')11l (77,0, m,n, Ay, Ao, p; 2)

=<1+ m2g2 (2) + 1305 (2) + 1ads (2)
2qy (2)
q2 (2)

Dm,n v
0= (g <o

and q; and qo are, respectively, the best subordinant and the best dominant.

+0

9

then

Theorem 2.12. Let q; and qo be convex univalent in U with ¢ (0) = ¢ (0) = 1.
Suppose q1 satisfies (2.21) and g satisfies (2.5). Let f € A, satisfying

(D, f ()
DL (2)

A1,A2,p

€eH[1,11NnQ
and 3 (171»)? (0,m,m, A1, A2, p; 2) be univalent in U, where (3 (m);l (6,m,m, A1, A2, ; 2)
is given by (2.13). If

zq) (2
M+ meqi (2) + n3qi (2) + g (2) + 6 qqll(i)) < Q3 ()7 (6,m,m, A1, Mg, p; 2)

2 3 52% (Z)
<M+ M2q2 (2) + 03¢5 (2) + nagsy (2) + 200

then
m,n 2
(‘D)\l,)\z,pf (Z))
Uil (Z) = m+1,n
ZpD/\l,)\Q,p-f (2)

and g1 and qo are, respectively, the best subordinant and the best dominant.

< @2 (Z)
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Remark 2.1. By specifying the function ¢ and selecting the particular values of
M, M2, M3, N4, Y, M, My A1, Ao and p, we can derive a number of known results. Some
of them are given below.

(1) Taking n = Ay = 0 and p = 1 in Theorems 2.1, 2.5, 2.9, we get the results
obtained by Raducanu and Nechita [14, Theorem 3.1, Theorem 3.6, Theorem
3.9].

(2) Taking n = Ag = 0 and \; = p =1 in Theorems 2.1, 2.5, 2.9, we get the results
obtained by Raducanu and Nechita [14, Corollary 3.3, Corollary 3.8, Corollary
3.11].

(3) Putting n =m = Ay =0 and \; = p =1 in Theorem 2.1, we obtain the results
obtained by Murugusundaramoorthy and Magesh [12, Corollary 3.3].

(4) Taking n = m = Ag = 0 and \; = p = 1 in Theorems 2.5, 2.9, we obtain the
results obtained by Raducanu and Nechita [14, Corollary 3.7, Corollary 3.10].

(5) For o =m =me=n, =0,y =p=1and ¢ (w) = 0 in Theorems 2.2, 2.6,
2.10, we have the results obtained by Darus and Al-Shagsi [7, Theorem 2.1,
Theorem 3.1, Theorem 3.3].

(6) By taking n = Ay =m =03 =ns =0,y =1 = p = 1 and ¢ (w) = § in
Theorems 2.3, 2.7, 2.11, we get the results obtained by Nechita [13, Theorem
5, Theorem 10, Corollary 13].

(7) Puttingn =X =m=m=n=0vy=XA =mn=p=1and ¢(w) =0 in
Theorems 2.3, 2.7, 2.11, we obtain the results obtained by Shanmugan et al.
[17, Theorem 5.1, Theorem 5.2, Theorem 5.3].

(8) Puttingn=m=X=m=mn=mpu=0,y=M=mp=p=1land ¢(w) =4
in Theorems 2.3, 2.7, 2.11, we get the results obtained by Shanmugam et al.
[17, Theorem 3.1, Theorem 3.2, Theorem 3.3].
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CHAIN CONDITION AND FUNDAMENTAL RELATION ON
(A,G)-SETS DERIVED FROM T'-SEMIHYPERGROUPS

S. OSTADHADI-DEHKORDI

ABSTRACT. The aim of this research work is to define a new class of hyperstructure
as a generalization of semigroups, semihypergroups and I'-semihypergroups that we
call (A, G)-sets. Also, we define fundamental relation on (A, G)-sets and prove some
results in this respect. Then, we introduce the notions of quotient (A, G)-sets by
using a congruence relations. Finally, we introduce the concept of complete parts
and Noetherian(Artinian) (A, G)-sets.

1. INTRODUCTION

The hypergroup notion was introduced in 1934 by a French mathematician F. Marty
[17], at the 8 Congress of Scandinavian Mathematicians. He published some notes on
hypergroups, using them in different contexts: algebraic functions, rational fractions,
non commutative groups. Algebraic hyperstructures are a suitable generalization of
classical algebraic structures. In a classical algebraic structure, the composition of
two elements is an element, while in an algebraic hyperstructure, the composition of
two elements is a set. Since then, hundreds of papers and several books have been
written on this topic, see [4-6].

The concept of T-semigroup defined by Sen and Saha [18] in 1986 that is a gene-
ralization of a semigroup. Many classical notions of semigroups have been extended
to I'-semigroups and a lot of results on I'-semigroups are published by a lot of mathe-
maticians, for instance, Chattopadhyay [2,3], Hila [15,16] and [18].

Recently, the notion of I'-hyperstructure introduced and studied by many re-
searchers and represent an intensively studied field of research, for example, see

Key words and phrases. T-semihypergroup, left(right) (A, G)-set, twist product, flat I'-
semihypergroup, absolutely flat I'-semihypergroup.
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[1,7,8,11-14]. The concept of I'-semihypergroups was introduced by Davvaz et al.
[1,14] and is a generalization of semigroups, a generalization of semihypergroups and
a generalization of I'-semigroups. Also, the concept of (A, G)-set was introduced
by S. Ostadhadi-Dehkordi [9,10]. He using them in different contexts such as twist
product, flat I'-semihypergroup, absolutely flat I'-semihypergroup and direct limit
that is important tools in the theory of homological algebra.

In this paper, by using a special scalar hyperoperations on I'-semihypergroups we
denote the notions left(right) (A, G)-set, (G1, A, G)-biset. Also, we introduced regu-
lar and strongly regular relations on (A, G)-sets and by using fundamental relation
we define quotient (A, G)-sets. Finally, we define the concept of complete part and
Noetherian(Artinian) (A, G)-sets and prove some results in respect.

2. INTRODUCTION AND PRELIMINARIES

In this section, we present some basic notions of I'-semihypergroup. These defini-
tions and results are necessary for the next sections.

Let H be a non-empty set. Then, the map o: H x H — P*(H) is called hyperop-
eration or join operation on the set H, where P*(H) denotes the set of all non-empty
subsets of H. A hypergroupoid is a set H together with a (binary)hyperoperation.
A hypergroupoid (H,o) is called a semihypergroup if for all a,b,c € H, we have
ao(boc) = (aob)oc. A hypergroupoid (H,o) is called quasihypergroup if for all
a € H, we have ao H = H oa = H. A hypergroupoid (H,o) which is both a
semihypergroup and a quasihypergroup is called a hypergroup.

Definition 2.1 ([14]). Let G and I" be nonempty sets and o : G x G — P*(G) be
a hyperoperation, where « is an arbitrary element in the set I'. Then, G is called
I'-hypergroupoid.

For any two nonempty subsets G; and Gy of GG, we define

GiaGy = U giags, Giro{z} = Giaz, {x}aGy = xaGs.

91€G1,92€G2

A T-hypergroupoid G is called I'-semihypergroup if for all z,y,2 € G and o, 5 € I" we
have

(vay)Bz = za(yBz).
FExample 2.1. Let I' C N be a nonempty set. We define
zay ={z € N: z > max{z,a,y}},
where a € I' and x,y € N. Then, N is a ['-semihypergroup.

Ezample 2.2. Let I' = {ay,as,...,a,}. Then, we define hyperoperations xaxy =
xykZ. Hence, Z is a ['-semihypergroup.

Ezxample 2.3. Let G be a nonempty set and I' be a nonempty set of G. Then, we
define zay = {z, o, y}. Hence, G is a I'-semihypergroup.
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Example 2.4. Let (T, ) be a semigroup and {A, }aer be a collection of nonempty dis-
joint sets and G = Ugjer Aa, for every ¢1,90 € G and a € I, we define
91092 = Aajaay, Where g1 € A, and go € A,,. Then, G is a f—semihypergroup,
IF={a:ael}

Let G be a I'-semihypergroup. Then, an element e, € G is called a-identity if
for every x € G, we have © € e,axr N xae, and e, is called scalar a-identity if
T = e,axr = rae,. We note that if for every a € T'; e is a scalar a-identity, then
xay = xfy, where o, § € I' and =,y € G. Indeed,

vay = (vfe)ay = zfB(eay) = xBy.

Let G be a I'-semihypergroup and for every a € I' has an a-identity. Then,
G is called a I'-semihypergroup with identity. In a same way, we can define I'-
semihypergroup with scalar identity.

A T-semihypergroup G is commutative when

Ty = yax,
for every x,y € G and a € I

Definition 2.2. Let G be a I'-semihypergroup and p be an equivalence relation on
G. Then, p is called right reqular relation if xpy and g € G implies that for every
t1 € xag there is to € yag such that t1pty and for every s; € yag there is sy € rag
such that s;pss. In a same way, we can define left reqular relation. An equivalence
relation p is called strong reqular when xpy and g € G implies that for every t; € zag
and ty € yag, tipty, for every a € I,

Ezxample 2.5. Let R = U, ez An, where A, = [n,n+1) and z,y € R such that x € A4,

y € Ay and a € Z. Then, R is a Z-semihypergroup such that xay = A,am, where
acZ={a:acZ}. Let

xpy <> 2ln—m, x€ A, y€ A,
Then, the relation p is strong regular. Also, x € R, implies that
ple)y={z€R:ze€---n—4,n-3)Un—-2,n—1)Un,n+1)Un+2,n+3) -},
where z € [n,n + 1).

Proposition 2.1. Let G be a I'-semihypergroup and p be a regular relation on G.
Then, [G : p] = {p(x) : = € G} is a I'-semihypergroup with respect the following
hyperoperation:

p(x)aply) = {p(2) : z € p(x)ap(y)},
where T = {@: a €'}

Proof. The proof is straightforward. 0J
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Corollary 2.1. Let G be a I'-semihypergroup and p be an equivalence relation G.
Then, p is regular (strong regular) if and only if (G : p| is I'-semihypergroup (I'-
semigroup).

Definition 2.3 ([9]). Let G be a I'-semihypergroup with identity and X, A be
nonempty sets. Then, we say that X is a left (A, G)- set if there is a scalar hyperaction
d:G x X — P*(X) with the following properties:

(g10092)0 =g16(g26),
€0 =1,

for every g1, € G, a €', z € X and § € A.
When ¢ : G x X — X, then X is called scalar left (A, G)-set.

Example 2.6. Let G be a I'-semihypergroup with scalar identity, X and A be nonempty
sets such that xy € X is a fixed element and § : G x X — P*(X) defined by
3(g,x) = {xo}, where 6 € A and x € X. Then, G is left (A, G)-set.

Ezample 2.7. Let (G,0) be a semihypergroup and H be a subsemihypergroup of G.
Then, H is a left (A, G)-set where A = {o}.

In a same way, we can define a right (A, G)-set. Let G; and G be I'-semihypergroups
and X be a nonempty set. Then, we say that X is a (G, A, G)-bisets if it is a left
(A, Gq)-set, right (A, Gy)-set and

(91017)0292 = g101(20292),
for every 01,00 € A, g1 € G1, g € Gy and © € X. When X is a (Gy, A, Go)-bisets
and G = Gy = G, we sat that X is a (A, G)-bisets.

If G is a commutative ['-semihypergroup, then there is no distinction between a left
and a right (A, G)-sets. A left (A, G)-subset Y of X such that YAX C Y is called left
(A, G)-subset of X. Let X be a left (A, G)-set and I' C A. Then, X is also (I', G)-set
where § : G x X — P*(X) and 0 € I".

Definition 2.4. Let X be a left (A, G)-set and Y be a left (A, G)-subset of X. Then,
we say that Y closed, if for all y € Y and g € G from y € gdb implies that b € Y.

Definition 2.5. Let X be a (G,A,G)-biset and Y be a (G, A, G)-subbiset of X.
Then, Y is called invertible on a right(on a left) if for all y;,, € Y and g € G from
y1 € y20G(y1 € Gys) it follows that ys € 110G (y2 € Goyy).

Proposition 2.2. Let G be a I'-semihypergroup and X be a (A, G)-biset such that' Y
be a (A, G)-subbiset. Then, Y is invertible on the right if and only if {ydG}yey is a
partition of X, for everyy € Y.

Proof. Suppose that Y is invertible on the right and y € y;0G N y20G. Then, y1,ys €
ydG. This implies that y,0G C ydG and y20G C ydG. Also,

y6G C (110G)3G C 116(GTG) C 160G,
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and ydG C (y20G)dG = y20(GT'G) C y20G. Then, yoG = 1,0G = y20G. On the
other hand, y € y,0G = ydG. Then, for every y € Y, we have y € y0G.
Conversely, let {ydG}, ey be a partition of Y and y; € y20G. Then,

116G C (1206G)8G C 126(GTG) C 426G,

whence y10G = y20G and so y; € y20G = 1;0G. Then, for all y € Y we have y € yiG.
Therefore, yy € y20G = y10G. O

Definition 2.6. Let X be a left (A, G)-set and Y be a left (A, G)-subset of X. Then,
Y is called ultraclosed if for all g € G and § € A, we have gdY Ngo(X —Y) = 0.

Proposition 2.3. Let X be a left (A, G)-set and Y be a invertible (A, G)-subset.
Then, X 1is closed.

Proof. Suppose thaty,z € Y, 6 € Aand g € G such that y € gdx. Hencex € géy C Y
and we obtain x € Y. O

Definition 2.7. Let X be a left (A, G)-set and H be a I'-subsemihypergroup of G.
Then, we define the following relation:

T =29 11 € Hoxs.
This relation is denoted by x1H*x».

Definition 2.8. Let X be a left (G, A)-set and p be a regular relation on X. Then,
p is called regular if x1pxs implies that for every s; € gdz; there is sy € gdxs such
that sypsy and for every to € gdxs there is t; € gdxy such that typty, where zq, 20 € X
and 0 € A. Also, an equivalence relation p is called strongly reqular, when for every
s1 € gdxy and sy € gdxe implies that sypss.

Proposition 2.4. Let X be an invertible left (A, G)-set such that G is commutative.
Then, the relation H* is regular.

Proof. Suppose that x € X. Then, x = e, 6z € Hox. It follows that xtH*z, i.e., H" is
reflexive. Let x1H*xy. Then, there exist § € A and h € H such that x; € hdx, which
implies that xo € hdxy C Hdx; which meanies that xoH*z; and so H* is symmetric.
Let z1, 29, x3 € X such that x1H*zy and z9H*x3. Then, there exist hy, hys € H such
that xr1 € hl(Sl’Q and To € hgél’g. Hence xr1 € hlé(hQ(SJIg) = (hﬂ)éhg)él‘g Q H6(L’3 This
implies that 1 € Hdxs and so H* is transitive.

Let x1, 75 be an arbitrary elements of X such that z1H*z,. It follows that x; €
Hdxy. Hence there exist hy € H such that x; € hidzs. Let ¢ € G and t; € gdx;.
Then,

t1 € géxy C go(h1dxy) = (gahy)dxs = (hiag)dxe = hy1d(gdxs).

Hence there exists t5 € gdx, such that t; € hidty C Hdty. Thus, t1H*t,. In a same
way, we can see for every sy € gdxy there is s; € gdxy such that s; H*sy. Therefore,
H* is a regular relation. U
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Proposition 2.5. Let X be a left (A, G)-set and H be a T'-subsemihypergroup of G.
Then, H*(x) = Héx.

Proof. The proof is straightforward. O

Theorem 2.1. Let X be a left (A, G)-set and H be a T'-subsemihypergroup of G.
Then, the set of all classes [X : H*| = {H*(z) : ® € X} is a left (A, G)-set by the
following scalar hyperoperation:

gOH* () = {H"(y) : y € g5 H" ()}.

Proof. Suppose that H*(z1) = H*(x2), g € G and y € gdH*(z1). This implies that
x1 € Hdzy. Hence, there are hy, hy € H such that y € gd(hi10x1) and 1 € hodzy. We
have

y € go(h1dx1) C gd(h10(hadxs)) = go(hiahs)dxe C gd(Hoxs) = gdH™ (22).

Then, gdH*(x1) C gdH*(z3). In a same way, we can see, goH*(z3) C gdH*(x1).
Hence,

ggH*(xl) = ggH*(@).
Therefore, the scalar hyperoperation a is well-defined. It is easy to see that
(glagz)gH*(ﬂﬂ) = 915(92&{*(37))- O

Let X be a left (A, G)-set. Then, we define an equivalence relation on X such that
smallest strongly regular relation on X. Suppose that X be a left (A, G)-set and n
be a nonzero natural number. We say that

aﬁnb = (351,62, RN 7571 S A,ZE € X, 91,92,...,9n € G) {Cl,b} - 91519252, .. ,gnc;nx.

Let 8 = U,>1 Bn- Clearly, the relation f3 is reflexive and symmetric. Denote by 8* the
transitive closure.
We say that x[s»y when

a65"b g (ELCE S Xa 91,92,y 9n € G) {CL?b} C 915925a SR 7gn5x

Let 35 = U,>1 Bs» and 35 be transitive closure. Obviously, 85 C 5.
Let X be a (A, G)-biset. Then, the relation 3, defined on X as follows:

afpb< (FJz € X, 0,7 € A, gi,si € G) {a,b} C H Gi0iT)7iSi.

In a same way, we can define 35 and transitive closure ;.

Ezample 2.8. Let R be a Z-semihyperring Example 2.5, 2,y € R such that B(x) = B(y)
and t; = [z], to = [y]. Then, there exist g1, go, ..., gm € R and 61,02, ...,0m € Z such
that {z,y} C glglgggzgg . Gm-10m_1gm. This implies that t; = t, = T2, 9i6iGis1-
Therefore, f(x) = B(y) if and only there exists n € Z such that z,y € [n,n + 1).
Hence p*(x) = 8*(y) implies that x,y € [n,n + 1) for some n € Z.
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Theorem 2.2. Let X be a left (A, G)-set. Then, * is the smallest strongly reqular
relation on X.

Proof. Suppose that aS*b be an arbitrary element of X. It follows that there exist
ry = a,x1,...,T, = b such that for all i € {0,1,2,...,n} we have x;8x;,1. Let
up € goa and uy € gob, where g € G, 0 € A. From x;5x,;, it follows that there exists
a hyperproduct P;, such that {z;,z;11} C P; and so gdz; C goP; and gdx;41 C gd Py,
which meanies that gdx;8gdz; 1. Hence for all i € {0,1,2,...,n — 1} and for all
s; € gox; we have s;8s;11. We consider sqg = u; and s, = us then we obtain u;5*us.
Then £* is strongly regular on a left.
Let p be a strongly regular relation on X. Then, we have

pr=A{(x,2) :x € X} Cp,

since p is reflexive. Let (8,1 C p and af,b. Then, there exist ¢1,go,...,9, € G,
91,02,...,0, € A and x € X such that {a,b} C [T, g:0ix = g101 [115 g;0;x. This
implies that there exits u,v € []}", g;0;,x such that a € g;6;u and v € g;6;v. We have
uf,_1v and according to the hypothesis, we obtain upv. Since p is regular it follows
that apb and 3, C p. By induction, it follows that g C p. Therefore, 3* C p. O

Proposition 2.6. Let Xy and X5 be left (A, G)- and right (A, G)-sets, respectively
and PBx,, By, and B, «x, be relations on Xy, Xy and Xy X Xy, respectively. Then,

(a7 b)/B}l XX2 (67 d) ~ a/g}k(lc’ bﬁ}k(zd
Proof. Suppose that (a,b)8%, . x,(c,d). Then,

{(a,b). (e.d)} € T] gd(a y) s = (Hg@-m, Hy%si) |
=1 =1 =1

This implies that {a,c} C [TiL, gidiz and {b,d} C [T, yyisi. Then, af%, c and bB%,d.
One can see that af%, c and b3y, d implies that (a,b)5%, . x, (¢, d). O

Corollary 2.2. Let X; and X5 be left (A, G)- and right (A, G)-sets, respectively and
B%,, B, and Bx, . x, be relations on X1, Xy and X, x Xs, respectively. Then,

[Xl X X2 : 6§(1><X2] ~ [Xl : 5}'}1] X [XQ : 5;}2]
Definition 2.9. A map ¢ : X — Y from a left (A, G)-set X into a left (A, G)-set Y
is called morphism (G-morphism) if
p(g0x) = gop(x),
for every x € X,0 € A and g € G.

Ezample 2.9. Let (G,0) be a semihypergroup with scalar identity and G be a sub-
semihypergroup of (G,0). Then, G; is a (I', Gy)-biset in the obvious way, where

I' ={o}.
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FEzxample 2.10. Let p be a left regular relation on I'-semihypergroup G. Then, there is
a well-defined action of G on [G : p| given by

ga(p(x)) = {p(t) : t € gox},
where @ € T such that T' = {a : & € T'}. Hence, with this definition [G : p] is a left
(T, G)-system.

It is easy to see that the cartesian product X x Y of a left (A, G;)-set X and a
right (A, Gy)-set Y becomes (G, A, G)-biset if we make the obvious definitions

g (z,y) = {(t,y) 1 t € oz}, (z,y)02g0 = {(x,1) : t € ydaga},

where 31,52 € ﬁ, re X, yeY and g; € Gy, g2 € Go.

Let X and Y be (G1,A,Gs)- and (G, A, G3)-bisets, respectively and Z be a
(G1,A,G3)-biset. Then, the cartesian product X x Y is (Gp, A, Gs)-biset. A
(G1,A,G3)-map g5 : X x Y — Z is called §-bimap if

p(xdgs,y) = p(, 920y),
where x € X, y €Y, g0 € Gy and § € A.
Definition 2.10 ([9]). A pair (P, ) consisting of (G, A, G5)-biset P and a d-bimap
¥ X xY — P will be called a twist product of X and Y over G, if for every

(G1, A, G3)-biset Z and for every bimap w : X X Y — Z there exists a unique bimap
w: P — Z such that wo ¢ = w.

Suppose that p is an equivalence relation on X x Y as follows:
p={(t1,t2) : t; € xdg,ty € goy,x € X,y €Y, g9 € Go}.

Let us define X Y to be [X xY : p*], where p* is a transitive closure of p. We denote
a typical element p*(z,y) by z © y. By definition of p*, we have xdg &y = x © gdy,
where § € A.

Proposition 2.7 ([9]). Let X and Y be (G1,A,G3)- and (G, A, G3)-bisets, respec-
tively. Then, two element v ©y and ' ©y' are equal if and only if (z,y) = (2',y') or
there exist x1,%o,...,Tn_1 in X, hi,ho,..., hy_1 € Gy and 6 € A such that
x € 210g1, £10hy = 130gs, . . ., 1i0gi = Ti110Gis1, Tn10hn_1 =2'0gn,
910y = h10y1, g20y1 = hadya, . . ., Gi+10Y; =hi110Yit1
:gn(synfl
:y/.
Theorem 2.3 ([9]). Let X and Y be (G1, A, Gs)- and (G, A, G3)-bisets. Then, the
twist product X andY over Gy is unique up to isomorphism.

Proposition 2.8. Let X and Y be a scalar (A, G)-bisets. Then, X ©Y is a (A, G)-
biset by following scalar hyperoperations:

~

go(xrOoy) =géz oy, (x0y)dg=x0 ydy,



CHAIN CONDITION AND FUNDAMENTAL RELATION ON (A, G)-SETS 29

wheregeﬁand:pEX,er.

Proof. Suppose that * &y = 2’ © 3. By Proposition 2.7, there exist 0 € A,
T1,To, ..., Tp_1 € X and hq, ho, ..., h,—1 € G, such that

x = 210g1, x10hy = x20Ga, - - - x;0h; = £;4109;41
Tp_10h,_1 = 2'0g,,
910y = h1dyr, g20y1 = hadya, . .., Git10y; = hiy10yin
= 9n0Yn—1
= y/_

Hence,

gox = 95(5751591), 95($15h1) = 95(%592)7 e 795(1‘@‘5}%) =
96(Tn-10hn_1) =

(2i410Gi41)

go
go(2'dgy).

We have
g(;flf &) Yy = tl o 916y = tl . hléy = t15h1 o Y = t2692 o U1

= t/(sgn O Yn—1
=t © gndynfl
= gozr' O,
where t; € X. Then, the left scalar operation 5 is well-defined. Moreover,
(1a92)0(z © y) = (g1ag2)062 © y = 16(g202) S y = 16(g26(x S ),

where 2 € X, y € Y and g € G. Hence X ©Y is a left (A, G)-set. In a same way, we
can see X OY is also right (A, G)-set. O

3. COMPLETE PARTS AND REGULAR RELATIONS

In this section we define the concept of complete parts and present some results.

Definition 3.1. Let X be a left (A, G)-set and Y be a nonempty subset of X.
We say that Y is a complete part of X if for any nonzero natural number n and
91,92, ---,9n € G, 01,00,...,0, € A, x € X, the following implication holds:

=1 =1

Proposition 3.1. Let X be a left (A, G)-set and p be a strongly regular relation on
X. Then, the equivalence class x is a complete part of X.
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Proof. Suppose that g1, 92,...,9, € G, 61,02,...,0, € A and x € X such that
p(z) N ] gidix # 0.
i=1

Then, there exists y € [/~ g;0;x such that ypz. The morphism 7 : X — [X : p| is
good and the scalar hyperoperation § defined on [X : p] is scalar operation. It follows
that
) = pts) = pte) = (T g ) = [T to) = T it
i=1 i=1 i=1
This implies that [T, g:0;z C p(x). O

Proposition 3.2. Let X and Y be scalar (A, G)-bisets such that X; C X be a
complete part. Then, X1 &Y 1is also complete part in X Y.

Proof. The proof is straightforward. 0J

Let A be a nonempty subset of (A, G)-sets X. Then, denoted by C(A) the complete
closure of A, which is the smallest complete part of X, that contain A.

Denote K;(A) = A and for all n > 1 denote

t t
=1

=1 i—
Let K (A) = Ups1 Kn(A).

Theorem 3.1. Let X be a left (A, G)-set and A be a nonempty subset of A. Then,
C(A) = K(A).

Proof. Suppose that K(A) NII'_; g:0;x # 0. Then, there exits n > 1 such that
K. (A) NTIi, g:d;x # 0 which meanies that [['_, g;0;x C K, 1(A). This implies that
K(A) is a complete part of X.

Let C' be a complete pat of X such that A C . Then, by induction we prove that
K(A) C C;. We have K;(A) C ) and suppose that K,(A) C Cy. Let z € K,,11(A).
Then, there exists t € N such that a € [['_; g:0;z and K, (A) NTIi_, g:d;x # 0. Hence,
Cy NII_, gi0ix # O implies that [T'_, ;0,4 C C;. We obtain a € C;. Therefore,

C(A) = K(A). O
Proposition 3.3. Let X be a left (A,G)-set and x be an arbitrary element of X.
Then,

(1) for alln > 2 we have K,(Ks(z)) = Kpi1(2);
(2) for every x,y € X, x € K,(y) &y € K,(x).

Proof. (1) We prove the equality by induction. We have

Ky(Ky(z)) = {x eX:(FteN)ze ﬁgidix,Kg(x) N ﬁgi&x # @} = Kj(x).

i=1
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Let K, 1(K3(x)) = K,(z). Then,
K, (Ky(x)) ={z€X:(@teN) xell, g K, 1(K(x)) NI, gidiw # 0}

= n+1<x)'

(2) We check the equivalence by induction. For n = 2, we have

¢ ¢
r € Ky(y) = {x € X:(3teN)ze [[ghz Ki(y) N]] g:dix # Q)} :
i=1 i=1
This implies that {y,z} C [I}_; ;0,7 and y € Ky(x). Suppose that the following
equivalence holds:
re K, 1(y)eye K, 1(x).

We check that z € K, (y) & y € K,(r). Let x € K,(y). Then, there exists [['_, g:0;a
with z € [['_; ¢g:0;a and there exists b € [[i_; g;0;aN K, _1(y). It follows that b € Ky(z)
and y € K,,_1(b). Hence, y € K,,_1(Ks(z)) = K,(x). Similarly, we obtain the converse
implication. U

Definition 3.2. Let X be a left (A, G)-set. Then, we define the relation w as follows:
(,y) Ewe (In>1) z € Ky(y).

Theorem 3.2. Let X be a left (A, G)-set. Then, the relation w is an equivalence and
coincide with B*.

Proof. By Proposition 3.3, the relation w is an equivalence. Let (x1,25) € 8. Then,
{z1,29} C [IX, gi0;x, where g; € G, 6; € A and t € N. Hence, z1, 22 belong to
the same scalar hyperoperation and so, 1 € Ksy(xy) C K(xp). This implies that
f C wand f* C w. Let (z,y) € K and = # y. Then, there exists n > 1, such
that (r,y) € K11, which means that there exists a scalar hyperproduct P;, such
that x € P, and P, N K, (y) # 0. Let 21 € P, N K,(y). Then, {x,x1} C P,. Hence
(r,z1) € B. Since x; € K,(y) it follows that there exists a scalar hyperproduct P,
such that 1 € Py and PN K, _1(y) # 0. Let x5 € PoNK,,_1(y). Then, 25 € K,,_1(y)
and {x1,z2} C P,. After finite number of steps, we obtain there exists a scalar
hyperoperation P, such that {z,_1,z,} C P, and z,, € K,,_(»—1)(y) = {y}. O

4. FUNDAMENTAL, NOETHERIAN AND ARTINIAN (A, G)-SETS

In this section, we introduce the notion of right Noetherian and Artinian (A, G)-sets
and define fundamental (A, G)-sets.

Let X be a left (A, G)-set such that G be a I'-semihypergroup and I' C A. We
define a relation p on A x X as follows:

((61, 1), (02, 22)) € p < goixy = gdawo, for all g € G,

where 01,9, € A and x1, 25 € X. Obviously, p is an equivalence.
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Let ©[X] = [A x X : p] denote the set of all equivalence classes. We denote the
equivalence class (9, z) by [d, z]. We define a relation € on I" x G as follows:

((01,91), (02, 92)) € € & gb1g1 = gbaga, forall g € G,

where g1, g2 € G and 41, J5 € I'. Obviously, € is an equivalence relation and [, g] denote
the equivalence class containing (¢, g). We denote O[G] = {[d,g] : g € G,d € I'}. We
define a hyperoperation o on O[G] as follows:

[01, 91] © [02, go] = {[61, 2] : 2 € g102g2},
where 91,0, € A and ¢;,g92 € GG. This hyperoperation is well-defined. Indeed, let
(01, g1) = [11, h1] and [d2, go] = [V2, , he|, where 81, 09,71,72 € T and ¢y, go, by, ho € G.
Then,
90191 = gnihi,  go2g2 = gy2ha, forall g € G.

Hence,
(90191)0292 = (gy1h1)y2he, forall g € G,
and
961(916292) = g1 (h1y2ha).
Thus,
[01, 91] 0 [02, go] = [v1, ] © [72, o).
Also

([01, 91] © [02, ga]) © [03, g3] = ({[d1, 2] : 2 € g10292}) © [33, g3]
= U [01, 2] o [03, ]

2€916292

= U {[61,1] : t € 20395}

2€910292

= U [517 t]

te(g10292)0393

= U [517 t]

t€g102(920393)
= [51791] o ([52792] o [53793])-

Therefore, (O[G], o) is a semihypergroup.
Let o be a scalar hyperoperation o : O[G] x O[X] — P*(©[X]) such that

[01, 9] 0 [62, 2] = {[01, 2] : = € gdou}.

This scalar hyperoperation is well-defined. Indeed, let [0, g1] = [J2, g2] and [03, 1] =
[04, o] such that g1, g2 € G, 81,02 € A, x1,29 € X and 3,04 € A. Then,

g01g1 = gdaga, gdsx1 = gisxe, for all g € G.
This implies that (gd1g1)d3x1 = (gd2g2)dszs. Hence,
[01, 91] © 05, 21] = [02, g2] © [d4, 2]
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Thus the scalar hyperoperation o is well-defined. Let [0, ¢1], [0, g2] € ©O[G] and
[03, 2] € ©[X], where 01,05 € I'. Then,

([01, 91] © [0, go]) © [03, 2] = ({[d1, 2] : 2 € g10292}) o 03, 2]
= U [01, 2] o [d3, ]

2€g910292

= U {l61.1]:t € 2032}

2€916292

= U [517 t]

te(g10292)d3x

= U [61’ t]

t€g102(g2032)
= [01, 91] © ([02, g2] © [33, x]).

