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SANDWICH THEOREMS FOR MULTIVALENT ANALYTIC

FUNCTIONS ASSOCIATED WITH DIFFERENTIAL OPERATOR

ABBAS KAREEM WANAS1 AND ALB LUPAŞ ALINA2

Abstract. The purpose of this paper is to derive subordination and superordina-
tion results involving differential operator for multivalent analytic functions in the
open unit disk. These results are applied to obtain sandwich results. Our results
extend corresponding previously known results.

1. Introduction and Preliminaries

Let H = H (U) denote the class of analytic functions in the open unit disk U =
{z ∈ C : |z| < 1} and let H [a, p] be the subclass of H consisting of functions of the
form:

f (z) = a+ apz
p + ap+1z

p+1 + · · · , a ∈ C, p ∈ N = {1, 2, . . .}.

Also, let Ap be the subclass of H consisting of functions of the form:

f (z) = zp +
∞∑

k=p+1

akz
k, p ∈ N.

Let f, g ∈ H. The function f is said to be subordinate to g, or g is said to be
superordinate to f , if there exists a Schwarz function w analytic in U with w (0) = 0
and |w (z)| < 1, z ∈ U , such that f (z) = g (w (z)). This subordination is denoted by
f ≺ g or f (z) ≺ g (z), z ∈ U . It is well known that, if the function g is univalent in
U , then f ≺ g if and only if f (0) = g (0) and f (U) ⊂ g (U).

Key words and phrases. Multivalent functions, differential subordination, differential superoordi-
nation, dominant, subordinant, differential operator.
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8 A. K. WANAS AND A. L. MAJEED

Let ξ, h ∈ H and ψ (r, s, t; z) : C3×U → C. If ξ and ψ (ξ (z) , zξ′ (z) , z2ξ′′ (z) ; z) are
univalent functions in U and if ξ satisfies the second-order differential superordination

(1.1) h (z) ≺ ψ
(
ξ (z) , zξ′ (z) , z2ξ′′ (z) ; z

)
,

then ξ is called a solution of the differential superordination (1.1). (If f is subordinate
to g, then g is superordinate to f .) An analytic function q is called a subordinant of
(1.1), if q ≺ ξ for all ξ satisfying (1.1). An univalent subordinant q̃ that satisfies q ≺ q̃

for all the subordinants q of (1.1) is called the best subordinant.
Recently, Miller and Mocanu [11] obtained conditions on the functions h, q and ψ

for which the following implication holds:

h (z) ≺ ψ
(
ξ (z) , zξ′ (z) , z2ξ′′ (z) ; z

)
⇒ q (z) ≺ ξ (z) .

Using the results due to Miller and Mocanu [11], Bulboacă [4] considered certain
classes of first order differential superordination as well as superordination-preserving
integral operators [5]. Ali et al. [1] have used the results of Bulboacă [4] to obtain
sufficient conditions for certain normalized analytic functions to satisfy

q1 (z) ≺
zf ′ (z)

f (z)
≺ q2 (z) ,

where q1 and q2 are given univalent functions in U with q1 (0) = q2 (0) = 1.
Very recently, Shanmugam et al. [17–19] and Goyal et al. [9] have obtained sandwich

results for certain classes of analytic functions.
For m,n ∈ N0 = N∪ {0}, λ1 ≥ λ2 ≥ 0 and f ∈ Ap, the differential operator Dm,n

λ1,λ2,p

(see [8]) is defined by

(1.2) D
m,n
λ1,λ2,pf (z) = zp +

∞∑

k=p+1

[
p+ (λ1 + λ2) (k − p)

p+ λ2 (k − p)

]m

C (k, n) akz
k,

where C (k, n) = Γ(k+n)
Γ(k)

.

It follows from (1.2) that

λ1z
(
D

m,n
λ1,λ2,pf (z)

)
′

= (p+ λ2 (k − p))Dm+1,n
λ1,λ2,pf (z)(1.3)

− (p+ λ2 (k − p) − pλ1)D
m,n
λ1,λ2,pf (z) , λ1 > 0.

Special cases of this operator includes the Ruscheweyh derivative operator [15], the
Sălăgean derivative operator [16], the generalized Sălăgean operator [2], the generalized
Ruscheweyh derivative operator [3], the generalized Al-Shaqsi and Darus derivative
operator [6].

The main object of the present paper is to derive the several subordination and su-
perordination results for multivalent analytic functions involving differential operator
D

m,n
λ1,λ2,p.

In order to prove our results, we make use of the following known results.
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Definition 1.1 ([10]). Denote by Q the set of all functions f that are analytic and
injective on U\E (f), where

E (f) =
{
ζ ∈ ∂U : lim

z→ζ
f (z) = ∞

}

and are such that f ′ (ζ) 6= 0 for ζ ∈ ∂U\E (f) .

Lemma 1.1 ([10]). Let q be univalent in the unit disk U and let θ and φ be analytic in a
domain D containing q (U) with φ (w) 6= 0 when w ∈ q (U). Set Q (z) = zq′ (z)φ (q (z))
and h (z) = θ (q (z)) +Q (z). Suppose that

(1) Q (z) is starlike univalent in U ;

(2) Re
(

zh′(z)
Q(z)

)
> 0 for z ∈ U .

If ξ is analytic in U , with ξ (0) = q (0), ξ (U) ⊂ D and

(1.4) θ (ξ (z)) + zξ′ (z)φ (ξ (z)) ≺ θ (q (z)) + zq′ (z)φ (q (z)) ,

then ξ ≺ q and q is the best dominant of (1.4).

Lemma 1.2 ([11]). Let q be a convex univalent function in U and let α ∈ C, β ∈
C\{0} with

Re

(
1 +

zq′′ (z)

q′ (z)

)
> max

{
0,−Re

(
α

β

)}
.

If ξ is analytic in U and

(1.5) αξ (z) + βzξ′ (z) ≤ αq (z) + βzq′ (z) ,

then ξ ≺ q and q is the best dominant of (1.5).

Lemma 1.3 ([11]). Let q be convex univalent in U and let β ∈ C. Further assume
that Re (β) > 0. If ξ ∈ H [q (0) , 1] ∩Q and ξ (z) + βzξ′ (z) is univalent in U , then

(1.6) q (z) + βzq′ (z) ≺ ξ (z) + βzξ′ (z) ,

which implies that q ≺ ξ and q is the best subordinant of (1.6).

Lemma 1.4 ([4]). Let q be convex univalent in the unit disk U and let θ and φ be
analytic in a domain D containing q (U). Suppose that

(1) Re
(

θ′(q(z))
φ(q(z))

)
> 0 for z ∈ U ;

(2) Q (z) = zq′ (zφ (q (z))) is starlike univalent in U .

If ξ ∈ H [q (0) , 1] ∩ Q, with ξ (U) ⊂ D, φ (ξ (z)) + zξ′ (z)φ (ξ (z)) is univalent in U

and

(1.7) θ (q (z)) + zq′ (z)φ (q (z)) ≺ θ (ξ (z)) + zξ′ (z)φ (ξ (z)) ,

then q ≺ ξ and q is the best subordinant of (1.7).
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2. Main Results

Theorem 2.1. Let q be convex univalent in U with q (0) = 1, σ ∈ C\{0}, γ > 0 and
suppose that q satisfies

(2.1) Re

(
1 +

zq′′ (z)

q′ (z)

)
> max

{
0,−Re

(
pγ

σ

)}
.

If f ∈ Ap satisfies the subordination
(

1 −
σ (p+ λ2 (k − p))

λ1p

)(
D

m,n
λ1,λ2,pf (z)

zp

)γ

(2.2)

+
σ (p+ λ2 (k − p))

λ1p

(
D

m,n
λ1,λ2,pf (z)

zp

)γ

D

m+1,n
λ1,λ2,pf (z)

D
m,n
λ1,λ2,pf (z)


 ≺ q (z) +

σ

pγ
zq′ (z) ,

then

(2.3)

(
D

m,n
λ1,λ2,pf (z)

zp

)γ

≺ q (z)

and q is the best dominant of (2.2).

Proof. Define the function ξ by

(2.4) ξ (z) =

(
D

m,n
λ1,λ2,pf (z)

zp

)γ

, z ∈ U.

Differentiating (2.4) logarithmically with respect to z, we get

zξ′ (z)

ξ (z)
= γ



z
(
D

m,n
λ1,λ2,pf (z)

)
′

D
m,n
λ1,λ2,pf (z)

− p


 .

Now, in view of (1.3), we obtain the following subordination

zξ′ (z)

ξ (z)
=
γ (p+ λ2 (k − p))

λ1


D

m+1,n
λ1,λ2,pf (z)

D
m,n
λ1,λ2,pf (z)

− 1


 .

Therefore,

zξ′ (z)

pγ
=

(p+ λ2 (k − p))

λ1p

(
D

m,n
λ1,λ2,pf (z)

zp

)γ

D

m+1,n
λ1,λ2,pf (z)

D
m,n
λ1,λ2,pf (z)

− 1


 .

The subordination (2.2) from the hypothesis becomes

ξ (z) +
σ

pγ
zξ′ (z) ≺ q (z) +

σ

pγ
zq′ (z) .

Hence, an application of Lemma 1.2 with α = 1 and β = σ
pγ

, we obtain (2.3). �
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Theorem 2.2. Let ηi ∈ C, i = 1, 2, 3, 4, γ > 0, δ ∈ C\{0} and q be convex univalent
in U with q (0) = 1, q (z) 6= 0 (z ∈ U) and assume that q satisfies

(2.5) Re

(
1 +

η2

δ
q (z) +

2η3

δ
q2 (z) +

3η4

δ
q3 (z) +

zq′′ (z)

q′ (z)
−
zq′ (z)

q (z)

)
> 0.

Suppose that zq′(z)
q(z)

is starlike univalent in U . If f ∈ Ap satisfies

(2.6) Ω1 (ηi)
4
1 (γ, δ,m, n, λ1, λ2, p; z) ≺ η1 + η2q (z) + η3q

2 (z) + η4q
3 (z) + δ

zq′ (z)

q (z)
,

where

Ω1 (ηi)
4
1 (γ, δ,m, n, λ1, λ2, p; z) = Ω1 (η1, η2, η3, η4, γ, δ,m, n, λ1, λ2, p; z)(2.7)

=η1 + η2


D

m+1,n
λ1,λ2,pf (z)

D
m,n
λ1,λ2,pf (z)




γ

+ η3


D

m+1,n
λ1,λ2,pf (z)

D
m,n
λ1,λ2,pf (z)




2γ

+ η4


D

m+1,n
λ1,λ2,pf (z)

D
m,n
λ1,λ2,pf (z)




3γ

+
γδ (p+ λ2 (k − p))

λ1


D

m+2,n
λ1,λ2,pf (z)

D
m+1,n
λ1,λ2,pf (z)

−
D

m+1,n
λ1,λ2,pf (z)

D
m,n
λ1,λ2,pf (z)


 ,

then 
D

m+1,n
λ1,λ2,pf (z)

D
m,n
λ1,λ2,pf (z)




γ

≺ q (z)

and q is the best dominant of (2.6).

Proof. Define the function ξ by

(2.8) ξ (z) =


D

m+1,n
λ1,λ2,pf (z)

D
m,n
λ1,λ2,pf (z)




γ

, z ∈ U.

By a straightforward computation and using (1.3), we have

(2.9) η1 + η2ξ (z) + η3ξ
2 (z) + η4ξ

3 (z) + δ
zξ′ (z)

ξ (z)
= Ω1 (ηi)

4
1 (γ, δ,m, n, λ1, λ2, p; z) ,

where Ω1 (ηi)
4
1 (γ, δ,m, n, λ1, λ2, p; z) is given by (2.7).

From (2.6) and (2.9), we obtain

η1 +η2ξ (z)+η3ξ
2 (z)+η4ξ

3 (z)+δ
zξ′ (z)

ξ (z)
≺ η1 +η2q (z)+η3q

2 (z)+η4q
3 (z)+δ

zq′ (z)

q (z)
.

By setting θ (w) = η1 + η2w + η3w
2 + η4w

3 and φ (w) = δ
w

, w 6= 0, we see that θ (w)
is analytic in C, φ (w) is analytic in C\{0} and that φ (w) 6= 0, w ∈ C\{0}. Also, we
get

Q (z) = zq′ (z)φ (q (z)) = δ
zq′ (z)

q (z)
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and

h (z) = θ (q (z)) +Q (z) = η1 + η2q (z) + η3q
2 (z) + η4q

3 (z) + δ
zq′ (z)

q (z)
.

It is clear that Q (z) is starlike univalent in U ,

Re

(
zh′ (z)

Q (z)

)
= Re

(
1 +

η2

δ
q (z) +

2η3

δ
q2 (z) +

3η4

δ
q3 (z) +

zq′′ (z)

q′ (z)
−
zq′ (z)

q (z)

)
> 0.

Thus, by Lemma 1.1, we get ξ (z) ≺ q (z). By using (2.8), we obtain the desired
result. �

Theorem 2.3. Let ηi ∈ C, i = 1, 2, 3, 4, γ > 0, δ ∈ C\{0} and q be convex univalent
in U with q (0) = 1, q (z) 6= 0, z ∈ U , and assume that q satisfies (2.5). Suppose that
zq′(z)
q(z)

is starlike univalent in U . If f ∈ Ap satisfies

(2.10) Ω2 (ηi)
4
1 (γ, δ,m, n, λ1, λ2, p; z) ≺ η1 + η2q (z) + η3q

2 (z) + η4q
3 (z) + δ

zq′ (z)

q (z)
,

where

Ω2 (ηi)
4
1 (γ, δ,m, n, λ1, λ2, p; z) = Ω2 (η1, η2, η3, η4, γ, δ,m, n, λ1, λ2, p; z)(2.11)

=η1 + η2


D

m,n
λ1,λ2,pf (z)

D
m+1,n
λ1,λ2,pf (z)




γ

+ η3


D

m,n
λ1,λ2,pf (z)

D
m+1,n
λ1,λ2,pf (z)




2γ

+ η4


D

m,n
λ1,λ2,pf (z)

D
m+1,n
λ1,λ2,pf (z)




3γ

+
γδ (p+ λ2 (k − p))

λ1


D

m+1,n
λ1,λ2,pf (z)

D
m,n
λ1,λ2,pf (z)

−
D

m+2,n
λ1,λ2,pf (z)

D
m+1,n
λ1,λ2,pf (z)


 ,

then

D

m,n
λ1,λ2,pf (z)

D
m+1,n
λ1,λ2,pf (z)




γ

≺ q (z)

and q is the best dominant of (2.10).

Proof. The proof is similar to that of Theorem 2.2. �

Theorem 2.4. Let ηi ∈ C, i = 1, 2, 3, 4, δ ∈ C\{0} and q be convex univalent in U

with q (0) = 1, q (z) 6= 0, z ∈ U , and assume that q satisfies (2.5). Suppose that zq′(z)
q(z)

is starlike univalent in U . If f ∈ Ap satisfies

(2.12) Ω3 (ηi)
4
1 (δ,m, n, λ1, λ2, p; z) ≺ η1 + η2q (z) + η3q

2 (z) + η4q
3 (z) + δ

zq′ (z)

q (z)
,
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where

Ω3 (ηi)
4
1 (δ,m, n, λ1, λ2, p; z) = Ω3 (η1, η2, η3, η4, γ, δ,m, n, λ1, λ2, p; z)(2.13)

=η1 + η2

(
D

m,n
λ1,λ2,pf (z)

)2

zpD
m+1,n
λ1,λ2,pf (z)

+ η3

(
D

m,n
λ1,λ2,pf (z)

)4

z2p
(
D

m+1,n
λ1,λ2,pf (z)

)2 + η4

(
D

m,n
λ1,λ2,pf (z)

)6

z3p
(
D

m+1,n
λ1,λ2,pf (z)

)3

+
δ (p+ λ2 (k − p))

λ1


2Dm+1,n

λ1,λ2,pf (z)

D
m,n
λ1,λ2,pf (z)

−
D

m+2,n
λ1,λ2,pf (z)

D
m+1,n
λ1,λ2,pf (z)

− 1


 ,

then (
D

m,n
λ1,λ2,pf (z)

)2

zpD
m+1,n
λ1,λ2,pf (z)

≺ q (z)

and q is the best dominant of (2.12).

Proof. Define the function ξ by

(2.14) ξ (z) =

(
D

m,n
λ1,λ2,pf (z)

)2

zpD
m+1,n
λ1,λ2,pf (z)

, z ∈ U.

By a straightforward computation and using (1.3), we have

(2.15) η1 + η2ξ (z) + η3ξ
2 (z) + η4ξ

3 (z) + δ
zξ′ (z)

ξ (z)
= Ω3 (ηi)

4
1 (δ,m, n, λ1, λ2, p; z) ,

where Ω3 (ηi)
4
1 (δ,m, n, λ1, λ2, p; z) is given by (2.13). From (2.12) and (2.15), we

obtain

η1 +η2ξ (z)+η3ξ
2 (z)+η4ξ

3 (z)+δ
zξ′ (z)

ξ (z)
≺ η1 +η2q (z)+η3q

2 (z)+η4q
3 (z)+δ

zq′ (z)

q (z)
.

The remaining part of Theorem 2.4 is similar to that of Theorem 2.2 and hence we
omit it. �

Theorem 2.5. Let q be convex univalent in U with q (0) = 1, γ > 0 and Re(σ) > 0.
Let f ∈ Ap satisfying

(
D

m,n
λ1,λ2,pf (z)

zp

)γ

∈ H [q (0) , 1] ∩Q

and
(

1 −
σ (p+ λ2 (k − p))

λ1p

)(
D

m,n
λ1,λ2,pf (z)

zp

)γ

+
σ (p+ λ2 (k − p))

λ1p

(
D

m,n
λ1,λ2,pf (z)

zp

)γ

D

m+1,n
λ1,λ2,pf (z)

D
m,n
λ1,λ2,pf (z)



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be univalent in U . If

q (z) +
σ

pγ
zq′ (z) ≺

(
1 −

σ (p+ λ2 (k − p))

λ1p

)(
D

m,n
λ1,λ2,pf (z)

zp

)γ

(2.16)

+
σ (p+ λ2 (k − p))

λ1p

(
D

m,n
λ1,λ2,pf (z)

zp

)γ

D

m+1,n
λ1,λ2,pf (z)

D
m,n
λ1,λ2,pf (z)


 ,

then

(2.17) q (z) ≺

(
D

m,n
λ1,λ2,pf (z)

zp

)γ

and q is the best subordinant of (2.16).

Proof. Define the function ξ by

(2.18) ξ (z) =

(
D

m,n
λ1,λ2,pf (z)

zp

)γ

.

Differentiating (2.18) logarithmically with respect to z, we get

(2.19)
zξ′ (z)

ξ (z)
= γ



z
(
D

m,n
λ1,λ2,pf (z)

)
′

D
m,n
λ1,λ2,pf (z)

− p


 .

After some computations and using (1.3), from (2.19), we have
(

1 −
σ (p+ λ2 (k − p))

λ1p

)(
D

m,n
λ1,λ2,pf (z)

zp

)γ

(2.20)

+
σ (p+ λ2 (k − p))

λ1p

(
D

m,n
λ1,λ2,pf (z)

zp

)γ

D

m+1,n
λ1,λ2,pf (z)

D
m,n
λ1,λ2,pf (z)


 = ξ (z) +

σ

pγ
zξ′ (z) .

From (2.16) and (2.20), we get

q (z) +
σ

pγ
zq′ (z) ≺ ξ (z) +

σ

pγ
zξ′ (z) .

Hence, an application of Lemma 1.3 with α = 1 and β = σ
pγ

, we obtain (2.17). �

Theorem 2.6. Let ηi ∈ C, i = 1, 2, 3, 4, γ > 0, δ ∈ C\{0} and q be convex univalent
in U with q (0) = 1, q (z) 6= 0, z ∈ U and assume that q satisfies

(2.21) Re
(
η2

δ
q (z) +

2η3

δ
q2 (z) +

3η4

δ
q3 (z)

)
> 0.

Suppose that zq′(z)
q(z)

is starlike univalent in U . Let f ∈ Ap satisfying

D

m+1,n
λ1,λ2,pf (z)

D
m,n
λ1,λ2,pf (z)




γ

∈ H [q (0) , 1] ∩Q
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and Ω1 (ηi)
4
1 (γ, δ,m, n, λ1, λ2, p; z) be univalent in U , where

Ω1 (ηi)
4
1 (γ, δ,m, n, λ1, λ2, p; z) is given by (2.7). If

(2.22) η1 + η2q (z) + η3q
2 (z) + η4q

3 (z) + δ
zq′ (z)

q (z)
≺ Ω1 (ηi)

4
1 (γ, δ,m, n, λ1, λ2, p; z) ,

then

q (z) ≺


D

m+1,n
λ1,λ2,pf (z)

D
m,n
λ1,λ2,pf (z)




γ

and q is the best subordinant of (2.22).

Proof. Define the function ξ by

(2.23) ξ (z) =


D

m+1,n
λ1,λ2,pf (z)

D
m,n
λ1,λ2,pf (z)




γ

, z ∈ U.

By a straightforward computation, we have

(2.24) Ω1 (ηi)
4
1 (γ, δ,m, n, λ1, λ2, p; z) = η1 + η2ξ (z) + η3ξ

2 (z) + η4ξ
3 (z) + δ

zξ′ (z)

ξ (z)
,

where Ω1 (ηi)
4
1 (γ, δ,m, n, λ1, λ2, p; z) is given by (2.7).