Therefore, ©[X] is a left ©[G]-set and is called fundamental left (A, G)-set.
Let ©[X] be a fundamental left (A, G)-set, H C ©[X] and T'C X. Then, we define

[H] ={z € X : [§,z] € H for all § € A},
[[T]] ={[d, z] € O[X] : gdx C T for all g € G}.

A nonempty subset T" of a left (A, G)-set X is called left (A, G)-subset of X when
GAT C T. A nonempty subset H of O[X] is called left ©[G|-subset if O|G| o H C H.

Proposition 4.1. Let X be a left (A, G)-set and H C ©[X]| be a complete part. Then,
[H] is a complete part of X.

Proof. Suppose that

i=1
This implies that there exists a € X such that a € [H] N[[; g;0;x. Then, for every
d € A, [d,a] € H. This implies that

[0,a] € HN ﬁ[é, gi] o [ds, z].

i=1
Since [H] is a complete part, [T [0, g:] o [0;, 2] C H. Then,
{b € [[ gidiz : V6 € A, [(5,6]} C H.
i=1
Therefore, [H]| is a complete part. O

Proposition 4.2. Let X be a left (A, G)-set and T' C X is a complete part. Then,
[[T]] is also a complete part of O[X].

Proof. Suppose that



34 S. OSTADHADI-DEHKORDI

This implies that

{[51,4 e ﬁgiéx} AT £ 0 = (Elz c ﬁgﬁx) 61, 2] € [[T]]

i=1 =1

= (Elz € Hgﬁx) Vge @) ghzCT

=1

= g6 [[g:0zNT #0

i=1

= (Vge @) gi[[gibz CT
i=1

n

= ]116:, g1l o [0,] # 0 < [[T].

i=1
Therefore, [[T]] is also complete part of ©[X]. O

Proposition 4.3. Let X be a left (A, X)-set such that T C X. Then, C[[T]] =
[C(T)]]-

Proof. Since C(T') is a complete part by Proposition 4.2, [[C(T)]] is also complete
part of O[X]. Also, [[T]] C [[C(T)]]. Let T} be a complete part contain [[T]]. Hence,
Cl[T)] € Ti. Thus, [[C(T)]] is a smallest compte part contain [[T]]. Therefore,
ClT = fle)]]- O

Theorem 4.1. Let X be a left (A, G)-set and O[X] be a fundamental left (A, G)-set.
Then,

(i) If H is a left ©[G]-subset of O[X], then [H] is a left (A, G)-subset of X;
(i) If T is a left (A, G)-subset of X, then [[T]] is a left O|G] of ©[X].

Proof. (i) Suppose that « € [H]. Then, for every 6 € A we have [d,z] € H. Since H
is a left ©[G]-set of ©[X], thus [d1,g] o [d,2] C H. So {[d1,t] : t € gox} C H. This
implies that gox C [H]. Therefore, [H] is a left (A, G)-set of X.

(ii) Let [0, x] € [[T]] and [0y, 9] € ©[G]. Then, for all g € G, gox C T. Now,

[01, 9 0 16, 2] = {[d1,1] : ¢ € gba} C [[T]].
Therefore, [[T]] is a left ©[G]-subset of O[X]. O
Let X be a left (A, G)-set and T be a nonempty subset of X. Then,
([T ={ze X :¥VoeAo,z] €[[T]]} ={x € X :gdx CTforalld € A, ge G}
This implies that 7" is a left (A, G)-subset of [[[T]]]. Also, when H C O[X], we have

[[[H]]] {[6,z] € O[X] : gdx C [H] for all g € G}
={[d,z] € ©[X] :[d1,t] € H for all g € G,0, € At € gdz}.
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Let H be a left O[G]-subset of ©[X]. Then, for every 6; € I', g € G and [0, 2] € H
we have
[01,9] o [0, 2] = {[d1,t] : t € gox} C H.

When H is a left ©[G]-subset of O[X], we have H C [[[H]]].

Let X be a left (A, G)-set such that e, is a unit element of G where a € I". Then,

[0, eq) © [0, 2] = [d, eadx] = [0, x].

This implies that [J, e,] is a left unity of ©[X].
Proposition 4.4. Let X be a left (A,G)-set and T be a left (A, G)-subset of X.
Then, [[[T]]] = T-

Proof. The proof is straightforward. 0

Definition 4.1. Let X be a left (A, G)-set. Then, X is said Noetherian, when X
satisfies the ascending chain condition on left (A, G)-subsets and X is said Artinian
when X satisfies the descending chain condition.

Theorem 4.2. Let X be a left (A, G)-set such that ©[X] is Noetherian (Artinian)
©[G]-set. Then, X is Noetherian left (A, G)-set.

Proof. Suppose that X; C Xy C X3 C--- C X,, C--- be an ascending chain of left
(A, G)-set of X. Hence [X;] C [Xs] C [X3] C -+ C [X,] - is an ascending chain
in O[X]. Since ©[X] is Noetherian thus there exists a positive integer n such that
[X,] = [Xn1k) for every k € N. This implies that X,, = [[X,]] = [[Xn+k]]] = Xnix for
every k € N. Therefore, X is Noetherian left (A, G)-set. In a same way, when X is
Artinian left (A, G)-set, then ©[X] is also O[G]-set. O

Corollary 4.1. Let X be a left (A, G)-set and O[X] is Artinian O[G]-set. Then, X
is Artinian left (A, G)-set.

Definition 4.2. Let X be a left (A, G)-set and A be a nonempty subset of X. Then,

intersection of all ideals of X containing A is a left (A, G)-set generated by A and
denoted by < A >.

Proposition 4.5. Let X be a left (A, G)-set and A C X. Then, < A >= GAA.

Proof. Suppose that H = GAA. Obviously, A C H and H is a left (A, G)-set of X.
Indeed,
GAH = GA(GAA) = (GTG)AAC GAA = H.
Let C be a left (A, G)-subset of X such that A C C. Then,
H=GAACGAC CC.
Therefore, H is a smallest left (A, G)-set contain A and H =< A >. O
Let X be a left (A, G)-set and every nonempty of left (A, G)-subset of X partially

ordered by inclusion has a maximal element. Then, we say that maximum condition

holds for left (A, G)-sets.
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Theorem 4.3. Let X be a left (A, G)-set. Then, the following conditions are equiva-
lent:

(i) X is Noetherian;
(ii) X satisfies the mazimum condition for left (A, G)-sets;
(iii) every left (A, G)-subset of X is finitely generated.

Proof. (i)=-(ii) Suppose that A is a nonempty set of left (A, G)-subsets which has
no maximal element. Let Ay € A. Then, there exists an element Ay, € A such that
Ay C Asy. Also, there exists an element Az € A such that Ay C A3. By continuing this
process we have the accenting chain Ay C Ay C A3 C ---. This is impossible.

(ii)=(iii) Let X; be a left (A, G)-set and Q@ = {< A >: A is a finite subset of X, }.
By (ii), © has a maximal element < Ay >. Now, if x € Xj, then < Ay U {z} >€ Q.
By Maximality of < Ay > we have x €< Ay >. Therefore, X; is finite generated.

(iii)=(i) Suppose that X; C Xy C --- is a accenting chain of left (A, G)-sets and
T = U,>1 X»n. One can see that 1" is a left (A, G)-set of X. By (iii), T is finite gene-
rated. Then, there exist x1,xs,...,2, € X such that T' =< x1,x9,...,2, >. Hence
for 1 < k < n there exists X such that z; € X;,. We put m := max{iy, iy, .
Hence, for every t > m we have I,,, = .

L in).
[l

Theorem 4.4. Let Q be a partition (A, G)-set such that Q = U,cx A¢. Then, H is a
left (A, G)-subset of X if and only if Qg = Ui At is a left (A, G) of .

Proof. Suppose that H is a left (A, G)-set of X. Then,
GAQy=GA|JA=GA4= |J AcC 4=

teH teH teGAH teH
Hence Qy is a left (A, G)-subset of €.
Conversely, suppose that Qy is a left (A, G)-subset of Q,g € G, § € A and h € H.
Choose x € Aj,. Since Qy is a left (A, G)-subset of Qp, we have

gbx = {A.:z € gdh} C Qp.
Hence ,g0h C H. O

Corollary 4.2. Let Q be a partition (A, G)-set such that X is Noetherian (Artinian)
(A, G)-set. Then, Q2 is Noetherian (Artinian).
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BEURLING’S THEOREM FOR THE (Q-FOURIER-DUNKL
TRANSFORM

EL MEHDI LOUALID**, AZZEDINE ACHAK', AND RADOUAN DAHER!

ABSTRACT. The @Q-Fourier-Dunkl transform satisfies some uncertainty principles
in a similar way to the Euclidean Fourier transform. By using the heat kernel
associated to the Q-Fourier-Dunkl operator, we establish an analogue of Beurling’s
theorem for the Q-Fourier-Dunkl transform Jg on R.

1. INTRODUCTION AND PRELIMINARIES

There are many known theorems which state that a function and its classical Fourier
transform on R cannot both be sharply localized. That is, it is impossible for a nonzero
function and its Fourier transform to be simultaneously small. This principle has
several version which were proved by A. Beurling [3]. The Beurling theorem for the
classical Fourier transform on R which was proved by L. Hérmander [5], says that for
any non trivial function f in L?*(R), the function f(x)F(y) is never integrable on R?
with respect to the measure e/®¥ldzdy. A far reaching generalization of this result has
been recently proved in [4]. In this paper the author proved that a square integrable
function f on R satisfying for an integer N

// 2)[F W) ‘xy|dxdy< 0,
1+Ix|+|y\)

has the form f(z) = P(x)e™"*", where P is a polynomial of degree strictly lower than
% and r > 0. Many authors have established the analogous of Beurling’s theorem
in other various setting of harmonic analysis (see for instance [1,6]). In this paper
we study an analogue of Beurling’s theorem, in the next we deduce an analogue of

Gelfand-Shilov, for the Q-Fourier-Dunkl transform.

Key words and phrases. Q-Fourier-Dunkl transform, Beurling’s theorem, uncertainty principles.
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The outline of the content of this paper is as follows. Section 2 is dedicated to
some properties and results concerning the Q-Fourier-Dunkl transform. In Section
3 we give an analogue of Beurling’s theorem and Gelfand-Shilov theorems for the
Q-Fourier-Dunkl transform. Let us now be more precise and describe our results. To
do so, we need to introduce some notations. Throughout this paper o > —%,

o Q(z) =exp(— [y q(t)dt), x € R, where ¢ is a C*> real-valued odd function on R;
e LP(R) the class of measurable functions f on R for which || f||,. < oo, where

£l = ([ @) ifp < oo,

and || fllso.a = [ fllc = esssup, gl f(z)]-
e L)(R) the class of measurable functions f on R for which || f||,.q = [|Qf]lp.a < 00,

where @ is given by Q(x) = exp (— [y q(t)dt), = € R.
We consider the first singular differential-difference operator A defined on R

M) = @)+ (o ) TP TIED ),

where ¢ is a C® real-valued odd function on R. For ¢ = 0 we regain the Dunkl
operator A, associated with reflection group Z, on R given by

Aof(z) = fl(z) + <a + ;) M

x
1.1. Q-Fourier-Dunkl Transform. The following statements are proved in [2].
Lemma 1.1. (a) For each X € C, the differential-difference equation
Au=idu, u(0)=1,
admits a unique C* solution on R, denoted by Wy, given by
Ua(z) = Qz)eqalirz),

where e, denotes the one-dimensional Dunkl kernel defined by

ea(z) = ja(iz) + )ja—i-l(z)v KAS (Ca

z
2 +1
and j, being the normalized spherical Bessel function of index o given by

Jo(2) =T(a+1) i (—1)”(3)%

z e C.

n:OTL! F(”"’O{—'—l)’
(b) Forallz € R, A€ C andn =0,1,..., we have
|§An%<w) < Q(z)|z|"emMHal,

In particular,
[UA(2)] < Q(a)el™MVHel,
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(¢) For allz € R, A € C, we have the Laplace type integral representation
1 ) '
\I’)\(l') = aaQ<£L‘>/ (1 _ t2>a*§<1 + t)el)\xtdt’

~1
T'(a+1)

Val(a+3)”

Definition 1.1. The Q-Fourier-Dunkl transform associated with A for a function in

L§(R) is defined by

where a,, =

/ flo ()| 2|22 de

Theorem 1.1. (a) Let f € LQ(R) such that Fo(f) € LL(R). Then for almost x € R
we have the inversion fm’mula

F@) (Q(@))* = ma [ Fo(HO)IA@)ARHd,

where
1

22(+)(T(a + 1))
(b) For every f € Lé(R), we have the Plancherel formula

INE [l e = mq [ |Fo(HPAR A

(¢) The Q-Fourier-Dunkl transform F¢ extends uniquely to an isomorphism from
L4 (R) onto LZ(R).

The heat kernel N(z,s), x € R, s > 0, associated with the Q-Fourier-Dunkl
transform is given by

mey =

22
€ 4s

" (25)°2Q(x)
Some basic properties of N(x, s) are the following:
o Nz, $)Q%x) = ma [ W, (@)lyl*dy;
R
o Fo(N(.,9))(z) =e*".
We define the heat functions W, [ € N, as
y2
(1) Q) Wil s) = [ y'e 5w, () |yl dy,
(1.2) FoWi(.,s)) =ilyleV".

The intertwining operators associated with a Q-Fourier-Dunkl transform on the real
line is given by

N(z,s)=m

Xo(f)@) = 0aQ(x) [ fle)(1— )y,
its dual is given by

(13) XN =au [ F@)Q)sen(a)(? — y)* (@ + y)da.

[z]> ]y
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Proposition 1.1. If f € Li(R), then 'Xo(f) € L'(R) and ['Xo(f)llx < || fll1e-
For every f € Ly(R) we have
(1.4) Fo =F o' Xo(/f),

where J is the usual Fourier transform defined by

= /]R fx)e ™ dg.

2. BEURLING’S THEOREM FOR THE Q-FOURIER-DUNKL TRANSFORM

Theorem 2.1. Let N € N and f € Ly (R) satisfy

’f HSTQ )‘Q( ) |z||y| o
(2.1) / / 0+ + YN el 2|2 dady < oo.

If N > 1, then f(y) = |Kz\zlbI/V('r’y)ae where v > 0, by € C and W(r,-) is
given by (1.1). Otherwise, f(y ) =0 a.e.

Proof. We start with the following lemma.
Lemma 2.1. We suppose that f € L3 (R) satisfies (2.1). Then f € Ly (R).

Proof. We may suppose that f # 0 in L3 (R). (2.1) and Fubini theorem imply that
for almost every y € R,

’?Q(f) (y)l Q(x)‘f(x)‘ |z||y| 20+1
T+DY Je (Tl © o0 A
Since Fg(f) # 0, there exist yo € R, yo # 0, such that Fo(f)(yo) # 0.
Therefore,

Q)| f(z)] Bl

2.9 2 AT lellyol | 412041 g )

(2.2) R(1+|ZE|)N6 || r < 00

Since (f‘jl‘fl% > 1 for large |z, it follows that [ Q(z)|f(z)||z|**"dz < oo. O

This Lemma and Proposition 1.1 imply that *X¢(f) is well-defined almost every-
where on R. We shall prove that we have

tXo( WFCEX
. [ et e
+ |z + ly[)¥
Take yo as in Lemma 2.17 we write the above integral as a sum of the following
integrals

| e Wldrdy < oo.

clellyl t t
= /R/y|§|y0| (1+ |z + |y|)zv’ Xof@)|F("Xq(f)(y)|dydx

and

eallsl t
- /R/|y>yo| Ay Yo/ @IFC X)) y)ldyde.

We will prove that I and J are finite, which implies (2.3).
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e As the functions |Fo(f)(y)| is continuous in the compact {y € R | |y| < |yo|}, so
we get

jallyol [t X
< C/ el Xof(@)]
R (14 [z))N
Writing the integral of the second member as I; + I, with

jllyol |t
I :/ ezl Xijsw)\dx
el< A (14 |z])

lyol

and

I — / e\xllyo\|tXQf(x)|dx
o> (L+ [z[)N
Therefore, we have the following results.
— As the function z — %
and f € Lb(R), we deduce by using proposition (1.1) that |*Xg(f)| belongs to
L'(R). Hence, I, is finite.

— On the other hand, for t > ‘y—]\&, the function ¢t — (181?1% is increasing, so we

is continuous in the compact {:v eER||z| < | 0‘}

obtain by using Proposition 1.1 that

clélivol
[ IRl

The inequality (2.2) assert that I, is finite. This proves that I is finite.
e We suppose |yo| < N. Then J = J; + Jy + J3, with

Slallyl t
h _/xl <l /i /yo<|y|<N 1+ [z]+ |y|)N| Xo(N)(@)|F(f)(y)ldydz,
” _/x|>y0|

elzllyl ,
! :/R/|y>zv Ay e@ITelf)y)ldyds.

2 >

olzllyl t
/yo<|y|<N 1+ |z] + |y’>N| Xo(N(@)|Fo(f)(y)ldydz,

. elzllyl
— As the function (z,y) — (+z[+yDN

{:c ER||z| < %}x{& € R | |yo| <& < N} and*Xg(|f])(z) is Lebesgue-integrable
on R, then J; is finite.

— Let A > 0. As the function t — ﬁ
(z,y) € C(&, 90, N) we have the inequality

|Fo(f)(y)| is bounded in the compact

is increasing for ¢ > % Thus, for all

clellyl clelly]

Al + )Y = AT+ )®

with

N
C(E, g0, N) = {(:z,y) eRxR\w < Jol < [€] et lyol < Iyl SN}-
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Therefore, from Fubini-Tonelli’s theorem and Proposition 1.1 we get

ol€lly] -
B < [ Q@O ONTN W gy € ey

Taking account of the condition (2.1), we deduce that .J; is finite.

— For |y| > N, the function t — ﬁ is increasing. We deduce, by using
Fubini-Tonelli’s theorem and Proposition 1.1, that
i 1 Folh) )| o dylee
< / / Yy y|&|™ < +o00.
|>N ¢ (L+[€]+ [yh™

This implies that J3 is finite. Finally for |yo| > N, we have J < J3 < oo. This
completes the proof of the relation (2.3).

According to Corollary 3.1, ii) of [4], we conclude that
"Xo(f)(z) = R(z)e™**, for all z € R,

with § > 0 and R a polynomial of degree strictly lower than ¥

2
Using this relation and (1.4), we deduce that

Fo(f)(y) = F o' Xo(f)(y) = F(R(x)e ™™ )(y), forall x€R,
but .
F(P(zx)e ") (y) = S(y)es, forall z € R,

with S a polynomial of degree strictly lower than NT_
Thus from (1.2) we obtain

Fo(f)(y) =T ( Z bW (45 )) (y), forallzeR.

|| < M5
The injectivity of the transform Fg implies
f(z Z bW<45 )()a.e, for all x € R,
|s|< M5t

and the theorem is proved. 0

As an application of Beurling’s Theorem, we can deduce a Gelfand-Shilov type
theorem for the Q-Fourier-Dunkl transform.

Theorem 2.2. Let N € N, a,b > 0 and 1 < p,q < oo, with % —1—5 =1 and let
[ e Ly(R) satisfy

ap

AN
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and

Zlyle

Folf)W)les
2.5 / dy < oo.
(2.5) 1+ W
If ab > % or (p,q) # (2,2), then f(z) = 0 a.e. If ab = ; and (p,q) = (2,2), then

f(z) = Yjgle Nzt bsWi(r,))(x), whenever N > 1 and r = 2b*. Otherwise, f(x) =0 a.e.
Proof. Since

2a 2b
sablallyl < EL o+ By
it follows from (2.4) and (2 5) that
Q H?Q( )( )| dab|z||y|| .| 20+1
e* W x[** T dardy < oo.
WA s .

Then (2.1) is satisfied, because 4ab < 1. Especially, according to the proof of Theorem
2.1, we can deduce that

// ' Xo(N)@)[|Fo(f) (W)l

e e ety < o
T Y

and " Xq(f) and f are of the forms ‘X (f) = R(z)e ¥ and Fo(f)(y) = S(y)e ",
where r > 0 and S, R are polynomials of the same degree strictly lower than 2]\’2_1
Therefore, substituting these we can deduce that

~(Vilul= 57120 g (dab-Dlalvl R ).5(

Y) tablallyl
) [[° -
(2.6) 1+\x|+|y|)2N e .

When 4ab > 1, this integral is not finite unless f = 0 almost everywhere. Indeed, as
ab > i, there exists € > 0 such that 4ab — 1 — ¢ > 0. If R is non null, S is also non
null and we have

/ / 2SI (Wl 5 al)? (dab=D)lall g
(1+ |:c| + y])?N

20//6 (Vrlyl =52z |=))? elab=1-2)llyl g gy,
R JR

where C' is a positive constant. But the function
—(/r
e

1 2
—5rle)? L(4ab—1-¢)z]ly

is not integrable, (2.6) does not hold. Hence, f(z) =0 a.e.
Moreover, it follows from (2.4) and (2.5) that

|f (@
(2.7) / 1+\a:|

and

. Amxqu

(1T +lyh»

P 1,2 @a)®  ip
= |{L‘|2a+1d$:/ e i e r ||R($)Q($)

20+1
AT ) |z|** ™ dr < 0o

“Jyle " :/ %0 21;) ly \qs(y>
R

(1+[y)¥

dy < oo.
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Hence, one of these integrals is not finite unless (p,q) = (2,2). When 4ab = 1 and
(p,q) = (2,2), the finiteness of above integrals implies that r» = 2b? and the rest follows
from Theorem 2.1. O
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p~-ATTRACTIVE ELEMENTS IN MODULAR FUNCTION SPACES
H. IQBAL!, M. ABBAS2, AND S. H. KHAN3

ABSTRACT. In this paper, we introduce the notion of p-attractive elements in mod-
ular function spaces. A new class of mappings called p-k-nonspreading mappings
is also introduced. Making a good use of the two notions, we first prove existence
results and then some approximation results in the setup of modular function spaces.
An example is presented to support the results proved herein.

1. INTRODUCTION AND PRELIMINARIES

The notion of attractive points of nonlinear mappings in Hilbert spaces was coined
by Takahashi and Takeuchi [16] in 2011.

Let E be a nonempty subset of a Hilbert space H and T : E — H then the set of
attractive points A(T) is given by,

AT)={z€ H:|Tx—z| < ||z — 2| forall z € E}.

They proved an existence result on attractive points for the so-called hybrid mappings
in a Hilbert space. They went on to prove a weak convergence theorem of Mann-type
without closedness.

Motivated by the idea of Takahashi et al. [17], study of attractive points gained
momentum. Several different classes of mappings were introduced. Kohsaka et al. [8]
presented a new class of mappings called nonspreading mappings.

A mapping T': E — F is said to be nonspreading mapping if for any =,y € E,

2| T = Ty||* < |lo — Ty|* + | Tz — y|*

Suantai et al. [15], using Hausdorff metric, introduced the class of generalized non-
spreading mappings, known as k-nonspreading multivalued mappings. Kaewkhao et

Key words and phrases. Attractive points, modular spaces, nonspreading mappings, modular
functions.
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al. [1] studied the attractive points and convergence theorems for normally generalized
hybrid mappings in C AT (0) spaces in 2015.

In the same year, Zheng [18] proved strong and weak convergence theorem of the
Ishikawa iteration for an (a, 3)-generalized hybrid mapping in a uniformly convex
Banach space. Kunwai et al. [5] proved an attractive point theorem for normally
generalized hybrid mappings in CAT(0) spaces under certain conditions. Recently,
fixed point theory in modular function spaces has gained interest of many mathemati-
cians. The idea of modular function spaces was established by Nakano in [13] and
was improved and generalized by Musielak and Orlicz [12]. Later on, Khamsi et al.
[11] introduced the fixed point theory in modular function spaces and proved Banach
contraction principle in modular function spaces (also see [6]). Kuaket and Kumam
[10] established some fixed point for generalized contraction mappings in modular
function spaces. Dehaish and Kozolwoski [2], proved results on approximating fixed
points in modular function spaces for the first time. Recently, Khan et al. [14] suc-
cessfully handled the problem of approximating fixed points for multivalued p-quasi
nonexpansive mappings in modular function spaces. Ilchev and Zlatanov [3] presented
some sufficient conditions for the existence and uniqueness of best proximity points
and fixed points for cyclic Kannan maps in modular function spaces. For further
discussion in modular spaces see [4,9,19].

The above efforts stimulate us to define attractive elements in the setting of modular
function spaces. Another purpose of this paper is to define a class of p—k-nonspreading
mappings. This will lead us proving existence and approximation results for attractive
elements in modular function spaces. Towards the end of this paper, our results will
be vindicated using some examples.

Let us recall some basic definitions and notions which can be found in [7]. Let
2 be a nonempty set and > be a nontrivial o-algebra of subsets of 2. Let P be a
nontrivial §-ring of subsets of {2 which means that P is closed with respect to forming
of countable intersections, and finite unions and differences. Assume further that
ENAePforany E € Pand A € Y. Let us assume that there exists an increasing
sequence of sets K, € P such that Q = |JK,,. By & we denote the linear space of
all simple functions with supports from P. M, represents the space of all extended
measurable functions, that is, all functions f : Q — [—o0, 0o such that there exists a
sequence {g,} C &, |gn| < |f| and g, (w) — f(w) for all w € Q.

Definition 1.1. Let p : Mo, — [0, 00] be a nontrivial, convex, and even function. We
say that p is a regular convex function pseudomodular if

(a) p(0) = 0;

(b) p is monotone, i.e., |f(w)| < |g(w)| for any w € Q implies p(f) < p(g), where
fr9 € M

(c) p is orthogonally subadditive, i.e., p(flaug) < p(fla)+p(flp) for any A, B € 3
such that AU B # ¢, f € My;
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(d) p has Fatou property, that is, | f,(w)| T |f(w)]| for all w € Q implies p(f,) T p(f),
where f € My;
(e) pis order continuous in &, i.e., g, € &, and |g,(w)| } 0 implies p(g,) | 0.

We say that a set A € X is p-null if p(gl4) = 0 for every g € &. A property holds
p-almost everywhere (p-a.e.) if the set {w € Q : p(w) does not hold} is p-null. We
identify any pair of measurable sets whose symmetric difference is p-null as well as
any pair of measurable functions differing only on a p-null set. With this in mind
we define M = {f € My : |f(w)] < oo p-a.e.} where each f € M is actually an
equivalence class of functions equal p-a.e. rather than an individual function.

Definition 1.2. Let p be a regular convex function pseudomodular. Then, we say
that p is a regular convex function modular if p(f) = 0 implies that f =0 p — a.e.

The class of all nonzero regular convex function modular defined on €2 is denoted
by R .

Definition 1.3. The convex function modular p defines the modular function space
L, as

L,={f €My :p(Af) = 0as A — 0}.

Generally, the modular p is not subadditive and hence doesn’t behave like a norm.
However, the modular space IL, can be equipped with an F-norm defined by

Hf|]p:inf{oz>0:p<£> ga}_

If p is a convex modular,

Hfupzinf{a S0 P(i) < 1}

defines a norm on the modular space L,, and is called the Luxemburg norm. The
following definitions will be needed in this paper.

Definition 1.4. Let L, be a modular space. Then

a) the sequence {f,} C L, is said to be p-convergent to f € L, if p(f, — f) — 0 as
P p
n — oo;
b) the sequence {f,} C L, is said to be p-Cauchy if p(f, — fin) — 0 as n and m
p
approach oo;
(c) we say that LL, is p-complete if and only if any p-Cauchy sequence in L, is
p-convergent.

Definition 1.5. A subset £ of IL, is called

(a) p-closed if the p-limit of a p-convergent sequence of E always belongs to F;
(b) p-compact if every sequence in E has a p-convergent subsequence in F;
(c) p-bounded if 6,(E) =sup{p(f —g): f,9 € E} < o0;
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(d) the p-distance between f and FE is defined as:
dp(f, E) = mf{p(f —j) :j € E}.
The terminology defined for p is similar to metric spaces but p does not satisfy

triangle inequality. Hence, if a sequence in L, is p-convergent it does not imply
p-Cauchy. This is only true if and only if p satisfies Ay-condition.

Definition 1.6. The modular function p is said to satisfy the As-condition if
p(2f.) — 0 as n approaches oo, whenever p(f,,) — 0 as n approaches co.

The modular p satisfies some uniform convexity type properties. A few of those are
given below which can be found in [7].

Definition 1.7. Let p € R.
(a) Let r > 0, e > 0. Define,

Di(rye) ={(f,h) : f,h € Ly, p(f) <7, p(h) <7,p(f —h) > er}.
Let
o (r,e) = inf{l — ip <f;h> 2 (f,h) € Dy(r, e)}, if Di(r,€) # ¢,

and 0,(r,€) = 1 if Dy(r,e) = ¢. We say that p satisfies (UC1) if for every r > 0,
€ >0, 01(r,€) > 0. Note that for every r > 0, Dy(r,€) # ¢ for every ¢ > 0 small
enough.

(b) We say that p satisfies (UUC1) if for every s > 0, € > 0, there exists n;(s,€) > 0
depending only upon s and € such that d;(r,€) > (s, €) > 0 for any r > s.

(c) We say that p satisfies (UUC?2) if for every s > 0, € > 0, there exists 7(s,€) > 0
depending upon s and e such that dy(r, €) > n2(s,€) > 0 for any r > s.

Note that (UC1) implies (UUC1) and (UCC1) implies (UUC?2). If p € R satisfies
Ay, then (UUC?2) and (UCC1) are equivalent (see [9]).

Definition 1.8. We will say that p is uniformly continuous if for every ¢ > 0 and
R > 0, there exists 6 > 0 such that

Ip(g) = plg+h)[ <e if p(h) <d,p(g9) < R.

A sequence {t,,} C (0,1) is called bounded away from 0 if there exists a > 0 such
that ¢, > a for every n € N. Similarly, {¢,} C (0,1) is called bounded away from 1 if
there exists b < 1 such that ¢, < b for every n € N. The following lemma helpful in
studying the convergence of fixed points as well as attractive elements in the (UUC1)
modular function spaces.

Lemma 1.1. Let p € R satisfy (UUC1) and let {t,} C (0,1) be bounded away from
0 and 1. If there exists R > 0 such that

limsupp(fa) < R, Timsupp(gn) <R and 1 pltufu + (1~ ta)ga) = B,
n— o0 n—00 n—00

then lim,, o p(fr — gn) = 0.
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Since the modular function space doesn’t satisfy the triangle inequality so, the
following theorem is useful.

Theorem 1.1. Let p € R satisfy Aq-condition. Let {f,} and {g,} be two sequences

in IL,. Then,

Jim p(gn) =0 dmplies lmsup p(fo +gn) = lim p(fn)
and

dim p(gn) =0 implies  liminf p(f, + gn) = lim p(f).

The notion of a p-type is a powerful tool that will be used in our result.

Definition 1.9. Let £ C L, be convex and p-bounded. A function 7: E — [0, o0]
is called a p-type (or shortly a type) if there exists a sequence {gx} of elements of F
such that for any f € F there holds 7(f) = limsup,_,., p(gx — f).

The following lemma [7] establishes an important minimizing sequence property of
uniformly convex modular function spaces which is used proving existence of fixed
points.

Lemma 1.2. Assume that p € R is (UUC1). Let E be a p-closed p-bounded convex
nonempty subset of L,. Let T be a p-type defined on E. Then, any minimizing sequence
of T is p-convergent. Its p-limit is independent of the minimizing sequence.

Since our goal is to prove existence of attractive elements without the condition of
p-closedness. The following is the modified version of the above lemma which can be
proved exactly on lines of [7].

Lemma 1.3. Assume that p € R is (UUC1). Let E be a p-bounded conver nonempty
subset of L,. Let T be a p-type defined on E. Then, any minimizing sequence of T is
p-convergent in IL,. Its p-limit is independent of the minimizing sequence.

Definition 1.10. Let p € R. The growth function w, of a function modular p is
defined as:

w,(B) = sup{p[g(ﬂf‘,];),o <p(f) < oo}, for all 0 < B < oo.