From (2.22) and (2.24), we obtain

η1 + η2q (z) + η3q
2 (z) + η4q

3 (z) + δ
zq′ (z)

q (z)

≺η1 + η2ξ (z) + η3ξ
2 (z) + η4ξ

3 (z) + δ
zξ′ (z)

ξ (z)
.

By setting θ (w) = η1 + η2w + η3w
2 + η4w

3 and φ (w) = δ
w

, w 6= 0, we see that θ (w)
is analytic in C, φ (w) is analytic in C\{0} and that φ (w) 6= 0, w ∈ C\{0}. Also, we
get

Q (z) = zq′ (z)φ (q (z)) = δ
zq′ (z)

q (z)
.

It is clear that Q (z) is starlike univalent in U ,

Re

(
θ′ (q (z))

φ (q (z))

)
= Re

(
η2

δ
q (z) +

2η3

δ
q2 (z) +

3η4

δ
q3 (z)

)
> 0.

Thus, by Lemma 1.4, we get q (z) ≺ ξ (z). By using (2.23), we obtain the desired
result. �

Theorem 2.7. Let ηi ∈ C, i = 1, 2, 3, 4, γ > 0, δ ∈ C\{0} and q be convex univalent
in U with q (0) = 1, q (z) 6= 0 (z ∈ U) and assume that q satisfies (2.21). Suppose

that zq′(z)
q(z)

is starlike univalent in U . Let f ∈ Ap satisfying

D

m,n
λ1,λ2,pf (z)

D
m+1,n
λ1,λ2,pf (z)




γ

∈ H [q (0) , 1] ∩Q
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and Ω2 (ηi)
4
1 (γ, δ,m, n, λ1, λ2, p; z) be univalent in U , where

Ω2 (ηi)
4
1 (γ, δ,m, n, λ1, λ2, p; z) is given by (2.11). If

(2.25) η1 + η2q (z) + η3q
2 (z) + η4q

3 (z) + δ
zq′ (z)

q (z)
≺ Ω2 (ηi)

4
1 (γ, δ,m, n, λ1, λ2, p; z) ,

then

q (z) ≺


D

m,n
λ1,λ2,pf (z)

D
m+1,n
λ1,λ2,pf (z)




γ

and q is the best subordinant of (2.25).

Proof. The proof is similar to that of Theorem 2.6. �

Theorem 2.8. Let ηi ∈ C, i = 1, 2, 3, 4, δ ∈ C\{0} and q be convex univalent in U

with q (0) = 1, q (z) 6= 0, z ∈ U , and assume that q satisfies (2.21). Suppose that zq′(z)
q(z)

is starlike univalent in U . Let f ∈ Ap satisfying
(
D

m,n
λ1,λ2,pf (z)

)2

zpD
m+1,n
λ1,λ2,pf (z)

∈ H [q (0) , 1] ∩Q

and Ω3 (ηi)
4
1 (δ,m, n, λ1, λ2, p; z) be univalent in U , where Ω3 (ηi)

4
1 (δ,m, n, λ1, λ2, p; z)

is given by (2.13). If

(2.26) η1 + η2q (z) + η3q
2 (z) + η4q

3 (z) + δ
zq′ (z)

q (z)
≺ Ω3 (ηi)

4
1 (δ,m, n, λ1, λ2, p; z) ,

then

q (z) ≺

(
D

m,n
λ1,λ2,pf (z)

)2

zpD
m+1,n
λ1,λ2,pf (z)

and q is the best subordinant of (2.26).

Proof. Define the function ξ by

ξ (z) =

(
D

m,n
λ1,λ2,pf (z)

)2

zpD
m+1,n
λ1,λ2,pf (z)

, z ∈ U.

By a straightforward computation and using (1.3), we have

(2.27) Ω3 (ηi)
4
1 (δ,m, n, λ1, λ2, p; z) = η1 + η2ξ (z) + η3ξ

2 (z) + η4ξ
3 (z) + δ

zξ′ (z)

ξ (z)
,

where Ω3 (ηi)
4
1 (δ,m, n, λ1, λ2, p; z) is given by (2.13).

From (2.26) and (2.27), we obtain

η1 + η2q (z) + η3q
2 (z) + η4q

3 (z) + δ
zq′ (z)

q (z)

≺ η1 + η2ξ (z) + η3ξ
2 (z) + η4ξ

3 (z) + δ
zξ′ (z)

ξ (z)
.
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The remaining part of Theorem 2.8 is similar to that of Theorem 2.6 and hence we
omit it. �

Concluding the results of differential subordination and superordination, we state
the following “sandwich results”.

Theorem 2.9. Let q1 and q2 be convex univalent in U with q1 (0) = q2 (0) = 1.
Suppose q2 satisfies (2.1), γ > 0 and Re(σ) > 0. Let f ∈ Ap satisfying

(
D

m,n
λ1,λ2,pf (z)

zp

)γ

∈ H [1, 1] ∩Q

and
(

1 −
σ (p+ λ2 (k − p))

λ1p

)(
D

m,n
λ1,λ2,pf (z)

zp

)γ

+
σ (p+ λ2 (k − p))

λ1p

(
D

m,n
λ1,λ2,pf (z)

zp

)γ

D

m+1,n
λ1,λ2,pf (z)

D
m,n
λ1,λ2,pf (z)


 ,

be univalent in U . If

q1 (z) +
σ

pγ
zq′

1 (z) ≺

(
1 −

σ (p+ λ2 (k − p))

λ1p

)(
D

m,n
λ1,λ2,pf (z)

zp

)γ

+
σ (p+ λ2 (k − p))

λ1p

(
D

m,n
λ1,λ2,pf (z)

zp

)γ

D

m+1,n
λ1,λ2,pf (z)

D
m,n
λ1,λ2,pf (z)


 ≺ q2 (z) +

σ

pγ
zq′

2 (z) ,

then

q1 (z) ≺

(
D

m,n
λ1,λ2,pf (z)

zp

)γ

≺ q2 (z)

and q1 and q2 are, respectively, the best subordinant and the best dominant.

Theorem 2.10. Let q1 and q2 be convex univalent in U with q1 (0) = q2 (0) = 1.
Suppose q1 satisfies (2.21) and q2 satisfies (2.5). Let f ∈ Ap satisfying


D

m+1,n
λ1,λ2,pf (z)

D
m,n
λ1,λ2,pf (z)




γ

∈ H [1, 1] ∩Q

and Ω1 (ηi)
4
1 (γ, δ,m, n, λ1, λ2, p; z) be univalent in U , where

Ω1 (ηi)
4
1 (γ, δ,m, n, λ1, λ2, p; z) is given by (2.7). If

η1 + η2q1 (z) + η3q
2
1 (z) + η4q

3
1 (z) + δ

zq′

1 (z)

q1 (z)
≺Ω1 (ηi)

4
1 (γ, δ,m, n, λ1, λ2, p; z)

≺η1 + η2q2 (z) + η3q
2
2 (z) + η4q

3
2 (z)

+ δ
zq′

2 (z)

q2 (z)
,
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then

q1 (z) ≺


D

m+1,n
λ1,λ2,pf (z)

D
m,n
λ1,λ2,pf (z)




γ

≺ q2 (z)

and q1 and q2 are, respectively, the best subordinant and the best dominant.

Theorem 2.11. Let q1 and q2 be convex univalent in U with q1 (0) = q2 (0) = 1.
Suppose q1 satisfies (2.21) and q2 satisfies (2.5). Let f ∈ Ap satisfying


D

m,n
λ1,λ2,pf (z)

D
m+1,n
λ1,λ2,pf (z)




γ

∈ H [1, 1] ∩Q

and Ω2 (ηi)
4
1 (γ, δ,m, n, λ1, λ2, p; z) be univalent in U , where

Ω2 (ηi)
4
1 (γ, δ,m, n, λ1, λ2, p; z) is given by (2.11). If

η1 + η2q1 (z) + η3q
2
1 (z) + η4q

3
1 (z) + δ

zq′

1 (z)

q1 (z)
≺Ω2 (ηi)

4
1 (γ, δ,m, n, λ1, λ2, p; z)

≺η1 + η2q2 (z) + η3q
2
2 (z) + η4q

3
2 (z)

+ δ
zq′

2 (z)

q2 (z)
,

then

q1 (z) ≺


D

m,n
λ1,λ2,pf (z)

D
m+1,n
λ1,λ2,pf (z)




γ

≺ q2 (z)

and q1 and q2 are, respectively, the best subordinant and the best dominant.

Theorem 2.12. Let q1 and q2 be convex univalent in U with q1 (0) = q2 (0) = 1.
Suppose q1 satisfies (2.21) and q2 satisfies (2.5). Let f ∈ Ap satisfying

(
D

m,n
λ1,λ2,pf (z)

)2

zpD
m+1,n
λ1,λ2,pf (z)

∈ H [1, 1] ∩Q

and Ω3 (ηi)
4
1 (δ,m, n, λ1, λ2, p; z) be univalent in U , where Ω3 (ηi)

4
1 (δ,m, n, λ1, λ2, p; z)

is given by (2.13). If

η1 + η2q1 (z) + η3q
2
1 (z) + η4q

3
1 (z) + δ

zq′

1 (z)

q1 (z)
≺ Ω3 (ηi)

4
1 (δ,m, n, λ1, λ2, p; z)

≺ η1 + η2q2 (z) + η3q
2
2 (z) + η4q

3
2 (z) + δ

zq′

2 (z)

q2 (z)
,

then

q1 (z) ≺

(
D

m,n
λ1,λ2,pf (z)

)2

zpD
m+1,n
λ1,λ2,pf (z)

≺ q2 (z)

and q1 and q2 are, respectively, the best subordinant and the best dominant.
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Remark 2.1. By specifying the function φ and selecting the particular values of
η1, η2, η3, η4, γ,m, n, λ1, λ2 and p, we can derive a number of known results. Some
of them are given below.

(1) Taking n = λ2 = 0 and p = 1 in Theorems 2.1, 2.5, 2.9, we get the results
obtained by Răducanu and Nechita [14, Theorem 3.1, Theorem 3.6, Theorem
3.9].

(2) Taking n = λ2 = 0 and λ1 = p = 1 in Theorems 2.1, 2.5, 2.9, we get the results
obtained by Răducanu and Nechita [14, Corollary 3.3, Corollary 3.8, Corollary
3.11].

(3) Putting n = m = λ2 = 0 and λ1 = p = 1 in Theorem 2.1, we obtain the results
obtained by Murugusundaramoorthy and Magesh [12, Corollary 3.3].

(4) Taking n = m = λ2 = 0 and λ1 = p = 1 in Theorems 2.5, 2.9, we obtain the
results obtained by Răducanu and Nechita [14, Corollary 3.7, Corollary 3.10].

(5) For λ2 = η1 = η2 = η4 = 0, γ = p = 1 and φ (w) = δ in Theorems 2.2, 2.6,
2.10, we have the results obtained by Darus and Al-Shaqsi [7, Theorem 2.1,
Theorem 3.1, Theorem 3.3].

(6) By taking n = λ2 = η1 = η3 = η4 = 0, γ = η2 = p = 1 and φ (w) = δ in
Theorems 2.3, 2.7, 2.11, we get the results obtained by Nechita [13, Theorem
5, Theorem 10, Corollary 13].

(7) Putting n = λ2 = η1 = η3 = η4 = 0, γ = λ1 = η2 = p = 1 and φ (w) = δ in
Theorems 2.3, 2.7, 2.11, we obtain the results obtained by Shanmugan et al.
[17, Theorem 5.1, Theorem 5.2, Theorem 5.3].

(8) Putting n = m = λ2 = η1 = η3 = η4 = 0, γ = λ1 = η2 = p = 1 and φ (w) = δ

in Theorems 2.3, 2.7, 2.11, we get the results obtained by Shanmugam et al.
[17, Theorem 3.1, Theorem 3.2, Theorem 3.3].
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CHAIN CONDITION AND FUNDAMENTAL RELATION ON

(∆, G)-SETS DERIVED FROM Γ-SEMIHYPERGROUPS

S. OSTADHADI-DEHKORDI

Abstract. The aim of this research work is to define a new class of hyperstructure
as a generalization of semigroups, semihypergroups and Γ-semihypergroups that we
call (∆, G)-sets. Also, we define fundamental relation on (∆, G)-sets and prove some
results in this respect. Then, we introduce the notions of quotient (∆, G)-sets by
using a congruence relations. Finally, we introduce the concept of complete parts
and Noetherian(Artinian) (∆, G)-sets.

1. Introduction

The hypergroup notion was introduced in 1934 by a French mathematician F. Marty
[17], at the 8th Congress of Scandinavian Mathematicians. He published some notes on
hypergroups, using them in different contexts: algebraic functions, rational fractions,
non commutative groups. Algebraic hyperstructures are a suitable generalization of
classical algebraic structures. In a classical algebraic structure, the composition of
two elements is an element, while in an algebraic hyperstructure, the composition of
two elements is a set. Since then, hundreds of papers and several books have been
written on this topic, see [4–6].

The concept of Γ-semigroup defined by Sen and Saha [18] in 1986 that is a gene-
ralization of a semigroup. Many classical notions of semigroups have been extended
to Γ-semigroups and a lot of results on Γ-semigroups are published by a lot of mathe-
maticians, for instance, Chattopadhyay [2, 3], Hila [15, 16] and [18].

Recently, the notion of Γ-hyperstructure introduced and studied by many re-
searchers and represent an intensively studied field of research, for example, see

Key words and phrases. Γ-semihypergroup, left(right) (∆, G)-set, twist product, flat Γ-
semihypergroup, absolutely flat Γ-semihypergroup.
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[1, 7, 8, 11–14]. The concept of Γ-semihypergroups was introduced by Davvaz et al.
[1, 14] and is a generalization of semigroups, a generalization of semihypergroups and
a generalization of Γ-semigroups. Also, the concept of (∆, G)-set was introduced
by S. Ostadhadi-Dehkordi [9, 10]. He using them in different contexts such as twist
product, flat Γ-semihypergroup, absolutely flat Γ-semihypergroup and direct limit
that is important tools in the theory of homological algebra.

In this paper, by using a special scalar hyperoperations on Γ-semihypergroups we
denote the notions left(right) (∆, G)-set, (G1,∆, G2)-biset. Also, we introduced regu-
lar and strongly regular relations on (∆, G)-sets and by using fundamental relation
we define quotient (∆, G)-sets. Finally, we define the concept of complete part and
Noetherian(Artinian) (∆, G)-sets and prove some results in respect.

2. Introduction and preliminaries

In this section, we present some basic notions of Γ-semihypergroup. These defini-
tions and results are necessary for the next sections.

Let H be a non-empty set. Then, the map ◦ : H ×H → P ∗(H) is called hyperop-

eration or join operation on the set H, where P ∗(H) denotes the set of all non-empty
subsets of H. A hypergroupoid is a set H together with a (binary)hyperoperation.
A hypergroupoid (H, ◦) is called a semihypergroup if for all a, b, c ∈ H, we have
a ◦ (b ◦ c) = (a ◦ b) ◦ c. A hypergroupoid (H, ◦) is called quasihypergroup if for all
a ∈ H, we have a ◦ H = H ◦ a = H. A hypergroupoid (H, ◦) which is both a
semihypergroup and a quasihypergroup is called a hypergroup.

Definition 2.1 ([14]). Let G and Γ be nonempty sets and α : G × G → P ∗(G) be
a hyperoperation, where α is an arbitrary element in the set Γ. Then, G is called
Γ-hypergroupoid.

For any two nonempty subsets G1 and G2 of G, we define

G1αG2 =
⋃

g1∈G1,g2∈G2

g1αg2, G1α{x} = G1αx, {x}αG2 = xαG2.

A Γ-hypergroupoid G is called Γ-semihypergroup if for all x, y, z ∈ G and α, β ∈ Γ we
have

(xαy)βz = xα(yβz).

Example 2.1. Let Γ ⊆ N be a nonempty set. We define

xαy = {z ∈ N : z ≥ max{x, α, y}},

where α ∈ Γ and x, y ∈ N. Then, N is a Γ-semihypergroup.

Example 2.2. Let Γ = {α1, α2, . . . , αn}. Then, we define hyperoperations xαky =
xykZ. Hence, Z is a Γ-semihypergroup.

Example 2.3. Let G be a nonempty set and Γ be a nonempty set of G. Then, we
define xαy = {x, α, y}. Hence, G is a Γ-semihypergroup.
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Example 2.4. Let (Γ, ·) be a semigroup and {Aα}α∈Γ be a collection of nonempty dis-
joint sets and G =

⋃
α∈Γ Aα, for every g1, g2 ∈ G and α ∈ Γ, we define

g1α̂g2 = Aα1αα2
, where g1 ∈ Aα1

and g2 ∈ Aα2
. Then, G is a Γ̂-semihypergroup,

Γ̂ = {α̂ : α ∈ Γ}.

Let G be a Γ-semihypergroup. Then, an element eα ∈ G is called α-identity if
for every x ∈ G, we have x ∈ eααx ∩ xαeα and eα is called scalar α-identity if
x = eααx = xαeα. We note that if for every α ∈ Γ, e is a scalar α-identity, then
xαy = xβy, where α, β ∈ Γ and x, y ∈ G. Indeed,

xαy = (xβe)αy = xβ(eαy) = xβy.

Let G be a Γ-semihypergroup and for every α ∈ Γ has an α-identity. Then,
G is called a Γ-semihypergroup with identity. In a same way, we can define Γ-
semihypergroup with scalar identity.

A Γ-semihypergroup G is commutative when

xαy = yαx,

for every x, y ∈ G and α ∈ Γ.

Definition 2.2. Let G be a Γ-semihypergroup and ρ be an equivalence relation on
G. Then, ρ is called right regular relation if xρy and g ∈ G implies that for every
t1 ∈ xαg there is t2 ∈ yαg such that t1ρt2 and for every s1 ∈ yαg there is s2 ∈ xαg

such that s1ρs2. In a same way, we can define left regular relation. An equivalence
relation ρ is called strong regular when xρy and g ∈ G implies that for every t1 ∈ xαg

and t2 ∈ yαg, t1ρt2, for every α ∈ Γ.

Example 2.5. Let R =
⋃

n∈ZAn, where An = [n, n+ 1) and x, y ∈ R such that x ∈ An,

y ∈ Am and α ∈ Z. Then, R is a Ẑ-semihypergroup such that xα̂y = Anαm, where
α̂ ∈ Ẑ = {α̂ : α ∈ Z}. Let

xρy ↔ 2|n−m, x ∈ An, y ∈ Am.

Then, the relation ρ is strong regular. Also, x ∈ R, implies that

ρ(x) = {z ∈ R : z ∈ · · · [n− 4, n− 3) ∪ [n− 2, n− 1) ∪ [n, n+ 1) ∪ [n+ 2, n+ 3) · · · },

where x ∈ [n, n+ 1).

Proposition 2.1. Let G be a Γ-semihypergroup and ρ be a regular relation on G.

Then, [G : ρ] = {ρ(x) : x ∈ G} is a Γ̂-semihypergroup with respect the following

hyperoperation:

ρ(x)α̂ρ(y) = {ρ(z) : z ∈ ρ(x)αρ(y)},

where Γ̂ = {α̂ : α ∈ Γ}.

Proof. The proof is straightforward. �
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Corollary 2.1. Let G be a Γ-semihypergroup and ρ be an equivalence relation G.

Then, ρ is regular (strong regular) if and only if [G : ρ] is Γ̂-semihypergroup (Γ̂-

semigroup).

Definition 2.3 ([9]). Let G be a Γ-semihypergroup with identity and X, ∆ be
nonempty sets. Then, we say that X is a left (∆, G)- set if there is a scalar hyperaction
δ : G×X → P ∗(X) with the following properties:

(g1αg2)δx =g1δ(g2δx),

eαδx =x,

for every g1, g2 ∈ G, α ∈ Γ, x ∈ X and δ ∈ ∆.
When δ : G×X → X, then X is called scalar left (∆, G)-set.

Example 2.6. Let G be a Γ-semihypergroup with scalar identity, X and ∆ be nonempty
sets such that x0 ∈ X is a fixed element and δ : G × X → P ∗(X) defined by
δ(g, x) = {x0}, where δ ∈ ∆ and x ∈ X. Then, G is left (∆, G)-set.

Example 2.7. Let (G, ◦) be a semihypergroup and H be a subsemihypergroup of G.
Then, H is a left (∆, G)-set where ∆ = {◦}.

In a same way, we can define a right (∆, G)-set. LetG1 andG2 be Γ-semihypergroups
and X be a nonempty set. Then, we say that X is a (G1,∆, G2)-bisets if it is a left
(∆, G1)-set, right (∆, G2)-set and

(g1δ1x)δ2g2 = g1δ1(xδ2g2),

for every δ1, δ2 ∈ ∆, g1 ∈ G1, g2 ∈ G2 and x ∈ X. When X is a (G1,∆, G2)-bisets
and G1 = G2 = G, we sat that X is a (∆, G)-bisets.

If G is a commutative Γ-semihypergroup, then there is no distinction between a left
and a right (∆, G)-sets. A left (∆, G)-subset Y of X such that Y∆X ⊆ Y is called left

(∆, G)-subset of X. Let X be a left (∆, G)-set and Γ ⊆ ∆. Then, X is also (Γ, G)-set
where δ : G×X → P ∗(X) and δ ∈ Γ.

Definition 2.4. Let X be a left (∆, G)-set and Y be a left (∆, G)-subset of X. Then,
we say that Y closed, if for all y ∈ Y and g ∈ G from y ∈ gδb implies that b ∈ Y .

Definition 2.5. Let X be a (G,∆, G)-biset and Y be a (G,∆, G)-subbiset of X.
Then, Y is called invertible on a right(on a left) if for all y1, y2 ∈ Y and g ∈ G from
y1 ∈ y2δG(y1 ∈ Gδy2) it follows that y2 ∈ y1δG (y2 ∈ Gδy1).

Proposition 2.2. Let G be a Γ-semihypergroup and X be a (∆, G)-biset such that Y

be a (∆, G)-subbiset. Then, Y is invertible on the right if and only if {yδG}y∈Y is a

partition of X, for every y ∈ Y .

Proof. Suppose that Y is invertible on the right and y ∈ y1δG ∩ y2δG. Then, y1, y2 ∈
yδG. This implies that y1δG ⊆ yδG and y2δG ⊆ yδG. Also,

yδG ⊆ (y1δG)δG ⊆ y1δ(GΓG) ⊆ y1δG,
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and yδG ⊆ (y2δG)δG = y2δ(GΓG) ⊆ y2δG. Then, yδG = y1δG = y2δG. On the
other hand, y ∈ y1δG = yδG. Then, for every y ∈ Y , we have y ∈ yδG.

Conversely, let {yδG}y∈Y be a partition of Y and y1 ∈ y2δG. Then,

y1δG ⊆ (y2δG)δG ⊆ y2δ(GΓG) ⊆ y2δG,

whence y1δG = y2δG and so y1 ∈ y2δG = y1δG. Then, for all y ∈ Y we have y ∈ yδG.
Therefore, y2 ∈ y2δG = y1δG. �

Definition 2.6. Let X be a left (∆, G)-set and Y be a left (∆, G)-subset of X. Then,
Y is called ultraclosed if for all g ∈ G and δ ∈ ∆, we have gδY ∩ gδ(X − Y ) = ∅.

Proposition 2.3. Let X be a left (∆, G)-set and Y be a invertible (∆, G)-subset.

Then, X is closed.

Proof. Suppose that y, x ∈ Y , δ ∈ ∆ and g ∈ G such that y ∈ gδx. Hence x ∈ gδy ⊆ Y

and we obtain x ∈ Y . �

Definition 2.7. Let X be a left (∆, G)-set and H be a Γ-subsemihypergroup of G.
Then, we define the following relation:

x1 ≡ x2 ⇔ x1 ∈ Hδx2.

This relation is denoted by x1H
∗x2.

Definition 2.8. Let X be a left (G,∆)-set and ρ be a regular relation on X. Then,
ρ is called regular if x1ρx2 implies that for every s1 ∈ gδx1 there is s2 ∈ gδx2 such
that s1ρs2 and for every t2 ∈ gδx2 there is t1 ∈ gδx1 such that t1ρt2, where x1, x2 ∈ X

and δ ∈ ∆. Also, an equivalence relation ρ is called strongly regular, when for every
s1 ∈ gδx1 and s2 ∈ gδx2 implies that s1ρs2.

Proposition 2.4. Let X be an invertible left (∆, G)-set such that G is commutative.

Then, the relation H∗ is regular.

Proof. Suppose that x ∈ X. Then, x = eαδx ∈ Hδx. It follows that xH∗x, i.e., H∗ is
reflexive. Let x1H

∗x2. Then, there exist δ ∈ ∆ and h ∈ H such that x1 ∈ hδx2 which
implies that x2 ∈ hδx1 ⊆ Hδx1 which meanies that x2H

∗x1 and so H∗ is symmetric.
Let x1, x2, x3 ∈ X such that x1H

∗x2 and x2H
∗x3. Then, there exist h1, h2 ∈ H such

that x1 ∈ h1δx2 and x2 ∈ h2δx3. Hence x1 ∈ h1δ(h2δx3) = (h1αh2)δx3 ⊆ Hδx3. This
implies that x1 ∈ Hδx3 and so H∗ is transitive.

Let x1, x2 be an arbitrary elements of X such that x1H
∗x2. It follows that x1 ∈

Hδx2. Hence there exist h1 ∈ H such that x1 ∈ h1δx2. Let g ∈ G and t1 ∈ gδx1.
Then,

t1 ∈ gδx1 ⊆ gδ(h1δx2) = (gαh1)δx2 = (h1αg)δx2 = h1δ(gδx2).

Hence there exists t2 ∈ gδx2 such that t1 ∈ h1δt2 ⊆ Hδt2. Thus, t1H
∗t2. In a same

way, we can see for every s2 ∈ gδx2 there is s1 ∈ gδx1 such that s1H
∗s2. Therefore,

H∗ is a regular relation. �
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Proposition 2.5. Let X be a left (∆, G)-set and H be a Γ-subsemihypergroup of G.

Then, H∗(x) = Hδx.

Proof. The proof is straightforward. �

Theorem 2.1. Let X be a left (∆, G)-set and H be a Γ-subsemihypergroup of G.

Then, the set of all classes [X : H∗] = {H∗(x) : x ∈ X} is a left (∆̂, G)-set by the

following scalar hyperoperation:

gδ̂H∗(x) = {H∗(y) : y ∈ gδH∗(x)}.

Proof. Suppose that H∗(x1) = H∗(x2), g ∈ G and y ∈ gδH∗(x1). This implies that
x1 ∈ Hδx2. Hence, there are h1, h2 ∈ H such that y ∈ gδ(h1δx1) and x1 ∈ h2δx2. We
have

y ∈ gδ(h1δx1) ⊆ gδ(h1δ(h2δx2)) = gδ(h1αh2)δx2 ⊆ gδ(Hδx2) = gδH∗(x2).

Then, gδH∗(x1) ⊆ gδH∗(x2). In a same way, we can see, gδH∗(x2) ⊆ gδH∗(x1).
Hence,

gδ̂H∗(x1) = gδ̂H∗(x2).

Therefore, the scalar hyperoperation α̂ is well-defined. It is easy to see that

(g1αg2)δ̂H
∗(x) = g1δ̂(g2δ̂H

∗(x)). �

Let X be a left (∆, G)-set. Then, we define an equivalence relation on X such that
smallest strongly regular relation on X. Suppose that X be a left (∆, G)-set and n

be a nonzero natural number. We say that

aβnb ⇔ (∃δ1, δ2, . . . , δn ∈ ∆, x ∈ X, g1, g2, . . . , gn ∈ G) {a, b} ⊆ g1δ1g2δ2, . . . , gnδnx.

Let β =
⋃

n≥1 βn. Clearly, the relation β is reflexive and symmetric. Denote by β∗ the
transitive closure.

We say that xβδny when

aβδnb ⇔ (∃x ∈ X, g1, g2, . . . , gn ∈ G) {a, b} ⊆ g1δg2δ, . . . , gnδx.

Let βδ =
⋃

n≥1 βδn and β∗
δ be transitive closure. Obviously, β∗

δ ⊆ β∗.
Let X be a (∆, G)-biset. Then, the relation βn defined on X as follows:

aβnb ⇔ (∃x ∈ X, δi, γi ∈ ∆, gi, si ∈ G) {a, b} ⊆
n∏

i=1

(giδix)γisi.

In a same way, we can define βδ and transitive closure β∗
δ .

Example 2.8. Let R be a Ẑ-semihyperring Example 2.5, x, y ∈ R such that β(x) = β(y)

and t1 = [x], t2 = [y]. Then, there exist g1, g2, . . . , gm ∈ R and δ̂1, δ̂2, . . . , δ̂m ∈ Ẑ such

that {x, y} ⊆ g1δ̂1g2δ̂2g3 . . . gm−1δ̂m−1gm. This implies that t1 = t2 =
∏m

i=1 giδigi+1.
Therefore, β(x) = β(y) if and only there exists n ∈ Z such that x, y ∈ [n, n + 1).
Hence β∗(x) = β∗(y) implies that x, y ∈ [n, n+ 1) for some n ∈ Z.
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Theorem 2.2. Let X be a left (∆, G)-set. Then, β∗ is the smallest strongly regular

relation on X.

Proof. Suppose that aβ∗b be an arbitrary element of X. It follows that there exist
x0 = a, x1, . . . , xn = b such that for all i ∈ {0, 1, 2, . . . , n} we have xiβxi+1. Let
u1 ∈ gδa and u2 ∈ gδb, where g ∈ G, δ ∈ ∆. From xiβxi+1 it follows that there exists
a hyperproduct Pi, such that {xi, xi+1} ⊆ Pi and so gδxi ⊆ gδPi and gδxi+1 ⊆ gδPi+1,

which meanies that gδxiβgδxi+1. Hence for all i ∈ {0, 1, 2, . . . , n − 1} and for all
si ∈ gδxi we have siβsi+1. We consider s0 = u1 and sn = u2 then we obtain u1β

∗u2.
Then β∗ is strongly regular on a left.

Let ρ be a strongly regular relation on X. Then, we have

β1 = {(x, x) : x ∈ X} ⊆ ρ,

since ρ is reflexive. Let βn−1 ⊆ ρ and aβnb. Then, there exist g1, g2, . . . , gn ∈ G,
δ1, δ2, . . . , δn ∈ ∆ and x ∈ X such that {a, b} ⊆

∏n
i=1 giδix = g1δ1

∏n
i=2 giδix. This

implies that there exits u, v ∈
∏n

i=2 giδix such that a ∈ g1δ1u and v ∈ g1δ1v. We have
uβn−1v and according to the hypothesis, we obtain uρv. Since ρ is regular it follows
that aρb and βn ⊆ ρ. By induction, it follows that β ⊆ ρ. Therefore, β∗ ⊆ ρ. �

Proposition 2.6. Let X1 and X2 be left (∆, G)- and right (∆, G)-sets, respectively

and β∗
X1

, β∗
X2

and β∗
X1×X2

be relations on X1, X2 and X1 ×X2, respectively. Then,

(a, b)β∗
X1×X2

(c, d) ⇔ aβ∗
X1
c, bβ∗

X2
d.

Proof. Suppose that (a, b)β∗
X1×X2

(c, d). Then,

{(a, b), (c, d)} ⊆
n∏

i=1

giδ̂i(x, y)γ̂isi =

(
n∏

i=1

giδix,
n∏

i=1

yγisi

)
.

This implies that {a, c} ⊆
∏n

i=1 giδix and {b, d} ⊆
∏n

i=1 yγisi. Then, aβ∗
X1
c and bβ∗

X2
d.

One can see that aβ∗
X1
c and bβ∗

X2
d implies that (a, b)β∗

X1×X2
(c, d). �

Corollary 2.2. Let X1 and X2 be left (∆, G)- and right (∆, G)-sets, respectively and

β∗
X1

, β∗
X2

and β∗
X1×X2

be relations on X1, X2 and X1 ×X2, respectively. Then,

[X1 ×X2 : β∗
X1×X2

] ≃ [X1 : β∗
X1

] × [X2 : β∗
X2

].

Definition 2.9. A map ϕ : X → Y from a left (∆, G)-set X into a left (∆, G)-set Y
is called morphism (G-morphism) if

ϕ(gδx) = gδϕ(x),

for every x ∈ X, δ ∈ ∆ and g ∈ G.

Example 2.9. Let (G, ◦) be a semihypergroup with scalar identity and G1 be a sub-
semihypergroup of (G, ◦). Then, G1 is a (Γ, G1)-biset in the obvious way, where
Γ = {◦}.
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Example 2.10. Let ρ be a left regular relation on Γ-semihypergroup G. Then, there is
a well-defined action of G on [G : ρ] given by

gα̂(ρ(x)) = {ρ(t) : t ∈ gαx},

where α̂ ∈ Γ̂ such that Γ̂ = {α̂ : α ∈ Γ}. Hence, with this definition [G : ρ] is a left

(Γ̂, G)-system.

It is easy to see that the cartesian product X × Y of a left (∆, G1)-set X and a

right (∆, G2)-set Y becomes (G1, ∆̂, G2)-biset if we make the obvious definitions

g1δ̂1(x, y) = {(t, y) : t ∈ g1δ1x}, (x, y)δ̂2g2 = {(x, t) : t ∈ yδ2g2},

where δ̂1, δ̂2 ∈ ∆̂, x ∈ X, y ∈ Y and g1 ∈ G1, g2 ∈ G2.
Let X and Y be (G1,∆, G2)- and (G2,∆, G3)-bisets, respectively and Z be a

(G1,∆, G3)-biset. Then, the cartesian product X × Y is (G1,∆, G3)-biset. A
(G1,∆, G3)-map ϕδ : X × Y → Z is called δ-bimap if

ϕ(xδg2, y) = ϕ(x, g2δy),

where x ∈ X, y ∈ Y , g2 ∈ G2 and δ ∈ ∆.

Definition 2.10 ([9]). A pair (P, ψ) consisting of (G1,∆, G3)-biset P and a δ-bimap
ψ : X × Y → P will be called a twist product of X and Y over G2 if for every
(G1,∆, G3)-biset Z and for every bimap ω : X × Y → Z there exists a unique bimap
ω : P → Z such that ω ◦ ψ = ω.

Suppose that ρ is an equivalence relation on X × Y as follows:

ρ = {(t1, t2) : t1 ∈ xδg, t2 ∈ gδy, x ∈ X, y ∈ Y, g ∈ G2}.

Let us define X⊖Y to be [X×Y : ρ∗], where ρ∗ is a transitive closure of ρ. We denote
a typical element ρ∗(x, y) by x ⊖ y. By definition of ρ∗, we have xδg ⊖ y = x ⊖ gδy,
where δ ∈ ∆.

Proposition 2.7 ([9]). Let X and Y be (G1,∆, G2)- and (G2,∆, G3)-bisets, respec-

tively. Then, two element x⊖ y and x′ ⊖ y′ are equal if and only if (x, y) = (x′, y′) or

there exist x1, x2, . . . , xn−1 in X, h1, h2, . . . , hn−1 ∈ G2 and δ ∈ ∆ such that

x ∈ x1δg1, x1δh1 = x2δg2, . . . , xiδgi = xi+1δgi+1, xn−1δhn−1 =x′δgn,

g1δy = h1δy1, g2δy1 = h2δy2, . . . , gi+1δyi =hi+1δyi+1

=gnδyn−1

=y′.

Theorem 2.3 ([9]). Let X and Y be (G1,∆, G2)- and (G2,∆, G3)-bisets. Then, the

twist product X and Y over G2 is unique up to isomorphism.

Proposition 2.8. Let X and Y be a scalar (∆, G)-bisets. Then, X ⊖ Y is a (∆, G)-
biset by following scalar hyperoperations:

gδ̂(x⊖ y) = gδx⊖ y, (x⊖ y)δ̂g = x⊖ yδg,
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where δ̂ ∈ ∆̂ and x ∈ X, y ∈ Y .

Proof. Suppose that x ⊖ y = x′ ⊖ y′. By Proposition 2.7, there exist δ ∈ ∆,
x1, x2, . . . , xn−1 ∈ X and h1, h2, . . . , hn−1 ∈ G, such that

x = x1δg1, x1δh1 = x2δg2, · · ·xiδhi = xi+1δgi+1

xn−1δhn−1 = x′δgn,

g1δy = h1δy1, g2δy1 = h2δy2, . . . , gi+1δyi = hi+1δyi+1

= gnδyn−1

= y′.

Hence,

gδx = gδ(x1δg1), gδ(x1δh1) = gδ(x2δg2), . . . , gδ(xiδhi) = gδ(xi+1δgi+1)
gδ(xn−1δhn−1) = gδ(x′δgn).

We have

gδx⊖ y = t1 ⊖ g1δy = t1 ⊖ h1δy = t1δh1 ⊖ y1 = t2δg2 ⊖ y1

...

= t′δgn ⊖ yn−1

= t′ ⊖ gnδyn−1

= gδx′ ⊖ y′,

where ti ∈ X. Then, the left scalar operation δ̂ is well-defined. Moreover,

(g1αg2)δ̂(x⊖ y) = (g1αg2)δx⊖ y = g1δ(g2δx) ⊖ y = g1δ̂(g2δ̂(x⊖ y)),

where x ∈ X, y ∈ Y and g ∈ G. Hence X ⊖ Y is a left (∆̂, G)-set. In a same way, we
can see X ⊖ Y is also right (∆, G)-set. �

3. Complete Parts and Regular Relations

In this section we define the concept of complete parts and present some results.

Definition 3.1. Let X be a left (∆, G)-set and Y be a nonempty subset of X.
We say that Y is a complete part of X if for any nonzero natural number n and
g1, g2, . . . , gn ∈ G, δ1, δ2, . . . , δn ∈ ∆, x ∈ X, the following implication holds:

Y ∩
n∏

i=1

giδix 6= ∅ ⇒
n∏

i=1

giδixi ⊆ Y.

Proposition 3.1. Let X be a left (∆, G)-set and ρ be a strongly regular relation on

X. Then, the equivalence class x is a complete part of X.
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Proof. Suppose that g1, g2, . . . , gn ∈ G, δ1, δ2, . . . , δn ∈ ∆ and x ∈ X such that

ρ(x) ∩
n∏

i=1

giδ̂ix 6= ∅.

Then, there exists y ∈
∏n

i=1 giδix such that yρx. The morphism π : X → [X : ρ] is

good and the scalar hyperoperation δ̂ defined on [X : ρ] is scalar operation. It follows
that

π(y) = ρ(y) = ρ(x) = π

(
n∏

i=1

giδix

)
=

n∏

i=1

π(giδix) =
n∏

i=1

giδ̂iπ(x).

This implies that
∏n

i=1 giδ̂ix ⊆ ρ(x). �

Proposition 3.2. Let X and Y be scalar (∆, G)-bisets such that X1 ⊆ X be a

complete part. Then, X1 ⊖ Y is also complete part in X ⊖ Y .

Proof. The proof is straightforward. �

Let A be a nonempty subset of (∆, G)-sets X. Then, denoted by C(A) the complete

closure of A, which is the smallest complete part of X, that contain A.

Denote K1(A) = A and for all n ≥ 1 denote

Kn+1(A) =

{
x ∈ X : (∃t ∈ N) x ∈

t∏

i=1

giδix,Kn(A) ∩
t∏

i=1

giδix

}
.

Let K(A) =
⋃

n≥1 Kn(A).

Theorem 3.1. Let X be a left (∆, G)-set and A be a nonempty subset of A. Then,

C(A) = K(A).

Proof. Suppose that K(A) ∩
∏t

i=1 giδix 6= ∅. Then, there exits n ≥ 1 such that
Kn(A) ∩

∏t
i=1 giδix 6= ∅ which meanies that

∏t
i=1 giδix ⊆ Kn+1(A). This implies that

K(A) is a complete part of X.
Let C1 be a complete pat of X such that A ⊆ C1. Then, by induction we prove that

K(A) ⊆ C1. We have K1(A) ⊆ C1 and suppose that Kn(A) ⊆ C1. Let x ∈ Kn+1(A).
Then, there exists t ∈ N such that a ∈

∏t
i=1 giδix and Kn(A) ∩

∏t
i=1 giδix 6= ∅. Hence,

C1 ∩
∏t

i=1 giδix 6= ∅ implies that
∏t

i=1 giδix ⊆ C1. We obtain a ∈ C1. Therefore,
C(A) = K(A). �

Proposition 3.3. Let X be a left (∆, G)-set and x be an arbitrary element of X.

Then,

(1) for all n ≥ 2 we have Kn(K2(x)) = Kn+1(x);
(2) for every x, y ∈ X, x ∈ Kn(y) ⇔ y ∈ Kn(x).

Proof. (1) We prove the equality by induction. We have

K2(K2(x)) =

{
x ∈ X : (∃t ∈ N) x ∈

t∏

i=1

giδix,K2(x) ∩
t∏

i=1

giδix 6= ∅

}
= K3(x).
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Let Kn−1(K2(x)) = Kn(x). Then,

Kn(K2(x)) =
{
x ∈ X : (∃t ∈ N) x ∈

∏t
i=1 giδix,Kn−1(K2(x)) ∩

∏t
i=1 giδix 6= ∅

}

= Kn+1(x).

(2) We check the equivalence by induction. For n = 2, we have

x ∈ K2(y) =

{
x ∈ X : (∃t ∈ N) x ∈

t∏

i=1

giδix,K1(y) ∩
t∏

i=1

giδix 6= ∅

}
.

This implies that {y, x} ⊆
∏t

i=1 giδix and y ∈ K2(x). Suppose that the following
equivalence holds:

x ∈ Kn−1(y) ⇔ y ∈ Kn−1(x).

We check that x ∈ Kn(y) ⇔ y ∈ Kn(x). Let x ∈ Kn(y). Then, there exists
∏t

i=1 giδia

with x ∈
∏t

i=1 giδia and there exists b ∈
∏t

i=1 giδia∩Kn−1(y). It follows that b ∈ K2(x)
and y ∈ Kn−1(b). Hence, y ∈ Kn−1(K2(x)) = Kn(x). Similarly, we obtain the converse
implication. �

Definition 3.2. Let X be a left (∆, G)-set. Then, we define the relation ω as follows:

(x, y) ∈ ω ⇔ (∃n ≥ 1) x ∈ Kn(y).