Notice that whenever g € [0, 1], w,(8) < 1.
Let T : F — E be a mapping then a point € F is said to be a fixed point of T if
x = Tz. We denote the set of fixed points by F(T'). A mapping T is said to be

(a) p-nonexpansive if p(T'f —Tg) < p(f — g) for all f,g € F;
(b) p-quasi-nonexpansive mapping if p(Tf — g) < p(f — g) for all f € E and
g€ F(T).
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2. MAIN RESULTS

In this section, we introduce a new class of p—k-nonspreading mappings and present
the concept p-attractive elements. Then, we prove an existence and some convergence
results.

Definition 2.1. Let p € R. Let T : £ — L, then 7' is a p — k-nonspreading mapping
if there exists a k£ > 0 such that

p(Tf —Tg) < k(p*(f —Tg) +p*(Tf - g)),
for all f,g € E.
Ap— %—nonspreading mapping with F'(T') # ¢ is p-quasi nonexpansive. In fact, if
g is a fixed point of 7', then in Definition 2.1, with k = %, we have
20%(g = Tf) < p*(g— f)+0*(g—Tf),

and, hence

P(Tf—g) <p*(f—9)
This implies,

p(I'f —g) < p(f—9)
Now, we give an example of a p — k—nonspreading mapping which is not a p-

nonexpansive mapping.

Ezample 2.1. Let the real number system R be the space modulared as p(f) = |f|*
for k>1. Let E={felL,: -3<f<2}and

-1
|f|2 , —2< f<2,
TFf—
d i) —3< f< 2.
fl+1
It is easy to see that T is a p — %—nonspreading mapping. However, T" is not a
p-nonexpansive mapping since if f = —2 and g = —1.5, then
-2 1k 11 1k
Tf—Tg)=|——~| =|=| >p(f—9)=|-2 1.5k_‘
PIf=Tg)= |57 =\ >/ ~—9=1-2+15 =

Definition 2.2. Let p be a convex function modular. Let E be a nonempty subset
of L, and T': E — E be a mapping then a function g € L, is called a p—attractive
element of 7" if for all f € E, we have p(T'f —¢g) < p(f —g). Let A,(T") denote the set
of p-attractive elements, i.e., A,(T) ={g€L,: p(Tf —g) <p(f —g) forall f € E}.

First of all, we will give some useful properties of A,(T).

Lemma 2.1. Let p € R and be uniformly continuous. Let E be a nonempty subset
of L, and T : E — 1L, with A,(T) # ¢. Then A,(T) is closed.
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Proof. Let {g,} C A,(T') such that lim,, . p(g9, —g) = 0. Then for any f € E, we
have

(2.1) p(Tf—g)=p((Tf—gn)—(9—gn))
Then taking limit as n — oo in (2.1) and using the uniform continuity of p, we get
p(T'f —g) < lim p(Tf = gn) < lim p(f = gn) = p(f — g)-
This shows g € A,(T"). Hence, A,(T) is closed. O
An attractive point need not be a fixed point. However, if a mapping T : £ — E

is p-quasi nonexpansive then the p-attractive elements lying in E are also its fixed
points.

Lemma 2.2. Let p € R. Let E be a nonempty subset of L, and T : E — L, be a
p-quasi nonexpansive mapping. Then A,(T)NE = F(T).

Proof. Let g € A,(T)NE, then p(Tf —g) < p(f —g) for all f € E. In particular, let
f =g € E, then we have p(Tf — f) < p(f — f) = p(0) = 0. Hence, T'f = f showing
f € F(T). Conversely, since T is p-quasi nonexpansive, then for any h € F(T) and
feE, weget p(T'f—nh)<p(f—~h). Then, clearly h € A,(T). O

Now, we will prove existence of a p-attractive point for p — k-nonspreading mapping
for k € (0, 3].

Theorem 2.1. Assume that L, is complete, p € R is (UUC1) and uniformly con-

tinuous. Let E' be a nonempty p-bounded convexr subset of L,. LetT : E — E be a

p — k-nonspreading mapping with k € (0, %] Then T has a p-attractive point.

Proof. Let {fo} € E. Define the p-type, 7 : E — [0, c0] by
7(f) = limsup p(f = 1" (fo)).

Then by Lemma 1.3, there exists a minimizing sequence, say, {g,}, of 7 such that
7(gn) = infrep 7(f). Since {T"(fy)} C E and E is p-bounded we have

7(f) <9,(E) < oo, forevery f e FE,
and
7(Tf) = limsup p(T f = T"(fo))-
Now,
PA(T"(fo) = Tf) < K(P(Tf =T (fo)) + p*(f = T"(fo)))-

Taking n — oo implies,
lim sup p*(T"(fo) = Tf) < k(limsup(p*(T'f = "7 (fo)) + limsup p*(T"(fo) = f))-

n—oo n—oo

Thus we have
THTf) < kr*(Tf) + k7°(f),
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which implies

(Tf) < ——7(f).

Since £ < 1, we obtain 7(Tf) < 7(f). Thus, 7(T'g,) < 7(gn). Hence, {T(g,)} is
also a minimizing sequence of 7.

Again, according to Lemma 1.3, {g,,} converges to some ¢ in L, and if there is any
other minimizing sequence it also converges to ¢ then lim, ,o T'g, = g. Next, we
show that ¢ is the p-attractive element of T

From Definition 2.1 and uniform continuity of p, we have

lim p*(Tgn = Tf) <k lim p*(Tf = ga) + & limy p*(f = Tgn).

n—oo
Therefore,
p*(g—Tf) <kp*(Tf —g) +kp*(f - 9),
which implies
(1 =k)p*(g = Tf) < kp*(f — 9)-
Consequently,
p(Tf—g) <p(f~29g)

Hence, g is a p-attractive element of T'. U

As an immediate consequence of Theorem 2.1, we obtain the next result.

Theorem 2.2. Assume that L, is complete, p € R is (UUC1) and uniformly con-
tinuous. Let E be a nonempty p-bounded, p-closed and convexr subset of L,. Let

T:FE — FE be ap— k-nonspreading mapping with k € (0, %} Then T has a fixed
point.

Theorem 2.3. Let p € R satisfy (UUC2) and As-condition. Let E be a nonempty
convex subset of L, and T : E — 1L, be a p — k-nonspreading mapping with k € (0, %]
Suppose A,(T') is nonempty and let {f,} be defined by

fn+1 - aann + (1 - an>Tgn>
with 0 < o, B, < 1, then lim,_op(fn — h) exists for h € Ay(T) and
limy, 00 p(frn = Tfn) = 0.
Proof. Let h be a p-attractive point of T'. Then by convexity of p we have

p(for1 — 1) = planTfr + (1 — )T gn — h)
< plan(T'fu —h) + (1 = an)(Tgn — h))
< anp(T fo —h) + (1 = an)p(Tgn — h)
(2.3) < anp(fo = h) + (1 = an)p(gn — h).
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Also,
p(gn —h) = p(Bufu + (1 = B)T fr — h)
< p(ﬁn(fn - h) + (1 - 5n)<Tfn - h))
< Bup(fo — 1) + (1 = Ba)p(fu — h)
(2.4) < plf— ).
Thus, from (2.3) and (2.4) we have
p(fras1 —h) < p(fu —h).

Hence, {f.} is p-bounded and p(f, — h) is a nonincreasing sequence.

lim,, oo p(fn — h) exists for each h € A,(T).
Now we show that lim,, . p(f, — T'f,) = 0. Suppose that

(2.5) lim p(f, —h)= L.

n—oo

Since h € A,(T), we have p(T'f, — h) < p(f, — h). Thus,
limsup p(T'f,, — h) < limsup p(f, — h).
n—oo n—oo

It follows,
(2.6) limsup p(Tf, — h) < L.
n—oo
Also,
p(Tgn —h) < p(gn — h)
< p(fn - h)
implies
(2.7) p(Tgn — h) <limsup p(Tg, —h) < L
n—oo
and
plgn — 1) < p(fu = h).
Thus
(2.8) limsup p(g, —h) < L.
n—oo
Therefore,
L= lim p(fur1—h)
= lim p(anT fo+ (1 — an)Tgn — h)
(29) = lim plan(T o — ) + (1 — @) (Tgy — b))

55

Then

Then using (2.6), (2.7), (2.9) and Lemma 1.1 we have lim,,_,o, p(T'f,, — T'g,) = 0.

Fix € > 0. Then there exists ng € N such that
po(Tf, —Tg,) <e, foralln > ng.
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Now, using the definition of growth function,

plon (T fr, = Tgn)) < wp(an)p(Tfn —Tg,)
< p(Tfn - Tgn)

< €.
Therefore,
(2.10) Tim p(an(Tfa — Tgn)) = 0.
Next,

p(fu1r —h) = planT fo + (1 — a)Tgn — h)
= plon(T fr — Tgn) + (T'gn — h)).
By using Theorem 1.1 and (2.10), we get
liminf p(fus1 — h) = liminf p(an (T fr = Tgn) + (Tgn — h))
= lim inf p(Tg, — h).

Thus,
liggglfp(Tgn —h) = L.
Now,
liminf p(T'g, — h) < liminf p(gn — h),
(2.11) =L < liminf p(g, — h).

Again, from (2.8) and (2.11),
lim p(g, — h) = L.

n=5o0
Consequently,
(2.12) lim p(gn, — h) = lim p(B(fn —h) + (1 = B)(T fa — 1))
= L.
Hence, using (2.5), (2.6), (2.12) and Lemma 1.1 we get
dim p(f, =T fn) = 0. O

Our next result discusses the p-convergence of the iterative process (2.2) to attractive
elements of the mapping T where T satisfies condition (7).

Definition 2.3. Let £ be a nonempty subset of L,. A mapping 7' : £ — E is said to
satisfy condition (I) if there exists a nondecreasing function ¢ : [0, 00) — [0, 00) with

0(0) =0, £(r) > 0 for all € (0,00) such that p(f —T'f) > ¢(dist,(f, A,(T))) where
disty(f, A4,(T)) = b {p(f — 9) : g € A,(T)}.

We give an example of a mapping that satisfies the condition (7).
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Ezample 2.2. Let the set of real numbers R be the space modulared as p(f) = |f].

LetE:{fG]Lp:0<f<1},deﬁneT:E—>EasTf:£. Clearly, T is

p— i—nonspreading mapping. We know that an element g € I, is an attractive point
of Tif p(T'f —g) < p(f —g) for all f € E. Assume that g € A,(T), then

(2.13) JQC— S‘f—g,
2 2
“;—g _‘f—g ,
2 2
Lo |- <o

Hence, we have g < %. Since g must satisfy (2.13) for all f such that 0 < f <

1, g must be less or equal to 0. Hence, A,(T) = (—o00,0]. Define a continuous
nondecreasing function £ : [0,00) — [0, 00) by £(r) = g. Then,
fl_f
(. AT) = (£, (~s0.0)) = (1) = LT < | L g,

Hence, p(f —T'f) > (d,(f, A,(T))) for all f € E.

Theorem 2.4. Let p € R satisfies (UUC2) and Ag-condition. In addition, p is

uniformly continuous. Let E be a nonempty convex subset of L, and T : E — E be
a p — k-nonspreading mapping with k € (0, %} Assume A,(T) # ¢ and T satisfies
condition (I). Let {f,} be defined as in (2.2), with 0 < ay, 5, < 1. Then {f,}
p-converges to a p-attractive point of T'.

Proof. We already know p(f,41 —h) < p(f, — h) and lim,, o0 p(f, — T'f) = 0. Then
by condition (/) and Theorem (2.3), we have
liggg)lfp(fn —Tf,) > lim inf U(d,(fn, Ay(T)),
0 > liminf £(d,(fu, 4,(T)).
This implies lim,, o €(d,(fn, A,(T)) = 0. It follows lim,, o d,(fn, A,(T)) = 0, since
0(0) = 0.
Now, we show that {f,} is p-Cauchy. Since lim, o d,(fn, A,(T)) = 0, let € > 0,
then there exists a constant ng such that for n > nyg

do{ i Ap(T)) < 5.
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{inf p(fo —h) :h € A (T)} < %

Then there must exist some h* € A,(T) such that p(f,, —h*) < e. Now for m,n > ny,
we have by convexity of p and the fact that p({f, — h}) is non increasing,

p(fmmte) < oen =)= U )

(U = ) + 5 (ol — 1)

< S 0ug = W) + 5ol = 1)

= p(fno - h*)
< €.

<

N | —

Hence, by As-condition, {f,} is a p-Cauchy sequence. Since L, is complete, the
sequence {f,} p-converges to some ¢ in L.
Let lim,, o p(f — q) = 0. Then, by convexity of p and Theorem 2.3,

dim p(T'f, — q) = 0.
Further, by definition (2.1) and uniform convexity of p, we get the following
lim p*(Tf, = Tf) <k lim p*(f, = Tf) +k lim p*(Tf, — f).
This implies
p(a—TFf) <kp*(q = Tf) +kp*(a— f).
This results
pla=TF) < Topla— ) < pla— f).
Hence, ¢ € A,(T") and lim,,_,o p(f,, —q) = 0. |
Let E be a subset of ,,. A mapping T": E' — L, is said to be p-demicompact if it

has the property that whenever a sequence {f,} € E is p-bounded and the sequence
{fn — Tfn} p-converges, then there exists a subsequence {f,,, } which is p-convergent.

Theorem 2.5. Let p € R satisfies (UUC2) and Ag-condition. In addition, let p is
uniformly continuous. Let E be a nonempty convex subset of L, and T : E — E be
a p — k-nonspreading with k € (0, %] and p-demicompact mapping with A,(T) # ¢.
Let {f.} be defined as in (2.2) with 0 < a,, B, < 1. Then {f,} p-converges to a
p-attractive point of T

Proof. From Theorem 2.3 we already know that {f,} is a bounded sequence and
lim, oo p(f — T'fn) = 0. Then by demicompactness of operator 1" there exists a
subsequence {f,, } of {f,} and g € L, such that lim,_,. p(f., —g) = 0. Also, by
uniform continuity of p and since lim,,_,, p(f, — T'f.) = 0, we have

dim p(T'f,, —g) = 0.
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Now, by definition of p — k-nonspreading mapping and uniform continuity of p we
have,

lim p*(Tfo, = Tf) <& lim p*(fo, = Tf) +k lim p*(Tfn, — f).
Consequently,
p(g—Tf) <kp*(g—Tf)+kp*(g—[).
That is,
p(g —Tf) < plg = f)

So, g € A,(T). By Theorem 2.3, if lim,_,o, p(f,, — g) exists for any g € A,(T), then
we have, lim,, . p(f, —g) = 0. O

3. NUMERICAL RESULTS

Now the following examples verify the results in Theorems 2.4 and 2.5.

Ezample 3.1. Let the set of real numbers R be the space modulared as p(f) = |f].

LetE:{fGILp:O<f<1},deﬁneT:E—>EasTf:£. Obviously, E is a

nonempty convex subset of R which satisfies (UC1) condition. Also p(f) = |f] is

uniformly continuous and (UUC?2) holds. We have already seen A,(T) is nonempty.

Finally, we generate the sequence (2.2) and show that it converges to its attractive

point. Choose f; =0.3125 and a = 8 = %, then we have the results in Table 1.
TABLE 1. Numerical results of Example 3.1

fn
0.312500000000000
0.136718750000000
0.059814453125000
0.026168823242188
0.011448860168457
0.005008876323700
0.002191383391619

SO U W N RS

48 | 4.176559929877658e-18
49 | 1.827244969321475¢-18
50 | 7.994196740781455e-19

This shows that {f,} converges to 0 € A,(T"). This is worth mentioning here that
T does not have any fixed point in D.
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Ezample 3.2. Let the set of real numbers R be the space modulared as p(f) = |f|*.
Let E={fel,: -3<f<2} defineT: E— FE as:

|f|2_1, —2< f<2,
e —|/] —3< f< =2
f1+1 -

Obviously, E' is a nonempty convex subset of R which satisfies (UC1) condition. Also
p(f) = | f|¥ is uniformly continuous and (UUC?2) holds. Since the mapping is p-quasi
nonexpansive and F(T) = {—3} then A,(T) # ¢. T is p-demicompact since any
sequence {f,} € (=3, —2) is bounded, i.e., |f,| < 3 and any bounded sequence in R
has a convergent subsequence. Now finally, we generate the sequence (2.2) and show
that it converges to its attractive point. Choose f; = 1.5 and a = § = % then we
have the results in Table 2. This shows that {f,} converges to —% € A,(T).

TABLE 2. Numerical results of Example 3.2

Jr

1.5
0.093750000000000
-0.431640625000000
-0.302612304687500
-0.342933654 785156
-0.330333232879639
-0.334270864725113

O Uk W3

28 | -0.333333333333310
29 | -0.333333333333341
30 | -0.333333333333331
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ON PERFECT CO-ANNIHILATING-IDEAL GRAPH OF A
COMMUTATIVE ARTINIAN RING

S. M. SAADAT MIRGHADIM!, M. J. NIKMEHR?, AND R. NIKANDISH?

ABSTRACT. Let R be a commutative ring with identity. The co-annihilating-ideal
graph of R, denoted by Ag, is a graph whose vertex set is the set of all non-
zero proper ideals of R and two distinct vertices I and J are adjacent whenever
Ann(I) N Ann(J) = (0). In this paper, we characterize all Artinian rings for which
both of the graphs Ag and Ag (the complement of Ag), are chordal. Moreover, all
Artinian rings whose Ag (and thus Ag) is perfect are characterized.

1. INTRODUCTION

Assigning a graph to a ring gives us the ability to translate algebraic properties
of rings into graph-theoretic language and vice versa. It leads to arising interesting
algebraic and combinatorics problems. Therefore, the study of graphs associated
with rings has attracted many researches. There are a lot of papers which apply
combinatorial methods to obtain algebraic results in ring theory; for instance see
2,3,5,6,10,11] and [12].

Throughout this paper, all rings are assumed to be commutative with identity. We
denote by Z(R), Max(R), Nil(R) and J(R) the set of all zero-divisor elements of R,
the set of all maximal ideals of R, the set of all nilpotent elements of R and jacobson
radical of R, respectively. We call an ideal I of R, an annihilating-ideal if there exists
r € R\ {0} such that Ir = (0). The set of all annihilating-ideals of R is denote by
A(R). Let I be an ideal of R. We denote by A(I) the set of all ideals of R contained
in 1. The ring R is said to be reduced if it has no non-zero nilpotent element. For
every ideal I of R, we denote the annihilator of I by Ann(I). We let A* = A\ {0}.
For any undefined notation or terminology in ring theory, we refer the reader to [4,7].
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We use the standard terminology of graphs following [13]. Let G = (V, E) be a
graph, where V' = V(G) is the set of vertices and F = E(G) is the set of edges. By
G, we mean the complement graph of G. We write u — v, to denote an edge with
ends u,v. A graph H = (V, Ey) is called a subgraph of G if Vo C V and Ey C E.
Moreover, H is called an induced subgraph by Vy, denoted by G[Vp], if Vo € V and
Ey = {{u,v} € E | u,v € Vp}. Also G is called a null graph if it has no edge. A
complete graph of n vertices is denoted by K,. An n-part graph is one whose vertex
set can be partitioned into n subsets, so that no edge has both ends in any one subset.
A complete n-partite graph is an n-part graph such that every pair of graph vertices
in the n sets are adjacent. In a graph G, a vertex x is isolated, if no vertices of G is
adjacent to x. Let G; and G5 be two disjoint graphs. The join of G and G, denoted
by G1 V G, is a graph with the vertex set V(G V G2) = V(G1) U V(G3) and edge
set E(G1V Gy) = E(Gy) U E(Ge) U{uv | u € V(Gy),v € V(Gq)}. For a graph G,
S C V(G) is called a clique if the subgraph induced on S is complete. The number
of vertices in the largest clique of graph G is called the clique number of G and is
often denoted by w(G). For a graph G, let x(G) denote the chromatic number of G,
i.e., the minimal number of colors which can be assigned to the vertices of G in such
a way that every two adjacent vertices have different colors. Clearly, for every graph
G, w(G) < x(G). A graph G is said to be weakly perfect if w(G) = x(G). A perfect
graph G is a graph in which every induced subgraph is weakly perfect. A chord of a
cycle C' is an edge which is not in C' but has both its endvertices in C. A graph G is
chordal if every cycle of length at least 4 has a chord.

Let R be a commutative ring with identity. The co-annihilating-ideal graph of R,
denoted by Ag, is a graph whose vertex set is the set of all non-zero proper ideals of
R and two distinct vertices I and J are adjacent whenever Ann(l) N Ann(J) = (0).
This graph was first introduced and studied in [1] and many interesting properties of
this graph were explored by the authors. In [1, Theorem 17], it was proved Ag is a
weakly perfect graph, if R is an Artinian ring. In this paper, we continue study the
perfectness of Ag. Indeed, we characterize all Artinian rings for which both of the
graphs A and Apg, are chordal. Moreover, all Artinian rings whose Ap is perfect are
given.

2. WHEN Ap AND Arp ARE CHORDAL?

In this section, we characterize all Artinian rings R, for which Az and Ap are
chordal. We begin with the following lemmas.
Lemma 2.1. Let R be an Artinian ring. Then there exists a positive integer n such
that R = Ry X --- X R, where R; is an Artinian local ring, for every 1 <i <mn.

Proof. See [4, Theorem 8.7]. O

Lemma 2.2. Let R be an Artinian ring and I be a non-zero ideal of R. Then I is a
nilpotent ideal of R if and only if I is an isolated vertex in Ag.
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Proof. Assume that [ is a non-zero nilpotent ideal of R. First, we show that Ann(])
is an essential ideal of R. Suppose to the contrary, there exists an ideal J such
that J N Ann(/) = (0). Thus KI # (0), for every K C J. Obviously, KI C J
and so (KI)I = KI? # (0). By continuing this procedure, KI" # 0, for every
positive integer n, a contradiction. Hence Ann(7) is an essential ideal of R and so
Ann(I)NAnn(J) # (0), for every J € A(R)*. Therefore, I is an isolated vertex in Ag.

Conversely, suppose that [ is an isolated vertex in Ag. If I is not a nilpotent ideal
of R, then I ¢ J(R), i.e, there exists m € Max(R) such that [ + m = R, and so [ is
adjacent to m, a contradiction. Thus I is a nilpotent ideal of R. 0]

Next we need to study the structure of Ag, where R is an Artinian ring with at
most two maximal ideals.

Theorem 2.1. Let R be an Artinian ring. Then the following statements are equiva-
lent:

(1) Max(R)| = 1;

(2) Ar = K,,, where n = |A(R)*|.

Proof. (1) = (2) Since R is an Artinian local ring, every ideal of A(R)* is a nilpotent
ideal of R and thus by Lemma 2.2, Ag is a null graph.
(2) = (1) is obtained by Lemma 2.2. O

Theorem 2.2. Let R be an Artinian ring. Then the following statements are equiva-
lent:

(1) [Max(R)| = 2;

(2) AR = Knl + an,ng; where ny = |A(N11<R))*‘, Ng = ]A(ml)*| — N1, Ng =
’A(mg)*’ — N1 and m,, my € MaX(R)

Proof. (1) = (2) Let Max(R) = {my, mo}. Since my N my = Nil(R), Lemma 2.2
implies that Agr[A(Nil(R))*] is a null graph. Let A = {I € A(my) \ A(Nil(R))}
and B = {I € A(my) \ A(Nil(R))}. If I € Aand J € B, then I +J = R, and
thus I is adjacent to J. Moreover, Ag[A] and Ag[B] are null graphs. This means
that Ag[A U B] = K\ 5. Since AU B U A(Nil(R))* = A(R)*, we deduce that
Ap = K,, + K,y ns, where ny = |A(Nil(R))*|, ng = |A(my)*| — ny, ng = [A(mg)*| — ny

and m,, my € Max(R).
(2) = (1) By Theorem 2.1, |[Max(R)| > 2. If [Max(R)| > 3, then Ag has a cycle
of length 3, as Ag[Max(R)] is a complete graph, a contradiction. Thus |Max(R)| = 2.
U

We are now in a position to characterize all Artinian rings for which both of the
graphs Ar and Apr are chordal.

Theorem 2.3. Let R be an Artinian ring. Then

(1) Ag is chordal if and only if one of the following statements holds:
(i) R is local;
(i) R= F x S, where F is a field and S is local;
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(iii) R = Fy x Fy x Iy, where F; is a field for every 1 <i < 3;
(2) Ag is chordal if and only if |[Max(R)| < 3.

Proof. (1) Let Ag be chordal. First we show that |Max(R)| < 3. If |[Max(R)| > 4,
then Figure 1 is a cycle of length 4,

I I

Iy I3

FIGURE 1. A cycle of length 4 in Agr

where
I =(0) X Ry X R3 x (0) X Rs X -+ X Ry,
Iy =Ry x (0) x (0) x Ry X Rs X +++ X Ry,
]3:R1XRQXR3X(O)XR5X---XRn,
I; =Ry x (0) Xx Ry X Ry X Rs X -+ X R,.
Thus [Max(R)| < 3. If [Max(R)| = 3, then R = R; x Ry X R3, where R; is an Artinian

local ring, for every 1 <i < n. If R is not field, then consider I € A(Nil(R;))* and
thus Figure 2 is a cycle of length 4,

Il 12

I4 ]3

FIGURE 2. A cycle of length 4 in Ag

where
I = By x (0) x (0),
]2 = (0) X R2 X Rg,
[3 = Rl X R2 X (O),
]4 =1x RQ X Rg.

Hence R; is a field. Similarly, Ry and Rj are fields. Let |Max(R)| = 2. Then
R = Ry X Ry, where R; is an Artinian local ring, for every 1 <i < 2. We show that
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one of the rings R; and R is a field. If I, J are non-zero proper ideals of R and Rs,
respectively, then Figure 3 is a cycle of length 4, where

[1 =1X RQ,

_[2 = R1 X J,

[3 = (0) X RQ,

[4 = Rl X (O)
I I
I4 IS

F1GURE 3. A cycle of length 4 in Ag

This means that one of the rings Ry and R; is a field. Thus in this case R = F' x S,
where F'is a field and S is local. Clearly, if [Max(R)| =1, R is local.

Conversely, suppose that one of the conditions (i), (ii), (ii) is satisfied. Condition
(i) implies that Ag is a null graph by Theorem 2.1, and thus Ag is chordal. If (i7)
holds, then by Theorem 2.2, Agr = K,, + K; 41 where n = |A(Nil(R))*|. This implies
that Ag is chordal. If (iii) holds, then Figure 4 shows that Ag is chordal where

I

FIGURE 4. Ap xpxr,

I = (0) x (0) x Fs,
I =F x F x (0),
I3 = Fy x (0) x F3,
I, = (0) x Fy x (0),
Is = (0) x Fy X F3,
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I6 = F] X (0) X (0)

(2) First suppose that Ag is chordal. If |[Max(R)| > 4, then we put

I =(0) X Ry Xx Ry x (0) X Rs X +++ X Ry,

I, =(0) x Ry x (0) Xx Ry X Ry X -++ X Ry,

I3 =Ry x (0) x (0) Xx Ry X R5 X -+ X R,

]4:R1><(0)XR3X(O)XR5X-'-XRn.
Now, it is not hard to see that Iy — [ — I3 — I, — I is a cycle of length 4, a contradiction.
Thus |[Max(R)| < 3.

Conversely, suppose that |Max(R)| < 3. We show that Ay is chordal. To see this,
we consider the following cases.

Case 1. |Max(R)| = 1. In this case, R is local and thus by Theorem 2.1, Ay is a
complete graph. Hence Ay is chordal.

Case 2. |Max(R)| = 2. By Theorem 2.2, A = K,,, V(K,, + K,,), where n; =
|A(Nil(R))*|, ne = |A(my)*| — nq, ng = |A(my)*| — ny and m,, my € Max(R). Thus
every cycle is a triangle, i.e, Ag is chordal.

Case 3. |[Max(R)| = 3. In this case, R = Ry X Ry X R3. Let I; be an ideal of R;,
for every 1 < i < 3. Suppose that

Al = {Il X _[2 X ]3 | Iz - Nll(Rz), for ¢ = 172,3} \ {(O) X (0) X (0)}7

AQ = {Rl X [2 X [3 ‘ [l - NII(RZ), for ¢ = 2,3},

Ag = {Il X Ry X ]3 | Iz - NII(RJ, for i = 1,3},

A4 = {[1 X Ig X Rg ‘ Il - NII(R,L), for i = 1,2},

Bl = {R1 X R2 X 13 | ]3 - Nll(Rg)},

B2 = {R1 X 12 X R3 | IQ - NII(RQ)},

B3 = {[1 X RQ X RS | ]1 - Nll(Rl)}
Let A=U{ A; and B = U}, B;. One may check that ANB = () and V(Ag) = AUB
and so {4, B} is a partition of V(Ag). We claim that Ag contains no induced cycle

of length at least 4. Assumﬂo the contrary, a; —as — -+ — a, — ay is an induced
cycle of length at least 4 in Ag. We show that

{al,ag,...,an}ﬂBl ZQ

Suppose to the contrary (and with no loss of generality), a; € B;. Thus a1 =
Ry x Ry x I3, where I3 C Nil(R3). Since ay and a, are adjacent to a;, we conclude
that the third components of as and a, must be nilpotent ideals of R3. This implies
that as and a,, are adjacent, a contradiction. Hence,

{al,ag,...,an}ﬂBlzﬂ

Similarly,
{al,&g,...,an}ﬂBg = {al,ag,...,an}ﬂBg :@
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This means that

{al,ag, N ,an} g A.
But this contradicts the fact that Ag[A] is a complete graph, and so Ag contains no
induced cycle of length at least 4. Thus Ag is chordal. O

3. WHEN Apr 1S PERFECT?

In this section, we characterize all Artinian rings rings R whose Ag is Perfect. First,
we need two celebrate results.
Theorem 3.1 (The Strong Perfect Graph Theorem [8]). A graph G is perfect if and
only if neither G nor G contains an induced odd cycle of length at least 5.

In light of Theorem 3.1, we have the following corollary.

Corollary 3.1. Let G be a graph. Then the following statements hold.
(1) G is a perfect graph if and only if G is a perfect graph.
(2) If G is a complete bipartite graph, then G is a perfect graph.

Theorem 3.2. [9] Fvery chordal graph is perfect.

Lemma 3.1. Let n be a positive integer and R = Ry X --- X R,, where R; is an
Artinian ring for every 1 < i <n. Let [ =11 X --- x I,,J = J; x--- x J, be two
distinct ideals of R and n > 2. Then I — J is an edge of Ag if and only if for every

Proof. Let I — J be an edge of Ar. If there exists 1 < ¢ < n such that I, J; €
A(Nil(R;)), then by Lemma 2.2, Ann(Z;) N Ann(J;) # (0). So if 0 # a; € Ann(Z;) N
Ann(J;), then (0) x -+ x (0) x R;a; x (0) x -+ x (0) € Ann(I) N Ann(J) and thus
I — J is not an edge of Ag, a contradiction.

Conversely, suppose that I; € A(Nil(R;)) or J; ¢ A(Nil(R;)), for every 1 < i < n.
Thus I; = R; or J; = R;, for every 1 <i < n. This implies that Ann(/)NAnn(J) = (0).
Hence I — J is an edge of Ag.

O

We are now in a position to state our main result in this paper.

Theorem 3.3. Let R be an Artinian rings. Then Ag is a perfect graph if and only
if [Max(R)| < 4.

Proof. First suppose Ap is perfect. Since R is an Artinian ring, there exists a positive
integer n = |Max(R)| such that R = R; X --- X R,,, where R; is an Artinian local
ring, for every 1 < i <n, by Lemma 2.1. If n > 5, then we put

I =(0) x Ry X R3 x (0) X Rs X Rg X -+ X Ry,
I, =(0) x Ry x (0) x Ry X Rs X Rg X -+ X Ry,
I3 =Ry x (0) X (0) x Ry X Rs X Rg X -+ X Ry,
Iy =Ry x (0) X Ry x Ry X (0) X Rg X -+ X Ry,
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I5:R1XRQXRgX(O)X(O)XRﬁX"'XRn.
Then it is easily seen that
L—L—-—0L—-1,—I;—1

is a cycle of length 5 in Ag, a contradiction (by Theorem 3.1). So n < 4.
Conversely, suppose that [Max(R)| < 4. We show that Ag is a perfect graph. If
|Max(R)| < 3, then by part (2) of Theorem 2.3, Ap is chordal and thus by Theorem
3.2, Ap is a perfect graph. Therefore, we need only to check the case [Max(R)| = 4.
Let R= Ry x Ry x R3 X Ry. We have the following claims.
Claim 1. Ay contains no induced odd cycle of length at least 5. We consider the
following partition for V (Ag):

A={L x Iy x I3 x Iy | I; € A(R;) for every 1 <i <4 and I, € A(Nil(Ry4))},
B={l xI)xI3x Ry | I, € A(R;) for every 1 <1i <3 and I3 € A(Nil(R3))},
C={1 x L xRgx Ry | I, € A(R;) for every 1 < i < 2and I, € A(Nil(Rs))},

D ={Ry x Iy x Ry X Ry, I} X Ry X Ry x Ry | for every 1 <i <2 [; € A(Nil(R;))}.