Theorem 3.2. Let X be a left (∆, G)-set. Then, the relation ω is an equivalence and

coincide with β∗.

Proof. By Proposition 3.3, the relation ω is an equivalence. Let (x1, x2) ∈ β. Then,
{x1, x2} ⊆

∏n
i=1 giδix, where gi ∈ G, δi ∈ ∆ and t ∈ N. Hence, x1, x2 belong to

the same scalar hyperoperation and so, x1 ∈ K2(x2) ⊆ K(x2). This implies that
β ⊆ ω and β∗ ⊆ ω. Let (x, y) ∈ K and x 6= y. Then, there exists n ≥ 1, such
that (x, y) ∈ Kn+1, which means that there exists a scalar hyperproduct P1, such
that x ∈ P1 and P1 ∩ Kn(y) 6= ∅. Let x1 ∈ P1 ∩ Kn(y). Then, {x, x1} ⊆ P1. Hence
(x, x1) ∈ β. Since x1 ∈ Kn(y) it follows that there exists a scalar hyperproduct P2

such that x1 ∈ P2 and P2 ∩Kn−1(y) 6= ∅. Let x2 ∈ P2 ∩Kn−1(y). Then, x2 ∈ Kn−1(y)
and {x1, x2} ⊆ P2. After finite number of steps, we obtain there exists a scalar
hyperoperation Pn such that {xn−1, xn} ⊆ Pn and xn ∈ Kn−(n−1)(y) = {y}. �

4. Fundamental, Noetherian and Artinian (∆, G)-Sets

In this section, we introduce the notion of right Noetherian and Artinian (∆, G)-sets
and define fundamental (∆, G)-sets.

Let X be a left (∆, G)-set such that G be a Γ-semihypergroup and Γ ⊆ ∆. We
define a relation ρ on ∆ ×X as follows:

((δ1, x1), (δ2, x2)) ∈ ρ ⇔ gδ1x1 = gδ2x2, for all g ∈ G,

where δ1, δ2 ∈ ∆ and x1, x2 ∈ X. Obviously, ρ is an equivalence.
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Let Θ[X] = [∆ × X : ρ] denote the set of all equivalence classes. We denote the
equivalence class (δ, x) by [δ, x]. We define a relation ǫ on Γ ×G as follows:

((δ1, g1), (δ2, g2)) ∈ ǫ ⇔ gδ1g1 = gδ2g2, for all g ∈ G,

where g1, g2 ∈ G and δ1, δ2 ∈ Γ. Obviously, ǫ is an equivalence relation and [δ, g] denote
the equivalence class containing (δ, g). We denote Θ[G] = {[δ, g] : g ∈ G, δ ∈ Γ}. We
define a hyperoperation ◦ on Θ[G] as follows:

[δ1, g1] ◦ [δ2, g2] = {[δ1, z] : z ∈ g1δ2g2},

where δ1, δ2 ∈ ∆ and g1, g2 ∈ G. This hyperoperation is well-defined. Indeed, let
[δ1, g1] = [γ1, h1] and [δ2, g2] = [γ2, , h2], where δ1, δ2, γ1, γ2 ∈ Γ and g1, g2, h1, h2 ∈ G.
Then,

gδ1g1 = gγ1h1, gδ2g2 = gγ2h2, for all g ∈ G.

Hence,
(gδ1g1)δ2g2 = (gγ1h1)γ2h2, for all g ∈ G,

and
gδ1(g1δ2g2) = gγ1(h1γ2h2).

Thus,
[δ1, g1] ◦ [δ2, g2] = [γ1, h1] ◦ [γ2, h2].

Also

([δ1, g1] ◦ [δ2, g2]) ◦ [δ3, g3] = ({[δ1, z] : z ∈ g1δ2g2}) ◦ [δ3, g3]

=
⋃

z∈g1δ2g2

[δ1, z] ◦ [δ3, x]

=
⋃

z∈g1δ2g2

{[δ1, t] : t ∈ zδ3g3}

=
⋃

t∈(g1δ2g2)δ3g3

[δ1, t]

=
⋃

t∈g1δ2(g2δ3g3)

[δ1, t]

= [δ1, g1] ◦ ([δ2, g2] ◦ [δ3, g3]).

Therefore, (Θ[G], ◦) is a semihypergroup.
Let ◦ be a scalar hyperoperation ◦ : Θ[G] × Θ[X] → P ∗(Θ[X]) such that

[δ1, g] ◦ [δ2, x] = {[δ1, z] : z ∈ gδ2x}.

This scalar hyperoperation is well-defined. Indeed, let [δ1, g1] = [δ2, g2] and [δ3, x1] =
[δ4, x2] such that g1, g2 ∈ G, δ1, δ2 ∈ ∆, x1, x2 ∈ X and δ3, δ4 ∈ ∆. Then,

gδ1g1 = gδ2g2, gδ3x1 = gδ4x2, for all g ∈ G.

This implies that (gδ1g1)δ3x1 = (gδ2g2)δ4x2. Hence,

[δ1, g1] ◦ [δ3, x1] = [δ2, g2] ◦ [δ4, x2].
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Thus the scalar hyperoperation ◦ is well-defined. Let [δ1, g1], [δ2, g2] ∈ Θ[G] and
[δ3, x] ∈ Θ[X], where δ1, δ2 ∈ Γ. Then,

([δ1, g1] ◦ [δ2, g2]) ◦ [δ3, x] = ({[δ1, z] : z ∈ g1δ2g2}) ◦ [δ3, x]

=
⋃

z∈g1δ2g2

[δ1, z] ◦ [δ3, x]

=
⋃

z∈g1δ2g2

{[δ1, t] : t ∈ zδ3x}

=
⋃

t∈(g1δ2g2)δ3x

[δ1, t]

=
⋃

t∈g1δ2(g2δ3x)

[δ1, t]

= [δ1, g1] ◦ ([δ2, g2] ◦ [δ3, x]).

Therefore, Θ[X] is a left Θ[G]-set and is called fundamental left (∆, G)-set.
Let Θ[X] be a fundamental left (∆, G)-set, H ⊆ Θ[X] and T ⊆ X. Then, we define

[H] ={x ∈ X : [δ, x] ∈ H for all δ ∈ ∆},

[[T ]] ={[δ, x] ∈ Θ[X] : gδx ⊆ T for all g ∈ G}.

A nonempty subset T of a left (∆, G)-set X is called left (∆, G)-subset of X when
G∆T ⊆ T . A nonempty subset H of Θ[X] is called left Θ[G]-subset if Θ[G] ◦H ⊆ H.

Proposition 4.1. Let X be a left (∆, G)-set and H ⊆ Θ[X] be a complete part. Then,

[H] is a complete part of X.

Proof. Suppose that

[H] ∩
n∏

i=1

giδix 6= ∅.

This implies that there exists a ∈ X such that a ∈ [H] ∩
∏n

i=1 giδix. Then, for every
δ ∈ ∆, [δ, a] ∈ H. This implies that

[δ, a] ∈ H ∩
n∏

i=1

[δ, gi] ◦ [δi, x].

Since [H] is a complete part,
∏n

i=1[δ, gi] ◦ [δi, x] ⊆ H. Then,
{
b ∈

n∏

i=1

giδix : ∀δ ∈ ∆, [δ, b]

}
⊆ H.

Therefore, [H] is a complete part. �

Proposition 4.2. Let X be a left (∆, G)-set and T ⊆ X is a complete part. Then,

[[T ]] is also a complete part of Θ[X].

Proof. Suppose that

[[T ]] ∩
n∏

i=1

[δi, gi] ◦ [δ, x] 6= ∅.
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This implies that
{

[δ1, z] : z ∈
n∏

i=1

giδx

}
∩ [[T ]] 6= ∅ ⇒

(
∃z ∈

n∏

i=1

giδx

)
[δ1, z] ∈ [[T ]]

⇒

(
∃z ∈

n∏

i=1

giδx

)
(∀g ∈ G) gδ1z ⊆ T

⇒ gδ
n∏

i=1

giδx ∩ T 6= ∅

⇒ (∀g ∈ G) gδ
n∏

i=1

giδx ⊆ T

⇒
n∏

i=1

[δi, gi] ◦ [δ, x] 6= ∅ ⊆ [[T ]].

Therefore, [[T ]] is also complete part of Θ[X]. �

Proposition 4.3. Let X be a left (∆, X)-set such that T ⊆ X. Then, C[[T ]] =
[[C(T )]].

Proof. Since C(T ) is a complete part by Proposition 4.2, [[C(T )]] is also complete
part of Θ[X]. Also, [[T ]] ⊆ [[C(T )]]. Let T1 be a complete part contain [[T ]]. Hence,
C[[T ]] ⊆ T1. Thus, [[C(T )]] is a smallest compte part contain [[T ]]. Therefore,
C[[T ]] = [[C(T )]]. �

Theorem 4.1. Let X be a left (∆, G)-set and Θ[X] be a fundamental left (∆, G)-set.

Then,

(i) If H is a left Θ[G]-subset of Θ[X], then [H] is a left (∆, G)-subset of X;

(ii) If T is a left (∆, G)-subset of X, then [[T ]] is a left Θ[G] of Θ[X].

Proof. (i) Suppose that x ∈ [H]. Then, for every δ ∈ ∆ we have [δ, x] ∈ H. Since H
is a left Θ[G]-set of Θ[X], thus [δ1, g] ◦ [δ, x] ⊆ H. So {[δ1, t] : t ∈ gδx} ⊆ H. This
implies that gδx ⊆ [H]. Therefore, [H] is a left (∆, G)-set of X.
(ii) Let [δ, x] ∈ [[T ]] and [δ1, g] ∈ Θ[G]. Then, for all g ∈ G, gδx ⊆ T . Now,

[δ1, g] ◦ [δ, x] = {[δ1, t] : t ∈ gδx} ⊆ [[T ]].

Therefore, [[T ]] is a left Θ[G]-subset of Θ[X]. �

Let X be a left (∆, G)-set and T be a nonempty subset of X. Then,

[[[T ]]] = {x ∈ X : ∀δ ∈ ∆, [δ, x] ∈ [[T ]]} = {x ∈ X : gδx ⊆ T for all δ ∈ ∆, g ∈ G}.

This implies that T is a left (∆, G)-subset of [[[T ]]]. Also, when H ⊆ Θ[X], we have

[[[H]]] = {[δ, x] ∈ Θ[X] : gδx ⊆ [H] for all g ∈ G}
= {[δ, x] ∈ Θ[X] : [δ1, t] ∈ H for all g ∈ G, δ1 ∈ ∆, t ∈ gδx}.
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Let H be a left Θ[G]-subset of Θ[X]. Then, for every δ1 ∈ Γ, g ∈ G and [δ, x] ∈ H

we have
[δ1, g] ◦ [δ, x] = {[δ1, t] : t ∈ gδx} ⊆ H.

When H is a left Θ[G]-subset of Θ[X], we have H ⊆ [[[H]]].
Let X be a left (∆, G)-set such that eα is a unit element of G where α ∈ Γ. Then,

[δ, eα] ◦ [δ, x] = [δ, eαδx] = [δ, x].

This implies that [δ, eα] is a left unity of Θ[X].

Proposition 4.4. Let X be a left (∆, G)-set and T be a left (∆, G)-subset of X.

Then, [[[T ]]] = T .

Proof. The proof is straightforward. �

Definition 4.1. Let X be a left (∆, G)-set. Then, X is said Noetherian, when X

satisfies the ascending chain condition on left (∆, G)-subsets and X is said Artinian
when X satisfies the descending chain condition.

Theorem 4.2. Let X be a left (∆, G)-set such that Θ[X] is Noetherian (Artinian)
Θ[G]-set. Then, X is Noetherian left (∆, G)-set.

Proof. Suppose that X1 ⊆ X2 ⊆ X3 ⊆ · · · ⊆ Xn ⊆ · · · be an ascending chain of left
(∆, G)-set of X. Hence [X1] ⊆ [X2] ⊆ [X3] ⊆ · · · ⊆ [Xn] · · · is an ascending chain
in Θ[X]. Since Θ[X] is Noetherian thus there exists a positive integer n such that
[Xn] = [Xn+k] for every k ∈ N. This implies that Xn = [[[Xn]] = [[Xn+k]]] = Xn+k for
every k ∈ N. Therefore, X is Noetherian left (∆, G)-set. In a same way, when X is
Artinian left (∆, G)-set, then Θ[X] is also Θ[G]-set. �

Corollary 4.1. Let X be a left (∆, G)-set and Θ[X] is Artinian Θ[G]-set. Then, X

is Artinian left (∆, G)-set.

Definition 4.2. Let X be a left (∆, G)-set and A be a nonempty subset of X. Then,
intersection of all ideals of X containing A is a left (∆, G)-set generated by A and
denoted by < A >.

Proposition 4.5. Let X be a left (∆, G)-set and A ⊆ X. Then, < A >= G∆A.

Proof. Suppose that H = G∆A. Obviously, A ⊆ H and H is a left (∆, G)-set of X.
Indeed,

G∆H = G∆(G∆A) = (GΓG)∆A ⊆ G∆A = H.

Let C be a left (∆, G)-subset of X such that A ⊆ C. Then,

H = G∆A ⊆ G∆C ⊆ C.

Therefore, H is a smallest left (∆, G)-set contain A and H =< A >. �

Let X be a left (∆, G)-set and every nonempty of left (∆, G)-subset of X partially
ordered by inclusion has a maximal element. Then, we say that maximum condition
holds for left (∆, G)-sets.
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Theorem 4.3. Let X be a left (∆, G)-set. Then, the following conditions are equiva-

lent:

(i) X is Noetherian;

(ii) X satisfies the maximum condition for left (∆, G)-sets;

(iii) every left (∆, G)-subset of X is finitely generated.

Proof. (i)⇒(ii) Suppose that Λ is a nonempty set of left (∆, G)-subsets which has
no maximal element. Let Λ1 ∈ Λ. Then, there exists an element Λ2 ∈ Λ such that
Λ1 ⊂ Λ2. Also, there exists an element Λ3 ∈ Λ such that Λ2 ⊂ Λ3. By continuing this
process we have the accenting chain Λ1 ⊂ Λ2 ⊂ Λ3 ⊂ · · · . This is impossible.

(ii)⇒(iii) Let X1 be a left (∆, G)-set and Ω = {< A >: A is a finite subset of X1}.
By (ii), Ω has a maximal element < A0 >. Now, if x ∈ X1, then < A0 ∪ {x} >∈ Ω.
By Maximality of < A0 > we have x ∈< A0 >. Therefore, X1 is finite generated.

(iii)⇒(i) Suppose that X1 ⊆ X2 ⊆ · · · is a accenting chain of left (∆, G)-sets and
T =

⋃
n≥1 Xn. One can see that T is a left (∆, G)-set of X. By (iii), T is finite gene-

rated. Then, there exist x1, x2, . . . , xn ∈ X such that T =< x1, x2, . . . , xn >. Hence
for 1 ≤ k ≤ n there exists Xk such that xk ∈ Xik

. We put m := max{i1, i2, . . . , in}.
Hence, for every t ≥ m we have Im = It. �

Theorem 4.4. Let Ω be a partition (∆, G)-set such that Ω =
⋃

t∈X At. Then, H is a

left (∆, G)-subset of X if and only if ΩH =
⋃

t∈H At is a left (∆, G) of Ω.

Proof. Suppose that H is a left (∆, G)-set of X. Then,

G∆̂ΩH = G∆̂
⋃

t∈H

At =
⋃

t∈H

G∆̂At =
⋃

t∈G∆H

At ⊆
⋃

t∈H

At = ΩH .

Hence ΩH is a left (∆, G)-subset of Ω.
Conversely, suppose that ΩH is a left (∆, G)-subset of Ω, g ∈ G, δ ∈ ∆ and h ∈ H.

Choose x ∈ Ah. Since ΩH is a left (∆, G)-subset of ΩH , we have

gδ̂x = {Az : z ∈ gδh} ⊆ ΩH .

Hence ,gδh ⊆ H. �

Corollary 4.2. Let Ω be a partition (∆, G)-set such that X is Noetherian (Artinian)
(∆, G)-set. Then, Ω is Noetherian (Artinian).
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BEURLING’S THEOREM FOR THE Q-FOURIER-DUNKL

TRANSFORM

EL MEHDI LOUALID1∗, AZZEDINE ACHAK1, AND RADOUAN DAHER1

Abstract. The Q-Fourier-Dunkl transform satisfies some uncertainty principles
in a similar way to the Euclidean Fourier transform. By using the heat kernel
associated to the Q-Fourier-Dunkl operator, we establish an analogue of Beurling’s
theorem for the Q-Fourier-Dunkl transform FQ on R.

1. Introduction and Preliminaries

There are many known theorems which state that a function and its classical Fourier
transform on R cannot both be sharply localized. That is, it is impossible for a nonzero
function and its Fourier transform to be simultaneously small. This principle has
several version which were proved by A. Beurling [3]. The Beurling theorem for the
classical Fourier transform on R which was proved by L. Hörmander [5], says that for
any non trivial function f in L2(R), the function f(x)F(y) is never integrable on R

2

with respect to the measure e|xy|dxdy. A far reaching generalization of this result has
been recently proved in [4]. In this paper the author proved that a square integrable
function f on R satisfying for an integer N

∫

R

∫

R

|f(x)||F(y)|

(1 + |x| + |y|)N
e|xy|dxdy < ∞,

has the form f(x) = P (x)e−rx2
, where P is a polynomial of degree strictly lower than

N−1
2

and r > 0. Many authors have established the analogous of Beurling’s theorem
in other various setting of harmonic analysis (see for instance [1, 6]). In this paper
we study an analogue of Beurling’s theorem, in the next we deduce an analogue of
Gelfand-Shilov, for the Q-Fourier-Dunkl transform.

Key words and phrases. Q-Fourier-Dunkl transform, Beurling’s theorem, uncertainty principles.
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The outline of the content of this paper is as follows. Section 2 is dedicated to
some properties and results concerning the Q-Fourier-Dunkl transform. In Section
3 we give an analogue of Beurling’s theorem and Gelfand-Shilov theorems for the
Q-Fourier-Dunkl transform. Let us now be more precise and describe our results. To
do so, we need to introduce some notations. Throughout this paper α > −1

2
,

• Q(x) = exp (−
∫ x

0 q(t)dt), x ∈ R, where q is a C
∞ real-valued odd function on R;

• Lp
α(R) the class of measurable functions f on R for which ‖f‖p,α < ∞, where

‖f‖p,α =
(∫

R

|f(x)|p|x|2α+1dx

)
1
p

, if p < ∞,

and ‖f‖∞,α = ‖f‖∞ = esssupx∈R|f(x)|.
• L

p
Q(R) the class of measurable functions f on R for which ‖f‖p,Q = ‖Qf‖p,α < ∞,

where Q is given by Q(x) = exp (−
∫ x

0 q(t)dt), x ∈ R.

We consider the first singular differential-difference operator Λ defined on R

Λf(x) = f ′(x) +
(

α +
1

2

)

f(x) − f(−x)

x
+ q(x)f(x),

where q is a C
∞ real-valued odd function on R. For q = 0 we regain the Dunkl

operator Λα associated with reflection group Z2 on R given by

Λαf(x) = f ′(x) +
(

α +
1

2

)

f(x) − f(−x)

x
.

1.1. Q-Fourier-Dunkl Transform. The following statements are proved in [2].

Lemma 1.1. (a) For each λ ∈ C, the differential-difference equation

Λu = iλu, u(0) = 1,

admits a unique C
∞ solution on R, denoted by Ψλ, given by

Ψλ(x) = Q(x)eα(iλx),

where eα denotes the one-dimensional Dunkl kernel defined by

eα(z) = jα(iz) +
z

2(α + 1)
jα+1(z), z ∈ C,

and jα being the normalized spherical Bessel function of index α given by

jα(z) = Γ(α + 1)
∞

∑

n=0

(−1)n( z
2
)2n

n! Γ(n + α + 1)
, z ∈ C.

(b) For all x ∈ R, λ ∈ C and n = 0, 1, . . ., we have
∣

∣

∣

∣

∣

∂n

∂λn
Ψλ(x)

∣

∣

∣

∣

∣

≤ Q(x)|x|ne|Im(λ)|·|x|.

In particular,

|Ψλ(x)| ≤ Q(x)e|Im(λ)|·|x|.
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(c) For all x ∈ R, λ ∈ C, we have the Laplace type integral representation

Ψλ(x) = aαQ(x)
∫ 1

−1
(1 − t2)α− 1

2 (1 + t)eiλxtdt,

where aα = Γ(α+1)√
πΓ(α+ 1

2
)
.

Definition 1.1. The Q-Fourier-Dunkl transform associated with Λ for a function in
L1

Q(R) is defined by

FQ(f)(λ) =
∫

R

f(x)Ψ−λ(x)|x|2α+1dx.

Theorem 1.1. (a) Let f ∈ L1
Q(R) such that FQ(f) ∈ L1

α(R). Then for almost x ∈ R

we have the inversion formula

f(x) (Q(x))2 = mα

∫

R

FQ(f)(λ)Ψλ(x)|λ|2α+1dλ,

where

mα =
1

22(α+1)(Γ(α + 1))2
.