Now, assume to the contrary, a; — as — - -+ — a,, — ay is an induced odd cycle of length
at least 5 in Ar. We consider the following cases.

Case 1. {aj,a9,...,a,}ND = 0. Let a; € {ay,as,...,a,}ND, for some 1 <i <n.
Then we can let a; = [1XR2 XR3XR4 ora; = Rl X[QXRgXR4. If&l = [1><R2 XR3XR4,
then the first components of a;_; and a;;1 must be in A(Nil(R;)) and A(Nil(R;)),
respectively. So by Lemma 3.1, a;_; is adjacent to a;y1, a contradiction. Thus,
a; 7é Il X R2 X Rg X R4. Slmllarly, a; 7£ Rl X [2 X Rg X R4. This means that
{al,ag,...,an}ﬂD = @

Case 2. {ay,as,...,a,} N C = 0. First we show that |{ai,as,...,a,} NC| < 1.
Let a,b € {ay,as,...,a,} NC. Then we can easily check that if there exits z € V(Ag)
such that Ann(z) N Ann(a) # (0), then Ann(x) N Ann(b) # (0). This means that if =
is adjacent to a, then x is adjacent to b, a contradiction. So [{ay,as,...,a,} NC| < 1.
This together with the fact that Ag[A] and Ag[B] are complete subgraphs, imply that
n=>5and [{a,as,...,a,}NB| = [{a1,a9,...,a,} NA| = 2. Hence |{a1,as,...,a,} N
C| = 1, and thus we can let a € {ay,a9,...,a,} N C. Since a is adjacent to all
vertices of B\ {R; X Ry x I3 x Ry | I3 C Nil(R3)} and Ag[B] is a complete subgraph,
a; € {&1,&2,. .. ,CLn} N {Rl X Rg X Ig X R4 | ]3 Q Nll(Rg)}, for some 1 S 1 S n. We
can let a; = Ry X Ry X I3 X R4. Since only one of the components of a; is a nilpotent
ideal of R;, by a similar argument to that of case 1, we get a contradiction. Hence,
{ar,a9,...,a,} NC = 0.

By the above cases, {a;,as,...,a,} € AU B, but this contradicts the fact Ap[A]
and Ag[B] are complete graphs, and thus Ag contains no induced odd cycle of length
at least 5.
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Claim 2. Ag contains no induced odd cycle of length at least 5. We consider the
following partition for V(Ag):

Ay ={l Xx Ry x Ry x Ry | I € A(Nil(Ry))},
Ay ={R; x I, X Ry x Ry | I, € A(Nil(Ry))},
As ={Ry x Ry x I3 x Ry | I3 € A(Nil(R3))},
1%:%R1XRQXR3XQ|LMLMNMR4ﬂ,

={I x I x Ry x Ry | I € A(Nil(Ry)
:{R1 X Ry x I3 x I | I3 € A(Nil(R3)),
By ={I, x Ry x Iy x Ry | I, € A(Nil(R,)),
By ={Ry x I, x Ry x I, | I, € A(Nil(R,)),
Bs ={I x Ry x Ry x I, | I, € A(Nil(R))),
Bs ={Ry x I, x I x Ry | I € A(Nil(Ry)),
Cy ={Ry x Iy x I3 x I | I, € A(Nil(Ry)),
Co={I1 x Ry x I3 x Iy | I, € A(Nil(Ry))
);

);

(F2)

(Ry)), Is € A(Nil(Ry

Cs ={I, x I, x Ry x Iy | I; € A(Nil(Ry)
(F1)

)

il(15)
(R3)),
I, € A(Nil(Ry)),
Cy={I, x I, x I; x Ry | I, € A(Nil(R, QGAWM&)

),
I € ANil(Ry))}.

If we put A = UL_,A;, B = U% B; and C = U.,C;, then one may check that
{A, B,C, D} is a partition of V/(Ag). We show that A contains no induced odd cycle
of length at least 5. Assume to the contrary, a; — ag — -+ — a, — a; is a induced
odd cycle of length at least 5 in Ag. By Lemma 2.2, every vertex in D is an isolated
vertex in Ag and thus {aq,as,...,a,} N D = . Next, we show that

{a1,a9,...,a,} NCy = 0.

To see this, if a; € {ay,aq,...,a,} N Cy, for some 1 < i < n, then with no loss of
generality, assume that a; € ;. Since every vertex of (] is adjacent only to vertices
of Ay, as,a, € A;. This is impossible, as every vertex of Ap is adjacent to ay if and
only if it is adjacent to a,,. Therefore

{al,ag,...,an}ﬂCl :(Z)
Similarly,
{al,ag,...,an}ﬂCg :{al,ag,...,an}ﬂC’g:{al,ag,...,an}ﬂC’4:@.

Thus
{a1,a9,...,a,} NC = 0.

Finally, we show that
{&1,&2,...,an}mBl = @
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Assume to the contrary and with no loss of generality, a; € B;. As a; is adjacent
only to vertices of By U A3 U Ay, {as,a,} C Bs U A3 U Ay. If ay € By, then ag is
adjacent to a, (since if a is adjacent to as and b is adjacent to aq, a is adjacent to
b), a contradiction. Thus ay € Bs. Similarly, a, ¢ By and so {as,a,} C Az U Ay.
Since Ag[As U A4] is a complete bipartite graph, we conclude that {as, a,} C Az or
{asz,a,} C Ay. With no loss of generality, we may assume that {as,a,} C As. This
implies that ag is adjacent to as and a,, (since a vertex is adjacent to as if and only if
it is adjacent to a,), a contradiction. Hence,

{al,ag,...,an}ﬂBl :m
Similarly, for every 2 <7 <6
{al,a2,...,an}ﬂBZ- ZQ

This means that
{CLl,CLQ, e ,an} Q A

But Ag[A] is a complete 4-partite graph with parts A; for 1 <1i < 4, a contradiction.
Therefore, Ag contains no induced odd cycle of length at least 5 and thus by Claim
1, Claim 2 and Theorem 3.1, we have Ag is a perfect graph. 0
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SOME IDENTITIES IN RINGS AND NEAR-RINGS WITH
DERIVATIONS

ABDELKARIM BOUA!

ABSTRACT. In the present paper we investigate commutativity in prime rings and
3-prime near-rings admitting a generalized derivation satisfying certain algebraic
identities. Some well-known results characterizing commutativity of prime rings and
3-prime near-rings have been generalized.

1. INTRODUCTION

In this paper, N will denote a right near-ring with center Z(N). A near-ring N
is called zero-symmetric if x0 = 0 for all z € N (recall that right distributivity
yields 0x = 0). A non empty subset U of N is said to be a semigroup left (resp.
right) ideal of N if NU C U (resp. UN C U) and if U is both a semigroup left ideal
and a semigroup right ideal, it is called a semigroup ideal of N. As usual for all
x,y in N, the symbol [z, y] stands for Lie product (commutator) zy — yxz and x oy
stands for Jordan product (anticommutator) xy + yx. We note that for a near-ring,
—(x +y) = —y — x. Recall that N is 3-prime if for a,b in N, aNb = {0} implies that
a = 0or b=0. N is said to be 2-torsion free if whenever 2x = 0, with x € N, then
x = 0. An additive mapping d : N — N is a derivation if d(zy) = zd(y) + d(z)y
for all x,y € N, or equivalently, as noted in [20], that d(zy) = d(z)y + xd(y) for all
x,y € N. The concept of derivation in rings has been generalized in several ways
by various authors. Generalized derivation has been introduced already in rings by
M. Bresar [10]. Also the notions of generalized derivation has been introduced in
near-rings by Oznur Gélbasi [14]. An additive mapping F : N — N is called a right
generalized derivation with associated derivation d if F(xy) = F(z)y + xd(y) for all
x,y € N and F is called a left generalized derivation with associated derivation d if

Key words and phrases. 3-prime near-ring, prime ring, derivations, commutativity, left multiplier.
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F(zy) = d(z)y + 2F(y), for all z,y € N. F is called a generalized derivation with
associated derivation d if it is both a left as well as a right generalized derivation
with associated derivation d. An additive mapping F : N — N is said to be a left
(resp. right) multiplier (or centralizer) if F(zy) = F(z)y (resp. Flxy) = xF(y))
holds for all z,y € N. JF is said to be a multiplier if it is both left as well as right
multiplier. Notice that a right (resp. left) generalized derivation with associated
derivation d = 0 is a left (resp. right) multiplier. Over the past few years, many
authors have investigated commutativity of prime and semi-prime rings admitting
suitably constrained derivations [3,11-13,16,18] and [19]. Some comparable results
on near-rings have also been derived, see e.g. [1,2,4,7,9,15] and [17]. In [11] the
authors showed that a prime ring R must be commutative if it admits a derivation d
such that either d([x,y]) = [z,y] for all z,y € K or d([z,y]) = —[z,y] for all z,y € K,
where K is a nonzero ideal of R.

In 2002, Rehman [18] established that if a prime ring of a characteristic not 2 admits
a generalized derivation F' associated with a nonzero derivation such that F([z,y]) =
[z, y] (resp. F([x,y]) = —[z,y]) for all z,y in a nonzero square closed Lie ideal U, then
U C Z(R). Quadri, Khan and Rehman [16], without the characteristic assumption
on the ring, proved that a prime ring must be commutative if it admits a generalized
derivation F, associated with a nonzero derivation, such that F'([z,y]) = [z,y] (resp.
F([z,y]) = —[z,y]) for all z,y in a nonzero ideal I. Motivated by the above results,
in the following theorem we explore the commutativity of a prime ring, provided with
a generalized derivation F' and left multiplier G satisfying the following conditions:
F([2,5lap) = [ Ylus F([2,5)as) = G([A(),]) for all 2,y € R, where a, §, u, v
automorphisms of R and [z, yl, s = a(x)y — yS(z).

2. SOME PRELIMINARIES

For the proofs of our main theorems, we need the following lemmas. The first
lemmas appear in [7] and [20] in the context of left near-rings, and it is easy to see
that they hold for right near-rings as well.

Lemma 2.1. Let N be a 3-prime near-ring and U be a nonzero semigroup ideal of
N. Let d be a nonzero derivation on N.

(i) If z,y € N and 2Uy = {0}, then x =0 or y = 0.

(ii) If x € N and 2U = {0} or Uz = {0}, then x = 0.
(iii) If z € Z(N), then d(z) € Z(N).

Lemma 2.2. Let d be an arbitrary derivation of a near-ring N. Then N satisfies the
following partial distributive laws:

(i) z(zd(y) + d(x)y) = zxd(y) + zd(x)y for all x,y,z € N;
(i) z(d(x)y + zd(y)) = zd(z)y + zxd(y) for all z,y,z € N.
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Lemma 2.3. ([5, Theorem 2.1]). Let N be a 3-prime near-ring, U a nonzero semigroup
left ideal or semigroup right ideal. If N admits a nonzero derivation d such that
d(U) C Z(N), then N is a commutative ring.

3. SOME RESULTS INVOLVING PRIME RINGS

Theorem 3.1. Let R be a prime ring, I a nonzero ideal of R and «, 3, u, v auto-
morphisms of R such that f(I) = I. If F is a generalized derivation of R associated
with a derivation d and G is a left multiplier of R which satisfy one of the following
conditions:

(i) F([r,y]ap) = [T, Yluw for all z,y € I;
(i) F([z,yla,p) = G([B(2),y]) for all x,y € I,

then R is commutative.
Proof. (i) Suppose that
(3.1) F([z,y]ap) = [, Y|up, forallz,yel.

Replacing y by yf(z) in (3.1), and using the fact that [z, y5(2)]as = [*, Y]asB(x) and

[z, yB8(2)|uw = [2, YluoB(x) + y[v(z), f(z)] for all z,y € I, we arrive at
(3.2)

F(lz, Ylap) B(2) + [2, Yla,pd(B(2)) = [2, yluwB(2) + ylv(x), B(x)],  forall z,y € I.
Using (3.1), (3.2) implies that

(3:3) [, Ylapd(B(x)) = ylv(x), B(z)], forall z,y € I.
Substituting ry instead of y in (3.3) where r € R, we arrive at
[a(x),r]Id(B(x)) = {0}, forallzel,reR.

(
By Lemma 2.1 (i), we get [a(z),r] = 0 or d(B(z)) = 0 for all z € I, r € R which
gives a(x) € Z(R) or d(B(z)) =0 for all = € I. Since a and § are automorphisms of
R, we get x € Z(R) or d((x)) = 0 for all z € I. Using Lemma 2.1 (iii), we obtain
d(B(I)) C Z(R) i.e, d(I) C Z(R) which forces that R is commutative by Lemma 2.3.
(ii) Assume that

(3.4) F([z,ylas) = G([6(z),y]), forallz,yel
Putting y/5(z) instead of y in (3.4), we get
F(lz, Ylap)B(2) + [2, Yla,sd(B(2)) = G([B(2),y])B(x), forall z,y € I.
Using (3.4), we obtain [z, y],sd(S8(z)) = 0 for all ,y € I, which implies that
(3.5) a(z)yd(5(z)) = yB(x)d(f(x)), forallz,yel.
Taking ry in place of y in (3.5) where r € R and using it again, we conclude that
[a(z),r]1d(B(x)) = {0}, forallzel,reR.

By Lemma 2.1 (i), we get a(x) € Z(R) or d(B(z)) = 0 for all x € R and using the
same techniques as used above, we conclude that R is commutative. O
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For a = = u = v = idg, we get the following result.

Corollary 3.1. ([16, Theorem 2.1}). Let R be a prime ring and I a nonzero ideal
of R. If R admits a generalized derivation F associated with a nonzero derivation d
such that F([z,y] = [z,y] for all z,y € I, then R is commutative.

For a = f = u = idg and v = —idg, we get the following result.

Corollary 3.2. ([16, Theorem 2.2]). Let R be a prime ring and I a nonzero ideal
of R. If R admits a generalized derivation F associated with a nonzero derivation d
such that F([z,y] + [z,y] =0 for all x,y € I, then R is commutative.

4. SOME RESULTS INVOLVING 3-PRIME NEAR-RINGS

In this section, we will present a very important result that generalizes several
theorems that are well known in the literature. More precisely, we will show that a
2-torsion prime near-ring N is a commutative ring if and only if N admits a derivation

d and a left multiplier G such that G([x,y]) = [d(x),y] — [x,d(y)] for all z,y € U.

Theorem 4.1. Let N be a 2-torsion free prime near-ring and U a nonzero semigroup
tdeal of N. If N admits a derivation d and left multiplier G, then the following
assertions are equivalents:

(1) G([z,y]) = [d(2), y] = [z, d(y)] for all z,y € U;

(ii) N is a commutative ring.
Proof. 1t is easy to notice that (ii) implies (i).
(i)=-(ii) Suppose that
(4.1) G((x,y)) = [d(x), o) — [ d(y)], for all 2,y € U.
Replacing z by zy in (4.1) and using the fact that [zy,y] = [z, y]y, we obtain

[d(zy),y] — [zy,d(y)] = G([z,y])y, forallz,y € U
Which implies that

Using Lemma 2.2 and by developing the last expression, we arrive at
d(x)y*+ad(y)y—yad(y)—yd(z)y+d(y)ry—wyd(y) = d(z)y*—yd(z)y+d(y)zy—rd(y)y.

For z = y, the equation (4.1) and 2-torsion freeness we give easily d(y)y = yd(y) for
all y € U. In this case, by a simplification of last equation, we find that

(4.2) zd(y)y = yxd(y), forall z,y € U.

Substituting tx in place of x, where ¢ € N in (4.2) and using it again, we arrive at
ly, t|lUd(y) = {0}, forally e UteN.

Using Lemma 2.1 (i), we obtain

(4.3) ye Z(N) or d(y) =0, forallyeU.
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If there exists yo € Z(N) N U, then by (4.1), we get zd(yo) = d(yo)zx for all z € U, in
this case, (4.3) gives zd(y) = d(y)x for all x,y € U. Replace x by tx, where t € N, we
get [d(y),tjlz = 0 for all x,y € U, t € N which implies that [d(y),t]U = {0} for all
y € U, teN. Since U # {0}, by Lemma 2.1 (ii), we obtain d(U) C Z(N) and Lemma
2.3 assures that N is a commutative ring. 0

If we replace G by the null application or the identical application idy, we get the
following results.

Corollary 4.1. ([8, Theorem 2.1]). Let N be a 2-torsion free prime near-ring. If
N admits a derivation d such that [d(x),y] = [z,d(y)] for all xz,y € N, then N is a
commutative ring.

Corollary 4.2. Let N be a 2-torsion free prime near-ring and U a nonzero semigroup
ideal of N. If N admits a derivation d, then the following assertions are equivalent:

(i) [z,y] = [d(z),y] — [z, d(y)] for all z,y € U;
(ii) [d(z),y] = [x,d(y)] for all z,y € U;

(iii) N is a commutative ring.
When d = 0, we have the following result.

Corollary 4.3. Let N be a 2-torsion free prime near-ring and U a nonzero semigroup
ideal of N. If N admits a left multiplier GG, then the following assertions are equivalent:

(i) G([z,y]) = 0 for all x,y € U;
(ii) N is a commutative ring.
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TRIANGULAR SYSTEM OF HIGHER ORDER SINGULAR
FRACTIONAL DIFFERENTIAL EQUATIONS

AMELE TAIEB! AND ZOUBIR DAHMANTI?

ABSTRACT. In this paper, we introduce a high dimensional system of singular
fractional differential equations. Using Schauder fixed point theorem, we prove
an existence result. We also investigate the uniqueness of solution using the Ba-
nach contraction principle. Moreover, we study the Ulam-Hyers stability and the
generalized-Ulam-Hyers stability of solutions. Some illustrative examples are also
presented.

1. INTRODUCTION AND PRELIMINARIES

Recently, the fractional calculus has attracted the attention of researchers in various
fields of applied sciences. For details, see [12,16,19,20] and the references therein. It is
important to note that some research studies deal with the existence and uniqueness
of solutions for some fractional differential equations are obtained in [1,6-9]. Other
studies in [2,3,5,17,23] have been done for the singular fractional differential equations.
On the other hand, the Ulam stability of fractional differential equations is quite
significant in more realistic problems, numerical analysis, biology and economics.
Considerable work has been done in this area, for instance, see [10,11,13-15,18,22,24].

Let us now present some important research papers that inspired our work: We
begin by [4], where C. Bai and J. Fang established the existence of solutions for the
following singular fractional coupled system:

{ Dou(t) = f(t,v(t)), 0<t<l,
Dry(t) =g (t,u(t)), 0<t<l,

Key words and phrases. Caputo derivative, fixed point, singular fractional differential equation,
existence, uniqueness, Ulam-Hyers stability.
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where 0 < 8, p < 1, D?, D? are two standard Riemann-Liouville fractional derivatives,
f,9:[0,1) x [0,00) — [0,00) are two given continuous functions, lir(%f (t) = oo and
t—
limy o+ g (t) = 0.
In [25], A. Yang and W. Ge considered the following fractional coupled system

Dy (t) + fi1 (t,ug (), D"uy (t)) = 0,

b“”*lun,l (t) + fa-1 (t,up, (t), DFr—u, (1)) =0,
Dy, (t) + fo (t,uq (), DPug () =0,

associated with the boundary conditions

{ul(O):ug(O):---:un(O):(),
u(l)=us (1) =---=u,(1) =0,

for 1 <o <2, p5 >0, 05— pjo1 >1,5=12,...,n, po = py, and f; : [0,1] x
[0,00) x R — [0,00) is continuous function. Some existence and multiplicity results
of solutions are obtained.

In [21], A. Taieb and Z. Dahmani established new existence and uniqueness results
for the following problem:

u(t) + ifl (t,u(t),v(t), D7u(t), DPv(t)) =0, te€ J,

DPy(t —i—ZgZ cu(t),v(t), DYu(t), DPv(t)) =0, t€J,

u (O) - u07 U (0) UO?
uw'(0) = u"(0) = 2'(0) = v"(0) =0,
u"(0) = J"u(r), v"(0) = J?v(s), r>0,0>0,

where o, 8 € (3,4), v,p € (0,3), 7,6 € (0,1), D*, D?, D? and D7 denote the Caputo
fractional derivatives and J”, J¥ denote the Riemann-Liouville fractional integrals,
J :=0,1], ul,v; € R. For each i = 1,...,m, f; and g; : J x R* — R are specific
functions.

In this paper, we discuss the existence, uniqueness and Ulam stability of solutions
for the following singular fractional coupled system:

Dy (t) = f1(t, x1 (1)),
D2y (t) = fo (t, 21 (1), 22 (1)),

(1.1) Do, (1) = fo (t, 21 (8) 20 () ... 2, (1)),
0<t<l, k-1<a,<k, k=12....n

z1(0) =a}, k=1,

2 0)=db j=0,1,...,k—2, k=23,...,n

D‘;klxk(l)—O, k—2<5k,1<k’—1, k:2,3,...,n

Y
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where n € N — {0,1}. For all K = 1,2,...,n, the functions f; : (0,1] x R* — R
are continuous, singular at ¢t = 0, lim;_,o+ fx (t) = oo and there exist 5y € (0,1),
k=1,2,...,n, such that t°* f,, k = 1,2,...,n, are continuous on [0,1].

To the best of our knowledge, there are no papers that have considered this kind
of singular fractional coupled system.

We present some basic definitions and lemmas that we need to prove our main
results. It can be found in [16].

Definition 1.1. The Riemann-Liouville fractional integral operator of order av > 0
for a continuous function f on [0, 00) is defined as:

1 t a—1
o — [ (t—s s)ds, a >0,
f(0), a=0,
where t > 0 and T' (a) := [;F* e “u®"!du.
Definition 1.2. The Caputo derivative of order « for a function x : [0, +00) — R,
which is at least k-times differentiable can be defined as the following:

1 b Nk—a—1 (k) — h—a (k)
F(k—a)/o(t s) W (s)ds = J"x™M(t),

for k—1<a<k, ke N-{0}.

Lemma 1.1. Let o, 3 >0, and k — 1 < a < k, k € N— {0}, and let j be a positive
integer. Then

D%x(t) =

- LB o
Dl = 7 _¢fesl g
I'(f—a)
D% =0, j=0,1,....,k—1.
Lemma 1.2. Let ¢ >p >0 and f € L' ([a,b]). Then for all t € [a,b], we have
DPJIf(t) = JUPf(t), te€]a,b].

Lemma 1.3. Let k — 1 < a <k, k € N— {0}, and let j be a positive integer. Then,
the general solution of the fractional differential equation D*x(t) = 0, is given by:

and

k-1
x(t) = Z ct?, (cj)j:&1 ..... w1 €R
=0

Lemma 1.4. Let k e N— {0}, k— 1 < a <k, and let j be a positive integer. Then,

k-1
JD%x(t) = z(t) + Z ct?, (Cj)j:&l 77777 w1 €ER.

=0

Lemma 1.5 (Shauder fixed point theorem). Let (E,d) be a complete metric space,

let U be a closed convex subset of £, and let T : E— E be a mapping such that the
set V:={Tx:x € U} is relatively compact in E. Then T has at least one fized point.
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We also prove the following auxiliary result to give the integral representation of (1.1).

Lemma 1.6. Assume that k — 1 < ap < k, k = 1,2,...,n, n € N—{0,1} and
F, € C([0,1],R). Then, the following system

Dalml(t) = Fl(t),
Da2$2(t) = Fg(t),

:Danxn(t) = Fa(t),

associated with the conditions:

21 (0) = ag,

(1.2) 2 0)=ab, k=23, .n=01.. k-2
D‘Sk—lxk (1) =0, k —2<0p_1 <k-— 1,

has a unique solution (r1,xs,...,x,), where

bt —s)
/0 S R(s)dstal, k=1,

(a1)
oap—1 k-2 .k
(1.3) x(t) = /t t—s)™ 5 aj
——————Fp(s)ds+ ) —t
0 r (Oék) gZO !
[ (k—0k-1) 5., /1 (1 =)™t
—— F d k=23,...,n.
(k—1)! o T(ay—641) k(s) ds, SRR
Proof. Using Lemma 1.4, we obtain the following integral equation:
(1.4) () /t(t_s)ak_lp (5)ds— S b, k=12
. x = | ————F:(s)ds— ) " = )
k T (Ckk) k = YR ) 4y ) 10y
where
a0 0
2 i 0 0
c c3 a0 0
o e M, (R).
: : : 0 0
R A e G S |
c ct Cy ... Cy_g Ch_y
Applying the conditions given in (1.2), we observe that
21 (0) = _Ctl) = a(1)7
and for all k =2,3,...,n, we get
2 (0) = —jlck =ab, j=0,1,... k2,
) . Tk) &

Op—1 — I S —
D174 (1) /0 T (o — 00) Fy (s)ds (k= 5k_1)ck_1 0,

kE —2<dp1<k-—1,
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which implies that

(15) C(l] = _a(l)a
and
a
—— 5=0,1,...,k—2,
!
(1.6) k=
T (k’ i (5]?71) /1 (1 . S)ock—5k—1—1 ‘
F ds, =k—1,
T b Tlop—oy) [r)ds

where £k =2,3,...,n.
Substituting (1.5) and (1.6) in (1.4), we find (1.3). The proof of Lemma 1.6 is thus
achieved. 0

Now, we introduce the Banach space
S:={(x1,29,...,2,) :x, € C([0,1],R) bk =1,2,...,n},
endowed with the norm:

(@, w2, s 2n)lls = max flokllo s lloklloe = max fza(t)]

2. EXISTENCE AND UNIQUENESS

In this section, we try to establish sufficient conditions for the existence and unique-
ness of solutions to the problem (1.1).
Define the nonlinear operator A : S — S by

Az, 29, .. x,) (t) == (Ay (21) (1), Az (1, 22) (1) ..., Ay (21, T2y .., 20) (1))

such that, for all ¢t € [0,1],

t(t_s)m—l 1
——fi(s)ds+a,, k=1,
/()(F<O;1> lfl() Ok2k ( )
= LE—s)™ ~ %y Tk —0k1)
A (21, ) () == /0 e fk(s,...)ds+j§)j!t b b,
1(1_8)0% Orp_1—1
X/O I (ap — Op—1) felsyo)ds, k=23,....n.

Lemma 2.1. Let k—1 < oy < k, k=1,2,....n,n € N={0,1}, 0 < 5 < 1,
Ty : (0,1] = R be continuous function and lim,_g+ Ty (t) = 0o. Assume that t°*T}, (t)
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is continuous on [0,1]. Then

¢ _ a1—1
/ &Tl (s)ds +aj, k=1,
0

' ()
t _Sak 1 k—2 k kf—(s_l .
zi(t) = /()(tl—‘(o)zk) d3+z ]tj ((k_lk)!)tk

1 1 _ ak_ék 1—1
x/ (1—5) Tp(s)ds, k=2,3,...,n,
0 ( — 5k—1)

is continuous on [0,1].

Proof. By the continuity of t%*Tj}, and

we get 73 (0) =af, k=1,2,...

. )a1—1

t(t—s
—Prghrip 1 -1
/0 I (o) s PSP (s)ds + ay, k=1,

t(t — g\t k=2 gk L—§
xk(t) = /0 <FS)8_’8’68/6’“7—’]~C ds—{—z th Mtk’ 1

(o) (k=1
L(1— s)ak e Br oBr
“BrghT (s)ds, k=2,3,...,n,
X/O T (o — 0r1) s PksPRTy () ds, : n

,n. Then, we will divide the proof into three cases.

Case 1. For ty = 0 and for all t € (0,1], by the continuity of t’*T},, there exist

M, ...

IN

|2k (t) = @ (0)]

t _ a1—1
/ (tF(S))S_BlSBlTl (S) ds ’ I — 1
0 aq
(t—s)™" B P =y
f oy T e e
F(k—ék,l) kl/l (1_3)%—5;671—1 iy
ECED Ty (s)ds|, k=2,3,...
(k_l)' 0 F(Oék_(sk—l) 5 5 k;(S) S 59y
t
F]yl )/ (t_s)alfl S_Blds’ k‘ _ 1’
aq) Jo
Mk /t 1 ‘ ’ (k — 5]{,‘—1) Mk; .
t— ) g Brgs 4 o
' (ax) Jo (t=s) Z | (k—DIT (oig — 1)
1
X/ (1 —_ S)Oék Op—1—1 3_5kds, k= 2,3, Lo, n
0

, M,, > 0, such that for all t € [0, 1], ’tﬁka (t)‘ < M. Therefore, we get
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Using Beta Euler function denoted by B, we obtain

|z () — 1 (0)]

Mlth*ﬁl 1 -1 _
Myt=trn 1 — )™ B k=1
T an /0 (1—wu) U u, ’ 7’
Mktozk—ﬁk 1 1 _ = CL? ]
<] Mpt™ 1 — )% Br 1]
Pl 070" s 2
U (k— k1) My B (ay, — 01,1 — Bk)t/ﬂ—ly k=23,...,n,
(k= DT (o — 0p—1)
M B (ay,1 = Byt 7 k=1
F(Oq) ’ -
B o |k
< My.B (o, 1 — By) to+ P & Q‘G.j’tj
T (o) =t
[ (k— k1) MyB (ay, — 01,1 — 6k)tk—17 k=23,...,n,
(k= DT (o — 0p—1)

—0 ast—0, k=1,2,...,n.
Case 2. For ty € (0,1) and for all t € (o, 1], we have

|2k () — 2k (to))|
) )

t(t—s N to (tg — s N
Br b d _/ Brgbri d k=1
/0 I (o) sTPsPTY (s) ds ; I (o) s PsPTY (s) dsf, :

L= s o (tg — )™ _

Ty (s)d —/ BT (5) d
< /0 T () s PRSP (s) ds ; I (o) s kPR Ty (s) ds
B IS P Uy

PIL(h _ k=1) (1k—1 _ 4k—1
+j:0 ] (¥ —1) + 1) (t )
1 (1 N S)C“k*&kfl*l 5
X s (s)ds|, k=2,3,...,n,
/0 F(ak—ék_l) k( )
M t ¢
. (/ (t — )" s Pds — / ’ (tg— s)™ ! s_ﬂ1d3> , k=1,
F]%;él) Ot Ot
0
_—k ( (t— ) ' s Prds — / (to — s)™ " sﬂkds)
[ (ax) \Jo 0
< k2 a’?’

o e e )

Jj=1

1 o —90 -1 _—-p
></ (1 =)™ 1" g7 kds, k=23,...,n.
0
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Therefore,

|z () — @ (to)]
M, <to¢1 B _ tal ﬁl) B (0617 1-— 61)

IN

F(Oq) ’
Mj, (ta’“ O — g ﬂk) B (ak, 1 — B)

[ ()

+F (k = 6p—1) MypB (o — 0p— 1,

(]{7 — 1)'P (Ozk — 5k 1

—0, ast —ty, k=1,2,....n

k=1,

k=2 gkl
+j_zl‘jj!’(tﬂ—t{))

th= 1—t’g*1), k=2,3,....n,

Case 3. For to (0,1] and for all t € [0, %) . Similarly, as in Case 2, it can be shown

that
| (1) — @ (to)]
Ml(al —h — 1 ’Bl)B 061,1—61
) 3
S Mk (tgk_ﬁk tak Bk) B (Oék, 1-— ﬁkz

F(Oék)
F (k) — 519—1) MkB (Oék — 5k 1,

k=1,

(k—l)'F(ozk—ék 1
k=1,2,....n

)

—0, as t — g,

This ends the proof.

Lemma 2.2, Let k-1 <o, <k, k=1,2,...
(0,1] x R¥ — R be continuous, and lim,_o+ fi (t,...)

Z;j
( tk‘l), k=2,3,....n,
O

n,ne€N—={0,1},0< Bk <1, fi:
= oco. Assume that tP% fy, (t,...)

is continuous on [0,1] x RE. Then, the operator A : S — S is completely continuous.

Proof. For all (z1,...,x,) € S, let

Az, 2. xn) (t) = (A1 (21) , Az (@1, 22) 5. A (21,0, 1)) ()
where
Ak (21, ..., xp) (1)
ti(t_s)arl s,x1(s))ds + a =

/O ( F(O)él) 1f1(7 1( ))d + ag, k 1=k ) (k 5 )
- ti s. 171 (s s = Jgi _ 2NV T Ukl k1
=1 o fi(,1<),... 24 (5) d+;) i T

1 (1 . S)Qk* k—1—1
X/o T (ar — 0r1) fr(s,21(8),..., 2 (8))ds, k=2,3,...,n.
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By Lemma 2.1, we have A: S — S. Let

(m?,x%,...,m%) €s: H(x(l),xg,...,xg)HS =Ny
and
(x1,29,...,2,) €S : H(:cl,m,---,xn) - ($(1]717(2)7-~->x9z)H5 <1
then
(21, 22,...,20)|lg <1+ Ao = A

By the continuity of t% fy (t, 1, ..., xx) , we know that t7% fy, (t, 21, . . ., x) is uniformly
continuous on [0,1] x [, A]".
Hence, for all ¢t € [0, 1] and for each € > 0, there exists p > 0(p < 1), with

(2.1) 9 fi (b1 (8) . (1) = 7 i (2 ()2 ()] < e
where (21,22, ...,2,) € S, and ||(x1, 29, ..., 2,) — (29,29, ...,20)||g < p. Then
HA(xl,:vQ...,:z:n) —A(ﬁ?,:p%,...@%) ‘S
(22) =max [ Ac (o, we) (1) = A (o, o) O]

We have

/t (t—s) s h
max
te[0,1] Jo [ (aq)

t(t—s)* " g P

oo

sP 1 (s, 11 (5)) — s fy (s, Y (s)) ‘ ds, k=1,

Bk
max [ o s% i (5,21 (8), ..., 2k (8))
% fi (5,0 (5), - (5))| ds + max —F— 5
1 (1 _ S)Ozkﬂskqfl s B 5
></0 I' (ou — 0k—1) s7 fie (s, 21 (s) ..o 2 (s))

—sPf (s, 20 (s), ..., 20 (s))‘ds, k=2,3,...,n.
Using (2.1), we obtain

(23) Ak (@, m) () = A (2, 20) ()]
—° max /t (t—s) s s, k=1
I () tef0.1] Jo ’ ’
t
< © max (t —s) " s7Prds

T () el Jo
el (k — dp—1) 1 /1 o
t 1 — g) %1 Br
(k - 1)‘F (O[k, — 5]4;_1>t€n1[3}1{} 0 ( S) S S,
k=23,...,n,
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B<a171 _51) a1—pB1 o
ot ﬁ%%t ; k_<2 ) B (s — 01— )
< B (o, 1 — P b, L (K= 0k—1) Blag —0p—1,1 = b
6( D) iy r (k= DI (ar — 0p-1) )
k=2,3,...,n,
['(1-06) B
€F<&1+1_51), k=1,
- I'(1— ) (k= 06p—1)T (1 — B) _
€<r(ak+1—ﬁk)+(k—1)!r(ak—5k_1+1—5k)>’ k=23....n
We pose:
. I'd-5)
(2.4) A _F(al -5
I'(1 - B) (k= 6r—1) T (1 — B)

IF'(apg+1—=0k) (B=—DIT (apg — 01 +1—05%)
By (2.3) and (2.4), we have

(2.5) HAk (z1,...,25) (t) — Ap (m?ﬂfg) (t)Hoo < { Zﬁ; ii ; 3,...

Thanks to (2.2) and (2.5), we get

HA (x1,29...,2,) — A (.:E(l),a:g, - 7.7:2) HS < elrgi?gank'
Therefore,
HA(xl,a:Q...,xn) —A(x?,x%,...,x%)“s — 0,
as
H(xl,xg B (x(l),xg, . ,mg)HS — 0.

Hence, A : S — S is continuous.
Let 6§ C S be bounded. Then, there exists a positive constant ¢ such that

[(z1,29...,2)|lg < s, for all (z1,22...,2,) € 0. Since % fy (t,x1,...,21), k =
1,2,...,n, are continuous on [0, 1] X [—g, g}k, there exist positive constants Ly, k =
1,2,...,n, such that

(2.6)

’tﬁkfk (t; T (t> yeroy Uk (t))‘ S Lk7 for all t € [O’ 1] ’ for all (Il’ L2 .- ,.In) €.
Then

(2.7) |A(z1,22...,20)|lg = 121%}(” 1Ak (21, .., 28)] o -
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We have
HAIC ('Tla"‘?xk)Hoo
(t—s) s M
/ s) s (s,xl)‘ds—l—’aé, k=1,
t_ k_ —B
/ ) i ﬂ’“fk (s,xl,...,xk)’ds
<) selal @mt
J 0 gl tefo1] 5 (k—1)! tefo]]
1 (1 . S)Oék k—1—1 S—Bk 5
d
X/O P(ak_ék—l) S fk (Saxla 7xl€)‘ S,
k=23,...,n

Using (2.6), we get
(2.8) | Ak (xl,... k)|

te[o 1 /

|
t— ap— 1
T (Ozk)trg[a)f} /0 ( s)

T (k — 65 1) Ly
(k‘ — 1)'F (Oék — 6k—1)
I (1= 5)
xt A k=1
r (a1 +1-— ﬁl)te[o,u + lal, ’
I'(1—5) [(k—0r-1) T (1—B)
L $% =Bk
k (F(ak—l—l—ﬁk)teg}l{ + (k—l)!F(ak—ék_l—i—l—ﬂk)
+Z T k=23,....n,
7=0
L1A1 + |CLO| /{Z = 1,
k
‘, k=23,...,n

k=1,

=0

Jo (1 —s)**~ 5’“*1 ! s‘ﬂkds, k=2,3,....,n

0“_1 sPds + ’aé ,

IN

IA

a;

IA

7=0

Then by (2.7) and (2.8), we get

2<k<n

A (21,25 .., 2,)]|g < max {L1A1+\a5 :

i
— J |
Thus, A (#) is bounded.
For all (zy,22...,2,) € 6, and for all t1,t, € [0,1], t; < t2, we have:

||A (271,1’2 e ,l’n) (tg) — A($1,$2 Ce ,[L’n) (tl)HS



92 A. TAIEB AND Z. DAHMANI

(2.9) = max || Ag (21, ..

1<k<

sxk) (t2) — Ag (1, - ) (H1) || o -

”Ak (1’1, C ,l’k) (tg) — Ak (ZEl, e ,l’k) (tl)”oo

b2 (tz—S)al_ls_ﬂl 5
msll Sy e
t t a1l 5y
_/1 1 S S Sﬁlfl(s,xl)ds, k=1,
041
ak 187ﬁk ﬁ
k
tem/ e fo (s 24)
S tl ak S ﬁk
- e fy (s, 24)
3| DOE= 1) (s
R 2 \W T Ok=1) (k-1 _ k-1
+Eo <t i)JF (ESTCI
1(1—5)‘“’“_ k=11 =Py 5
></O T (ar — or 1) Skfk(S,.Tl,.-.,SEk)’ds, k=23,...,n.
Hence,
(2.10) | Ak (z1, ..., xx) (t2) — Ak (21, .., zp) (E1)]] o
F(l_ﬁl) a1 —B a1—8
t 1—F1 _t 1 1 k _
F(a1+1—ﬁ1)( 1 ) )

Lyl (1= By) (85777 — a7 k2 |ak] (8 — 4])
F(on + 1 Bo) LT

IA

T (k= 0p—1) Lil (1= B) (8571 = #17)

+ , k=23,...,n.
(k} — 1)'F (ozk — 51@—1 + 1-— ﬁk)
Then, by (2.9) and (2.10), we obtain
(211) HA (ZEh.TQ e ,In) (tg) — A (.Z'l,ZL’Q e 7.Tn) (t1>HS
— 1— C“k Bk tak—ﬂk
< max LT (1 51) (tgl_ﬂl _ tliq—ﬂl) : ( Bk) ( 1 )
F(Ozl—i—l—ﬂl) F(Ozk—{—l—ﬂk)

+ -
jz% j' (k—l)'F (ak—ék_l—l—l—ﬁk)
The right-hand side of (2.11) is independent of (z1,z5...,z,) and tends to zero as

t;1 — ty. Thus A (0) is equicontinuous. By Arzela-Ascoli theorem, A is completely
continuous. O

c2laf| (6 -#) Th—8)LO1-5) (5" -47) } |
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k=1,..., o
Theorem 2.1. Assume that there exist nonnegative constants (wk) - :, satisfying

=1,..,

k
(212) tﬁk |fk (tvxla cee ,LCk) - fk (tayla cee 7yk)’ < wa ‘xj _yj|7
j=1
for all t € [0,1] and all (z1,...,7%), (y1,...,yx) € R*.
If
(2.13) ¥ = max (WlAhjzlkak) <1,

then the system (1.1) has a unique solution on [0, 1].

Proof. We will prove that A is a contractive operator on S.
Let (x1,22...,2,), (Y1,Y2...,ys) € S and t € [0, 1], we have

A (@22 20) — Ay v un)lls
(2.14) =max ||Ag (z1,...,2%) (1) — Ak (Y1, -, ue) (D)

1<k<n

Then

[AR (1, @) (8) = Ak (Y1, 0k) (D)o

t (¢ — )al 1 .- 8,
max [ g s m ) = s ()lds, k=1

t (t — S>ak _Bk ﬁ
k
mas | Dlag ° HeEn ) m ()

(
—fr (S Y1 (S)a ..,yk( ))|d8—|—tré1[6a}1(]wtk—l

X/ Ll A e S fi (s, 21 (5) -2 ()
0 F(Oék 5k 1) y L1 PICIIIE R )
—fe(s,01(8), - ue (8)|ds, k=2,3,...,n

Thanks to (2.12), we can write

(2.15) | Ak (1, x) (B) — Ap (yn, - ue) (8] o

1

IN

- |71 — 11l /t (t— S)(’“_1 sPds, k=1
(o) te [0 1] ’ ’
(wh llz1 = gnlloo + -+ + wf lon — all)

< t(t— s)ak_l s Pk
X max/ ds
t€[0,1] Jo F(Oék)
F(k—ék_l) /1 S -1 _
1 — ) %1 Prds|, k=2,3,...,n,

+(l{3 — 1>'F (Ozk — 5k—1) 0 ( S) 5 5 n
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AB 1=l =l
[ (ay) t€[0,1] ’
k ag, 1 — B) o
< X_Z%gggg |7k — il (W%B‘?ﬁt P
(k 51971) B (Oék - 51471, 1- 5k)>
, k=223,...,n,
(]{? — 1)'F (Oék; — 5k—1)
(1-751)
- k=1
F(C\q + 1 _61) Hxl yl”oo? )
< iw'-“( I'(1— 6k I'(k = 0,—1) T (1 = f) )
j=1 J F(Ozk—i-l—ﬁk) (k—l)!r(ak—ék—l‘i‘l—ﬁk)
X (1 =y, o —ye)llg, K=2,3,...,n

By (2.14) and (2.15), we obtain
||A (.Tl,l’g, s 7'Tn) - A (yl;yQa s 7yn)||5’

k
< max (wlAl,Zw Ak) H($1 Y, T —yk)Hs-

2<k<n
J=1

By (2.13), we have ¥ := maxo<r<p (w%Al, E§:1 w}“Ak> < 1. Hence, A is a contractive
operator. Consequently, by Banach fixed point theorem, A has a fixed point which is

the unique solution of system (1.1). This completes the proof. O
Fxample 2.1. Consider the following singular fractional system:
3 sin xq (t)
Diz,(t) = —21  0<t<1,
V0= v =
t) — t
Din, (1) = cos xy (t) c;)sxg( )7 0<t<1,
1673t7
Diay (1) = (sinzy (t) + sinz, (3t) + cosx (t))’ 0<i<l,
24mts
(2.16) Dy (1) = [z (8) 22 (8) + 25 () + 24 ()] C0<t<l,
327t3 (14 |xy (t) + 2o () + 23 (t) + 24 (1)])
T (O) = 1,
72 (0) = V2, D2ay (1) =0,
3
23(0) = ¢, 25(0) = 2/3, Diy (1) =0,
1
24 (0) = 5 (0) =5, 24 (0) =1, D2z, (1) =0
We have:
3 3 7 7 1 4 5
TL:4, OZIZZa 042:5, a3:§7 04425, 51_57 52:§7 53_57
3 1
a(l)zl, agzﬂ, agzg, a§:2\/§, aé:i’ a‘ll:\/g, aézl
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Then, for each t € [0,1] and (21, 22, T3, 74) , (Y1, Y2, Y3,y1) € R, we have:

1

£5 | fy (1) — fi (8 y1)

’— 1271 ‘1’1 y1’>

~=
\w—‘

6 t
t7 t — t <
|f2( ,I1,$2) f2( ,yl,y2)| = 1678 |

7
& |f3 (t,l’l,{fg,l'g) - f3 <t7y17y2ay3)|

\/%I |+ﬁ| |+7\/% | |
x p— pE—
Y T1 — U1 Y 2 — Y2 Y 3 Y3l ),

1
t2 | fa (t, 21, w0, 3,24 ) — fa (8, Y1, Y2, Y35 Ya)|

— 1|+ —— 12 — 1l

163

IN

_ s 5 5 15
< |$1—y1|+7|$2—y2|+%|933—y3|+%|x4—y4| ;

wh =1,
2
d=d=el= g Y=L
j=1
smwi=wi=ui= o, Tui=o
j=1

On the other hand, we get
Ay =2.7958, Ay =13.4869, Az =9.4443, A, = 0.5908.
Thus,
2 3 4
wihy =0.0742, > wihy =0.0544, Y wlAy=0.3759, > wjAs=0.0235.
j=1 j=1 j=1

Then the singular fractional system (2.16) has a unique solution on [0, 1].

Theorem 2.2. Letk —1 < ap <k, k=1,2,...,n,n € N—{0,1}, 0 < g < 1.
Assume that fr : (0,1] x R¥ — R is continuous with lim,_o+ fi (t,...) = oo and
tP fi (t,...) is continuous on [0,1] x R¥. Then, the system (1.1) has at least one
solution on [0,1].

Proof. Let P, = m[g,}l(] to% | fi (t, 21(t), ..., 21(t))|, and define the set A C S by
tefo,

A = {(,Il,I'Q,...,l'n) € S: ||($17$2a"‘7$n)||s S 74}’
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mz@

J=0 7!

We will prove that A : A — A. For (z1,xs,...,2,) € A and t € [0, 1], we have
(2.17) A (21, 22,...,2,)|lg = max Ak (21, ..., 2%) (2)]]

1<k< o0

where

2<k<n

r = max (P1A1 + ‘a(l) ,

Then
[ Ak (21, 2n) ()]l o

t(t—s)M s

ltlrél[gpl(] 0 I (1) Sﬂl |f1(s,m1)|ds+‘a(1)" k=1,
)T s 2l
<{ mex | NP e (s, 21, ... @y !dH;) iy et
F(k_5k—1) . 1/1 (1_S)ak*5k 1=1 =By, 3
_— o~ k d
: (k‘-l) In[g}f} 0 F(ak_(;k—l) S |fk (871‘17 ,l’k)| S,
=2,3,..
P
< P max/ (t —s)™" B’“ds—l—Z’ ‘
| T'(ag)telo,1]Jo =
I'(k—06,_1)P 1 _
(k:_(1>ur(£klz 5 1>/ (1—s)™ 7% s hds, k=23,....n.
Thus,
o1 Weter o) Ol
I (1= )
ax (1= k=1
r (oq +1-— Bl)te[o 1) +lagl ’
I'(1—B) N I'(k—0k—1) T (1= Bg)
P, Xtk Pe
< T (ap + 1 — By)eclon) (k=T (ap — 0p_14+1—Bp) )’
—i—ZU, k=23,...,n
P1A1 + |Cl(l)| ) k= 1,
< k-2 |gk
- pkAk—i_Z]“a k:2,3,...,n
j=0 J:

Using (2.17) and (2.18), we can write

2<k<

k=2 |4k
‘aj‘
— J!

(2.19) |A (21,29, . .., 20)| ¢ < max (P1A1+ ag|
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Hence, ||A(z1,22,...,2,)|l¢ < 7. By Lemma 2.1, we have A (z1,2s,...,2,)(t) €
C ([0,1]). Moreover, for (x1,z2,...,2,) € A, we have A(x1,2,...,2,) € A. So,
A(A) C A,and A : A — A. Then from Lemma 2.2, we get A is completely continuous.

By Lemma 1.5, the system (1.1) has at least one solution on [0, 1]. Theorem 2.2 is
thus proved. [l

Example 2.2. Consider the following system:

Dzxy (t) =t se'sinz (£), 0<t<1,

4 cos xy (t)
Dixzy (t) = , 0<t<1,
2 () V(7 4 sinzy (1)) -
t
Dius(t) = ¢ ot L 0<t<1,

t5 (4 + sin (21 4 72))

Dl (1) = ¢3St oo)
! 16 + cos (x3 + x4)’
14 . COS(U1+U2+U3+U4>
(220) D Ty (t) == t%et y 0<t S 1,

0<t<1,

1
23(0) = —1, 24(0) =3, D23 (1) =0,
7 1 5 11
n =YL -2 =L pia-o
4 3 23
BO=1 40 -1 20-2 @0-22 b0
We have:
1 4 9 7 14 1 3
n=>, 041—5, 042_§, CY3=Z, 04425, 045—§, 5121, 52257
11 10 2 1 VT
53237 54—3, (Ié:\/g, (13:5, ag:—l, (Ii’zi, ag:7,
czA‘:1 a4:£ a) =1 (15—% a5—§ a5:—2\/§.
1 47 2 3 Y 0 Y 1 37 2 77 3 5

For /61 = %7
solution on [0, 1

—_—

3. ULAM STABILITY

In this section, we study the Ulam-Hyers stability and the generalized Ulam-Hyers
stability of solutions for system (1.1).

Definition 3.1. The singular fractional system (1.1) is Ulam-Hyers stable if there
exists a real number p > 0, such that for all (€1, €s,...,€,) > 0, and for all solution
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(x1,22,...,2,) € S of

|Dxy (t) — fi(t, 21 ()] < e,
|D2xy (t) — fo (t, 21 (1), 22 (1))] < €2,

| D xy, (8) — fr (txy (B) 22 (8) .. y2n ()] <€, 0<t<1,

(3.1)

there exists a solution (y1, 42, ...,yn) € S satisfying

Dy (t) = fi(t,y (1)),
D2y (t) = fa (t,y1 (1) 92 (1)),

39 Dox, (t) = fr (tyr (8) 02 () 5.,y (t), 0<t<1, k=1,
(3.2) U

yl.(())—%a

yW(0)=af, k=23,...,n,j=01,... k-2,
D‘Sk—lyk(l)zo, k=23,....,nk—2<dp1<k—1,
E—1<ap<k, k=12 ...,n,

with
||($1—y17---a1'n_yn)HsSNEa e > 0.

Definition 3.2. The singular fractional system (1.1) is generalized Ulam-Hyers stable

if there exists ¢ € C' (RT,R*), ¢ (0) = 0, such that for all ¢ > 0, and for each solution
(x1,29,...,2,) € S of (3.1), there exists a solution (y1,y2,...,y,) € S of (3.2) with

H(xl_yla"'axn_yn)HSS¢(6)7 €>0.

Theorem 3.1. Letk—1<ap <k, k=1,2,....n,n e N—{0,1} and 0 < B, < 1.
Assume that:
(Hy) fr:(0,1]xR*¥ — R is continuous with lim,_o+ f (t,...) = 0o and t* fi. (¢,...)
is continuous on [0, 1] x RF;

P1A1+’a(1)|7 kzl,
Br Do k=2 |k
(i) [PDva| = pa 5 |T,| k=23 n
i=0 7

(Hs) all the assumptions of Theorem 2.1 are satisfied;
k
(H4) Zwé? <1, k=12,...,n.
j=1
Then, the singular fractional system (1.1) is generalized Ulam-Hyers stable.

Proof. Using (H;) we receive (2.19). Thus, for all solution (z1,xs,...,2,) € S of
(3.1), we can write

Pt k=1
33 < k—2 al?
!

J=0
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Then, by combining (Hs) with (3.3), we get
(3.4) |2kl < ||t D ]|

On the other hand, using (H3), there exists a solution (y1,ys,...,y,) € S satisfying
(3.2). Therefore, by (3.4) we can write:

2 = el < ||t% D (ar — )|

<[t (D% — fro (t, 21, .. ) — 9% (D% — fr (tyn, -2 ur))
+¢6k(fk(t7$1,--.,xk)“f%(tayl,.--7yk)ﬂLm

e (D%ay — fi (w0, wn)| [ (D™ = fe by, )|
+ ﬁ%(ﬁ(h$1w.w1%)—xﬁ(tyh.~7y0)wm

15% (D xp — fi (t, 21, ... 2n)) ||
MOy = fi (tyns - we)l oo

+ tﬁk (fk (t,xl,--.,l'k) - fk’ (t7y1a7yk:))”oo
From (2.12), (3.1) and (3.2), we obtain

IN

IN

k
k
[(zr — yi)ll o < e +j§_:le max {2k — i) | oo -

Then
It Mo < g = = - ;
1ax [[(ze = i)l < 7 uF T S W

Hence,
H(xl — Y-, Tp — Z/n)”s < HE.

Using (Hy), we get 11 > 0. Thus, system (1.1) is Ulam-Hyers stable. Taking ¢ (¢) = ue,
we get system (1.1) is generalized Ulam-Hyers stable. This ends the proof. 0

REFERENCES

[1] M. A. Abdellaoui, Z. Dahmani and N. Bedjaouil, New existence results for a coupled system on
nonlinear differential equations of arbitrary order, IINAA 6(2) (2015), 65-75.

[2] R.P. Agarwal and D. O’Regan, Ezistence theory for singular initial and boundary value problems:
a fized point approach, Appl. Anal. 81 (2002), 391-434.

[3] R. P. Agarwal, D. O’'Regan and S. Stanek, Positive solutions for Dirichlet problems of singular
nonlinear fractional differential equations, J. Math. Anal. Appl. 371 (2010), 57-68.

[4] C.Baiand J. Fang, The existence of a positive solution for a singular coupled system of nonlinear
fractional differential equations, Appl. Math. Comput. 150(3) (2004), 611-621.

[5] D. Baleanu, S. Z. Nazemi and S. Rezapour, The existence of positive solutions for a new coupled
system of multiterm singular fractional integrodifferential boundary value problems, Abstr. Appl.
Anal. (2013), Article ID 368659, 15 pages.



100

[6]

[20]
[21]
[22]
[23]
[24]

[25]

A. TAIEB AND Z. DAHMANI

Z. Dahmani and A. Taieb, Solvability of a coupled system of fractional differential equations
with periodic and antiperiodic boundary conditions, Pure and Applied Mathematics Letters 1
(2015), 29-36.

Z. Dahmani and A. Taieb, New existence and uniqueness results for high dimensional fractional
differential systems, Facta Univ. Ser. Math. Inform. 30(3) (2015), 281-293.

Z. Dahmani and A. Taieb, Solvability for high dimensional fractional differential systems with
high arbitrary orders, Journal of Advanced Scientific Research in Dynamical and Control Systems
7(4) (2015), 51-64.

Z. Dahmani and A. Taieb, A coupled system of fractional differential equations involving two
fractional orders, ROMAI J. 11(2) (2015), 141-177.

Z. Dahmani, A. Taieb and N. Bedjaoui, Solvability and stability for nonlinear fractional integro-
differential systems of high fractional orders, Facta Univ. Ser. Math. Inform. 31(3) (2016),
629-644.

M. Feckan, J. Wang and Y. Zhou, Ulam’s type stability of impulsive ordinary differential
equations, J. Math. Anal. Appl. 395 (2012), 258-264.

R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, River Edge, New
Jersey, 2000.

R. W. Ibrahim, Stability of a fractional differential equation, International Journal of Mathe-
matical, Computational, Physical and Quantum Engineering 7(3) (2013), 300-305.

R. W. Ibrahim, Ulam stability of boundary value oroblem, Kragujevac J. Math. 37(2) (2013),
287-297.

S. M. Jung and T. M. Rassias, Generalized Hyers-Ulam stability of Riccati differential equation,
Math. Inequal. Appl. 11 (2008), 777-782.

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differ-
ential Equations, North Holland Mathematics Studies 204, Elsevier, Amsterdam, 2006.

R. Li, Ezistence of solutions for nonlinear singular fractional differential equations with fractional
derivative condition, Adv. Difference Equ. 2014(292) (2014), 12 pages.

Z. Lin, W. Wei and J. R. Wang, Fxistence and stability resullts for impulsive integro-differential
equations, Ser. Math. Inform. 29(2) (2014), 119-130.

F. Mainardi, Fractional calculus: some basic problems in continum and statistical mechanics, in:
A. Carpinteri and F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics,
Springer, New York, 1997, 291-348.

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential
FEquations, Wiley, New York, 1993.

A. Taieb and Z. Dahmani, A coupled system of nonlinear differential equations involving m
nonlinear terms, Georgian Math. J. 23(3) (2016), 447-458.

A. Taieb and Z. Dahmani, The high order Lane-Emden fractional differential system: existence,
uniqueness and Ulam stabilities, Kragujevac J. Math. 40(2) (2016), 238-259.

A. Taieb and Z. Dahmani, A new problem of singular fractional differential equations, J. Dyn.
Syst. Geom. Theor. 14(2) (2016), 161-183.

A. Taieb and Z. Dahmani, On singular fractional differential systems and Ulam-Hyers stabilities,
International Journal of Modern Mathematical Sciences 14(3) (2016), 262-282.

A. Yang and W. Ge, Positive solutions for boundary value problems of n-dimension nonlinear
fractional differential system, Bound. Value Probl. (2008), Article ID 437453, 15 pages.



TRIANGULAR SYS. OF SINGULAR FRAC. DIFF. EQUS. 101

I.PAM, FacurLry ST,

UMAB MOSTAGANEM,

ALGERIA

Email address: taieb5555@yahoo. com

2LPAM, FacuLty SEI,

UMAB MOSTAGANEM,

ALGERIA

Email address: zzdahmani@yahoo.fr






KRAGUJEVAC JOURNAL OF MATHEMATICS
VOLUME 45(1) (2021), PAGEs 103-114.

ON M-PSEUDO BI-STARLIKE FUNCTIONS WITH RESPECT TO
SYMMETRIC POINTS ASSOCIATED TO SHELL-LIKE CURVES

G. MURUGUSUNDARAMOORTHY!, K. VIJAYA!, AND H. OZLEM GUNEY?*

ABSTRACT. In this paper we define a new subclass A—pseudo bi-starlike functions
with respect to symmetric points of ¥ related to shell-like curves connected with
Fibonacci numbers and determine the initial Taylor-Maclaurin coefficients |ag| and
las| for f € ?SL;\’Z(a,ﬁ(z)). Further we determine the Fekete-Szego result for the

function class ?SLQ’E(a,ﬁ(z)) and for special cases, corollaries are stated which
some of them are new and have not been studied so far.

1. INTRODUCTION

Let A denote the class of functions f which are analytic in the open unit disk
U={z: z€Cand|z| < 1}. Also, let § denote the class of functions in A which are
univalent in U and normalized by the conditions f(0) = f/(0) — 1 = 0 and are of the
form

(1.1) f(z)=z+ ianz”.

The Koebe one quarter theorem [4] ensures that the image of U under every univalent
function f € A contains a disk of radius i. Thus every univalent function f has an
inverse f~! satisfying

FHUIE) =2 (e Uy and f(7 7 w) = w (ful < rol), ) = 7)-

A function f € A is said to be bi-univalent in U if both f and f~! are univalent in
U. Let X denote the class of bi-univalent functions defined in the unit disk U. Since

Key words and phrases. Analytic functions, bi-univalent, shell-like curve, Fibonacci numbers,
starlike functions.
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f € ¥ has the Maclaurian series given by (1.1), a computation shows that its inverse
g = ! has the expansion

(1.2) g(w) = fHw) =w — axw® + (2a5 — az)w® + - - - .

One can see a short history and examples of functions in the class 3 in [17]. Several
authors have introduced and investigated subclasses of bi-univalent functions and
obtained bounds for the initial coefficients (see [2,3,11,17-19]).

An analytic function f is subordinate to an analytic function F' in U, written as
[ < F (2 € U), provided there is an analytic function w defined on U with w(0) =0
and |w(z)| < 1 satistying f(z) = F(w(2)). It follows from Schwarz Lemma that

f(z) < F(z) = f(0)=F(0) and f(U) Cc F(U), z€U

(for details see [4], [10]). We recall important subclasses of 8 in geometric function

theory such that if f € A and ZJ’:ES) < p(z) and 1+ ij,/;S) < p(z), where p(z) = %2,

then we say that f is starlike and convex, respectively. These functions form known
classes denoted by 8* and C, respectively. An interesting case when the function p is
convex but is not univalent was considered in [6]. Ma and Minda [9] unified various

subclasses of starlike and convex functions for which either of the quantity Z}NS) or

1+ ZJ{;;S) is subordinate to a more general superordinate function. Here superordinate
functions is an analytic function ¢ with positive real part in the unit disc U with
©(0) =1, ¢'(0) > 0 and it maps U onto a region starlike with respect to 1 and is
symmetric with respect to the real axis. The class S*(¢) and K (¢) denote Ma-Minda
starlike and Ma-Minda convex functions, respectively. If we restrict considerations
to the absorbing geometric shape of p(U), is parabolic domain or an elliptic domain
or in an interior of hyperbola, further the cases, when p(U) is an interior of the right
loop of the Lemniscate of Bernoulli or in leaf-like domain in recent past (see [6,15,16]
and also references cited therein) for the case of functions in A. The behavior of the
coefficients are unpredictable when the bi-univalency condition is imposed on the
function f € A in our present work we attempted to find initial coefficients for f € X
by considering the geometric shape of p(U) related to a shell-like curve connected
with Fibonacci numbers.

Recently, in [14], Sokot introduced the class 8L of shell-like functions as the set of
functions f € A which is described in the following definition.

Definition 1.1. The function f € A belongs to the class 8L if it satisfies the condition

that )
8 < p(2),

with p(z) = —=22 where 7 = (1 — v/5)/2 ~ —0.618.

1-72—7222"

It should be observed 8L is a subclass of the starlike functions 8*.
The function p is not univalent in U, but it is univalent in the disc |z| < (3—/5)/2 ~
0.38. For example, p(0) = p(—1/27) = 1 and p(eF?2ecos(t/9)) = \/5/5 and it may also
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be noticed that
I

[r] 1=z’
which shows that the number |7| divides [0, 1] such that it fulfils the golden section.

The image of the unit circle |z| = 1 under p is a curve described by the equation given
by

(102 — VB)? = (V5 — 20)(VBz — 1%,
which is translated and revolved trisectrix of Maclaurin. The curve p(re®) is a closed
curve without any loops for 0 < r < 79 = (3 —/5)/2 ~ 0.38. Forrg < r < 1, it
has a loop, and for r = 1, it has a vertical asymptote. Since 7 satisfies the equation
72 = 1 + 7, this expression can be used to obtain higher powers 7" as a linear
function of lower powers, which in turn can be decomposed all the way down to a
linear combination of 7 and 1. The resulting recurrence relationships yield Fibonacci
numbers u,,:
T = UpT + Up—1.
In [13] Raina and Sokét showed that

5(2) 1+ 7222 (t+ 1) t
)= = — -
p 1 — 72— 71222 t) 1 —t—1t2

_\}S <t+1> (1—(11—7)15 B 1—17t>

1 oo oo
- (t + t) D upt” =14 (tpo1 4 Upr) 72",

n=1 n=1

where

1_ n __ n 1_
N ks kS S 4 S
V5 2

This shows that the relevant connection of p with the sequence of Fibonacci numbers
Up, such that ug =0, uy = 1, Upro = up + uyyq for n =10,1,2,.... And they got

p(z) =1+ pnz"
n=1

=1+ (ug + ug)7z + (ug + us)7?2 + Z(un,g + Upo + Up_1 + up)T" 2"

n=3

=1+ 72 +37222 +47323 L 7 F 11P5 0 4

Let P(3), 0 < B < 1, denote the class of analytic functions p in U with p(0) = 1
and Re{p(z)} > B. Especially, we will use P instead of P(0).