(b) For every f ∈ L2
Q(R), we have the Plancherel formula

∫

R

|f(x)|2 (Q(x))2 |x|2α+1dx = mα

∫

R

|FQ(f)(λ)|2|λ|2α+1dλ.

(c) The Q-Fourier-Dunkl transform FQ extends uniquely to an isomorphism from

L2
Q(R) onto L2

α(R).

The heat kernel N(x, s), x ∈ R, s > 0, associated with the Q-Fourier-Dunkl
transform is given by

N(x, s) = mα

e− x2

4s

(2s)α+ 1
2 Q(x)

.

Some basic properties of N(x, s) are the following:

• N(x, s)Q2(x) = mα

∫

R

e−sy2

Ψy(x)|y|2α+1dy;

• FQ(N(., s))(x) = e−sx2
.

We define the heat functions Wl, l ∈ N, as

Q2(x)Wl(x, s) =
∫

R

yle− y2

4s Ψy(x)|y|2α+1dy,(1.1)

FQ(Wl(., s)) =ilyle−sy2

.(1.2)

The intertwining operators associated with a Q-Fourier-Dunkl transform on the real
line is given by

XQ(f)(x) = aαQ(x)
∫ 1

−1
f(tx)(1 − t2)α− 1

2 dt,

its dual is given by

(1.3) tXQ(f)(y) = aα

∫

|x|≥|y|
f(x)Q(x) sgn(x)(x2 − y2)α− 1

2 (x + y)dx.
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Proposition 1.1. If f ∈ L1
Q(R), then tXQ(f) ∈ L1(R) and ‖tXQ(f)‖1 ≤ ‖f‖1,Q.

For every f ∈ L1
Q(R) we have

(1.4) FQ = F ◦t XQ(f),

where F is the usual Fourier transform defined by

F(f)(λ) =
∫

R

f(x)e−iλxdx.

2. Beurling’s Theorem for the Q-Fourier-Dunkl Transform

Theorem 2.1. Let N ∈ N and f ∈ L2
Q(R) satisfy

(2.1)
∫

R

∫

R

|f(x)||FQ(f)(y)|Q(x)

(1 + |x| + |y|)N
e|x||y||x|2α+1dxdy < ∞.

If N > 1, then f(y) = Σ|s|< N−1
2

bsWs(r, y) a.e. where r > 0, bs ∈ C and Ws(r, ·) is

given by (1.1). Otherwise, f(y) = 0 a.e.

Proof. We start with the following lemma.

Lemma 2.1. We suppose that f ∈ L2
Q(R) satisfies (2.1). Then f ∈ L1

Q(R).

Proof. We may suppose that f 6= 0 in L2
Q(R). (2.1) and Fubini theorem imply that

for almost every y ∈ R,

|FQ(f)(y)|

(1 + |y|)N

∫

R

Q(x)|f(x)|

(1 + |x|)N
e|x||y||x|2α+1dx < ∞.

Since FQ(f) 6= 0, there exist y0 ∈ R, y0 6= 0, such that FQ(f)(y0) 6= 0.
Therefore,

(2.2)
∫

R

Q(x)|f(x)|

(1 + |x|)N
e|x||y0||x|2α+1dx < ∞.

Since e|x||y0|

(1+|x|)N ≥ 1 for large |x|, it follows that
∫

R
Q(x)|f(x)||x|2α+1dx < ∞. �

This Lemma and Proposition 1.1 imply that tXQ(f) is well-defined almost every-
where on R. We shall prove that we have

(2.3)
∫

R

∫

R

|tXQ(f)(x)||F(tXQ)(f)(y)|

(1 + |x| + |y|)N
e|x||y|dxdy < ∞.

Take y0 as in Lemma 2.1, we write the above integral as a sum of the following
integrals

I =
∫

R

∫

|y|≤|y0|

e|x||y|

(1 + |x| + |y|)N
|tXQf(x)||F(tXQ(f))(y)|dydx

and

J =
∫

R

∫

|y|≥|y0|

e|x||y|

(1 + |x| + |y|)N
|tXQf(x)||F(tXQ(f))(y)|dydx.

We will prove that I and J are finite, which implies (2.3).
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• As the functions |FQ(f)(y)| is continuous in the compact {y ∈ R | |y| ≤ |y0|}, so
we get

I ≤ C

∫

R

e|x||y0||tXQf(x)|

(1 + |x|)N
dx.

Writing the integral of the second member as I1 + I2 with

I1 =
∫

|x|≤ N
|y0|

e|x||y0||tXQf(x)|

(1 + |x|)N
dx

and

I2 =
∫

|x|≥ N
|y0|

e|x||y0||tXQf(x)|

(1 + |x|)N
dx.

Therefore, we have the following results.

– As the function x → e|x||y0|

(1+|x|)N is continuous in the compact
{

x ∈ R | |x| ≤ N
|y0|

}

,

and f ∈ L1
Q(R), we deduce by using proposition (1.1) that |tXQ(f)| belongs to

L1(R). Hence, I1 is finite.

– On the other hand, for t > N
|y0| , the function t 7→ et|y0|

(1+t)N is increasing, so we

obtain by using Proposition 1.1 that

I2 ≤
∫

R

Q(ξ)e|ξ||y0|

(1 + |ξ|)N
|f(ξ)||ξ|2α+1dξ.

The inequality (2.2) assert that I2 is finite. This proves that I is finite.
• We suppose |y0| ≤ N . Then J = J1 + J2 + J3, with

J1 =
∫

|x|≤ N
|y0|

∫

|y0|≤|y|≤N

e|x||y|

(1 + |x| + |y|)N
|tXQ(f)(x)||FQ(f)(y)|dydx,

J2 =
∫

|x|≥ N
|y0|

∫

|y0|≤|y|≤N

e|x||y|

(1 + |x| + |y|)N
|tXQ(f)(x)||FQ(f)(y)|dydx,

J3 =
∫

R

∫

|y|≥N

e|x||y|

(1 + |x| + |y|)N
|tXQ(f)(x)||FQ(f)(y)|dydx.

– As the function (x, y) 7→ e|x||y|

(1+|x|+|y|)N |FQ(f)(y)| is bounded in the compact
{

x ∈ R | |x| ≤ N
|y0|

}

×{ξ ∈ R | |y0| ≤ |ξ| ≤ N} and tXQ(|f |)(x) is Lebesgue-integrable

on R, then J1 is finite.

– Let λ > 0. As the function t 7→ eλt

(1+t+λ)N is increasing for t > N
λ

. Thus, for all

(x, y) ∈ C(ξ, y0, N) we have the inequality

e|x||y|

(1 + |x| + |y|)N
≤

e|ξ||y|

(1 + |ξ| + |y|)N
,

with

C(ξ, y0, N) =

{

(x, y) ∈ R × R

∣

∣

∣

∣

∣

N

|y0|
≤ |x| ≤ |ξ| et |y0| ≤ |y| ≤ N

}

.
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Therefore, from Fubini-Tonelli’s theorem and Proposition 1.1 we get

J2 ≤
∫

R

∫

R

|Q(ξ)f(ξ)||FQ(f)(y)|
e|ξ||y|

(1 + |ξ| + |y|)N
|ξ|2α+1dξdy.

Taking account of the condition (2.1), we deduce that J2 is finite.

– For |y| > N , the function t 7→ et|y|

(1+t+|y|)N is increasing. We deduce, by using

Fubini-Tonelli’s theorem and Proposition 1.1, that

J3 ≤
∫

R

∫

|y|≥N
|(f)(ξ)||FQ(f)(y)|

e|ξ||y|

(1 + |ξ| + |y|)N
dy|ξ|2α+1dξ < +∞.

This implies that J3 is finite. Finally for |y0| > N , we have J ≤ J3 < ∞. This
completes the proof of the relation (2.3).

According to Corollary 3.1, ii) of [4], we conclude that

tXQ(f)(x) = R(x)e−δx2

, for all x ∈ R,

with δ > 0 and R a polynomial of degree strictly lower than N−1
2

.
Using this relation and (1.4), we deduce that

FQ(f)(y) = F ◦t XQ(f)(y) = F(R(x)e−δx2

)(y), for all x ∈ R,

but

F(P (x)e−δx2

)(y) = S(y)e
−y2

4δ , for all x ∈ R,

with S a polynomial of degree strictly lower than N−1
2

.
Thus from (1.2) we obtain

FQ(f)(y) = FQ







∑

|s|< N−1
2

bsWs

(

1

4δ
, ·

)





 (y), for all x ∈ R.

The injectivity of the transform FQ implies

f(x) =
∑

|s|< N−1
2

bsWs

(

1

4δ
, ·

)

(x) a.e, for all x ∈ R,

and the theorem is proved. �

As an application of Beurling’s Theorem, we can deduce a Gelfand-Shilov type
theorem for the Q-Fourier-Dunkl transform.

Theorem 2.2. Let N ∈ N, a, b > 0 and 1 < p, q < ∞, with 1
p

+ 1
q

= 1 and let

f ∈ L2
Q(R) satisfy

(2.4)
∫

R

Q(x)|f(x)|e
(2a)p

p
|x|p

(1 + |x|)N
|x|2α+1dx < ∞
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and

(2.5)
∫

R

|FQ(f)(y)|e
(2b)q

q
|y|q

(1 + |y|)N
dy < ∞.

If ab > 1
4

or (p, q) 6= (2, 2), then f(x) = 0 a.e. If ab = 1
4

and (p, q) = (2, 2), then

f(x) = Σ|s|< N−1
2

bsWs(r, ·))(x), whenever N > 1 and r = 2b2. Otherwise, f(x) = 0 a.e.

Proof. Since

4ab|x||y| ≤
(2a)p

p
|x|p +

(2b)q

q
|y|q,

it follows from (2.4) and (2.5) that
∫

R

∫

R

Q(x)|f(x)||FQ(f)(y)|

(1 + |x| + |y|)2N
e4ab|x||y||x|2α+1dxdy < ∞.

Then (2.1) is satisfied, because 4ab ≤ 1. Especially, according to the proof of Theorem
2.1, we can deduce that

∫

R

∫

R

|tXQ(f)(x)||FQ(f)(y)|

(1 + |x| + |y|)2N
e4ab|x||y|dxdy < ∞,

and tXQ(f) and f are of the forms tXQ(f) = R(x)e− x2

4r and FQ(f)(y) = S(y)e−ry2
,

where r > 0 and S, R are polynomials of the same degree strictly lower than 2N−1
2

.
Therefore, substituting these, we can deduce that

(2.6)
∫

R

∫

R

e
−(

√
r|y|− 1

2
√

r
|x|)2

e(4ab−1)|x||y|R(x)S(y)

(1 + |x| + |y|)2N
e4ab|x||y|dxdy < ∞.

When 4ab > 1, this integral is not finite unless f = 0 almost everywhere. Indeed, as
ab > 1

4
, there exists ε > 0 such that 4ab − 1 − ε > 0. If R is non null, S is also non

null and we have
∫

R

∫

R

|R(x)||S(y)|

(1 + |x| + |y|)2N
e

−(
√

r|y|− 1
2

√
r

|x|)2

e(4ab−1)|x||y|dxdy

≥C

∫

R

∫

R

e
−(

√
r|y|− 1

2
√

r
|x|)2

e(4ab−1−ε)|x||y|dxdy,

where C is a positive constant. But the function

e
−(

√
r|y|− 1

2
√

r
|x|)2

e(4ab−1−ε)|x||y|

is not integrable, (2.6) does not hold. Hence, f(x) = 0 a.e.
Moreover, it follows from (2.4) and (2.5) that

(2.7)
∫

R

|f(x)|Q(x)e
(2a)p

p
|x|p

(1 + |x|)N
|x|2α+1dx =

∫

R

e− 1
4

x2
e

(2a)p

p
|x|p

R(x)Q(x)

(1 + |x|)N
|x|2α+1dx < ∞

and

(2.8)
∫

R

|FQ(f)(y)|e
(2b)q

q
|y|q

(1 + |y|)N
dy =

∫

R

e−ry2
e

(2b)q

q
|y|q

S(y)

(1 + |y|)N
dy < ∞.
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Hence, one of these integrals is not finite unless (p, q) = (2, 2). When 4ab = 1 and
(p, q) = (2, 2), the finiteness of above integrals implies that r = 2b2 and the rest follows
from Theorem 2.1. �
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ρ-ATTRACTIVE ELEMENTS IN MODULAR FUNCTION SPACES

H. IQBAL1, M. ABBAS2, AND S. H. KHAN3

Abstract. In this paper, we introduce the notion of ρ-attractive elements in mod-
ular function spaces. A new class of mappings called ρ-k-nonspreading mappings
is also introduced. Making a good use of the two notions, we first prove existence
results and then some approximation results in the setup of modular function spaces.
An example is presented to support the results proved herein.

1. Introduction and preliminaries

The notion of attractive points of nonlinear mappings in Hilbert spaces was coined
by Takahashi and Takeuchi [16] in 2011.

Let E be a nonempty subset of a Hilbert space H and T : E → H then the set of
attractive points A(T ) is given by,

A(T ) = {z ∈ H : ‖Tx − z‖ ≤ ‖x − z‖ for all x ∈ E}.

They proved an existence result on attractive points for the so-called hybrid mappings
in a Hilbert space. They went on to prove a weak convergence theorem of Mann-type
without closedness.

Motivated by the idea of Takahashi et al. [17], study of attractive points gained
momentum. Several different classes of mappings were introduced. Kohsaka et al. [8]
presented a new class of mappings called nonspreading mappings.

A mapping T : E → E is said to be nonspreading mapping if for any x, y ∈ E,

2 ‖Tx − Ty‖2 ≤ ‖x − Ty‖2 + ‖Tx − y‖2
.

Suantai et al. [15], using Hausdorff metric, introduced the class of generalized non-
spreading mappings, known as k-nonspreading multivalued mappings. Kaewkhao et

Key words and phrases. Attractive points, modular spaces, nonspreading mappings, modular
functions.
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al. [1] studied the attractive points and convergence theorems for normally generalized
hybrid mappings in CAT (0) spaces in 2015.

In the same year, Zheng [18] proved strong and weak convergence theorem of the
Ishikawa iteration for an (α, β)-generalized hybrid mapping in a uniformly convex
Banach space. Kunwai et al. [5] proved an attractive point theorem for normally
generalized hybrid mappings in CAT (0) spaces under certain conditions. Recently,
fixed point theory in modular function spaces has gained interest of many mathemati-
cians. The idea of modular function spaces was established by Nakano in [13] and
was improved and generalized by Musielak and Orlicz [12]. Later on, Khamsi et al.
[11] introduced the fixed point theory in modular function spaces and proved Banach
contraction principle in modular function spaces (also see [6]). Kuaket and Kumam
[10] established some fixed point for generalized contraction mappings in modular
function spaces. Dehaish and Kozolwoski [2], proved results on approximating fixed
points in modular function spaces for the first time. Recently, Khan et al. [14] suc-
cessfully handled the problem of approximating fixed points for multivalued ρ-quasi
nonexpansive mappings in modular function spaces. Ilchev and Zlatanov [3] presented
some sufficient conditions for the existence and uniqueness of best proximity points
and fixed points for cyclic Kannan maps in modular function spaces. For further
discussion in modular spaces see [4, 9, 19].

The above efforts stimulate us to define attractive elements in the setting of modular
function spaces. Another purpose of this paper is to define a class of ρ−k-nonspreading
mappings. This will lead us proving existence and approximation results for attractive
elements in modular function spaces. Towards the end of this paper, our results will
be vindicated using some examples.

Let us recall some basic definitions and notions which can be found in [7]. Let
Ω be a nonempty set and Σ be a nontrivial σ-algebra of subsets of Ω. Let P be a
nontrivial δ-ring of subsets of Ω which means that P is closed with respect to forming
of countable intersections, and finite unions and differences. Assume further that
E ∩ A ∈ P for any E ∈ P and A ∈

∑

. Let us assume that there exists an increasing
sequence of sets Kn ∈ P such that Ω =

⋃

Kn. By E we denote the linear space of
all simple functions with supports from P . M∞ represents the space of all extended
measurable functions, that is, all functions f : Ω → [−∞, ∞] such that there exists a
sequence {gn} ⊂ E , |gn| ≤ |f | and gn(ω) → f(ω) for all ω ∈ Ω.

Definition 1.1. Let ρ : M∞ → [0, ∞] be a nontrivial, convex, and even function. We
say that ρ is a regular convex function pseudomodular if

(a) ρ(0) = 0;
(b) ρ is monotone, i.e., |f(ω)| ≤ |g(ω)| for any ω ∈ Ω implies ρ(f) ≤ ρ(g), where

f, g ∈ M∞;
(c) ρ is orthogonally subadditive, i.e., ρ(f1A∪B) ≤ ρ(f1A) + ρ(f1B) for any A, B ∈ Σ

such that A ∪ B 6= φ, f ∈ M∞;
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(d) ρ has Fatou property, that is, |fn(ω)| ↑ |f(ω)| for all ω ∈ Ω implies ρ(fn) ↑ ρ(f),
where f ∈ M∞;

(e) ρ is order continuous in E , i.e., gn ∈ E , and |gn(ω)| ↓ 0 implies ρ(gn) ↓ 0.

We say that a set A ∈ Σ is ρ-null if ρ(g1A) = 0 for every g ∈ E . A property holds
ρ-almost everywhere (ρ-a.e.) if the set {ω ∈ Ω : p(ω) does not hold} is ρ-null. We
identify any pair of measurable sets whose symmetric difference is ρ-null as well as
any pair of measurable functions differing only on a ρ-null set. With this in mind
we define M = {f ∈ M∞ : |f(ω)| < ∞ ρ–a.e.} where each f ∈ M is actually an
equivalence class of functions equal ρ–a.e. rather than an individual function.

Definition 1.2. Let ρ be a regular convex function pseudomodular. Then, we say
that ρ is a regular convex function modular if ρ(f) = 0 implies that f = 0 ρ – a.e.

The class of all nonzero regular convex function modular defined on Ω is denoted
by ℜ .

Definition 1.3. The convex function modular ρ defines the modular function space
Lρ as

Lρ = {f ∈ M∞ : ρ(λf) → 0 as λ → 0}.

Generally, the modular ρ is not subadditive and hence doesn’t behave like a norm.
However, the modular space Lρ can be equipped with an F -norm defined by

‖f‖ρ = inf

{

α > 0 : ρ

(

f

α

)

≤ α

}

.

If ρ is a convex modular,

||f ||ρ = inf

{

α > 0 : ρ

(

f

α

)

≤ 1

}

defines a norm on the modular space Lρ, and is called the Luxemburg norm. The
following definitions will be needed in this paper.

Definition 1.4. Let Lρ be a modular space. Then

(a) the sequence {fn} ⊂ Lρ is said to be ρ-convergent to f ∈ Lρ if ρ(fn − f) → 0 as
n → ∞;

(b) the sequence {fn} ⊂ Lρ is said to be ρ-Cauchy if ρ(fn − fm) → 0 as n and m

approach ∞;
(c) we say that Lρ is ρ-complete if and only if any ρ-Cauchy sequence in Lρ is

ρ-convergent.

Definition 1.5. A subset E of Lρ is called

(a) ρ-closed if the ρ-limit of a ρ-convergent sequence of E always belongs to E;
(b) ρ-compact if every sequence in E has a ρ-convergent subsequence in E;
(c) ρ-bounded if δρ(E) = sup{ρ(f − g) : f, g ∈ E} < ∞;
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(d) the ρ-distance between f and E is defined as:

dρ(f, E) = inf{ρ(f − j) : j ∈ E}.

The terminology defined for ρ is similar to metric spaces but ρ does not satisfy
triangle inequality. Hence, if a sequence in Lρ is ρ-convergent it does not imply
ρ-Cauchy. This is only true if and only if ρ satisfies ∆2-condition.

Definition 1.6. The modular function ρ is said to satisfy the ∆2-condition if
ρ(2fn) → 0 as n approaches ∞, whenever ρ(fn) → 0 as n approaches ∞.

The modular ρ satisfies some uniform convexity type properties. A few of those are
given below which can be found in [7].

Definition 1.7. Let ρ ∈ ℜ.

(a) Let r > 0, ǫ > 0. Define,

D1(r, ǫ) = {(f, h) : f, h ∈ Lp, ρ(f) ≤ r, ρ(h) ≤ r, ρ(f − h) ≥ ǫr}.

Let

δ1(r, ǫ) = inf

{

1 −
1

r
ρ

(

f + h

2

)

: (f, h) ∈ D1(r, ǫ)

}

, if D1(r, ǫ) 6= φ,

and δ1(r, ǫ) = 1 if D1(r, ǫ) = φ. We say that ρ satisfies (UC1) if for every r > 0,
ǫ > 0, δ1(r, ǫ) > 0. Note that for every r > 0, D1(r, ǫ) 6= φ for every ǫ > 0 small
enough.

(b) We say that ρ satisfies (UUC1) if for every s ≥ 0, ǫ > 0, there exists η1(s, ǫ) > 0
depending only upon s and ǫ such that δ1(r, ǫ) > η1(s, ǫ) > 0 for any r > s.

(c) We say that ρ satisfies (UUC2) if for every s ≥ 0, ǫ > 0, there exists η2(s, ǫ) > 0
depending upon s and ǫ such that δ2(r, ǫ) > η2(s, ǫ) > 0 for any r > s.

Note that (UC1) implies (UUC1) and (UCC1) implies (UUC2). If ρ ∈ ℜ satisfies
∆2, then (UUC2) and (UCC1) are equivalent (see [9]).

Definition 1.8. We will say that ρ is uniformly continuous if for every ǫ > 0 and
R > 0, there exists δ > 0 such that

|ρ(g) − ρ(g + h)| < ǫ if ρ(h) ≤ δ, ρ(g) ≤ R.

A sequence {tn} ⊂ (0, 1) is called bounded away from 0 if there exists a > 0 such
that tn ≥ a for every n ∈ N. Similarly, {tn} ⊂ (0, 1) is called bounded away from 1 if
there exists b < 1 such that tn ≤ b for every n ∈ N. The following lemma helpful in
studying the convergence of fixed points as well as attractive elements in the (UUC1)
modular function spaces.

Lemma 1.1. Let ρ ∈ ℜ satisfy (UUC1) and let {tn} ⊂ (0, 1) be bounded away from

0 and 1. If there exists R ≥ 0 such that

lim sup
n→∞

ρ(fn) ≤ R, lim sup
n→∞

ρ(gn) ≤ R and lim
n→∞

ρ(tnfn + (1 − tn)gn) = R,

then limn→∞ ρ(fn − gn) = 0.
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Since the modular function space doesn’t satisfy the triangle inequality so, the
following theorem is useful.

Theorem 1.1. Let ρ ∈ ℜ satisfy ∆2-condition. Let {fn} and {gn} be two sequences

in Lρ. Then,

lim
n→∞

ρ(gn) = 0 implies lim sup
n→∞

ρ(fn + gn) = lim
n→∞

ρ(fn)

and

lim
n→∞

ρ(gn) = 0 implies lim inf
n→∞

ρ(fn + gn) = lim
n→∞

ρ(fn).

The notion of a ρ-type is a powerful tool that will be used in our result.

Definition 1.9. Let E ⊂ Lp be convex and ρ-bounded. A function τ : E → [0, ∞]
is called a ρ-type (or shortly a type) if there exists a sequence {gk} of elements of E

such that for any f ∈ E there holds τ(f) = lim supk→∞
ρ(gk − f).

The following lemma [7] establishes an important minimizing sequence property of
uniformly convex modular function spaces which is used proving existence of fixed
points.

Lemma 1.2. Assume that ρ ∈ ℜ is (UUC1). Let E be a ρ-closed ρ-bounded convex

nonempty subset of Lρ. Let τ be a ρ-type defined on E. Then, any minimizing sequence

of τ is ρ-convergent. Its ρ-limit is independent of the minimizing sequence.

Since our goal is to prove existence of attractive elements without the condition of
ρ-closedness. The following is the modified version of the above lemma which can be
proved exactly on lines of [7].

Lemma 1.3. Assume that ρ ∈ ℜ is (UUC1). Let E be a ρ-bounded convex nonempty

subset of Lρ. Let τ be a ρ-type defined on E. Then, any minimizing sequence of τ is

ρ-convergent in Lρ. Its ρ-limit is independent of the minimizing sequence.

Definition 1.10. Let ρ ∈ ℜ. The growth function ωρ of a function modular ρ is
defined as:

ωρ(β) = sup

{

ρ(βf)

ρ(f)
, 0 ≤ ρ(f) < ∞

}

, for all 0 ≤ β < ∞.

Notice that whenever β ∈ [0, 1], ωρ(β) ≤ 1.

Let T : E → E be a mapping then a point x ∈ E is said to be a fixed point of T if
x = Tx. We denote the set of fixed points by F (T ). A mapping T is said to be

(a) ρ-nonexpansive if ρ(Tf − Tg) ≤ ρ(f − g) for all f, g ∈ E;
(b) ρ-quasi-nonexpansive mapping if ρ(Tf − g) ≤ ρ(f − g) for all f ∈ E and

g ∈ F (T ).
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2. Main Results

In this section, we introduce a new class of ρ−k-nonspreading mappings and present
the concept ρ-attractive elements. Then, we prove an existence and some convergence
results.

Definition 2.1. Let ρ ∈ ℜ. Let T : E → Lρ then T is a ρ − k-nonspreading mapping
if there exists a k > 0 such that

ρ2(Tf − Tg) ≤ k(ρ2(f − Tg) + ρ2(Tf − g)),

for all f, g ∈ E.

A ρ − 1

2
-nonspreading mapping with F (T ) 6= φ is ρ-quasi nonexpansive. In fact, if

g is a fixed point of T , then in Definition 2.1, with k = 1

2
, we have

2ρ2(g − Tf) ≤ ρ2(g − f) + ρ2(g − Tf),

and, hence

ρ2(Tf − g) ≤ ρ2(f − g).

This implies,

ρ(Tf − g) ≤ ρ(f − g).

Now, we give an example of a ρ − k−nonspreading mapping which is not a ρ-
nonexpansive mapping.

Example 2.1. Let the real number system R be the space modulared as ρ(f) = |f |k

for k ≥ 1. Let E = {f ∈ Lρ : −3 < f < 2} and

Tf =



















|f | − 1

2
, −2 < f < 2,

−|f |

|f | + 1
, −3 < f ≤ −2.

It is easy to see that T is a ρ − 1

2
-nonspreading mapping. However, T is not a

ρ-nonexpansive mapping since if f = −2 and g = −1.5, then

ρ(Tf − Tg) =
∣

∣

∣

∣

−2

3
−

1

4

∣

∣

∣

∣

k

=
∣

∣

∣

∣

11

12

∣

∣

∣

∣

k

> ρ(f − g) = | − 2 + 1.5|k =
∣

∣

∣

∣

1

2

∣

∣

∣

∣

k

.

Definition 2.2. Let ρ be a convex function modular. Let E be a nonempty subset
of Lρ and T : E → E be a mapping then a function g ∈ Lρ is called a ρ−attractive
element of T if for all f ∈ E, we have ρ(Tf − g) ≤ ρ(f − g). Let Aρ(T ) denote the set
of ρ-attractive elements, i.e., Aρ(T ) = {g ∈ Lρ : ρ(Tf − g) ≤ ρ(f − g) for all f ∈ E}.

First of all, we will give some useful properties of Aρ(T ).

Lemma 2.1. Let ρ ∈ ℜ and be uniformly continuous. Let E be a nonempty subset

of Lρ and T : E → Lρ, with Aρ(T ) 6= φ. Then Aρ(T ) is closed.
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Proof. Let {gn} ⊂ Aρ(T ) such that limn→∞ ρ(gn − g) = 0. Then for any f ∈ E, we
have

(2.1) ρ(Tf − g) = ρ((Tf − gn) − (g − gn)).

Then taking limit as n → ∞ in (2.1) and using the uniform continuity of ρ, we get

ρ(Tf − g) ≤ lim
n→∞

ρ(Tf − gn) ≤ lim
n→∞

ρ(f − gn) = ρ(f − g).

This shows g ∈ Aρ(T ). Hence, Aρ(T ) is closed. �

An attractive point need not be a fixed point. However, if a mapping T : E → E

is ρ-quasi nonexpansive then the ρ-attractive elements lying in E are also its fixed
points.

Lemma 2.2. Let ρ ∈ ℜ. Let E be a nonempty subset of Lρ and T : E → Lρ be a

ρ-quasi nonexpansive mapping. Then Aρ(T ) ∩ E = F (T ).

Proof. Let g ∈ Aρ(T ) ∩ E, then ρ(Tf − g) ≤ ρ(f − g) for all f ∈ E. In particular, let
f = g ∈ E, then we have ρ(Tf − f) ≤ ρ(f − f) = ρ(0) = 0. Hence, Tf = f showing
f ∈ F (T ). Conversely, since T is ρ-quasi nonexpansive, then for any h ∈ F (T ) and
f ∈ E, we get ρ(Tf − h) ≤ ρ(f − h). Then, clearly h ∈ Aρ(T ). �

Now, we will prove existence of a ρ-attractive point for ρ−k-nonspreading mapping
for k ∈ (0, 1

2
].

Theorem 2.1. Assume that Lρ is complete, ρ ∈ ℜ is (UUC1) and uniformly con-

tinuous. Let E be a nonempty ρ-bounded convex subset of Lρ. Let T : E → E be a

ρ − k-nonspreading mapping with k ∈ (0, 1

2
]. Then T has a ρ-attractive point.

Proof. Let {f0} ∈ E. Define the ρ-type, τ : E → [0, ∞] by

τ(f) = lim sup
n→∞

ρ(f − T n(f0)).

Then by Lemma 1.3, there exists a minimizing sequence, say, {gn}, of τ such that
τ(gn) = inff∈E τ(f). Since {T n(f0)} ⊂ E and E is ρ-bounded we have

τ(f) ≤ δρ(E) < ∞, for every f ∈ E,

and

τ(Tf) = lim sup
n→∞

ρ(Tf − T n(f0)).

Now,

ρ2(T n(f0) − Tf) ≤ k(ρ2(Tf − T n−1(f0)) + ρ2(f − T n(f0))).

Taking n → ∞ implies,

lim sup
n→∞

ρ2(T n(f0) − Tf) ≤ k(lim sup
n→∞

(ρ2(Tf − T n−1(f0)) + lim sup
n→∞

ρ2(T n(f0) − f)).

Thus we have

τ 2(Tf) ≤ kτ 2(Tf) + kτ 2(f),
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which implies

τ 2(Tf) ≤
k

1 − k
τ 2(f).

Since k
1−k

< 1, we obtain τ(Tf) ≤ τ(f). Thus, τ(Tgn) ≤ τ(gn). Hence, {T (gn)} is
also a minimizing sequence of τ .

Again, according to Lemma 1.3, {gn} converges to some g in Lρ and if there is any
other minimizing sequence it also converges to g then limn→∞ Tgn = g. Next, we
show that g is the ρ-attractive element of T .

From Definition 2.1 and uniform continuity of ρ, we have

lim
n→∞

ρ2(Tgn − Tf) ≤ k lim
n→∞

ρ2(Tf − gn) + k lim
n→∞

ρ2(f − Tgn).

Therefore,

ρ2(g − Tf) ≤ kρ2(Tf − g) + kρ2(f − g),

which implies

(1 − k)ρ2(g − Tf) ≤ kρ2(f − g).

Consequently,

ρ(Tf − g) ≤ ρ(f − g).

Hence, g is a ρ-attractive element of T . �

As an immediate consequence of Theorem 2.1, we obtain the next result.

Theorem 2.2. Assume that Lρ is complete, ρ ∈ ℜ is (UUC1) and uniformly con-

tinuous. Let E be a nonempty ρ-bounded, ρ-closed and convex subset of Lρ. Let

T : E → E be a ρ − k-nonspreading mapping with k ∈
(

0, 1

2

]

. Then T has a fixed

point.

Theorem 2.3. Let ρ ∈ ℜ satisfy (UUC2) and ∆2-condition. Let E be a nonempty

convex subset of Lρ and T : E → Lρ be a ρ − k-nonspreading mapping with k ∈ (0, 1

2
].

Suppose Aρ(T ) is nonempty and let {fn} be defined by

fn+1 = αnTfn + (1 − αn)Tgn,

gn = βnfn + (1 − βn)Tfn,(2.2)

with 0 < αn, βn < 1, then limn→∞ ρ(fn − h) exists for h ∈ Aρ(T ) and

limn→∞ ρ(fn − Tfn) = 0.

Proof. Let h be a ρ-attractive point of T . Then by convexity of ρ we have

ρ(fn+1 − h) = ρ(αnTfn + (1 − αn)Tgn − h)

≤ ρ(αn(Tfn − h) + (1 − αn)(Tgn − h))

≤ αnρ(Tfn − h) + (1 − αn)ρ(Tgn − h)

≤ αnρ(fn − h) + (1 − αn)ρ(gn − h).(2.3)
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Also,

ρ(gn − h) = ρ(βnfn + (1 − βn)Tfn − h)

≤ ρ(βn(fn − h) + (1 − βn)(Tfn − h))

≤ βnρ(fn − h) + (1 − βn)ρ(fn − h)

≤ ρ(fn − h).(2.4)

Thus, from (2.3) and (2.4) we have

ρ(fn+1 − h) ≤ ρ(fn − h).

Hence, {fn} is ρ-bounded and ρ(fn − h) is a nonincreasing sequence. Then
limn→∞ ρ(fn − h) exists for each h ∈ Aρ(T ).

Now we show that limn→∞ ρ(fn − Tfn) = 0. Suppose that

(2.5) lim
n→∞

ρ(fn − h) = L.

Since h ∈ Aρ(T ), we have ρ(Tfn − h) ≤ ρ(fn − h). Thus,

lim sup
n→∞

ρ(Tfn − h) ≤ lim sup
n→∞

ρ(fn − h).

It follows,

(2.6) lim sup
n→∞

ρ(Tfn − h) ≤ L.

Also,

ρ(Tgn − h) ≤ ρ(gn − h)

≤ ρ(fn − h)

implies

(2.7) ρ(Tgn − h) ≤ lim sup
n→∞

ρ(Tgn − h) ≤ L

and

ρ(gn − h) ≤ ρ(fn − h).

Thus

(2.8) lim sup
n→∞

ρ(gn − h) ≤ L.

Therefore,

L = lim
n→∞

ρ(fn+1 − h)

= lim
n→∞

ρ(αnTfn + (1 − αn)Tgn − h)

= lim
n→∞

ρ(αn(Tfn − h) + (1 − αn)(Tgn − h)).(2.9)

Then using (2.6), (2.7), (2.9) and Lemma 1.1 we have limn→∞ ρ(Tfn − Tgn) = 0.

Fix ǫ > 0. Then there exists n0 ∈ N such that

ρ(Tfn − Tgn) < ǫ, for all n ≥ n0.
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Now, using the definition of growth function,

ρ(αn(Tfn − Tgn)) ≤ ωρ(αn)ρ(Tfn − Tgn)

≤ ρ(Tfn − Tgn)

< ǫ.

Therefore,

(2.10) lim
n→∞

ρ(αn(Tfn − Tgn)) = 0.

Next,

ρ(fn+1 − h) = ρ(αnTfn + (1 − αn)Tgn − h)

= ρ(αn(Tfn − Tgn) + (Tgn − h)).

By using Theorem 1.1 and (2.10), we get

lim inf
n→∞

ρ(fn+1 − h) = lim inf
n→∞

ρ(αn(Tfn − Tgn) + (Tgn − h))

= lim inf
n→∞

ρ(Tgn − h).

Thus,

lim inf
n→∞

ρ(Tgn − h) = L.

Now,

lim inf
n→∞

ρ(Tgn − h) ≤ lim inf
n→∞

ρ(gn − h),

⇒L ≤ lim inf
n→∞

ρ(gn − h).(2.11)

Again, from (2.8) and (2.11),

lim
n→∞

ρ(gn − h) = L.

Consequently,

lim
n→∞

ρ(gn − h) = lim
n→∞

ρ(β(fn − h) + (1 − β)(Tfn − h))(2.12)

= L.

Hence, using (2.5), (2.6), (2.12) and Lemma 1.1 we get

lim
n→∞

ρ(fn − Tfn) = 0. �

Our next result discusses the ρ-convergence of the iterative process (2.2) to attractive
elements of the mapping T where T satisfies condition (I).

Definition 2.3. Let E be a nonempty subset of Lρ. A mapping T : E → E is said to
satisfy condition (I) if there exists a nondecreasing function ℓ : [0, ∞) → [0, ∞) with
ℓ(0) = 0, ℓ(r) > 0 for all r ∈ (0, ∞) such that ρ(f − Tf) ≥ ℓ(distρ(f, Aρ(T ))) where
distρ(f, Aρ(T )) = inf{ρ(f − g) : g ∈ Aρ(T )}.

We give an example of a mapping that satisfies the condition (I).



ρ-ATTRACTIVE ELEMENTS IN MODULAR FUNCTION SPACES 57

Example 2.2. Let the set of real numbers R be the space modulared as ρ(f) = |f |.
Let E = {f ∈ Lρ : 0 < f < 1}, define T : E → E as Tf = f

2
. Clearly, T is

ρ − 1

4
-nonspreading mapping. We know that an element g ∈ Lρ is an attractive point

of T if ρ(Tf − g) ≤ ρ(f − g) for all f ∈ E. Assume that g ∈ Aρ(T ), then

∣

∣

∣

∣

∣

f

2
− g

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

f − g

∣

∣

∣

∣

∣

,(2.13)

∣

∣

∣

∣

∣

f

2
− g

∣

∣

∣

∣

∣

2

≤

∣

∣

∣

∣

∣

f − g

∣

∣

∣

∣

∣

2

,

∣

∣

∣

∣

∣

f

2
− g

∣

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∣

f − g

∣

∣

∣

∣

∣

2

≤ 0,

(

f

2
− g + f − g

)(

f

2
− g − f + g

)

≤ 0,

(

3f

2
− 2g

)(

−f

2

)

≤ 0.

Hence, we have g ≤ 3f

4
. Since g must satisfy (2.13) for all f such that 0 < f <

1, g must be less or equal to 0. Hence, Aρ(T ) = (−∞, 0]. Define a continuous
nondecreasing function ℓ : [0, ∞) → [0, ∞) by ℓ(r) = r

8
. Then,

ℓ(dρ(f, Aρ(T ))) = ℓ(dρ(f, (−∞, 0])) = ℓ(|f |) =
|f |

8
<

∣

∣

∣

∣

∣

f

2
− f

∣

∣

∣

∣

∣

.

Hence, ρ(f − Tf) ≥ ℓ(dρ(f, Aρ(T ))) for all f ∈ E.

Theorem 2.4. Let ρ ∈ ℜ satisfies (UUC2) and ∆2-condition. In addition, ρ is

uniformly continuous. Let E be a nonempty convex subset of Lρ and T : E → E be

a ρ − k-nonspreading mapping with k ∈
(

0, 1

2

]

. Assume Aρ(T ) 6= φ and T satisfies

condition (I). Let {fn} be defined as in (2.2), with 0 < αn, βn < 1. Then {fn}
ρ-converges to a ρ-attractive point of T .

Proof. We already know ρ(fn+1 − h) ≤ ρ(fn − h) and limn→∞ ρ(fn − Tfn) = 0. Then
by condition (I) and Theorem (2.3), we have

lim inf
n→∞

ρ(fn − Tfn) ≥ lim inf
n→∞

ℓ(dρ(fn, Aρ(T )),

0 ≥ lim inf
n→∞

ℓ(dρ(fn, Aρ(T )).

This implies limn→∞ ℓ(dρ(fn, Aρ(T )) = 0. It follows limn→∞ dρ(fn, Aρ(T )) = 0, since
ℓ(0) = 0.

Now, we show that {fn} is ρ-Cauchy. Since limn→∞ dρ(fn, Aρ(T )) = 0, let ǫ > 0,
then there exists a constant n0 such that for n ≥ n0

dρ(fn, Aρ(T )) <
ǫ

2
,
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{inf ρ(fn − h) : h ∈ Aρ(T )} <
ǫ

2
.

Then there must exist some h∗ ∈ Aρ(T ) such that ρ(fn0
− h∗) < ǫ. Now for m, n ≥ n0,

we have by convexity of ρ and the fact that ρ({fn − h}) is non increasing,

ρ

(

fn+m − fn

2

)

≤ ρ

(

(fn+m − h) − (fn − h)

2

)

≤
1

2
(ρ(fn+m − h)) +

1

2
(ρ(fn − h))

<
1

2
(ρ(fn0

− h∗)) +
1

2
(ρ(fn0

− h∗))

= ρ(fn0
− h∗)

< ǫ.

Hence, by ∆2-condition, {fn} is a ρ-Cauchy sequence. Since Lρ is complete, the
sequence {fn} ρ-converges to some q in Lρ.

Let limn→∞ ρ(fn − q) = 0. Then, by convexity of ρ and Theorem 2.3,

lim
n→∞

ρ(Tfn − q) = 0.

Further, by definition (2.1) and uniform convexity of ρ, we get the following

lim
n→∞

ρ2(Tfn − Tf) ≤ k lim
n→∞

ρ2(fn − Tf) + k lim
n→∞

ρ2(Tfn − f).

This implies

ρ2(q − Tf) ≤ kρ2(q − Tf) + kρ2(q − f).

This results

ρ(q − Tf) ≤
k

1 − k
ρ(q − f) ≤ ρ(q − f).

Hence, q ∈ Aρ(T ) and limn→∞ ρ(fn − q) = 0. �

Let E be a subset of Lρ. A mapping T : E → Lρ is said to be ρ-demicompact if it
has the property that whenever a sequence {fn} ∈ E is ρ-bounded and the sequence
{fn − Tfn} ρ-converges, then there exists a subsequence {fnk

} which is ρ-convergent.

Theorem 2.5. Let ρ ∈ ℜ satisfies (UUC2) and ∆2-condition. In addition, let ρ is

uniformly continuous. Let E be a nonempty convex subset of Lρ and T : E → E be

a ρ − k-nonspreading with k ∈ (0, 1

2
] and ρ-demicompact mapping with Aρ(T ) 6= φ.

Let {fn} be defined as in (2.2) with 0 < αn, βn < 1. Then {fn} ρ-converges to a

ρ-attractive point of T .