Theorem 1.1 ([7]). The function p(z) = % belongs to the class P([) with
B =1/5/10 ~ 0.2236.

Now we give the following lemma which will use in proving.
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Lemma 1.1 ([12]). Let p € P with p(z) = 1 + c12 + c2* + -+, then |c,| < 2, for
n>1.

2. BI-UNIVALENT FUNCTION CLASS iPSLgE(a,ﬁ(z))

In this section, we introduce a new subclass of X associated with A—pseudo bi-
starlike functions with respect to symmetric points related to shell-like curves con-
nected with Fibonacci numbers and obtain the initial Taylor coefficients |as| and |as|
for the function class by subordination.

The class £,() of A-pseudo-starlike functions of order v (0 < v < 1) were intro-
duced and investigated by Babalola [1] whose geometric conditions satisfy

He showed that all pseudo-starlike functions are Bazilevic¢ of type (1 — %) order 7§
and univalent in open unit disk U. If A\ = 1, we have the class of starlike functions of
order 7, which in this context, are 1—pseudo-starlike functions of order v. Babalola
[1] remarked that though for A > 1, these classes of A—pseudo starlike functions clone
the analytic representation of starlike functions, it is not yet known the possibility of
any inclusion relations between them.

Motivated by the works of Dziok et al. in [7] on the class of convex and av—convex
functions related to a shell-like curve connected with Fibonacci numbers, Eker et al.
and [5] on bi-pseudo-starlike functions class and obtained the initial coefficients |as|
and |ag| with respect to other points in this paper we define the new class named as
A—pseudo bi-starlike functions with respect to symmetric points related to shell-like
curves connected with Fibonacci numbers as follows.

Definition 2.1. Let 0 < a <1 and A > 1 is real. A function f € ¥ of the form (1.1)
is said to be in the class ?SL?’E(Q, p(z)) if the following subordination hold:

2((=(S )T

(2.1) (1- O‘)f(z) ) + VD~ AT < p(z)
and
(2.2) (1 -y 2o @) 2wl @) S

g(w) —g(=w) —[g(w) — g(=w)]'
where 7 = (1 — v/5)/2 ~ —0.618 where z,w € U and g is given by (1.2).

Specializing the parameter A = 1 we have the following definitions, respectively.

Definition 2.2. A function f € 3 of the form (1.1) is said to be in the class
PSL. (v, p(2)) = MSL, (v, p(2)) if the following subordination hold:

22 2
)= f(=2)  [f(z) = f(=2))

(1-a) < p(z)
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and
2ug'(w) | 2wlg(w))

g(w) —g(=w) = [g(w) = g(-w)
where 7 = (1 — v/5)/2 ~ —0.618 where z,w € U and g is given by (1.2).
Definition 2.3. A function f € 3 of the form (1.1) is said to be in the class
?SL;E(O,ﬁ(z)) = 8L x(p(2)) if the following subordination hold:

22f'(2)
f(z) = f(==)

(1—-0a)

I < p(w),

< p(2)

and
2wg' (w)
g9(w) = g(-w)
where 7 = (1 — v/5)/2 & —0.618 where z,w € U and g is given by (1.2).

Definition 2.4. A function f € ¥ of the form (1.1) is said to be in the class
PSL.L(1,p(2)) = KLy x(p(2)) if the following subordination hold:

2(2(/f"(2)))

< p(w),

76— foay <P
and
Awlgw)y
f9w) — g(—w)] <P

where 7 = (1 — v/5)/2 ~ —0.618, where z,w € U and g is given by (1.2).

In the following theorem we determine the initial Taylor coefficients |ay| and |as| for
the function class ’J’SLQZ(Q, p(z)). Later we will reduce these bounds to other classes
for special cases as corollaries which are new and have not been studied sofar.

Theorem 2.1. Let f given by (1.1) be in the class TSL;\’Z(a,ﬁ(z)). Then

" 7]
(23) o2l < VAN(L + @)2 — {2)2(602 + 90 +5) — A+ 20+ 1}7
and
] < 2A|7| [2A(1 + @) — {(A — 1)(1 + 3a) — 6A(1 + )2} 7]
= BA= 1)1 +20) [4X2(1 + a)® — {2X2(602 + 90 + 5) — A + 20 + 1}7]°

Proof. Firstly, let p(z) = 14+ p1z+pe2%+- -+, and p < p. Then there exists an analytic
function u such that u(0) = 0;|u(z)| < 1 in U and p(z) = p(u(z)). Therefore, the

function .

is in the class P. It follows that

c1z 2\ 22 3\ 23
U(Z):T"— CQ—E ?—i‘ C3—01CQ+Z 5_}_

:1+012+0222+"'
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and

5 D1C12 1 2\ 2
) =1+ 255 1 g (2= F) ot P

n 1 _'_c:f ~+1 3 ~+c§’~ 3.
9 3 — C1C2 4 b1 201 C2 9 D2 3 p3 = :
And similarly, there exists an analytic function v such that v(0) = 0; [v(w)| < 1in U

and p(w) = p(v(w)). Therefore, the function

o) = 50

is in the class P. It follows that

:1+d1w—|—d2w2+

and
~ pldlw 1 d% ~ d% _ 9
plotu) =1+ P4 {5 (0= F ) o G
1 d3 . 1 d2 ~ d3 ~
+{2 <d3—d1d2+41>p1+2d1 <d2—21>p2+81p3}w3+--- .

Let f € TSng(a,ﬁ(z)) and g = f~1. Considering (2.1) and (2.2), we have

G 2EEENT
fR) = f(=2) T f(z) = f(=2)

= p(u(z))

and
2w(g' (w)) fa 2[(w(g'(w)))T*
g(w) —g(=w) = [g(w) — g(—w)]
where 7 = (1 — v/5)/2 ~ —0.618, z,w € U and g is given by (1.2). Since
gy et 2 )T
S P I [ I P ey
=14 2X\(1 + a)agz + 2A(A — 1)(1 + 3a)as + (3X — 1)(1 + 2a)ag)z® + - - -

;= ﬁ(U(lU)),

and

2u(g'(w)* 2wy @)
g(w) —g(=w) = [g(w) — g(—=w)]'
=1 — 2X\(1 + a)agw + {[2(A* + 2\ — 1) + 2a(3)\ + 3\ — 2)]a3

— BA=1)(1 +2a)az]}w® + - .

(1—-«a)
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Thus, we have

1+ 201+ @)agz + [2A(A — 1)(1 + 3a)as + (3A — 1)(1 + 2a)az)2® + - - -

Y T B R PR Vol
=1+ 9 +l2 (CQ 2>p1+4p2 z
1 3 1 2 3
(2.4) + l2 <C3 — e+ 2) P+ 56 <02 - C;) P2 + 681133] 2

and

(2.5) 1 -=2X1+ a)asw

+ {202 +2X — 1) + 2a(3X* + 3X — 2)]a; — (3X — 1)(1 + 2a)as]w? + . ..

D1 d d3 d?
B T ) )

2 2 4
i\ . 1 d? d3 _
[ <d3—d1d2+4>p1+2d1<d2 2)]?24‘81]?3] +oee
It follows from (2.4) and (2.5) that
(2.6) 201 + a)ag = %,
2 1 c i,
(2.7) 2AA = 1)(1+3a)a; + (BA —1)(1 + 20)asg = sle—5 )t Z?)T
and
le

(2.8) —2X\(1+ a)as PR
(2.9) [2(A% +2X — 1) 4+ 2a(3X% + 3\ — 2)]a3 — (3X — 1)(1 + 2a)as

1 d3 d3

=35 <d2 - 2) T+ 4137'
From (2.6) and (2.8), we have

Cc1 = —d1
and
(cl+di)

2.1 2= 11 ;2
(2.10) 2T o0 tar
Hence,

jag) < =T
201+ a)
Now, by summing (2.7) and (2.9), we obtain

1
— = (cj+d)T+

(2.11) [2202 A~ 1) + 4a(3\2 — 1)] af = ;(CQ—I—dg)T i

1
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Substituting (2.10) in (2.11), we have

(212)  4[40(1+a)* = {2\*(60” + 9 +5) — A + 20 + 1}7| a3 = (ca + d)7>.
Therefore, by Lemma (1.1) we obtain

7]

(2.13) |az| < .
VAN + @)2 — {2)2(602 + 9a +5) — A+ 20+ 1}7

It is clear that

i 7l 7]
2AL+ )" JIN2(1 + a)2 — {202(602 + 9 +5) — A +2a + 1}7
7]

CD2(1 )2 — {202(602 + 9 +5) — A+ 2+ 1}

So, we obtain the inequality (2.3).
Now, so as to find the bound on |as|, let’s subtract from (2.7) and (2.9). So, we
find

(214) 23\~ D)1+ 20)a5 — 23N~ 1)(1 +20)a3 = 1 (2 — )7
Hence, we get
2(3X — 1)(1 + 2a)|as| < 2|7] +2(3X — 1)(1 + 2a)]|az|*.
Then, in view of (2.13), we obtain
27| 2A(L + @) — {(A — 1)(1 + 3a) — 6A(L + a)?}7]
3A—=1)(142a) [AN2(1 + a)? — {2XA2(6a® + 9a + 5) — A + 2a + 1}7]

Taking A = 1, in the above theorem, we have the following the initial Taylor
coefficients |as| and |as| for the function classes MS8Lg »(a, p(2)).

las| <
(

Corollary 2.1. Let f given by (1.1) be in the class M8L; x(cv, p(2)). Then
7]
VAL + )2 —2(60% + 100 + 5)r

|az| <

and
2(1 + «)?7] (1 — 37)

1+ 2a) [4(1 + a)? — 2(6a% + 10« + 5)7]
Further by taking a = 0 and a = 1 in Corollary 2.1, we have the following the

initial Taylor coefficients |ag| and |as| for the function classes 8L7y(,p(2)) and
KLsx (o, p(2)), respectively.

las| <
(

Corollary 2.2. Let f given by (1.1) be in the class SL; (o, p(z)). Then
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and
|I7|(1 —37)

2—-05T7
Corollary 2.3. Let f given by (1.1) be in the class KL x(a,p(2)). Then

las| <

7|

V16 — 427

4”7‘(1 —37)
az| < ———=.
| 3| B 3(8—21/7)

las| <

and

3. FEKETE-SZEGO INEQUALITY FOR THE FUNCTION CLASS PSL2 s (a,p(2))

Fekete and Szego [8] introduced the generalized functional |az — pua3|, where pu is
some real number. Due to Zaprawa [20], in the following theorem we determine the
Fekete-Szego functional for f € TSLQ,E(a,ﬁ(z)).

Theorem 3.1. Let f given by (1.1) be in the class TSLQZ(a,ﬁ(z)) and pn € R. Then
we have

i i
R ST
A[h(p)l, MWMZ4BA—DU+2®’

where
h( ) - (1 B :u)TQ
W= N1+ a2 — (202602 + 9a +5) — A+ 2a + 1}17]

Proof. From (2.12) and (2.14) we obtain

as — jia;
(1 — p)(co + do)7* 7(c2 — dy)
[AA2(1+ a)? — {2X\2(6a2 + 9 + 5) — A+ 2a+ 1}7] 43X —1)(1 + 2a)

"1

_ (1= p)r? T
B (4 [AA2(1 + a)? — {2X\2(6a2 +9a + 5) — A+ 2a + 1}7]4(3X — 1)(1 + 2a)> “

(1—p7’ T
- (4 [4X2(1 4+ a)? — {2X2(602 + 9o + 5) — A+ 2a+ 1}7]4(3N — 1)(1 + 2a)> da-

So, we have

, 7] 7]
(3D‘“_m%_(MM+4@A—UG+2®>Q+<Mm_4@A_Du+2®>@’

where

(1—pr’
[AA2(1+ a)? — {2X\2(6a% + 9a + 5) — A+ 2 + 1}7]

h(w) = §
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Then, by taking modulus of (3.1), we conclude that

7 7
|ag — paj| < (3A = 1)1 +2a)° 0= IAt)l = 4(?7\ |— 1)(1+2a)’
Alh(p). M) 2 far T 2a)

Taking p = 1, we have the following corollary.
Corollary 3.1. If f € (PSL;\’Z(a,ﬁ(z)), then
7]
(BA—1)(1 4 2a)
If we can take the parameter A\ = 1 in Theorem 3.1, we can state the following.

Corollary 3.2. Let f given by (1.1) be in the class MS8L s.(c, p(z)) and pn € R. Then
we have

las — a3| <

|7] 7]
o 0 h(p)] < o5
= T
4|h h >_ U1
Bl )| > s,
where
(1 —p)r?

h(p) = .
W) = T+ a) = 2{60% + 10a + 537
Further by taking &« = 0 and @ = 1 in the above corollary, we have the following the
Fekete-Szegd inequalities for the function classes 8L 5y(a, p(2)) and KL x(a, p(2)),
respectively.

Corollary 3.3. Let f given by (1.1) be in the class 8L s (o, p(2)) and p € R. Then
we have

T T
o o< <D
lag — paz| < 7|
4lh()],  [h(p)| > Y
where a ) )
h =
W)= SE =51

Corollary 3.4. Let f given by (1.1) be in the class KLsx (o, p(z)) and pn € R. Then

we have ] ]
T T
ag — puad] < .
Al ho) = 5
where
(1 —p)r?

M) = s ain
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HERMITE-HADAMARD TYPE INEQUALITIES FOR OPERATOR
GEOMETRICALLY CONVEX FUNCTIONS II

A. TAGHAVI, V. DARVISH, AND T. AZIMI ROUSHAN

ABSTRACT. In this paper, we prove some Hermite-Hadamard type inequalities for
operator geometrically convex functions for non-commutative operators.

1. INTRODUCTION AND PRELIMINARIES

Let B(H) stand for C*-algebra of all bounded linear operators on a complex Hilbert
space H with inner product (-,-). An operator A € B(H) is strictly positive and
write A > 0 if (Az,z) > 0 for all z € H. Let B(H)™ stand for all strictly positive
operators on B(H).

Let A be a self-adjoint operator in B(H). The Gelfand map establishes a x-
isometrically isomorphism ® between the set C(Sp(A)) of all continuous functions
defined on the spectrum of A, denoted Sp(A), and the C*-algebra C*(A) generated
by A and the identity operator 15 on H as follows.

For any f,g € C(Sp(A))) and any «, 8 € C we have:

(af + fg) = a®(f) + 2(g);

®(fg) = (f)®(g) and O(f) — B(f)"
20l = 1] = supyesyon (D]
O(fo) = 1y and O(f1) = A, where fo(t) =1 and fi(t) = ¢, for t € Sp(A).
With this notation we define f(A) = ®(f) for all f € C(Sp(A)), and we call it the
continuous functional calculus for a self-adjoint operator A. If A is a self-adjoint
operator and both f and g are real valued functions on Sp(A) then the following

important property holds: f(t) > g(t) for any ¢t € Sp(A) implies that f(A) > g(A),

Key words and phrases. Operator geometrically convex function, Hermite-Hadamard inequality.
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in the operator order of B(H), see [12]. A real valued continuous function f: R — R
is said to be convex (concave) if

fAa+ (1 =X)b) < (Z)Af(a) + (1= A)f(b),

for a,b € R and A € [0,1]. The following Hermite-Hadamard inequality holds for any
convex function f defined on R

(b—a)f (“b) /f \do

f(a) + f(b)
2

The author of [8, Remark 1.9.3] gave the following refinement of Hermite-Hadamard
inequalities for convex functions

(2) 308 2)

<(b—a) , fora,beR.

= bia/abf(x)dx
<1 (5 () L a0
L)1)

A real valued continuous function is operator convex if

FAA+ (L =X)B) < Af(A) + (1= N f(B),

for self-adjoint operator A, B € B(H) and X € [0, 1]. In [2] Dragomir investigated the
operator version of the Hermite-Hadamard inequality for operator convex functions.
Let f : R — R be an operator convex function on the interval I then, for any
self-adjoint operators A and B with spectra in I, the following inequalities hold

f<A+B

) < 2/12f<t,4+ (1—t)B)dt

SV (9)
F((1=t)A+tB)dt
[f<A+B> )+f(B)1

5
o fA)+ f(B)
5

IN

For the first inequality in above, see [10].
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A continuous function f : I € RT — R* (R denoted positive real numbers) is
said to be geometrically convex function (or multiplicatively convex function) if

F(@b' ™) < fla)* f(b)',

for a,b € I and X € [0, 1].

The author of [7, p. 158] showed that every polynomial P(x) with non-negative
coefficients is a geometrically convex function on [0, 00). More generally, every real
analytic function f(x) = >°° ¢,z with non-negative coefficients is geometrically
convex function on (0, R) where R denotes the radius of convergence. Also, see [9,11].
In [10], the following inequalities were obtained for a geometrically convex function

F(Vab) </ (Flatbh) f(atti)
< exp ( 1 /ab log f(t) dt)

logb — loga t

VF(Vab).f(a).f(b)
f(a)f(b).

In this paper, we prove some Hermite-Hadamard inequalities for operator geometri-
cally convex functions. Moreover, in the final section, we present some examples and
remarks.

<
<

2. HERMITE-HADAMARD INEQUALITIES FOR GEOMETRICALLY CONVEX
FuNcTIONS

In this section, we introduce the concept of operator geometrically convex function
for positive operators and prove the Hermite-Hadamard type inequalities for this
function.

Proposition 2.1. Let A,B € B(H)™ such that Sp(A),Sp(B) C I, and t € [0, 1].
Then Sp(At:B) C I, where AfB = A%(A_%BA_%)tA% is t-geometric mean.

Proof. Let I = [m, M] for some positive real numbers m, M with m < M. Since
Sp(A),Sp(B) C I it is equivalent to mly < A < M1y and mly < B < M1y. So,
by virtue of the fact that if a, b be self-adjoint operators in C*-algebra A which a < b

and ¢ € A, then c*ac < c*bc, and also by using the operator monotonicity property
of the function f(z) = 2' on (0,00) for t € [0,1], we get the result. O

Now, by applying Proposition 2.1, we present the following definition.

Definition 2.1. A continuous function f : I € Rt — R* is said to be operator
geometrically convex if

f(ALB) < f(A)Rf(B),
for A, B € B(H)™ such that Sp(A),Sp(B) C I and ¢ € [0, 1].
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We need the following lemmas for proving our theorems.
Lemma 2.1 ([4,5]). Let A,B € B(H)*" and let t,s,u € R. Then
(AﬂtB)uS(AﬁuB) = Au(l—s)t—i-suB-

Lemma 2.2 ([4]). Let A, B, C and D be operators in B(H)™" and let t € R. Then,
we have

AﬁtB S CﬁtDa
forA< C and B< D.

Lemma 2.3. Let A,B € B(H)™. If f : I C Rt — R is a continuous function,
then

/ F(A4B)4f (Aby_,B)di < (/ f(A4B) dt) (/ F(Ab,,B, )dt)
such that Sp(A),Sp(B) C 1.

. . 1, .
Proof. Since the function ¢z is operator concave, we can write

((/ FlAti, du) (/ s ([ 54 >du);>

(by change of variable v =1 — u)

1
2

1

_ (/fAjjv dv) (/fAﬁu du)(/fAttv dv>_21>2
_ /01 (/Olf(AﬁvB)dv) f(A8,B (/fAtiv dv) du)

-1/ 1 ( lf(AiivB)dv>2 (F(Af1-uB))? ((F(Af1-uB))® f(ALB)(f(Af1-uB))? )
0 0

1

< (Fa-B)} ([ ranmi) N du) 2

(by the operator Jensen inequality)

N[

ol

i

\_/
=

> ([ sanman) R ((ras-uB) 7 rAnB) (A1)

1

[un

x (f(Af1-.B) 2</fAtiv dv) du

~( / fgB)) /0 (f(At1_u D))

< (FpruB)) b ( [ 1 fas,B)io) N

1
2

NI

((sae1-uB) 7 s8R 1 (A1) 7 )



HERMITE-HADAMARD TYPE INEQUALITY FOR OPERATOR G-CONVEX 119

(by change of variable u =1 —v)

- (/01 f(A]jl_uB)du> N /Ol(f(Ath_uB))

< (B ([ By

So, we obtain

((/ FlAti, du) (/ s ([ san-man) )

—1

1
2

[NIE

((f(Am_uB»?f(AﬁuB><f<Aﬁ1_uB>) )

[SIES

1 z rl —1 —1 _71
> ([ reaneapin) © [ @nnB) ((fAB) 7 8B (AnB) )
< (B e [ f(A-,B)du)
Multiplying both side of the above inequality by ( Ja f (Ajjl,uB)du)% we obtain

([ seanman)e ([ reanmya) > [ f@n)f (a6 Bd D

Before giving our theorems in this section, we mention the following remark.

Remark 2.1. Let p (z) = 2" and ¢ (x) = 2° on [1,00), where 0 < ¢t < s. If f (A) < f (B)
then Sp (f (A)i1 (f(B))f(A )21> C [ ) By functional calculus, we have

-1

p(1@Fr@@F) sa(f@F 1@ 7).

So,
S

(r? r@ ™) < (r rmsw?)

Now, we are ready to prove Hermite-Hadamard type inequality for operator geo-
metrically convex functions.

Theorem 2.1. Let f be an operator geometrically convex function. Then, we have
1 1

(2.1) flAsB) < | fAuB)dt < [ f(Azf(B)dt.

Moreover, if f(A) < f(B), then we have

02 [ anBde< [ fAnS B <
for A,B € B(H)™"

((f(A)Ef(B)) + f(B)),

DN | —
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Proof. Let f be a geometrically convex function. Then we have

f(AtB) = f((At:B) 4 (Ai+B))  (by Lemma 2.1)
< f(At;B)tf (At _.B) (f is operator geometrically convex).

Taking integral of the both sides of the above inequalities on [0, 1], we obtain
1
f(A8B) < [ F(AB)8f (At iB) dt
1 1
< ( | raun) dt) : ( | r(at.B) dt) (by Lemma 2.3)
0 0
1
= [ ranp)a
1
< [ Fuf (B
0
For the case f(A) < f(B), by applying Remark 2.1 for s = 1, we have

(P FBFAY ) < (£ B A4
By integrating the above inequality over ¢ € [0, %], we obtain
[P @ s w < (e )

Multiplying both sides of the above inequality by f (A)%, we have

It follows that

(23) |7 rnsm) <

On the other hand, by considering Remark 2.1 for s = 1, we have

-

f(A)f(B)
-

(FA 2 FBIF(A) ) < fA)HFBYF(A) .
Integrating the above inequality over ¢ € [1, 1], we get

f; G ampray ) ae< (s s ),

[t (F ) s pa < 1P

~
IN
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It follows that

(2.4 sy < 2

2

From inequalities (2.3) and (2.4) we obtain

1

/Of(AtithtJr/ Atitht</ At f(B dt+/ AVt f(B)dt

< JAUB) | 1(B)

It follows that
[ rasmyde < [ nsB) < J(FARFB) + 1) a

By making use of inequalities (2.1) and (2.2), we have the following result.

Corollary 2.1. Let f be an operator geometrically convex function. Then, if f(A) <
f(B) we have

fasB) < [ (AnB)
for A,B € B(H)*™"

1

<5 ((FARFB) + [(B)),

Theorem 2.2. Let f be an operator geometrically convex function. Then, we have

FALB) < [ f (ABB) R (At B)dt < f(A)EA(B),

for A,B € B(H)*"

Proof. We can write

f(ARB) = f ((A4:B)§(Af1-B)) (by Lemma 2.1)

< f(A4:B)if(At1_«B) (f is operator geometrically convex)
< (f(A4f(B) ¢ (f(A)fr-ef(B)) (by Lemma 2.2)
= f(A)Rf(B).

So, we obtain

f(ALB) < f(AnB)if (A B) < f(A)Lf(B).

Integrating the above inequality over ¢ € [0, 1] we obtain the desired result. O

We divide the interval [0,1] to the interval [v,1 — v] when v € [0, 3) and to the
interval [1 — v, v] when v € (3,1]. The we have the following inequalities.

Theorem 2.3. Let A, B € B(H)™ such that f(A) < f(B). Then, we have
(a) forv e l0,3)

(2.5) f(ALf(B) <

1— 2 /Vlv fALf(B)dt < f(A)t_, f(B);
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(b) forv e (3,1]
26)  FABLAB) < g [ FARABI < (A F(B)
Proof. Let v € [0, 3), then by Remark 2.1 we have
(ﬂm%ﬂmﬂm%Ys(< ﬂmf )7)
< (F7sB)W7)
forv <t<1l-—wvand A, B € B(H)*" such that Sp(A),Sp(B) C I.
By integrating the above inequality over ¢t € [v, 1 — v| we obtain

/V1 C(FA)F B AT dt</1 C(HA)F B F(A)T) e
g[f%ﬂm?ﬂMﬂm?f”w
It follows that
1 1NV 1-v -1 —1\t
(7 B T) < o [ (r T I ) a
< (FAT1BF(H7)
Multiplying the both sides of the above inequality by f (A)% gives us
f(A)Lf(B A)gef(B)dt < f(A)ti- f(B).

Also, we know that

-V

1—v

lim f(A)t, f(B) = lim

1—v
1 i =5 [ SRS

= [(A)2f(B).

Similarily, for v € (%, 1], by the same proof as above, we get

f(A)h- f(B) <

v

<o | FARSB < f(A8(B)

By definition of geometrically convex function and (2.5) we have

fmm>_1gtf”ﬂM£Mt

<o [ s
_f(myﬂ)
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for v € [0,1). We should mention here that

1-v

J (A5,B) dt = liny (45, B) = [(ALB).

lim
y—>% 1—-2vJu

On the other hand, by the definition of geometrically convex function and (2.6) we
have

1 v
fAB) < o [ fauB)dt

= 21/1— 1 IVV f(A)zf(B)dt
< f(A)Lf(B),

for v € (3,1].
3. EXAMPLES AND REMARKS

In this section we give some examples of the results that obtained in the previous
section.

Remark 3.1. For positive A, B € B(H), Ando proved in [1] that if ¥ is a positive
linear map, then we have

U(ALB) < W(A}U(B).
The above inequality shows that we can find some examples for Definition 2.1 when
f is linear.

Ezample 3.1. Tt is easy to check that the function f(¢) = t~! is operator geometrically
convex for operators in B(H)*™.

Definition 3.1. Let ¢ be a map on C*-algebra B(H). We say that ¢ is 2-positive if

A B o(A)  ¢(B)
B C > 0, then we have Lb(B*) 3(C)

In [6], M. Lin gave an example of a 2-positive map over contraction operators (i.e.,
|Al| < 1). He proved that

(3.1) $(t)=(1—1)"

is 2-positive.

> 0.

the 2 x 2 operator matrix [

Ezample 3.2. Let A and B be two contraction operators in B(H)™*. Then it is easy
to check AfB is also a contraction and positive. Also, we know the 2 x 2 operator

matrix
A AfB
AtB B

is semidefinite positive. Hence, by (3.1) we obtain

[ (I=A)~"  (I- (AﬁB))ll
(I - (AzB))~™"  (I-B)"!
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is semidefinite positive.
On the other hand, by Ando’s characterization of the geometric mean if X is a
Hermitian matrix and
A X
lX B} 20,
then X < AfB. So we conclude that (I — (A$B))~! < (I — A)~'4(I — B)~!. Therefore,

the function ¢(t) = (1 —¢)~! is operator geometrically convex.

Also, Lin proved that the function
141

ot) =1

is 2-positive over contractions. By the same argument as Example 3.2 we can say the
above function is operator geometrically convex too.

Example 3.3. In the proof of [3, Theorem 4.12], by applying Holder-McCarthy inequal-
ity the authors showed the following inequalities

(AtoBr,x) = (A7 BAT)" Az, Abe)
< ((AT BAT ) Aiz, Atz)" (At A%x>1‘0‘
= (Az, )" *(Bx, z)*
= (Azx, x)4,(Bx, x),

for x € H and « € [0,1]. By taking the supremum over unit vector z, we obtain that
f(z) = ||=|| is geometrically convex function for usual operator norms.

By the above example and Corollary 2.1, when ||A|| < ||B|| we have

! 1
AL B] S[J 1Az Blldt < S (/AN BI +11B]),

for A, B € B(H)**.
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A NOTE ON PROBABILITY CONVERGENCE DEFINED BY
UNBOUNDED MODULUS FUNCTION AND ag-STATISTICAL
CONVERGENCE

SUMIT SOM

ABSTRACT. In this paper we define f — af-statistical convergence of order 7 in
probability and f — afB-strong p-Cesaro summability of order v in probability for a
sequence of random variables under unbounded modulus function and examine the
relation between these two concepts. We show by an example that this notion of
f—ap-statistical convergence of order «y in probability is stronger than «8-statistical
convergence of order v in probability [9].

1. INTRODUCTION

The idea of convergence of a real sequence has been extended to statistical con-
vergence by Fast [10] and Steinhaus [19] and later on reintroduced by Schoenberg
[17] independently and is based on the notion of asymptotic density of the subset of
natural numbers. However, the first idea of statistical convergence (by different name)
was given by Zygmund [20] in the first edition of his monograph published in Warsaw
in 1935. Later on it was further investigated from the sequence space point of view
and linked with summability theorem by Fridy [11], Connor [5], Salat [16], Das et. al.
6], Fridy and Orhan [12].

In [3,4] a different direction was given to the study of statistical convergence where
the notion of statistical convergence of order v (0 < v < 1) was introduced by using
the notion of natural density of order 7 (where n is replaced by n” in the denominator
in the definition of natural density). It was observed in [3], that the behavior of this
new convergence was not exactly parallel to that of statistical convergence and some

Key words and phrases. af-statistical convergence, f-statistical convergence, f — af-statistical
convergence of order v in probability, f — af-strong p-Cesaro summability of order 7 in probability.
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basic properties were obtained. More results on this convergence can be seen from
[18].

Recently the idea of statistical convergence of order v was further extended to
af-statistical convergence of order v in [2] as follows: Let o = {ay, }nen, B = {fn}nen
be two non-decreasing sequences of positive real numbers satisfying the conditions,
a, < B, for all n € N; and (5, — ;) — o0 as n — oo. This pair of sequence
we denoted by («a, ). Then a sequence {x,},en of real numbers is said to be af-
statistically convergent of order v (where 0 < v < 1) to a real number x if for each
e >0, the set K = {n € N: |z, — 2| > ¢} has af-natural density zero, i.e.,

1

i a0 € o, 8 o o] 2 ] =0

S’Y
and we write S]5 — limz, = x or z, —% 2. af-statistical convergence of order 7 is
more general than statistical convergence of order ~, lacunary statistical convergence
of order v and A statistical convergence of order v if we take

(i) o, = 1 and B, = n, for all n € N;
(ii) ap = (ky—1 + 1) and 8, = k,, for all r € N, where {k,},enufoy is a lacunary
sequence;
(ili) o = (n — A + 1) and B, = n, for all n € N, respectively.

On the other hand, in probability theory, a new type of convergence called statistical
convergence in probability was introduced in [13], as follows: Let {X,}.en be a
sequence of random variables where each X, is defined on the same sample space S
(for each n) with respect to a given class of events A and a given probability function
P : A — R. Then the sequence {X,},en is said to be statistically convergent in
probability to a random variable X (where X : § — R) if for any £,6 > 0

1
lim —|{k <n:P(X,— X|>e)>5} =0.

n—oon,

In this case we write X, L5, X. The class of all sequences of random variables which
are statistically convergent in probability is denoted by P.S. One can also see [7,8,14]
for related works.

In the year 2014, the concept of f-statistical convergence was introduced by Aizpuru
et al. [1] just by replacing [{k < n: |z —c| > e} and by f({k < n:|zp—c| > e}
and ﬁ, respectively, where f is an unbounded modulus function. The notion of a
modulus function was introduced by Nakano [15]. We recall that a modulus function
f is a function from [0, 00) to [0, 00) such that

(i) f(x) =0 if and only if z = 0;

(ii) f(z+y) < f(z) + f(y) for all z,y > 0;
(iii) f is increasing and f is continuous from the right at 0.



STRONGER VERSION OF af-STATISTICAL CONVERGENCE IN PROBABILITY 129

The f-density of K C N is denoted by d¢(K) = lim,,_, ! (ui?([;)'). In case of f-density,
the relation df(N\ K) = 1 — d¢(K) holds only when d;(K) = 0. In other all cases
the relation can’t hold.

In a natural way in this paper we combine the approches of the above mentioned
papers and introduce new and more general methods, namely, f — «af-statistical
convergence of order « in probability, f — af-strong p-Cesaro summability of order
~ in probability for a sequence of random variables. We mainly investigate their
relationship and also make some observations about these classes. In the way we show
that the notion of f — af-statistical convergence of order ~ in probability is stronger
than af-statistical convergence of order 7 in probability (see [9]). It is important to
note that the method of proofs and in particular examples are not analogous to the
real case.Throughout the paper f will denote unbounded modulus function.

2. f — af-STATISTICAL CONVERGENCE OF ORDER 7 IN PROBABILITY

We first introduce the definition of f — a/3-statistical convergence of order v for a
sequence of real numbers as follows.

Definition 2.1. Let {x, },en be a sequence of real numbers and f be an unbounded
modulus function. The sequence {z, },en is said to be f — af-statistically convergent
of order 7 to a real number z if for any € > 0
1

lim F({k € lom, B + |ze — x| = €}]) = 0.

nﬁoof((ﬁn — Oy + 1)7>
The class of all real sequences which are f — af-statistically convergent of order 7 is
denoted by Sgﬁf

Now we like to introduce the definition of f — a-statistical convergence of order ~
in probability for a sequence of random variables as follows.

Definition 2.2. Let (S, A, P) be a probability space and {X,, },en be a sequence of
random variables where each X, is defined on the same sample space S (for each n)
with respect to a given class of events A and a given probability function P : A — R.
Then the sequence {X,, }nen is said to be f — af5-statistically convergent of order
(where 0 < v < 1) in probability to a random variable X (where X : S — R) if for
any £,0 > 0

1

i gy 0k € [0 8] P(X = X] 2 ) 2 a)) =0

or equivalently

: 1 1 _ —
i oy k€ o, Bl 1= (X = X] <) 2 3}) =0
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In this case we write Sgﬁf —lim P(|X,,—X| >¢)=0or S;’ﬁf —limP(|X,,—X| <¢e)=1
i
or just X,, —2 X. The class of all sequences of random variables which are f — af-

statistically convergent of order ~ in probability is denoted simply by PSgbf :

In Definition 2.2, if we take f(x) = = then {X,, },en is said to be af-statistically
convergent of order « in probability to a random variable X. So, f — af-statistical
convergence of order v in probability is a generalization of a-statistical convergence
of order v in probability for a sequence of random variables.

To show that this is indeed more stronger notion than af-statistical convergence
of order ~ in probability, we will now give an example of a sequence of random
variables which is «a/f-statistically convergent of order « in probability but is not
f — af-statistically convergent of order « in probability.

Ezxample 2.1. Let a sequence of random variables { X, },,en be defined by
{—1,1} with probability 3, if n =m? for some m € N,
X € ${0,1} with probability P(X, =0) = (1 ) and P(X, =1) = &, if n # m’
for any m € N.
Let 0 < e,0 < 1. Then, we have,
P(|X,—0|>¢)=1, ifn=m?for somem €N,

and
1
P(|X, 0| >¢)=—, ifn#m?forany m € N.
n

27
Let 1 <7 <1, a,=1, Bn =n?, for all n € N and f(z) = ¢ for all z > 0. Then
we have the inequality

L d
ke L,n’]: P(1X, =0 2 ) 2 6}| = (” n

5 —- | 7 0asn— oo,
n<y - n

PSS}
where d is a finite positive integer. So, X,, —= 0, where % <~v<1. But

1
li k€ lay, Bn] : P(| Xy — 0| >¢) >6}) =1.
i e 4k € o B £ (X~ 02 ) 2 3}
This shows that {X,, },en is not f — af-statistically convergent of order v in prob-

ability to 0.

S’va
Theorem 2.1. If a sequence of constants x, -7 x, then regarding a constant as

a random variable having one point distribution at that point, we may also write

f
PS))
T, ——

Proof. Proof is straight forward, so omitted. O
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The following example shows that in general the converse of Theorem 2.1 is not
true and also shows that there is a sequence {X,, },en of random variables which is
f — af-statistically convergent in probability to a random variable X but it is not
f — af-statistically convergent of order v in probability for 0 < v < 1.

Ezxample 2.2. Let ¢ be a rational number between v, and 7. Let the probability
density function of X, be given by

£(2) 1, where 0 < x <1,
n\T) = 1
0, otherwise, if n = [m<] for some m € N,

nxnfl

fn(x) = n

0, otherwise, if n # [mz¢] for any m € N.
Now let 0 < ¢,6 < 1. Then

where 0 < z < 2,

P(lX,—2|>)=1, ifn= [m%] for some m € N,
P(|X, —2| >¢) = (1 - ;) , ifn# [m%] for any m € N.

Now let a,, = 1, 3, = n?, f(z) = /z for all z > 0. Consequently, we have the
inequality

2c

im [ < im L (k€ [1,n?] s P(Xe — 2 > 2) > 6}))

n—00 n2n - n—)oof(n%/l)
and
. 1 . n% +1 d
Ji o O € 1] PO, 20222 )] < Ji L

where d is a fixed finite positive integer. This shows that { X, },en is f—aS-statistically
convergent of order 7, in probability to 2 but is not f — af-statistically convergent
of order v; in probability to 2 whenever 7; < 7, and this is not the usual f — af-

statistical convergence of order v of real numbers. So, the converse of Theorem 2.1
Lf

PS
is not true. Also by taking v = 1, we see that X, ——» 2 but {X, }nen is not
f — af-statistically convergent of order v in probability to 2 for 0 < v < 1.
v, f 9
Theorem 2.2 (Elementary properties). (i) If X, —2 X and X,, —5 Y,
then P{X =Y} =1, where f and g are unbounded modulus functions and

0<~y< 1.
g f 2, f
(ii) If X, —2= X and X, —2= Y, then P{X =Y} = 1 for any v, y2 where
0<mv,7 <1

(ili) Let 0 < 71 < v < 1. Then Psg};f - PSZ%’f and this inclusion is strict
whenever 7, < ¥a.
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Proof. (i) If possible let P{X =Y} # 1. Then, there exists two positive real numbers
e and 6 such that P(|X — Y| >¢) =6 > 0. Then we have

11111 f(ﬁn — Oy + 1)
n—>oof((ﬁn —a, + ]_)7)

- Iy ({1 o £ (%112 5) = 3

. 1 ‘ c 5
Sii%f((ﬁn—anu)v)f ( {k € [an, Bl : P(|Xk—X| > 2) > Q}D

which is impossible because the left hand limit is not 0 whereas the right hand limit
is 0. So, P{X =Y} =1.

(ii) Proof is straightforward and so is omitted.

(iii) The first part is obvious. The inclusion is proper as can be seen from Exam-
ple 2.2. 0

Remark 2.1. In Theorem 2 [3] it was observed that mJ" C m{® and this inclusion
was shown to be strict for at least those 7,7, for which there is a £ € N such that
T < % < 7. But Example 2.2 shows that the inequality is strict whenever v, < 5.

Corollary 2.1. Let f and g be two unbounded modulus functions and 0 < v < 1.
Then PS}{ = PS]Y.

Ps%f
Theorem 2.3. If X,, —2 X (where f is an unbounded modulus function), then
PSY
X, —% X.
S’va

Proof. As X,, —25 X so for any ¢,8 > 0,

. 1

lim FH{E € [an, Ba] : P(| Xy — X| =€) = 6}]) = 0.

Let pil > (. Then there exists p € N such that for all n > p,
S{E € lom, Bn] - P(IX = X[ 2 €) 2 0}]) < pllf((ﬂn —ap +1)7)
= [({k € [an, Bu] : P(| X — X[ =€) = 5})

<1f<(ﬁn_an+1>7+---+ (ﬁn_anH)W)
h h Y4

=f({k € [an, Bn] : P(| X — X| =) >0}|) < f <<5n —ap + 1)V>

4!
=k € [an, Bn] : P(| X — X| >e) >} < (Bn —zn+ 1)
1
= lim 1 [{k € [om, Ba] : P(| X — X| >¢) >0} =0.

n—00 (ﬁn —a, + 1)’7
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PSlB
This shows that X,, —— X. ]

From Theorem 2.3 and Example 2.1 we see that this notion of f — af-statistical
convergence of order v in probability is stronger than a/-statistical convergence of
order v in probability (see [9]).

Theorem 2.4. Let f be an unbounded modulus function and 0 < v < 1. Let («, ) and
(o, 8') are two pairs of sequences of positive real numbers such that [o!,, 5] C [an, Bl
for alln € N and f((Bn — an + 1)) < ef((8, — o, + 1)7) for some e > 0. Then we
have Psg’ﬁf C PS;’}Q.

Proof. Proof is straightforward and so is omitted. 0

But if the condition of the Theorem 2.4 is violated, then limit may not be unique
for two different (v, §)’s. We now give an example to show this.

Example 2.3. Let o = {(2n)'}, 5 ={(2n+1)!} and o/ = {(2n+ 1)!}, B’ = {(2n+2)!}
and f(z) = /x for all z > 0.
Let us define a sequence of random variables { X}, },en by,

{—1,1} with probability P(X, = —1) =4, P(Xy =1) = (1—;),
if (2n)! <k <(2n+1),

{~2,2} with probability P(X, = —2) = L, P(X, =2) = (1— 1),
if (2n+ 1) <k < (2n+2)!,

{-3,3} with probability P(X; = —3) = P(X} = 3),

if k= (2n)! and k= (2n+ 1)!.

X €

Let 0 <&, <1and 0 <+ < 1. Then for the sequence («, [3)

1
P(Xe=122) =7, i @n)!<k<(@n+1)

and
P(| X, —1>e)=1, if(2n+ 1)<k <(2n+2)!
and
P(|Xy—1>¢)=1, ifk=2n) and k= (2n+1)!
implies
nh—>nolof<<<2n ) i eI 1)7)f(\{k; e[2n)l,( 2n+1)l]: P(|Xx—1] > ¢) > d}|) =0.
pont

So, X,, —25 1.

Similarly, it can be shown that for the sequence o = {(2n + 1)!},

Ps”7,
g ={2n+2)}, X, —5 2.
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Definition 2.3. Let (S, A, P) be a probability space and {X,},en be a sequence
of random variables where each X, is defined on the same sample space S (for
each n) with respect to a given class of events A and a given probability function
P : A = R. A sequence of random variables {X,}, . is said to be f — af-strong
p-Cesaro summable of order v (where 0 < v < 1 and p > 0 is any fixed positive real
number) in probability to a random variable X if for any & > 0,

1 Py _
Jingof((g o, + 1)w)k€[§67l}f({P(|Xk - X|>¢)}r)=0.

V.2, f
In this case we write X,, ——— X. The class of all sequences of random variables

which are f —af-strong p-Cesaro summable of order 7 in probability is denoted simply
by PW.

Theorem 2.5. Let f be an unbounded modulus function such that f(x) < x and

v1.p,f v2,p,.f

flaz) = af(z), forallz >0 anda € R. If X, —2— X and X,, —2— Y (where
p>1), then P{X =Y} =1 for any 1,7, where 0 < ~yy,72 < 1.

Proof. Proof is straight forward, so omitted. O
Theorem 2.6. Let f and g be unbounded modulus functions satisfying the conditions
WP f PWYP9

stated in Theorem 2.5. If X, —2— X and X, —=2— Y (where p > 1), then
P{X=Y)=1.

Proof. If possible let P{X =Y} # 1. Then there exists two positive real numbers ¢
and 0 such that P(|]X — Y| >¢) =9 > 0. Then we have

= Y HP(X—Y]|zap < ¥ f((P(|Xk—X\2;))p>

ke[an Bn] ke[anvﬁn]

20 Y f((P(|Xk_Y|2;)>p)

ke[anﬁn}

e R eI, 3 a((P(e-n=3)))

<Y Ln T ((P(x-x123))).

which is impossible because the left hand limit is not 0 whereas the right hand limit
is 0. So, P{IX =Y} =1. O

Corollary 2.2. Let f and g be two unbounded modulus functions satisfying the con-
ditions stated in Theorem 2.5 and 0 <~y <1, p > 1. Then PW””C PWW'Q.
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Theorem 2.7. (i) Let 0 < vy < 7o < 1. Then PW™ C PW23™ . This
inclusion is strict whenever v, < a.
(ii) Let 0 <y <1 and 0 < p < q<oo. Then ngg*f C PW%p’f.

Proof. (i) The first part of this theorem is straightforward and so is omitted. For
the second part we will give an example to show that there is a sequence of random
variables { X}, .y which is f —af-strong p-Cesaro summable of order 7, in probability
to a random variable X but is not f — af-strong p-Cesaro summable of order +; in
probability whenever v, < 7,.

Let 2¢ be a rational number between ; and ;. We consider a sequence of random
variables :

{—1,1} with probability 3, if n = [m%] for some m € N,

X, € <{0,1} with probability P(X,, =0) =1— ,\.7—1774 and P(X, =1) = (717747

if n # [me] for any m € N,
Then we have, for 0 < e < 1
P(X,—0]>¢)=1, ifn= [m%] for some m € N
and

P(lX,—0[>¢)= if n # [m%] for any m € N.

1
Let a,, = 1 and 3, = n? and f(x) = y/z for all x > 0. So, we have the inequality
.on*—1 , 1
lim < lim— Y f{P(|Xr—0]>¢)}?)

n—oo 71 n—oomnY1
n n ke1,n?]

and

lim — Y F({P(Xe—0]=)}) < lim [”gc+1+ 1 <1+1+...+1>],

n—00 1 7Y2 — n—oo 2 2 2 2 4
2 i) n n 1 2 n

v2.p,f
This shows that X,, —=— 0 but { X, }nen is not f — af-strong p-Cesaro summable
of order 7, in probability to 0.
(ii) Proof is straightforward and so is omitted. O

Theorem 2.8. Let [ be an unbounded modulus function such that f(x) < x for all
x>0and 0 <y <7 <1. Then PW;g’p’f C Psggf.

715P,f
Proof. Let X,, —=2— X. Then for every ¢ > 0,
) 1
lim >, fUP(Xe—X[=¢e)}") =0.

n_mof((ﬁn —Qy + 1)71>k€[an,ﬂn]
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Then
Y fP(Xe = X[ =€) > Y. fUP(Xy—X[=¢)P)

k€[own,Bn)] ké€lan,Bn]
P(IX—X|>e)>6

= Y fUP(Xk—X[=€)") > f(6") f(I{k € [om, Ba] : P(| Xk — X| > €) > 5}])
ke[omn,Bn]

1
= (B —on t 1>71)ke[§5n]f (IXk — X[ > )P

» 1
SR AR (e

This shows that

FURk € om, Ba] - P([X) — X| =€) = 6}]).

1
li k€ la,, 8, : P(| X, —X|>¢e)>0}) =
dim gy (0 € [ Bl PXG = X 2 ) 2 0]
This completes the proof. O

But the converse of Theorem 2.8 is not generally true as can be seen from the
following example.

Ezxample 2.4. Let a sequence of random variables { X, },en be defined by,

{—1,1} with probability %, if n = m™ for some m € N,
X, € < {0,1} with probability P(X,, =0) = P(X,=1)=
if n #m™ for any m € N.
Let 0 <e < 1and f(z) = /z for all z > 0. Then
P(|X,—0]>¢)=1, if n=m™ for some m € N,

~ v

and

P(|X,—0]>¢) = if n # m™ for any m € N.

1
%7
psYf
Let a,, = 1 and 3, = n%. It can be easily seen that X, —285 0 for each 0 < v <1
LetH:{nEN' n#mmforanymEN} Then

— 2 fUP(X =01z e)}") =— > f{P(Xi—0[=¢)}")

7 i) " kel
ke H
1
s LS rPIx -0/ = 9p)
M kel n?]
ke H
_ 1 1.1 > Z
W ke[lnz]\/_ Tpemz W= Vk S

keH k¢ H
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(since Z"ﬁ > /n for n > 2). So, X,, is not f — af-strong p-Cesaro summable of
k=1
order v in probability to 0 for 0 <~ < 1.
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THE RECIPROCAL COMPLEMENTARY WIENER NUMBER OF
GRAPH OPERATIONS

R. NASIRI, A. NAKHAEI, AND A. R. SHOJAEIFARD

ABSTRACT. The reciprocal complementary Wiener number of a connected graph G
is defined as 31, 1cv(e m, where D is the diameter of G and dg(x,y)
is the distance between vertices z and y. In this work, we study the reciprocal
complementary Wiener number of various graph operations such as join, Cartesian
product, composition, strong product, disjunction, symmetric difference, corona
product, splice and link of graphs.

1. INTRODUCTION

Throughout this work, all graphs considered are simple, connected and finite. Let
G = (V(G),E(G)) be a connected graph. For x,y € V(G), the distance dg(x,y)
between the vertices x and y is equal to the length of a shortest path that connects
x and y. For a vertex x in a connected nontrivial graph G, the eccentricity eq(z) of
x is the greatest geodesic distance between = and any other vertex of G. Also, the
diameter D = D(G) of the graph G is defined as the maximum eccentricity of any
vertex in GG. In other words,

eq(r) = max{dg(z,y)ly € V(G)}, D = D(G)=max{eq(z)lr € V(G)}.

In mathematical chemistry, a molecular graph (or chemical graph) is a labeled graph
whose vertices correspond to the atoms of the compound and edges correspond to
chemical bonds. It is natural to study mathematical properties of these graph models
to find chemico-physical properties of the molecule under consideration.

Let G be a n-vertex graph with the vertex-set V(G) = {v1, v9, ..., v,} and diameter
D. The reciprocal complementary distance matriv RCD = [rc¢;;] of G is an n x n

Key words and phrases. Reciprocal complementary Wiener number, distance, graph operations.
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matrix such that rc;; = 7 if i # j, and 0 otherwise (see [7]). Ivanciuc et al.

1
D+1fdg(v¢,vj
[5,6] introduced the reciprocal complementary Wiener number of the graph G as:

(1.1) RCW(G) = nX_: Xn: reg= 2, D+1 —1dG('Uian).

This invariant has been successfully applied in the structure-property modeling of the
molar hear capacity, standard Gibbs energy of formation and vaporization enthalpy
of 134 alkanes Cg-C1q (see [5]).

Zhou et al. [14] gave various bounds for this quantity and Nordhaus-Gaddum-
type result. Moreover, the trees with the smallest, the second smallest and the third
smallest RCW , and the unicyclic and bicyclic graphs with the smallest and the second
smallest RCW are characterized (see [2]). Zhu et al. [15] obtained the unique tree
with 4 < D < n — 3 and minimum reciprocal complementary Wiener number. They
also specified the non-caterpillars with the smallest, the second smallest and the third
smallest RCW-value. In [10], some bounds for the reciprocal complementary Wiener
index of line graphs are presented.

Up to now, various topological indices have been introduced and used in the
QSAR/QSPR studies. The Wiener index (or Wiener number) is the oldest and
is one of the most studied topological quantities, both from a theoretical point of view
and applications. This concept is defined as the sum of distances over all unordered
vertex pairs in a graph G (see [12]). This invariant obtained wide attention and
numerous results have been worked out, see the survey [13]. In special classes of
graphs, such as trees, unicyclic and bicyclic graphs, this index has been studied in
[3,9,11]. After it, a large number of other distance-based topological indices have
been proposed and considered in the chemical and mathematico-chemical literature.

Briickler et al. [1] introduced a general distance-based topological index, called
@-index. The @Q-index is defined as

(1.2) Q(G)=>_ f(k)D(G, k),

k>0

where f is a function such that f(0) = 0, and D(G, k) is the number of vertex
pairs at distance k. @ is an additive function of increments associated with pairs
of vertices of GG. The Wiener, hyper-Wiener, Harary, and reciprocal complementary
Wiener indices are all special cases of the (Q-index. More precisely, by choosing
f(k) =k, %2 + g,% and % + ’;—2 - %, the @Q-index is equal to the Wiener, hyper-
Wiener, Harary, and Tratch-Stankevich-Zefirov indices, respectively. In other special
case, if consider f(k) = ﬁ, then the @-index will be equal to the reciprocal

complementary Wiener number. In other words, it holds

D D(G,k)
(1.3) RCW(G) = k; ik
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In this research, we study the reciprocal complementary Wiener number of various
graph operations like join, Cartesian product, composition, strong product, disjunc-
tion, symmetric difference, corona product, splice and link of graphs.

2. MAIN RESULTS

Throughout this paper, we consider graphs G; with n; vertices, m; edges and the
diameter D;, i = 1,2. Also, note that whenever we say xy ¢ F, it is assumed that
x # y. Moreover, we use standard notations of graph theory. The path, cycle, star,
wheel and complete graphs with n vertices are denoted by P,, C,,, S,, W,, and K,,
respectively.

By applying relation (1.3), we compute RCW of some special graphs in the following
example.

Example 2.1. Let P,, K,,, S,, and W,, denote a path graph, complete graph, star graph
and wheel graph with n vertices, respectively. Then

RCW(P,) =n 1,
ROW(K,) = ;n(n _,
RCW(S,) = ;(n Sy

6, n =4,

ROW(Wn) = { (n—1)(n—2), n>5.

N

We begin by computing the reciprocal complementary Wiener number of join of
graphs.

2.1. Join. The join G + G of graphs G; and G5 with disjoint vertex sets V; and
V5 is the graph union G; U G, together with all the edges joining V; and V,. In the
following lemma, we determine the reciprocal complementary Wiener number of join
of graphs with respect to their numbers of vertices and edges.

Theorem 2.1. Let G; and G5 be two nq- and ny-vertex graphs, respectively.

(i) If Gy and Gy are complete graphs, then
1
RCW(Gl + Gz) = 5(711 + n2)<n1 + ng — 1)
(i) If {G1,Ga} # {K,,, Kp,}, then

1
RCW(Gl + GQ) = 5(711(77,1 + ngo — 1) +n2(n2 — 1) —mi — m2).
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Proof. Suppose x and y are two vertices of Gy + G,. By definition of the join of two
graphs, one can easily see that

0, z=y,
dey+c, (T, y) = 1, @y € Eyoray € By or (z €V and y € Va),
2, otherwise.

Assume that G; and G, are complete graphs, then G; + Gy = K,,, 1,. Therefore,
RCW (Gy + Gg) = RCW (K 1n,) = ("1+"2> (see Example 2.1). This completes the

2
proof of part (i). To prove the second part, suppose that at least one of graphs G or

G+ is not complete. So, we have D = D(G + G2) = 2, and
1

etV 3 — der+a (2,Y)

-y 1 > 1

{zy}cna 3~ dei+6,(2,Y) {z,y}CVa 3 —daytey(2,y)

1
+
m;ﬁ 3— dG1+G2 (:L", y)
yeVs
1 1

- ¥ £y

ryek; 3= dG1+G2 (I’ y) zy¢ Eq 3 — dGl-‘er (l’, y)
1 1

+ 2

ry€ b2 3 - dG1+G2 (ZL‘, y) zy¢ Eo 3 - dG1+G2 (I, y)

1
+
gc;/l 3 — dG1+G2 (IL‘, y)
yeV2

1
:§<n1(n1+n2—1)+n2(n2—1)—ml—mg). d

Ezample 2.2. We know that K, + K, = K, (in particular, K1+ K,, 1 = K1,,_1 = S,,)
is the complete bipartite graph. From Theorem 2.1 we obtain explicit formulas for
the reciprocal complementary Wiener number of the these graphs
ROW(K,.,) — ;(r(r Fs—1)+s(s—1), RCW(S,) = ;m _1

2.2. Cartesian product. The Cartesian product G1LJ Gy of graphs GG; and G4 has
the vertex set Vi x V5 and (x,y)(u,v) is an edge of G100 G, if (x = v and yv € Es),
or (xu € By and y = v). For example, the ladder graph L,, can be obtained as the
Cartesian product of two path graphs P, and P,.

Now, we study the reciprocal complementary Wiener number of the Cartesian
product of graphs. To do this, we need the following well-known relation related to
distance properties of the Cartesian product of two graphs (see [4])

(2'1) dGlm G2 ((Ia y)v (u7 U)) = dGl ('T’ U’) + dGz (y7 U)'
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Theorem 2.2. Let G and Gg be two non-complete graphs. Then

nims + NoMmy 2myms
D, + D, D, +Dy,—1

+ (ng + 4my) <RCW(G’1) _ ml) .

RC’W(Glﬂ GQ) <

+ (ny + 2my) <ROW(G2) _ ng)

D,
Proof. Applying (2.1), we have D = D(G10G3) = Dy + D,. Therefore,
1
(e nSviane) D+ 1= daoe((@y). (uv))
— > v
(@@ oV (@Day) D1t D2
yvEFy
n 3 1
(g @) tovieng,) D1+ D+ 1 —day(y,v)
yv¢ Ea
T > 1
(@) Cv(Gi0ay) D11 D2
zuckEq
n 3 1
() unCv(cingy) D1+ D2+ 1 —da (7, u)
zu¢ By
+ Z ;
(ey)wtevciney D1+ D2 — 1
zu€F1,yveFy
1
+ >
{(z,y),(u,0)} SV (G10Ga) D1+ Dy — dg, (y,v)
zu€E1,yv¢ Es
1
+
2 Dy + Dy — dg, (z, u)

{(x,y),(u,v)}QV(Gllj GQ)
zug E1,yvEE>

1
Dl +D2+ 1 _dG1<x7u) _dGz(yav)

+

{(x,y),(u,v)}gV(Gllj GQ)
zug E1,yv¢ B

Nn1Mo mo nammy
< mme ROW(Gy) — ) _fam1_
D1+D2+n1( ( 2) D2 D1+D2
my 2mims
e (ROW(Gl) - D1> Dy + Dy —1
mo my
+2my (RCW(G2) - ) 1 2m, (RCW(Gl) _ )
D2 Dl

1
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n1Mso + NaoMy 2m1m2 meo
pr— 2 -
D+ Dy DD, —1mt2m) <RCW(G?> D2>
Y (ng + 4my) <ROW(G1) - ”;) . 0
1
Corollary 2.1. Let Gy = K,,, and Gy 2 K,,, be two graphs. Then
n1ma + Ny (7121) 2(7121)7712 ny mo
RCW (GO = 2 - —=
(DG) =——7p, T —p, + (2) (RCW(GQ) D2>
ny
+
yz%:EQ D2 + 2 — dGQ(y, U)
nims + ng (nzl) 2(7121)7712 n Mo
2 —— .
<t mt 2)) (RCW(GQ) D2>

FExample 2.3. Consider the graph whose vertices are the n-tuples by, bo, ..., b, with b; €
{0,1}, let two vertices be adjacent if the corresponding tuples differ in precisely one
place. Such a graph is called a hypercube of dimension n and denoted by @,,. It is well-
known fact that the hypercube @),, can be written in the form @), = K> Ky - - - [ K.

n times
For n = 3, by Corollary 2.1 we have
RCW(Qg) - KQD K2|:] K2 = KQD C4 - 14
Corollary 2.2. Let Ly, be the ladder graph, then
"1
RCW(Ly,) =4n —1—2 Z —.
il
Proof.
2(n—1 2(n—1 1
_2An=Dtn  2n 1)+2(n—2)+2 3 —
n n— Yy E(Pp) n+1-—ap, (y7 U)
2 ! D(P,, k)
=——42 142 ———=.
n tent i 162::2 n+1—k
On the other hand, it is clear that D(P,,k) =n —k, for k =1,...,n — 1. Therefore,
2 o —k
RCW(Lgy) = ——+2 142 ——
(L2n) ~+n+ 14 kz:;wrl_k
=4n—-1-2 Z 1 O
il
Corollary 2.3. Let G; = K,,, and G = K,,, be two complete graphs. Then
RCW(G1D Gg) = Al (271177/2 — Ny — ?”LQ).
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2.3. Composition. The composition G1]|G3| (also known as the graph lexzicographic
product) of simple undirected graphs G; and G5 is the graph with the vertex set
V(G41[Gs]) = Vi x V4 and any two vertices (z,y) and (u,v) are adjacent if and only if
zu € Ey or (x =wu and yv € Ey).

Let G; and G5 be graphs on ny > 1 and ngy vertices, respectively. It follows from the
definition that the distance between two distinct vertices (z,y) and (u,v) of G1[G]
is given by

0, r=uand y=wv,
r=wu and yv € Ey,
d x,y), (u,v)) =
G1[Gz](( y) ( )) 2’ 2z = u and Y ¢ Eg,
dg,(x,u), z # u.
Note that if G; = Kj then G1[G3] = G;. So, in the following lemma we study the
reciprocal complementary Wiener number of composition G1[Gs] for case nq > 1.

Theorem 2.3. Let G and Go be two graphs on ny > 1 and ny vertices, respectively.

(i) If Gy is a non-complete graph, then

ny () —m
RCW (G4[Gs]) = ”bmz +— (%) : 2) +n2RCW (GY).
1 1

(i) If Gh = K,,, and G5 is a non-complete graph, then

RCW (G [Ga)) = ”1;”2 +m ((’;2) - m2> + % (7;1>

(iii) If G1 and G are complete graphs, then

ROW (G1[Ga]) = (n1 + n2) (”;)

Proof. By the definition of the composition of two graphs one can see that,
1, G = K, and Gy, = K,,,
D = D(G41]|Gs]) =12, G2 K,, and G, 2 K,,,,
Dy = D(Gy), Gy 2 K,,.

Suppose GG; and G, are non-complete graphs, then

1
RCW (G1[Go]) = )

(@) wo)cvGic)) D +1—dae,) ((90, y), (u, U))

1 1

B 2 D, 2 Dy —1
{(@),(@)}CV(G1[Ga)) 71 {(zy),(z0)}CV(G1[Ga)) Tt
YyvE Ko Yy Eo
1
+
Z Dy +1—dg, (z,u)

{(2,9),(u,v)}CV(G1[G])
rH#u
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mm i ((3) =ma)
= RCW (G
D, T p -1 ™ (Gh),
which completes part (i).
The proof is completed by a similar argument as proof of the first part. [l

2.4. Disjunction. The disjunction G1 N\ Gy of graphs Gy and G, is the graph with
vertex set Vi x V, and (z,y) is adjacent with (u,v) whenever zu € Ey or yv € Es.
Let G; and G5 be graphs on n; > 1 and ny > 1 vertices, respectively. Clearly, the

distance between two vertices (z,y) and (u,v) of G; A G is given by

0, r=wandy=wv,

da,nGy ((:zr,y), (u,v)) =11, zu€ FE;oryv € Ey,

2, otherwise.
Note that if n; = 1 for some i € {1,2}, then G; A G2 = G/, where n} = 3 —i. So, we
determine the reciprocal complementary Wiener number of disjunction G; A G4 for
cases n; > 1 and ny > 1.

Theorem 2.4. Let G; and G5 be graphs on ny > 1 and ny > 1 vertices, respectively.
(i) If Gy and Gy are complete graphs, then

B 1 Ny 1 ny\ (N2
RCW (G ANGs) = 5 [m<2> +n2<2> + <2><2>] .
(11) [f {Gl, GQ} # {Kn17Kn2}7 then
1
RCW (G N Gs) = 3 (n%n% + 2mymg — mon? — mini — nan) )

Proof. From definition of disjunction it is clear that if at least one of graphs GG; and
G+ is not complete, then D = D(G; A Gy) = 2, otherwise D = 1. To prove part (ii),
assume that {G1, Gy} # {K,,, K, }. Hence, we can write

1
(@l Eviaincs) D + 1= deyney ((@.9). (u,))
1 1
= > 5T > 5
{(@9),(u,0)} SV (G1AG2) {(@9),(u,0)} SV (G1AG2)
zu€Fy YyvE Ko
1
- > -+ > 1
{(@,y),(u,0)} SV (G1AG2) {(@,y),(z,0)} SV (G1AG2)
zu€F1,yveFy yv¢ Eo
+ > 1+ > 1
{(mvy)ﬂ(uay)}gV(Gl/\GQ) {($7y)7(u7v)}gV(Gl/\G2)
zug Eq zug¢ E1,yv¢ Eo

2.2 2 2
(n1n2 + 2mimg — mani — min; — nan) .