Proof. From Theorem 2.3 we already know that {fn} is a bounded sequence and
limn→∞ ρ(fn − Tfn) = 0. Then by demicompactness of operator T there exists a
subsequence {fnk

} of {fn} and g ∈ Lρ such that limn→∞ ρ(fnk
− g) = 0. Also, by

uniform continuity of ρ and since limn→∞ ρ(fn − Tfn) = 0, we have

lim
n→∞

ρ(Tfnk
− g) = 0.
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Now, by definition of ρ − k-nonspreading mapping and uniform continuity of ρ we
have,

lim
n→∞

ρ2(Tfnk
− Tf) ≤ k lim

n→∞
ρ2(fnk

− Tf) + k lim
n→∞

ρ2(Tfnk
− f).

Consequently,

ρ2(g − Tf) ≤ kρ2(g − Tf) + kρ2(g − f).

That is,

ρ(g − Tf) ≤ ρ(g − f).

So, g ∈ Aρ(T ). By Theorem 2.3, if limn→∞ ρ(fn − g) exists for any g ∈ Aρ(T ), then
we have, limn→∞ ρ(fn − g) = 0. �

3. Numerical Results

Now the following examples verify the results in Theorems 2.4 and 2.5.

Example 3.1. Let the set of real numbers R be the space modulared as ρ(f) = |f |.
Let E = {f ∈ Lρ : 0 < f < 1}, define T : E → E as Tf = f

2
. Obviously, E is a

nonempty convex subset of R which satisfies (UC1) condition. Also ρ(f) = |f | is
uniformly continuous and (UUC2) holds. We have already seen Aρ(T ) is nonempty.
Finally, we generate the sequence (2.2) and show that it converges to its attractive
point. Choose f1 = 0.3125 and α = β = 1

2
, then we have the results in Table 1.

Table 1. Numerical results of Example 3.1

n fn

1 0.312500000000000
2 0.136718750000000
3 0.059814453125000
4 0.026168823242188
5 0.011448860168457
6 0.005008876323700
7 0.002191383391619
...

...
48 4.176559929877658e-18
49 1.827244969321475e-18
50 7.994196740781455e-19

This shows that {fn} converges to 0 ∈ Aρ(T ). This is worth mentioning here that
T does not have any fixed point in D.
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Example 3.2. Let the set of real numbers R be the space modulared as ρ(f) = |f |k.
Let E = {f ∈ Lρ : −3 < f < 2}, define T : E → E as:

Tf =



















|f | − 1

2
, −2 < f < 2,

−|f |

|f | + 1
, −3 < f ≤ −2.

Obviously, E is a nonempty convex subset of R which satisfies (UC1) condition. Also
ρ(f) = |f |k is uniformly continuous and (UUC2) holds. Since the mapping is ρ-quasi
nonexpansive and F (T ) = {−1

3
} then Aρ(T ) 6= φ. T is ρ-demicompact since any

sequence {fn} ∈ (−3, −2) is bounded, i.e., |fn| < 3 and any bounded sequence in R

has a convergent subsequence. Now finally, we generate the sequence (2.2) and show
that it converges to its attractive point. Choose f1 = 1.5 and α = β = 1

2
, then we

have the results in Table 2. This shows that {fn} converges to −1

3
∈ Aρ(T ).

Table 2. Numerical results of Example 3.2

n fn

1 1.5
2 0.093750000000000
3 -0.431640625000000
4 -0.302612304687500
5 -0.342933654785156
6 -0.330333232879639
7 -0.334270864725113
...

...
28 -0.333333333333310
29 -0.333333333333341
30 -0.333333333333331
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ON PERFECT CO-ANNIHILATING-IDEAL GRAPH OF A

COMMUTATIVE ARTINIAN RING

S. M. SAADAT MIRGHADIM1, M. J. NIKMEHR2, AND R. NIKANDISH3

Abstract. Let R be a commutative ring with identity. The co-annihilating-ideal
graph of R, denoted by AR, is a graph whose vertex set is the set of all non-
zero proper ideals of R and two distinct vertices I and J are adjacent whenever
Ann(I) ∩ Ann(J) = (0). In this paper, we characterize all Artinian rings for which
both of the graphs AR and AR (the complement of AR), are chordal. Moreover, all
Artinian rings whose AR (and thus AR) is perfect are characterized.

1. Introduction

Assigning a graph to a ring gives us the ability to translate algebraic properties
of rings into graph-theoretic language and vice versa. It leads to arising interesting
algebraic and combinatorics problems. Therefore, the study of graphs associated
with rings has attracted many researches. There are a lot of papers which apply
combinatorial methods to obtain algebraic results in ring theory; for instance see
[2, 3, 5, 6, 10,11] and [12].

Throughout this paper, all rings are assumed to be commutative with identity. We
denote by Z(R), Max(R), Nil(R) and J(R) the set of all zero-divisor elements of R,
the set of all maximal ideals of R, the set of all nilpotent elements of R and jacobson
radical of R, respectively. We call an ideal I of R, an annihilating-ideal if there exists
r ∈ R \ {0} such that Ir = (0). The set of all annihilating-ideals of R is denote by
A(R). Let I be an ideal of R. We denote by A(I) the set of all ideals of R contained
in I. The ring R is said to be reduced if it has no non-zero nilpotent element. For
every ideal I of R, we denote the annihilator of I by Ann(I). We let A∗ = A \ {0}.
For any undefined notation or terminology in ring theory, we refer the reader to [4,7].

Key words and phrases. Co-annihilating-ideal graph, perfect graph, chordal graph.
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We use the standard terminology of graphs following [13]. Let G = (V, E) be a
graph, where V = V (G) is the set of vertices and E = E(G) is the set of edges. By
G, we mean the complement graph of G. We write u − v, to denote an edge with
ends u, v. A graph H = (V0, E0) is called a subgraph of G if V0 ⊆ V and E0 ⊆ E.
Moreover, H is called an induced subgraph by V0, denoted by G[V0], if V0 ⊆ V and
E0 = {{u, v} ∈ E | u, v ∈ V0}. Also G is called a null graph if it has no edge. A
complete graph of n vertices is denoted by Kn. An n-part graph is one whose vertex
set can be partitioned into n subsets, so that no edge has both ends in any one subset.
A complete n-partite graph is an n-part graph such that every pair of graph vertices
in the n sets are adjacent. In a graph G, a vertex x is isolated, if no vertices of G is
adjacent to x. Let G1 and G2 be two disjoint graphs. The join of G1 and G2, denoted
by G1 ∨ G2, is a graph with the vertex set V (G1 ∨ G2) = V (G1) ∪ V (G2) and edge
set E(G1 ∨ G2) = E(G1) ∪ E(G2) ∪ {uv | u ∈ V (G1), v ∈ V (G2)}. For a graph G,
S ⊆ V (G) is called a clique if the subgraph induced on S is complete. The number
of vertices in the largest clique of graph G is called the clique number of G and is
often denoted by ω(G). For a graph G, let χ(G) denote the chromatic number of G,
i.e., the minimal number of colors which can be assigned to the vertices of G in such
a way that every two adjacent vertices have different colors. Clearly, for every graph
G, ω(G) ≤ χ(G). A graph G is said to be weakly perfect if ω(G) = χ(G). A perfect

graph G is a graph in which every induced subgraph is weakly perfect. A chord of a
cycle C is an edge which is not in C but has both its endvertices in C. A graph G is
chordal if every cycle of length at least 4 has a chord.

Let R be a commutative ring with identity. The co-annihilating-ideal graph of R,
denoted by AR, is a graph whose vertex set is the set of all non-zero proper ideals of
R and two distinct vertices I and J are adjacent whenever Ann(I) ∩ Ann(J) = (0).
This graph was first introduced and studied in [1] and many interesting properties of
this graph were explored by the authors. In [1, Theorem 17], it was proved AR is a
weakly perfect graph, if R is an Artinian ring. In this paper, we continue study the
perfectness of AR. Indeed, we characterize all Artinian rings for which both of the
graphs AR and AR, are chordal. Moreover, all Artinian rings whose AR is perfect are
given.

2. When AR and AR are Chordal?

In this section, we characterize all Artinian rings R, for which AR and AR are
chordal. We begin with the following lemmas.
Lemma 2.1. Let R be an Artinian ring. Then there exists a positive integer n such

that R ∼= R1 × · · · × Rn, where Ri is an Artinian local ring, for every 1 ≤ i ≤ n.

Proof. See [4, Theorem 8.7]. �

Lemma 2.2. Let R be an Artinian ring and I be a non-zero ideal of R. Then I is a

nilpotent ideal of R if and only if I is an isolated vertex in AR.
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Proof. Assume that I is a non-zero nilpotent ideal of R. First, we show that Ann(I)
is an essential ideal of R. Suppose to the contrary, there exists an ideal J such
that J ∩ Ann(I) = (0). Thus KI 6= (0), for every K ⊆ J . Obviously, KI ⊆ J

and so (KI)I = KI2 6= (0). By continuing this procedure, KIn 6= 0, for every
positive integer n, a contradiction. Hence Ann(I) is an essential ideal of R and so
Ann(I) ∩ Ann(J) 6= (0), for every J ∈ A(R)∗. Therefore, I is an isolated vertex in AR.

Conversely, suppose that I is an isolated vertex in AR. If I is not a nilpotent ideal
of R, then I * J(R), i.e, there exists m ∈ Max(R) such that I + m = R, and so I is
adjacent to m, a contradiction. Thus I is a nilpotent ideal of R. �

Next we need to study the structure of AR, where R is an Artinian ring with at
most two maximal ideals.

Theorem 2.1. Let R be an Artinian ring. Then the following statements are equiva-

lent:

(1) |Max(R)| = 1;

(2) AR = Kn, where n = |A(R)∗|.

Proof. (1) ⇒ (2) Since R is an Artinian local ring, every ideal of A(R)∗ is a nilpotent
ideal of R and thus by Lemma 2.2, AR is a null graph.

(2) ⇒ (1) is obtained by Lemma 2.2. �

Theorem 2.2. Let R be an Artinian ring. Then the following statements are equiva-

lent:

(1) |Max(R)| = 2;

(2) AR = Kn1
+ Kn2,n3

, where n1 = |A(Nil(R))∗|, n2 = |A(m1)
∗| − n1, n3 =

|A(m2)
∗| − n1 and m1,m2 ∈ Max(R).

Proof. (1) ⇒ (2) Let Max(R) = {m1,m2}. Since m1 ∩ m2 = Nil(R), Lemma 2.2
implies that AR[A(Nil(R))∗] is a null graph. Let A = {I ∈ A(m1) \ A(Nil(R))}
and B = {I ∈ A(m2) \ A(Nil(R))}. If I ∈ A and J ∈ B, then I + J = R, and
thus I is adjacent to J . Moreover, AR[A] and AR[B] are null graphs. This means
that AR[A ∪ B] = K|A|,|B|. Since A ∪ B ∪ A(Nil(R))∗ = A(R)∗, we deduce that

AR = Kn1
+ Kn2,n3

, where n1 = |A(Nil(R))∗|, n2 = |A(m1)∗| − n1, n3 = |A(m2)∗| − n1

and m1,m2 ∈ Max(R).
(2) ⇒ (1) By Theorem 2.1, |Max(R)| ≥ 2. If |Max(R)| ≥ 3, then AR has a cycle

of length 3, as AR[Max(R)] is a complete graph, a contradiction. Thus |Max(R)| = 2.
�

We are now in a position to characterize all Artinian rings for which both of the
graphs AR and AR are chordal.

Theorem 2.3. Let R be an Artinian ring. Then

(1) AR is chordal if and only if one of the following statements holds:

(i) R is local;

(ii) R ∼= F × S, where F is a field and S is local;
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(iii) R ∼= F1 × F2 × F3, where Fi is a field for every 1 ≤ i ≤ 3;

(2) AR is chordal if and only if |Max(R)| ≤ 3.

Proof. (1) Let AR be chordal. First we show that |Max(R)| ≤ 3. If |Max(R)| ≥ 4,
then Figure 1 is a cycle of length 4,

✈I1 ✈I2

✈I4 ✈I3

Figure 1. A cycle of length 4 in AR

where

I1 = (0) × R2 × R3 × (0) × R5 × · · · × Rn,

I2 = R1 × (0) × (0) × R4 × R5 × · · · × Rn,

I3 = R1 × R2 × R3 × (0) × R5 × · · · × Rn,

I4 = R1 × (0) × R3 × R4 × R5 × · · · × Rn.

Thus |Max(R)| ≤ 3. If |Max(R)| = 3, then R ∼= R1 ×R2 ×R3, where Ri is an Artinian
local ring, for every 1 ≤ i ≤ n. If R1 is not field, then consider I ∈ A(Nil(R1))

∗ and
thus Figure 2 is a cycle of length 4,

✈I1 ✈I2

✈I4 ✈I3

Figure 2. A cycle of length 4 in AR

where

I1 = R1 × (0) × (0),

I2 = (0) × R2 × R3,

I3 = R1 × R2 × (0),

I4 = I × R2 × R3.

Hence R1 is a field. Similarly, R2 and R3 are fields. Let |Max(R)| = 2. Then
R ∼= R1 × R2, where Ri is an Artinian local ring, for every 1 ≤ i ≤ 2. We show that
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one of the rings R1 and R2 is a field. If I, J are non-zero proper ideals of R1 and R2,
respectively, then Figure 3 is a cycle of length 4, where

I1 = I × R2,

I2 = R1 × J,

I3 = (0) × R2,

I4 = R1 × (0).

✈I1 ✈I2

✈I4 ✈I3

Figure 3. A cycle of length 4 in AR

This means that one of the rings R1 and R2 is a field. Thus in this case R ∼= F × S,
where F is a field and S is local. Clearly, if |Max(R)| = 1, R is local.

Conversely, suppose that one of the conditions (i), (ii), (ii) is satisfied. Condition
(i) implies that AR is a null graph by Theorem 2.1, and thus AR is chordal. If (ii)
holds, then by Theorem 2.2, AR = Kn + K1,n+1 where n = |A(Nil(R))∗|. This implies
that AR is chordal. If (iii) holds, then Figure 4 shows that AR is chordal where

✈I1

✈I2

❏
❏
❏
❏
❏
❏
❏

✡
✡

✡
✡

✡
✡

✡✈I5

✈I6 �
��

✈
I3

❅
❅❅

✈I4

Figure 4. AF1×F2×F3

I1 = (0) × (0) × F3,

I2 = F1 × F2 × (0),

I3 = F1 × (0) × F3,

I4 = (0) × F2 × (0),

I5 = (0) × F2 × F3,
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I6 = F1 × (0) × (0).

(2) First suppose that AR is chordal. If |Max(R)| ≥ 4, then we put

I1 = (0) × R2 × R3 × (0) × R5 × · · · × Rn,

I2 = (0) × R2 × (0) × R4 × R5 × · · · × Rn,

I3 = R1 × (0) × (0) × R4 × R5 × · · · × Rn,

I4 = R1 × (0) × R3 × (0) × R5 × · · · × Rn.

Now, it is not hard to see that I1−I2−I3−I4−I1 is a cycle of length 4, a contradiction.
Thus |Max(R)| ≤ 3.

Conversely, suppose that |Max(R)| ≤ 3. We show that AR is chordal. To see this,
we consider the following cases.

Case 1. |Max(R)| = 1. In this case, R is local and thus by Theorem 2.1, AR is a
complete graph. Hence AR is chordal.

Case 2. |Max(R)| = 2. By Theorem 2.2, AR = Kn1

∨
(Kn2

+ Kn3
), where n1 =

|A(Nil(R))∗|, n2 = |A(m1)
∗| − n1, n3 = |A(m2)

∗| − n1 and m1,m2 ∈ Max(R). Thus
every cycle is a triangle, i.e, AR is chordal.

Case 3. |Max(R)| = 3. In this case, R ∼= R1 × R2 × R3. Let Ii be an ideal of Ri,
for every 1 ≤ i ≤ 3. Suppose that

A1 = {I1 × I2 × I3 | Ii ⊆ Nil(Ri), for i = 1, 2, 3} \ {(0) × (0) × (0)},

A2 = {R1 × I2 × I3 | Ii ⊆ Nil(Ri), for i = 2, 3},

A3 = {I1 × R2 × I3 | Ii ⊆ Nil(Ri), for i = 1, 3},

A4 = {I1 × I2 × R3 | Ii ⊆ Nil(Ri), for i = 1, 2},

B1 = {R1 × R2 × I3 | I3 ⊆ Nil(R3)},

B2 = {R1 × I2 × R3 | I2 ⊆ Nil(R2)},

B3 = {I1 × R2 × R3 | I1 ⊆ Nil(R1)}.

Let A = ∪4
i=1Ai and B = ∪3

i=1Bi. One may check that A∩B = ∅ and V (AR) = A∪B

and so {A, B} is a partition of V (AR). We claim that AR contains no induced cycle
of length at least 4. Assume to the contrary, a1 − a2 − · · · − an − a1 is an induced
cycle of length at least 4 in AR. We show that

{a1, a2, . . . , an} ∩ B1 = ∅.

Suppose to the contrary (and with no loss of generality), a1 ∈ B1. Thus a1 =
R1 × R2 × I3, where I3 ⊆ Nil(R3). Since a2 and an are adjacent to a1, we conclude
that the third components of a2 and an must be nilpotent ideals of R3. This implies
that a2 and an are adjacent, a contradiction. Hence,

{a1, a2, . . . , an} ∩ B1 = ∅.

Similarly,

{a1, a2, . . . , an} ∩ B2 = {a1, a2, . . . , an} ∩ B3 = ∅.
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This means that

{a1, a2, . . . , an} ⊆ A.

But this contradicts the fact that AR[A] is a complete graph, and so AR contains no
induced cycle of length at least 4. Thus AR is chordal. �

3. When AR is Perfect?

In this section, we characterize all Artinian rings rings R whose AR is Perfect. First,
we need two celebrate results.
Theorem 3.1 (The Strong Perfect Graph Theorem [8]). A graph G is perfect if and

only if neither G nor G contains an induced odd cycle of length at least 5.

In light of Theorem 3.1, we have the following corollary.

Corollary 3.1. Let G be a graph. Then the following statements hold.

(1) G is a perfect graph if and only if G is a perfect graph.

(2) If G is a complete bipartite graph, then G is a perfect graph.

Theorem 3.2. [9] Every chordal graph is perfect.

Lemma 3.1. Let n be a positive integer and R ∼= R1 × · · · × Rn, where Ri is an

Artinian ring for every 1 ≤ i ≤ n. Let I = I1 × · · · × In, J = J1 × · · · × Jn be two

distinct ideals of R and n ≥ 2. Then I − J is an edge of AR if and only if for every

1 ≤ i ≤ n, Ii 6∈ A(Nil(Ri)) or Ji 6∈ A(Nil(Ri)).

Proof. Let I − J be an edge of AR. If there exists 1 ≤ i ≤ n such that Ii, Ji ∈
A(Nil(Ri)), then by Lemma 2.2, Ann(Ii) ∩ Ann(Ji) 6= (0). So if 0 6= ai ∈ Ann(Ii) ∩
Ann(Ji), then (0) × · · · × (0) × Riai × (0) × · · · × (0) ⊆ Ann(I) ∩ Ann(J) and thus
I − J is not an edge of AR, a contradiction.

Conversely, suppose that Ii 6∈ A(Nil(Ri)) or Ji 6∈ A(Nil(Ri)), for every 1 ≤ i ≤ n.
Thus Ii = Ri or Ji = Ri, for every 1 ≤ i ≤ n. This implies that Ann(I)∩Ann(J) = (0).
Hence I − J is an edge of AR. �

We are now in a position to state our main result in this paper.

Theorem 3.3. Let R be an Artinian rings. Then AR is a perfect graph if and only

if |Max(R)| ≤ 4.

Proof. First suppose AR is perfect. Since R is an Artinian ring, there exists a positive
integer n = |Max(R)| such that R ∼= R1 × · · · × Rn, where Ri is an Artinian local
ring, for every 1 ≤ i ≤ n, by Lemma 2.1. If n ≥ 5, then we put

I1 = (0) × R2 × R3 × (0) × R5 × R6 × · · · × Rn,

I2 = (0) × R2 × (0) × R4 × R5 × R6 × · · · × Rn,

I3 = R1 × (0) × (0) × R4 × R5 × R6 × · · · × Rn,

I4 = R1 × (0) × R3 × R4 × (0) × R6 × · · · × Rn,
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I5 = R1 × R2 × R3 × (0) × (0) × R6 × · · · × Rn.

Then it is easily seen that

I1 − I2 − I3 − I4 − I5 − I1

is a cycle of length 5 in AR, a contradiction (by Theorem 3.1). So n ≤ 4.
Conversely, suppose that |Max(R)| ≤ 4. We show that AR is a perfect graph. If

|Max(R)| ≤ 3, then by part (2) of Theorem 2.3, AR is chordal and thus by Theorem
3.2, AR is a perfect graph. Therefore, we need only to check the case |Max(R)| = 4.
Let R ∼= R1 × R2 × R3 × R4. We have the following claims.

Claim 1. AR contains no induced odd cycle of length at least 5. We consider the
following partition for V (AR):

A = {I1 × I2 × I3 × I4 | Ii ∈ A(Ri) for every 1 ≤ i ≤ 4 and I4 ∈ A(Nil(R4))},

B = {I1 × I2 × I3 × R4 | Ii ∈ A(Ri) for every 1 ≤ i ≤ 3 and I3 ∈ A(Nil(R3))},

C = {I1 × I2 × R3 × R4 | Ii ∈ A(Ri) for every 1 ≤ i ≤ 2 and I2 ∈ A(Nil(R2))},

D = {R1 × I2 × R3 × R4, I1 × R2 × R3 × R4 | for every 1 ≤ i ≤ 2 Ii ∈ A(Nil(Ri))}.