N | —
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A similar argument as part (ii), shows that

1 No ny ny\ (N2
RCW (K, N K,,) = 5 [7”“(2) +n2<2> + <2><2>] .
This completes the proof. O

2.5. Strong product. The strong product of graphs GG; and G5, denoted by G1 KRG,
is the graph with vertex set V; x V5 and (z,y)(u,v) is an edge whenever (x = u and
yv € Ey), or (y =v and zu € Ey), or (xu € Ey and yv € Ey).

In the following result, we give a basic property about the strong product of graphs.
Lemma 2.1 ([4]). Let G; and Gy be two connected graphs, z,u € V(G1) and y,v €
V(G3). Then dg,ma, ((x, ), (u, v)) = max {dg, (z,u),dg,(y,v)} .

Corollary 2.4. Let G1RGy be the strong product of connected graphs G1 and Gs.

Then D = max{Dy, Dy}, where D, Dy and Dy are the diameter of G1RGs, G1 and
Gy, respectively.

Theorem 2.5. Let GiRG4y be the strong product of connected graphs G1 and Gs.
Then

1
RCW(Gi1RG,) < 5(2m1m2 + nimy + ngmy) + (n1 + 2my) (RCW(GQ) — 22)
2

+ (19 + 2m) (RCW(GI) - ”gi) 12 KT;) - m1] K@ - mQ] .

The equality is satisfied if and only if G or Gy is a complete graph.

Proof.
1

(e eviBa D+ 1 = dage ((@,9), (u,0))
1

S VT >

(arenev@Re) P (oeoicviaRe) P+ 1 = de(y:v)

RCW(Gl &Gg) =

1

YyvE€Fo Y Es
+ Z i + Z 1
len V@B P (e wicveiRey P T1 = da(@w)
Tu€ky zug Ev
+ Z l + Z 1
(e eve®e P (@ worcveRe) P+ 1—de(y,v)
zucl ,y’UGEQ $u€E1,yv¢E2
1
+ >
(ew) ) iovaRa,) P +1—da (7, u)
zu%El,y’UEEQ
1
+ > .
(o) (u)CV(ea Ry P+ 1 —max{dg, (z,u), dg, (y,v)}

zug E1,yv¢ By
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By (1.1), we have
1

Dy +1—dg,(y,v)

{(xvy)’(xrv)}gV(Gl |ZG2)
yo¢ B
1

+ )
Dy +1—dg,(y,v)
),(z0) V(L KRG 2 G2\Y;

{(z.y),(= y)v}e_EQ( 1XG2) 1
1 nime

+ ;
Dy +1—dg,(y,v) D,

{(xvy)’(va)}gV(Gl IXGZ)
yogEo

hence,

> ! < 5 !

{(x,y),(x,v)}QV(GﬂZG&) D + 1 - dG2 (y7 U) a {(xyy)7($vv)}gV(G1&G2) D2 + 1 - dG2 (y’ U)

yvg Eo Yo i Eo
mo
=ny (RCW(Gy) — ) ,
L (REw (Gr) -
Similarly, we can check that
1 my
2 < ny <RCW(Gl) - ) ,
() (wioveRay D+ 1= da(z,u) D,
zug B
1

mo
< 9m, (RCW(GQ) - > ,
(v Rey) D +1 = de(y,v) D,

zu€E1,yv¢ B

1 ma
(e )V (@Rey D 1~ da (@, u) Dy
$U¢E1,yUEE2
Also, we have
1
2 D+ 1 = max {der, (2,0, der, (5, 0)} = !
{(2.),(u0)}CV(G1KG) G\ %%, %G, {(.9),(u,) }CV(G1KG)
zug E1,yv¢ Eo <D zug E1,yv¢ Eo
o ni . no _
On the other hand, it is easy to see that
Z l . nimeo Z l . nomq
{(z,9),(z,0)}CV(G1 K Go) D D {(2,y),(u,y)} SV (G1KG2) D D
yve o Tuc kb

Z 1 . 2m1m2
{(xvy)7(u7v)}gV(G1|ZG2) D D
zu€F1,yve o
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Therefore,
1
ROW (G1R®Gy) < — (2mymy + nimy + nymy) + (n1 + 2m) (RCW(GQ) _ g”)
2
+ (712 + 2m2) (RCW(Gl) - W) + 2 l<n1> — m1] [(T@) — m2‘| .
Dy 2 2

O

Using similar arguments as in the proof of Theorem 2.5, one can prove the following
result.

Lemma 2.2. Let K, be a complete graph on r vertices and G be a graph with n
vertices, m edges and diameter d. Then

RCW (GRK,) = cll [rm + dr? <RCW(G) - T;) + (n+2m) (g)] :

FExample 2.4. By the definition of the composition and strong product of two graphs

one can see that, G[K,] = GRK,,. The open fence graph is the composition (or strong

product) of path P, and K. So, from Theorem 2.3 (i) (or Lemma 2.2), we have
ROW (P,[K>]) = ROW (PygK,) = Ll Yan—4, n>3.

As an application, in the following result, we obtain the reciprocal complementary
Wiener number of the closed fence graph C),RK.

Lemma 2.3. Let C,, be a cycle graph on n vertices. Then

4n —2n+8, 2|mn,

[
N

=
=

RCW(C,RK,) =

3

1 o
4 -4 — 2 .
nk§:1k+n—1’ In

Proof. We first obtain the reciprocal complementary Wiener number of a cycle graph
C,, on n vertices. Regarding the structure of the cycle C,,, it can easily be concluded
that if n is even then D(C,, k) =n, k=1,2,...,5 — 1 and D(C,,5) = 5. On the
other hand, if n is odd then D(C,, k) = n, k = 1,2,..., "T’l Hence, by applying
relation (1.3), we have

Finally, the proof is completed using Lemma 2.2. 0J
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2.6. Symmetric difference. The symmetric difference Gy @ G2 of graphs G; and
Go is the graph with vertex set V; x V4 and (z,y) is adjacent with (u,v) whenever
xu € Ey or yv € Ey but not both. Note that if n; = 1 for some i € {1,2}, then
GGy = Gn;, where n, = 3 —i.

In the following lemma, we compute the symmetric difference of two graphs with
respect to their numbers of vertices and edges.

Theorem 2.6. Let Gy and G5 be two graphs on ny > 1 and ny > 1 vertices, respec-
tively. Then

1
RCW (G, & Gq) = 3 (4m1m2 +ning — miny — mon: — nmg) )

Proof. By [8, Lemma 4], we have

0, r=wuandy=uv,
dG a6, ((x,y), (u, v)) =11, xu € E; or yv € FEy, but not both,
2, otherwise.

Hence, by applying these relations, we get D = D(G; & G5) = 2. So,

1
RCW (G, ® Gq) = >
(GauiEviaeay D+ 1 deec, ((2.9), (u.0))
1
— > S > 1
{(z,9),(z,0)} SV (G16G2) {(z.y),(z,0)} SV (G16G?2)
yv€Fo yvé¢ Eo
1
+ > ~+ > 1
{(@,9),(u,y)}CV(G18G2) {(z,9),(u,y)} SV (G10G?2)
ru€ k) zu¢ By
1
+ > =+ > 1
{(@,9),(u,0)} SV (G18G2) {(@,9),(u,0)} SV (G18G2)
zu€E1,yv¢ Es Tu€FE1,yvEFs
1
+ > -+ > 1
{(@,9),(u,0)} SV (G18G2) {(@,9),(u,0)} SV (G10G2)
zug E1,yvEFE> zug E1,yv¢ B
1
= 5 <4m1m2 + n%ng — mlng — mgn% — nan) . ]

2.7. Corona product. Let Vi = {uj,ug,...,uy, } and Vo = {v1,va,...,v,,} be the
vertex sets of given graphs GG; and G, respectively. The corona product of GG; and G5
is denoted by GG o G5 and defined as the graph obtained by taking n; copies of G,
and joining each vertex of the i*" copy with vertex u; of V4, i = 1,2,...,n;. Denote
by G% the i*" copy of G joined to the vertex u; of Gy, and let Vi = {v;1, via, - . ., Viny }
i=1,2,... n.
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Theorem 2.7. Let Gy and G5 be two graphs on ny > 1 and ny > 1 vertices, respec-
tively. Then

mimy i [() —ma

2
RCW(Gre Ga) < (nz +1)?ROW(G1) + 5 =55 b

Proof. From definition of the corona product of graphs, it is easy to check that

dGloGQ (uia up) = dGl (uia up)a

dayoa, (Uis Upg) = da,y (ui, up) + 1,

0, i=pand j=gq,

1 i =pand v;v, € Ey
d o Vij, U = 7 - |
G1 Gz( J Pq) 27 i:pand ’Uqu¢E27

dGl (ui> up) + 27 [ 7& b-

So, we can see that D = D(G; o Gy) = Dy + 2. Hence,

1
RCW(Gl @) GQ) e Z
(o} V(GroGy) P 17 daioc, (7, 9)
_ Z 1
{z,y}CW1 D+1- dGlOGQ (iL‘, y)
> ox !
+
=1 {Uijyviq}QVQi D +1- dG10G2 (vija viq)
+
i=1p=1g=1 D+1-— dGIOG2 (ui7 qu)
ni—1 np no  no 1

+ Z Z ZZD—‘—l_dGlOGQ(vZ’j’/qu)'

i=1 p=i+1j=1q=1

Consider now for convenience:

1
S — |
{x,%CVl D+1- dGloGQ ($a y)
DS 1
S, — |
= oy mycvy P 1= daioc, (vig, vig)
Sy = 7
SooS D+ 1 —deyoc, (Wi vpg)
ni—1 ng ny no 1

i=1 p=i+1j=1q=1 D +1—dgoc, (Uij7 qu)
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So, we have

1
S, =
{m%:C\/l D+1- dGloGz ((E, y)
. 1
eagevs D143 —da,(z,y)
< RCW(Gl),

n 1
Sy = Z Z D + 1 —dgyoa, (Vij, ig)

1=1 {5,054} CV3

ni 1 ni 1
=> X +2 2
=1 {Uijwiq}g\/zi Dl + 2 i=1 {vij,viq}QV; Dl + 1
vjvg € F2 vjvg¢Ea
e m[(7) =
- Dy +2 D +1 7
- i=1p=1g=1 D +1 — dgyo0a, (ui, qu)
Sy Sy 1
= +
i=1g=1 Di+2 p;; q=1 Dy +2 —dg, (wi, up)
pFL
nine
D1 ) + 2n2RCW(G1),
ni—1 n1 n2 ng 1

=Y S YY o

i=1 p=i+1j=1q=1 1065 (Vi Upg)

= nsROW (G,).
Therefore,

ny [("2) —m

ROW (G, 0 Gy) < (ng + 1)2RCW(G,) + D”;TQ T [%1)+ : 2}. 0
2.8. Splice and link. Let G; and G5 be two connected graphs with disjoint vertex
sets Vi and V5, respectively. For given vertices u € V; and v € Vs, a splice of G; and
Go by vertices u and v is denoted by (G1.G3)(u,v) and defined by identifying the
vertices u and v in the union of G; and G,. Also, a link of G; and Gy by vertices u
and v is denoted by (G; ~ G2)(u,v) and obtained by joining u and v by an edge in

the union of these graphs.

Theorem 2.8. Let G and G4 be two graphs on ny and nsy vertices, respectively. Then
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(i) ROW ((G1.Ga)(u,0)) < (my — 1)(nz — 1) + ROW(G1) + ROW (G);
(i) RCW ((Gy ~ G2 u,v)) < ming + RCW(Gy) + RCW (Gs).
Equalzty in (i) holds if cmd only if one of the following cases occurs:
(11) n; =1, for some i € {1,2};
(i2) Gy and Gy are non-complete graphs and eg,(u) = g, (v) = 1.
Moreover, equality in (ii) holds if and only if ny = ny = 1.
Proof. Suppose D and D are the diameter of the splice and link of graphs G and G,

by vertices u and v, respectively. By above definitions of the splice and link of graphs,
one can easily see that

de, (), z,y € Vi,
d(G1.Ga) (u) (T, Y) = { day (,Y), z,y € Va,
dg, (z,u) +dg,(y,v), = €Viandy € Vs,
and also,
dg,(z,y), x,y € Vi,
d(GinGa) (w0) (T, Y) = { da, (T, Y), x,y € Va,

dg,(x,u) +dg,(y,v) +1, xz€Viandy € Vs.

Hence, in graph (G7.G3)(u,v), if the endpoints of a diametral path (i.e. a shortest
path between two vertices whose distance is equal to the diameter of the graph) are
in the graph Gy (or Gy) then D=D; (or D,), otherwise if one of these endpoints
belongs to Vi and the other endpoint belongs to Vi, then D=c¢, (u) + £¢,(v). Thus,
D=max {Dy, Dy, e, (u) + ¢, (v)}. Similarly, D=max {D;, D, ¢, (u) + £q,(v) + 1} .
By applying the above obtained relationships and also definitions of the splice and
link of graphs, it is obvious that if ny = 1 or ny = 1, then the equality in (i) holds.
Assume that ny,ny > 2, then

1
ROW((G1.G2)(U, v)) = > D+ 1= dios cmum (@)
{x,y}QV((G1.G2)(u,v))

1 1
= 2 7 + Y =
{z,y}CW1 D+1— dGl (I7 y) {zy}CVhs D+1— ng (l’, y)
1
+ > =
vevivguy P+ 1 —de, (z,u) — dey (y, v)
yGVQ\{v}

< (n; —1)(ng — 1) + RCW(G,) + RCW (G,),

and equality holds when D = Dy = Dy = dg, (z,u) +dg, (y, v), for all z € V3 \ {u} and
y € Vo \ {v}. On the other hand, since G; and G5 are connected graphs, we conclude
that equality holds if and only if dg, (z,u) = dg,(y,v) = 1 and Dy = Dy = 2, for all
x € Vi \ {u} and y € V5 \ {v}. This means that G; and G5 are non-complete graphs



154

R. NASIRI, A. NAKHAEI, AND A. R. SHOJAEIFARD

and ¢, (u) = g, (v) = 1, which completes the proof of part (i). The proof of part (ii)

can be completed by using the similar arguments as in the proof of part (i). 0
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EXTENDED CONVERGENCE OF A TWO-STEP-SECANT-TYPE
METHOD UNDER A RESTRICTED CONVERGENCE DOMAIN

IOANNIS K. ARGYROS! AND SANTHOSH GEORGE?

ABSTRACT. We present a local as well as a semi-local convergence analysis of a
two-step secant-type method for solving nonlinear equations involving Banach space
valued operators. By using weakened Lipschitz and center Lipschitz conditions in
combination with a more precise domain containing the iterates, we obtain tighter
Lipschitz constants than in earlier studies. This technique lead to an extended
convergence domain, more precise information on the location of the solution and
tighter error bounds on the distances involved. These advantages are obtained under
the same computational effort, since the new constants are special cases of the old
ones used in earlier studies. The new technique can be used on other iterative
methods. The numerical examples further illustrate the theoretical results.

1. INTRODUCTION

Let I : D C By — By be a Fréchet-differentiable operator, B; and B, be Banach
spaces and D be a nonempty convex subset of B;. One of the most important problems
in mathematics and computational sciences is finding a locally unique solution x* of
the equation

(1.1) F(x)=0.

Many problems in the aforementioned disciplines can be written in a form like (1.1)
using mathematical modeling. The solution z* is sought in closed form but this can
be achieved only in special cases. This is the reason why most solution methods for
equation (1.1) are iterative. The most popular methods for generating a sequence

Key words and phrases. Two step secant-type method, local convergence, Banach space, restricted
convergence domain, divided difference.
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approximating z* are one-step Newton or Secant-type or two step Newton or Secant-
type methods [1-18].

The study of convergence of iterative algorithms is usually centered into two cate-
gories: semi-local and local convergence analysis. The semi-local convergence is based
on the information around an initial point, to obtain conditions ensuring the conver-
gence of these algorithms, while the local convergence is based on the information
around a solution to find estimates of the computed radii of the convergence balls.
Local results are important since they provide the degree of difficulty in choosing
initial points.

In the present paper we study the local as well as the semi-local convergence of
two-step secant-type method defined for each n =0,1,2,..., A, = [z,, yn; F] by

(1.2) Tpy1 =Tp — A E (),
Yn+1 =Tp+1 — AglF('xn+1>7

where g, yo € D are initial points and [-, -; F] : D* — L(B1, B,) is a divided difference
of order one for F' on D satisfying

[z,y; F](x —y) = F(z) — F(y), foreach z,y € D with = # v,
and
[z, 2; F] = F'(x), foreachz € D
(if F is Fréchet differentiable on D). Notice that in the case of the secant method
Tng1 = T = [Tnor, Tn; F] 7 F(25,)

or
Tpt1 = Ty — [mna Tp—1; F]_IF(%)a

we presented in [13] a convergence analysis under center Lipschitz and weak Lipschitz
conditions (see (a4) and (as)) leading to the following advantages (A) over other
approaches (using only Lipschitz conditions), (see (a4) and (cy4)).

(a) Extended convergence domain.
(b) Tighter error bounds on the distances ||z,11 — Tu, |20 — ¥, [|[yn — 2]
(c) At least as precise information on the location of the solution.

Our semi-local convergence analysis also improves the corresponding one in [11],
since in our article we use the center-Lipschitz condition to locate a subset Dy of
D containing the iterates. This way the Lipschitz constants are tighter than in [11],
resulting to the advantages (a)-(c). It is worth noticing that these advantages are
obtained under the same computational effort, since the new constants are tighter and
special cases of the constants in [11]. Hence, we have extended the applicability of
method (1.2). Moreover, we have provided the local convergence analysis of method
(1.2) not given in [11].

Notice that extending the semi-local convergence domain is important, especially
since the convergence domain of such methods is small in general. Tighter error
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bounds implies that fewer iterates must be computed to obtain prespecified error
tolerance.

The local, semi-local convergence analysis for method (1.2) is given in Section 2,
Section 3, respectively, whereas Section 4 contains the numerical examples.

2. LocaL CONVERGENCE

We shall define some scalar functions and parameters to be used in the local conver-
gence analysis of method (1.2). Let £y, ¢, (1, (2, {3 and ¢4 be nonnegative parameters.

Let rg = ﬁ and ry = m Define functions g1, g2, h; and hy on the interval
[0,70) by
0+ lo)t
Us(gr ()t + 1) + Lot
2O =" "o
hi(t) =gi(t) — 1
and

ha(t) = ga(t) — 1.
We have hy(r1) = 0 and for each ¢t € [0,71), 0 < ¢1(¢) < 1. Moreover, hy(0) = —1 and
ha(t) — +o0 as t — 1, . Hence, function hs has zeros in the interval (0,79). Denote
by 7o the smallest such zero. Define functions gy and hgy on the interval [0,ry) by

9o(t) = Logr(t) + Lga(2)
and
We get that ho(t) = —1 and ho(t) — 400 as t — ry . Denote by p the smallest zero
of function hg on the interval (0,rg). Then, define functions g3 and hs on the interval
[0, p) by
_ hga(t) + laga(t)
g93(t) =

and

hg(t) = g;;(t) —1.
We obtain that h3(0) = —1 and hs(t) — +o0 as t — p~. Denote by r3 the smallest
zero of function h3. Define the radius of convergence r by

(2.1) r=min{r; : i =1,2,3}.
Then, we have that for each ¢ € [0,7)
(2.2) 0<gt) <1

Let B(z,A\) = {y € X : ||z — y|| < A} and B(z, \) be the closure of B(x,\).



158 I. K. ARGYROS AND S. GEORGE

Definition 2.1. Set Dy = D N B(z*, ). The set T* = (F, z9, yo, z*) belongs to the
class K* = K*(ﬁo,& 51,62,63764), if

(a;) F : D C By — By is a Fréchet differentiable operator and |.,.; F] : D? —
L(B1,Bs) is a divided difference for F' of order one on D?;
(az) there exists z* € D such that F(x*) =0 and F'(z*)"! € L(Bo, By);
(a3) there exist ¢y > 0, £ > 0 with ¢y, ¢ not both zero such that for each z,y € D
|F @) (2,9 F) — F@) < bolle — 27l + €y — 7
(ay) there exist ¢; >0, i = 1,2,3,4, such that for each z,y,z € Dy

IE" (%) ([, 55 F) = [, 2% F)|| <z — 2| + ally — 2],
17/ (")~ ([, g F] = [2,2% FD)|| <lallz — 2™ + Lally — 27

(as) B(z*,r) C D, where 7 is defined in (2.1).
The local convergence analysis of method (1.2) follows in the class K™*.

Theorem 2.1. Suppose that T* C K* holds. Then, sequence {x,} generated for
xo, Y € B(x*,r) — {z*} is well defined in B(x*,r), remains in B(x*,r) for each

n=20,1,2,... and converges to x*. Moreover, the following estimates hold
(2.3) [2ni1 = 2| <gi(r)llon — 27| < [l — 27 <1,

(2.4) [Yn1 = 27| Sga(r)llznsr — 27| < [Jann — 2™ <7

and

(2.5) [Zns2 — 2" < g3(r)l|zns1 — 2" < @01 — 27,

where the functions g;, 1 = 1,2,3, are defined previously. Furthermore, the solution
x* of equation F(x) =0 is unique in Dy = D N B(z*, R) for R € [r, ﬁ)

Proof. We shall use mathematical induction to show estimates (2.3)-(2.5). By hypoth-
esis xo, yo € B(z*,r) — {2*}, (2.1), (a2) and (a3), we have in turn that

(26)  [[F'(=") (Ao = F'(@)Il < Lollwo — 27| + Lllyo — 27| < (o + O)r < 1.

By (2.6) and the Banach lemma on invertible operators [1,4,5,10,15], we deduce that
Aal c L(:BQ,Bl) and

1
A F (27| < :
1 Pl Tl = T o =1
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Hence, z1,y; are well defined by method (1.2) for n = 0. Then, using (a2), (2.1), (2.2)
and (a4) we get in turn that

2y — 2*|| =[lzo — 2" — Ag F (o) ||
<[|[AG F' () ||| F' (%)~ (Ao — [o, z*; F]) ||l — 2]
Uillzo — 2| + Loflyo — 27|
1= (bollwo — || + liflyo — 2*|])
(2.7) <gi(rllzo — 27| < [lwg — 2™ <1,
lyr — &[] <|AGF' (a)[[| F'(2*) " (Ao — [w1, 25 F)[]J2 — 2]
Csllzy — woll + Lallyo — 27|
1= (bollzo — || + bllyo — )
G|z — 2] + llwo — 2 ||) + lllyo — 27|

0 — ]|

o — ]|

To — x*
ST @l Ao~y o
(2.8) <go(r)l|zy — 2*|| < ||z — 27| <7,
and similarly to (2.7)
. Oz — 2% + Lo|lyo — o*| .
(2.9) |z — 2% < |1 — 27|

1= (bollay — [ + Lllys — =*]])
<ga(r)llzr — 2"} < oy — 27
That is estimates (2.7)—(2.9) show (2.3)—(2.5), respectively for & = 0. By simply

replacing o, Yo, 1, Y1, T2, Y2 DY Ths Yes Tt 1, Ykt 1, Tht2, Yit2 i the preceding estimates,
we complete the induction for (2.3)—(2.5). Then, it follows from the estimate

[2rse = 2% < ellapin — ™| <7,

where ¢ = g3(r) € [0,1) that limy_,., z; = z*. Finally, to show the uniqueness part,
let y* € Dy with F(y*) = 0. Set E = [z*,y*; F]. Then, by (a3), we get

1" (") (E = F'(z")|| < lly” —a"[| < (R <1,
so B~ € £L(By,B;). Using the identity
0=F(@") - Fly") = 2"y Fl(a™ —y7),
we conclude that x* = y*. 0

1

1 4
bo+l+01+L02 0 Lo+Lb+203+0y

}. Define parameters a; = =00’

— b — — _ b3 N T *
a2 = T 9 = U = a0, and as = e Then, for xg,yo € B(z*,p), we

have by the proof of Theorem 2.1, that

Let p = min{

[eni1 = 2| < (arl|an — 27| + aallyn — 2" llzn — 27| < llan — 27 < p,
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[Yns1 — 27| <(as||zn1 — 27| + aallzn — 27 + asllyn — 27[)) || 2041 — 27|
Szt — 2% < p,

[2ns2 — 2" <(ar]lensa — 2" + aallynr — 27() 201 — 27
<znr — =7,

[Yns2 — 27| <(asl|zni1 — 27 + aallznis — 27| + asllynsr — 2" (Dl w2 — 27|
<[lznte — 27

and
s — 2° | <(arlnss — 2 + azllynsz — *Dlznss — 2°|
<(a1 + az)[[wnre — 2"
Hence, we arrive at following proposition.

Proposition 2.1. Let T* C K* with r replaced by p. Then, sequence {x,} converges
quadratically to x* provided that xo,yy € B(z*, p) — {x*}. Moreover, the solution x*

of equation F(x) =0 is unique in Dy for R € [p, ﬁ)

3. SEMI-LocAL CONVERGENCE ANALYSIS

Let Lo, L,Li,Ly > 0, n > 0 and 1y > 0 be given parameters. As in Section 2, we
define a set.

Definition 3.1. Set Dy = DN B(x*, TlJrL) The set T'= T'(F, z, yo) belongs to class
K= K(L07 L7 Lla L2> o, 77)7 if
(1) F: D C By — By is a Fréchet differentiable operator and [-,-; F] : D? —
L(B1,Bs) is a divided difference for F' of order one on D?;
(ca) there exists xg,y0 € D and n > 0,1 > 0 such that Ag' € £(Ba, By), |lzo—vo| <
no and [ Ay F(zo)|| < n;
(c3) there exist Lo > 0, L > 0 such that for each z,y € D
145 ([, 33 F] = Ao) || < Lollz — @oll + Llly — yoll;
(cq) there exist L; > 0,4 = 1,2, such that for each z,y,z € Dy
146 ([, 33 F = [y, 2 F)I| < Lallz — yll + Lally — 21
(cs) B(z*,t*) C D, where t* is given in Lemma 3.1 that follows.

We need to define majorizing sequence {¢,}, {u,} by
to=0, wy=mno, t1=m, u = Li(1+ Loty + Luy),
Lot 4+ Luyg
1 — (Loty + L(uy + uo))> ’
Ly(tns1 — tn) + Lo(u, — t,,)
1 — (Loty, + L(uy + ug))

to =1, (1 +

Un+1 :tn+1 (tn+1 - tn)
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and

Ll(tn+1 — tn) + LQ(Un — tn)
1-— (Lotn—H + L(unH + UQ)>
We also need the convergence result for the aforementioned majorizing sequences.

(th - tn)-

tnye = tny1 +

Lemma 3.1. ([12, Lemma 1, Page 734]). Let o € (0,1) be the unique solution of
equation q(t) = 0, where

Q(t) = Lt?’ —+ L0t2 + (Ll + Lz)t — (Ll + Lg)
Suppose that

Lo(t; —t L Lo+ L)t
0 < oti—to) +Lug . (Lot D)hr
1-— (Lo(tl - to) + L(u1 + Uo)) 1— LUO
Then, sequences {t,},{u,} are non-decreasing, bounded from above by t** = 5= and

converge to their unique least upper bound t* such that t* € [t;,t™]. Moreover, for
eachn =1,2,... the following estimates hold:

0 Sun—l—l - tn—l—l S a<tn+1 - tn);
0 Stn+2 - thrl S a<tn+1 - tn)

and
tn < Up,.

Based on Definition 3.1 and Lemma 3.1, we obtain the following semi-local conver-
gence result for method (1.2).

Theorem 3.1. Suppose T' C K and conditions of Lemma 3.1 hold. Then, sequences
{z,} and {y,} generated by method (1.2), starting at xo,yo € D are well defined in
B(zo,t*), remain in B(xg,t*) for each n = 0,1,2,... and converges to the unique

solution x* of equation F(x) =0 in D, = DN B (t*, L01+L).

Proof. 1t follows from the corresponding proof in [12, Theorem 1, Page 735] but see
also the remark that follows. 0J

Remark 3.1. The semi-local convergence of method (1.2) was also established in [12]
but there is a major difference effecting the convergence domain, error bounds on the
distances ||z,+1 — Ty, [|[yn — T»|| and the uniqueness domain. Indeed, the condition
used in [12] instead of (cy4) is

(ch) 145 ([, y: F] = [w,v; F])|| < Mille — ul| + Ms|ly — v]| for each z,y,u,v € D

and some M; > 0 and M, > 0.

But (c4) is weaker than (¢4) even, if Dy = D. Therefore, L1 < M; and Ly < M,, hold
in general (see [1,4,5]). The iterates remain in Dy which is a more accurate location
than D, since Dy C D leading to tighter Lipschitz constants and the advantages (A).
Define sequences {t,}, {u,} as {t,}, {un}, respectively but with M; replacing L; and



162 I. K. ARGYROS AND S. GEORGE

M, replacing Ls. Then, assuming that the rest of the hypotheses of Theorem 3.1 hold
with these changes, a simple inductive argument shows that

0 Sun+1 - tn+1 S ﬂ'n—i—l - En—&—l S a‘(fn-l—l - En)a
0 Stn+2 - tn+1 S 571—4—2 - 2?n—l-l S 6‘(&1—4—1 - 2?n)a
tn <tn,
and
t* <t* = lim t,,
n—oo
where & € (0, 1) is the unique solution of equation ¢(t) = 0, with
q(t) = Lt* + Lot® + (M + My)t — (M, + My).
Notice that
q_(Oé) :LCtg + L0C(2 + (Ml + MQ)C( — (Ml + Mg)
=q(a) + [(M1 — L1) + (Mz — L»)](a — 1) <0,
since ¢(a) =0, a € (0,1), Ly < M; and Ly < Ms,. Therefore, we have o« < . Hence,
we justified the claim made in the introduction (see also the numerical examples).

4. NUMERICAL EXAMPLES

We present the following examples to test the convergence criteria. Define the
divided difference by

[z, y; F] = /01 F'(tz + (1 — 7)y)dr.

Ezample 4.1. Let By = By = C0, 1] be the space of continuous functions defined in
0, 1] equipped with the max norm. Let D = {z € C[0,1] : ||z|| < 1}. Define F on D
by [1,13]:

1 /1
Fa)(s) =a(s) = f(5) = 5 [ Gls.0a(®) dt, v e Cl0,1), s € [0.1]

0
where f € C[0,1] is a given function and the kernel G is the Green’s function

1—s)t, t<s,
G(S’t):{ 2(1—2), s <t.

Notice that nonlinear integral equation F'(z)(s) = 0 is of Chandrasekhar type [1,4,5,
10]. Then F’(x) is a linear operator given for each = € D, by

(P (2)(0)](s) = v(s) — 2 / Gls a(®)2o(t) dt, ve 0,1, s e 0,1].

If we choose zo(s) = f(s) = s, then we obtain [|F'(z)|| < &
Choose z_; = 2s, we see [13] that L; = 0.08125..., Ly = 0.040625..., L =
0.0359375..., Ly = 0.071875..., t; = n = 0.0298507 and u; = n; = 1. Notice
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. Lo(t1—to)+Lu (Lo+L)t
that hypothesis 0 < =7 G Tm ey S @ <1 — S

guarantee the convergence of the Secant method (1.2) from Theorem 2.1.

is satisfied. So, we can

Example 4.2. Let By = By = R3, D = B(0,1), 2* = (0,0,0)” and define F on D by
e—1

T
F(x) = F(x1, 20, 23) = (611 -1, T2 +x2,x3> )

For the points u = (uy, us, u3)T, the Fréchet derivative is given by

et 0 0
F'luy= 0 (e=1us+1 0
0 0 1

Using the norm of the maximum of the rows and (a3)-(as) and since F'(z*) =

diag(1,1,1), we can define parameters for method (1.2) by £, =0, {y = £ = ly = &=,
1

l3 = <, {4 = <51, Then, the radius of convergence using (2.1) is given by r = 0.2607.
Local results were not given in [12] but if they were, £y = £ = %, 0, =0, ly = s
then /3 = {4 = 5. Therefore, by (2.1) with /4 replacing £4, we get 7 = 0.2340.
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