Now, assume to the contrary, a1 − a2 − · · · − an − a1 is an induced odd cycle of length
at least 5 in AR. We consider the following cases.

Case 1. {a1, a2, . . . , an}∩D = ∅. Let ai ∈ {a1, a2, . . . , an}∩D, for some 1 ≤ i ≤ n.
Then we can let ai = I1×R2×R3×R4 or ai = R1×I2×R3×R4. If ai = I1×R2×R3×R4,
then the first components of ai−1 and ai+1 must be in A(Nil(Ri)) and A(Nil(Ri)),
respectively. So by Lemma 3.1, ai−1 is adjacent to ai+1, a contradiction. Thus,
ai 6= I1 × R2 × R3 × R4. Similarly, ai 6= R1 × I2 × R3 × R4. This means that
{a1, a2, . . . , an} ∩ D = ∅.

Case 2. {a1, a2, . . . , an} ∩ C = ∅. First we show that |{a1, a2, . . . , an} ∩ C| ≤ 1.
Let a, b ∈ {a1, a2, . . . , an} ∩ C. Then we can easily check that if there exits x ∈ V (AR)
such that Ann(x) ∩ Ann(a) 6= (0), then Ann(x) ∩ Ann(b) 6= (0). This means that if x

is adjacent to a, then x is adjacent to b, a contradiction. So |{a1, a2, . . . , an} ∩ C| ≤ 1.
This together with the fact that AR[A] and AR[B] are complete subgraphs, imply that
n = 5 and |{a1, a2, . . . , an} ∩ B| = |{a1, a2, . . . , an} ∩ A| = 2. Hence |{a1, a2, . . . , an} ∩
C| = 1, and thus we can let a ∈ {a1, a2, . . . , an} ∩ C. Since a is adjacent to all
vertices of B \ {R1 × R2 × I3 × R4 | I3 ⊆ Nil(R3)} and AR[B] is a complete subgraph,
ai ∈ {a1, a2, . . . , an} ∩ {R1 × R2 × I3 × R4 | I3 ⊆ Nil(R3)}, for some 1 ≤ i ≤ n. We
can let ai = R1 × R2 × I3 × R4. Since only one of the components of ai is a nilpotent
ideal of Ri, by a similar argument to that of case 1, we get a contradiction. Hence,
{a1, a2, . . . , an} ∩ C = ∅.

By the above cases, {a1, a2, . . . , an} ⊆ A ∪ B, but this contradicts the fact AR[A]
and AR[B] are complete graphs, and thus AR contains no induced odd cycle of length
at least 5.



ON PERFECT CO-ANNIHILATING-IDEAL GRAPH 71

Claim 2. AR contains no induced odd cycle of length at least 5. We consider the
following partition for V (AR):

A1 ={I1 × R2 × R3 × R4 | I1 ∈ A(Nil(R1))},

A2 ={R1 × I2 × R3 × R4 | I2 ∈ A(Nil(R2))},

A3 ={R1 × R2 × I3 × R4 | I3 ∈ A(Nil(R3))},

A4 ={R1 × R2 × R3 × I4 | I4 ∈ A(Nil(R4))},

B1 ={I1 × I2 × R3 × R4 | I1 ∈ A(Nil(R1)), I2 ∈ A(Nil(R2))},

B2 ={R1 × R2 × I3 × I4 | I3 ∈ A(Nil(R3)), I4 ∈ A(Nil(R4))},

B3 ={I1 × R2 × I3 × R4 | I1 ∈ A(Nil(R1)), I3 ∈ A(Nil(R3))},

B4 ={R1 × I2 × R3 × I4 | I2 ∈ A(Nil(R2)), I4 ∈ A(Nil(R4))},

B5 ={I1 × R2 × R3 × I4 | I1 ∈ A(Nil(R1)), I4 ∈ A(Nil(R4))},

B6 ={R1 × I2 × I3 × R4 | I2 ∈ A(Nil(R2)), I3 ∈ A(Nil(R3))},

C1 ={R1 × I2 × I3 × I4 | I2 ∈ A(Nil(R2)), I3 ∈ A(Nil(R3)), I4 ∈ A(Nil(R4))},

C2 ={I1 × R2 × I3 × I4 | I1 ∈ A(Nil(R1)), I3 ∈ A(Nil(R3)), I4 ∈ A(Nil(R4))},

C3 ={I1 × I2 × R3 × I4 | I1 ∈ A(Nil(R1)), I2 ∈ A(Nil(R2)), I4 ∈ A(Nil(R4))},

C4 ={I1 × I2 × I3 × R4 | I1 ∈ A(Nil(R1)), I2 ∈ A(Nil(R2)), I3 ∈ A(Nil(R3))},

D ={I1 × I2 × I3 × I4 | I1 ∈ A(Nil(R1)), I2 ∈ A(Nil(R2)), I3 ∈ A(Nil(R3)),

I4 ∈ A(Nil(R4))}.

If we put A = ∪4
i=1Ai, B = ∪6

i=1Bi and C = ∪4
i=1Ci, then one may check that

{A, B, C, D} is a partition of V (AR). We show that AR contains no induced odd cycle
of length at least 5. Assume to the contrary, a1 − a2 − · · · − an − a1 is a induced
odd cycle of length at least 5 in AR. By Lemma 2.2, every vertex in D is an isolated
vertex in AR and thus {a1, a2, . . . , an} ∩ D = ∅. Next, we show that

{a1, a2, . . . , an} ∩ C1 = ∅.

To see this, if ai ∈ {a1, a2, . . . , an} ∩ C1, for some 1 ≤ i ≤ n, then with no loss of
generality, assume that a1 ∈ C1. Since every vertex of C1 is adjacent only to vertices
of A1, a2, an ∈ A1. This is impossible, as every vertex of AR is adjacent to a2 if and
only if it is adjacent to an. Therefore

{a1, a2, . . . , an} ∩ C1 = ∅.

Similarly,

{a1, a2, . . . , an} ∩ C2 = {a1, a2, . . . , an} ∩ C3 = {a1, a2, . . . , an} ∩ C4 = ∅.

Thus

{a1, a2, . . . , an} ∩ C = ∅.

Finally, we show that

{a1, a2, . . . , an} ∩ B1 = ∅.



72 S. M. SAADAT MIRGHADIM, M. J. NIKMEHR, AND R. NIKANDISH

Assume to the contrary and with no loss of generality, a1 ∈ B1. As a1 is adjacent
only to vertices of B2 ∪ A3 ∪ A4, {a2, an} ⊆ B2 ∪ A3 ∪ A4. If a2 ∈ B2, then a3 is
adjacent to an (since if a is adjacent to a2 and b is adjacent to a1, a is adjacent to
b), a contradiction. Thus a2 6∈ B2. Similarly, an 6∈ B2 and so {a2, an} ⊆ A3 ∪ A4.
Since AR[A3 ∪ A4] is a complete bipartite graph, we conclude that {a2, an} ⊆ A3 or
{a2, an} ⊆ A4. With no loss of generality, we may assume that {a2, an} ⊆ A3. This
implies that a3 is adjacent to a2 and an (since a vertex is adjacent to a2 if and only if
it is adjacent to an), a contradiction. Hence,

{a1, a2, . . . , an} ∩ B1 = ∅.

Similarly, for every 2 ≤ i ≤ 6

{a1, a2, . . . , an} ∩ Bi = ∅.

This means that

{a1, a2, . . . , an} ⊆ A.

But AR[A] is a complete 4-partite graph with parts Ai for 1 ≤ i ≤ 4, a contradiction.
Therefore, AR contains no induced odd cycle of length at least 5 and thus by Claim
1, Claim 2 and Theorem 3.1, we have AR is a perfect graph. �

Acknowledgements. The authors thank to the referees for their careful reading and
their excellent suggestions.

References

[1] S. Akbari, A. Alilou, J. Amjadi and S. M. Sheikholeslami, The co-annihilating-ideal graphs of

commutative rings, Canad. Math. Bull. 60 (2017), 3–11.
[2] D. F. Anderson and A. Badawi, On the total graph of a commutative ring without the zero element,

J. Algebra Appl. 11 (2012), Article ID 1250074, 18 pages.
[3] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra

217 (1999), 434–447.
[4] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley

Publishing Company, Reading, Massachusetts, 1969.
[5] A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra 42 (2014), 108–121.
[6] A. Badawi, On the dot product graph of a commutative ring, Comm. Algebra 43 (2015), 43–50.
[7] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, Cambridge, 1997.
[8] R. Diestel, Graph Theory, Springer-Verlag, New York, USA, 2000.
[9] G. A. Dirac, On rigid circuit graphs, Abh. Math. Semin. Univ. Hambg. 38 (1961), 71–76.
[10] A. Mallika and R. Kala, A note on zero-divisor graph of amalgamated duplication of a ring

along an ideal, AKCE Int. J. Graphs Comb. 14 (2017), 18–26.
[11] R. Nikandish, M. J. Nikmehr and M. Bakhtyiari, Coloring of the the annihilator graph of a

commutative ring, J. Algebra Appl. 15 (2016), Article ID 1650124, 13 pages.
[12] T. T. Chelvam and K. Selvakumar, On the connectivity of the annihilating-ideal graphs, Discuss.

Math. Gen. Algebra Appl. 35 (2015), 195–204.
[13] D. B. West, Introduction to Graph Theory, 2nd ed., Prentice Hall, Upper Saddle River, 2001.



ON PERFECT CO-ANNIHILATING-IDEAL GRAPH 73

1Department of Mathematics,
Karaj Branch, Islamic Azad University,
Karaj, Iran.
Email address: m.saadat82m@yahoo.com

2Faculty of Mathematics,
K. N. Toosi University of Technology,
Tehran, Iran.
Email address: nikmehr@kntu.ac.ir

3Department of Basic Sciences,
Jundi-Shapur University of Technology,
Dezful, Iran.
Email address: r.nikandish@jsu.ac.ir





Kragujevac Journal of Mathematics

Volume 45(1) (2021), Pages 75–80.

SOME IDENTITIES IN RINGS AND NEAR-RINGS WITH

DERIVATIONS

ABDELKARIM BOUA1

Abstract. In the present paper we investigate commutativity in prime rings and
3-prime near-rings admitting a generalized derivation satisfying certain algebraic
identities. Some well-known results characterizing commutativity of prime rings and
3-prime near-rings have been generalized.

1. Introduction

In this paper, N will denote a right near-ring with center Z(N). A near-ring N

is called zero-symmetric if x0 = 0 for all x ∈ N (recall that right distributivity
yields 0x = 0). A non empty subset U of N is said to be a semigroup left (resp.
right) ideal of N if NU ⊆ U (resp. UN ⊆ U) and if U is both a semigroup left ideal
and a semigroup right ideal, it is called a semigroup ideal of N. As usual for all
x, y in N, the symbol [x, y] stands for Lie product (commutator) xy − yx and x ◦ y

stands for Jordan product (anticommutator) xy + yx. We note that for a near-ring,
−(x + y) = −y − x. Recall that N is 3-prime if for a, b in N, aNb = {0} implies that
a = 0 or b = 0. N is said to be 2-torsion free if whenever 2x = 0, with x ∈ N, then
x = 0. An additive mapping d : N → N is a derivation if d(xy) = xd(y) + d(x)y
for all x, y ∈ N, or equivalently, as noted in [20], that d(xy) = d(x)y + xd(y) for all
x, y ∈ N. The concept of derivation in rings has been generalized in several ways
by various authors. Generalized derivation has been introduced already in rings by
M. Brešar [10]. Also the notions of generalized derivation has been introduced in
near-rings by Öznur Gölbasi [14]. An additive mapping F : N → N is called a right
generalized derivation with associated derivation d if F(xy) = F(x)y + xd(y) for all
x, y ∈ N and F is called a left generalized derivation with associated derivation d if
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F(xy) = d(x)y + xF(y), for all x, y ∈ N. F is called a generalized derivation with
associated derivation d if it is both a left as well as a right generalized derivation
with associated derivation d. An additive mapping F : N → N is said to be a left
(resp. right) multiplier (or centralizer) if F(xy) = F(x)y (resp. F(xy) = xF(y))
holds for all x, y ∈ N. F is said to be a multiplier if it is both left as well as right
multiplier. Notice that a right (resp. left) generalized derivation with associated
derivation d = 0 is a left (resp. right) multiplier. Over the past few years, many
authors have investigated commutativity of prime and semi-prime rings admitting
suitably constrained derivations [3, 11–13, 16, 18] and [19]. Some comparable results
on near-rings have also been derived, see e.g. [1, 2, 4, 7, 9, 15] and [17]. In [11] the
authors showed that a prime ring R must be commutative if it admits a derivation d

such that either d([x, y]) = [x, y] for all x, y ∈ K or d([x, y]) = −[x, y] for all x, y ∈ K,
where K is a nonzero ideal of R.

In 2002, Rehman [18] established that if a prime ring of a characteristic not 2 admits
a generalized derivation F associated with a nonzero derivation such that F ([x, y]) =
[x, y] (resp. F ([x, y]) = −[x, y]) for all x, y in a nonzero square closed Lie ideal U, then
U ⊆ Z(R). Quadri, Khan and Rehman [16], without the characteristic assumption
on the ring, proved that a prime ring must be commutative if it admits a generalized
derivation F, associated with a nonzero derivation, such that F ([x, y]) = [x, y] (resp.
F ([x, y]) = −[x, y]) for all x, y in a nonzero ideal I. Motivated by the above results,
in the following theorem we explore the commutativity of a prime ring, provided with
a generalized derivation F and left multiplier G satisfying the following conditions:
F ([x, y]α,β) = [x, y]u,v, F ([x, y]α,β) = G([β(x), y]) for all x, y ∈ R, where α, β, u, v

automorphisms of R and [x, y]α,β = α(x)y − yβ(x).

2. Some Preliminaries

For the proofs of our main theorems, we need the following lemmas. The first
lemmas appear in [7] and [20] in the context of left near-rings, and it is easy to see
that they hold for right near-rings as well.

Lemma 2.1. Let N be a 3-prime near-ring and U be a nonzero semigroup ideal of

N. Let d be a nonzero derivation on N.

(i) If x, y ∈ N and xUy = {0}, then x = 0 or y = 0.

(ii) If x ∈ N and xU = {0} or Ux = {0}, then x = 0.

(iii) If z ∈ Z(N), then d(z) ∈ Z(N).

Lemma 2.2. Let d be an arbitrary derivation of a near-ring N. Then N satisfies the

following partial distributive laws:

(i) z(xd(y) + d(x)y) = zxd(y) + zd(x)y for all x, y, z ∈ N;

(ii) z(d(x)y + xd(y)) = zd(x)y + zxd(y) for all x, y, z ∈ N.
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Lemma 2.3. ([5, Theorem 2.1]). Let N be a 3-prime near-ring, U a nonzero semigroup

left ideal or semigroup right ideal. If N admits a nonzero derivation d such that

d(U) ⊆ Z(N), then N is a commutative ring.

3. Some Results Involving Prime Rings

Theorem 3.1. Let R be a prime ring, I a nonzero ideal of R and α, β, u, v auto-

morphisms of R such that β(I) = I. If F is a generalized derivation of R associated

with a derivation d and G is a left multiplier of R which satisfy one of the following

conditions:

(i) F ([x, y]α,β) = [x, y]u,v for all x, y ∈ I;

(ii) F ([x, y]α,β) = G([β(x), y]) for all x, y ∈ I,

then R is commutative.

Proof. (i) Suppose that

(3.1) F ([x, y]α,β) = [x, y]u,v, for all x, y ∈ I.

Replacing y by yβ(x) in (3.1), and using the fact that [x, yβ(x)]α,β = [x, y]α,ββ(x) and
[x, yβ(x)]u,v = [x, y]u,vβ(x) + y[v(x), β(x)] for all x, y ∈ I, we arrive at
(3.2)

F ([x, y]α,β)β(x) + [x, y]α,βd(β(x)) = [x, y]u,vβ(x) + y[v(x), β(x)], for all x, y ∈ I.

Using (3.1), (3.2) implies that

(3.3) [x, y]α,βd(β(x)) = y[v(x), β(x)], for all x, y ∈ I.

Substituting ry instead of y in (3.3) where r ∈ R, we arrive at

[α(x), r]Id(β(x)) = {0}, for all x ∈ I, r ∈ R.

By Lemma 2.1 (i), we get [α(x), r] = 0 or d(β(x)) = 0 for all x ∈ I, r ∈ R which
gives α(x) ∈ Z(R) or d(β(x)) = 0 for all x ∈ I. Since α and β are automorphisms of
R, we get x ∈ Z(R) or d(β(x)) = 0 for all x ∈ I. Using Lemma 2.1 (iii), we obtain
d(β(I)) ⊆ Z(R) i.e, d(I) ⊆ Z(R) which forces that R is commutative by Lemma 2.3.
(ii) Assume that

(3.4) F ([x, y]α,β) = G([β(x), y]), for all x, y ∈ I.

Putting yβ(x) instead of y in (3.4), we get

F ([x, y]α,β)β(x) + [x, y]α,βd(β(x)) = G([β(x), y])β(x), for all x, y ∈ I.

Using (3.4), we obtain [x, y]α,βd(β(x)) = 0 for all x, y ∈ I, which implies that

(3.5) α(x)yd(β(x)) = yβ(x)d(β(x)), for all x, y ∈ I.

Taking ry in place of y in (3.5) where r ∈ R and using it again, we conclude that

[α(x), r]Id(β(x)) = {0}, for all x ∈ I, r ∈ R.

By Lemma 2.1 (i), we get α(x) ∈ Z(R) or d(β(x)) = 0 for all x ∈ R and using the
same techniques as used above, we conclude that R is commutative. �
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For α = β = u = v = idR, we get the following result.

Corollary 3.1. ([16, Theorem 2.1]). Let R be a prime ring and I a nonzero ideal

of R. If R admits a generalized derivation F associated with a nonzero derivation d

such that F ([x, y] = [x, y] for all x, y ∈ I, then R is commutative.

For α = β = u = idR and v = −idR, we get the following result.

Corollary 3.2. ([16, Theorem 2.2]). Let R be a prime ring and I a nonzero ideal

of R. If R admits a generalized derivation F associated with a nonzero derivation d

such that F ([x, y] + [x, y] = 0 for all x, y ∈ I, then R is commutative.

4. Some Results Involving 3-Prime Near-Rings

In this section, we will present a very important result that generalizes several
theorems that are well known in the literature. More precisely, we will show that a
2-torsion prime near-ring N is a commutative ring if and only if N admits a derivation
d and a left multiplier G such that G([x, y]) = [d(x), y] − [x, d(y)] for all x, y ∈ U.

Theorem 4.1. Let N be a 2-torsion free prime near-ring and U a nonzero semigroup

ideal of N. If N admits a derivation d and left multiplier G, then the following

assertions are equivalents:

(i) G([x, y]) = [d(x), y] − [x, d(y)] for all x, y ∈ U ;
(ii) N is a commutative ring.

Proof. It is easy to notice that (ii) implies (i).
(i)⇒(ii) Suppose that

(4.1) G([x, y]) = [d(x), y] − [x, d(y)], for all x, y ∈ U.

Replacing x by xy in (4.1) and using the fact that [xy, y] = [x, y]y, we obtain

[d(xy), y] − [xy, d(y)] = G([x, y])y, for all x, y ∈ U.

Which implies that

[d(xy), y] − [xy, d(y)] = ([d(x), y] − [x, d(y)])y, for all x, y ∈ U.

Using Lemma 2.2 and by developing the last expression, we arrive at

d(x)y2+xd(y)y−yxd(y)−yd(x)y+d(y)xy−xyd(y) = d(x)y2−yd(x)y+d(y)xy−xd(y)y.

For x = y, the equation (4.1) and 2-torsion freeness we give easily d(y)y = yd(y) for
all y ∈ U. In this case, by a simplification of last equation, we find that

(4.2) xd(y)y = yxd(y), for all x, y ∈ U.

Substituting tx in place of x, where t ∈ N in (4.2) and using it again, we arrive at

[y, t]Ud(y) = {0}, for all y ∈ U, t ∈ N.

Using Lemma 2.1 (i), we obtain

(4.3) y ∈ Z(N) or d(y) = 0, for all y ∈ U.
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If there exists y0 ∈ Z(N) ∩ U , then by (4.1), we get xd(y0) = d(y0)x for all x ∈ U , in
this case, (4.3) gives xd(y) = d(y)x for all x, y ∈ U. Replace x by tx, where t ∈ N, we
get [d(y), t]x = 0 for all x, y ∈ U , t ∈ N which implies that [d(y), t]U = {0} for all
y ∈ U , t ∈ N. Since U 6= {0}, by Lemma 2.1 (ii), we obtain d(U) ⊆ Z(N) and Lemma
2.3 assures that N is a commutative ring. �

If we replace G by the null application or the identical application idN, we get the
following results.

Corollary 4.1. ([8, Theorem 2.1]). Let N be a 2-torsion free prime near-ring. If

N admits a derivation d such that [d(x), y] = [x, d(y)] for all x, y ∈ N, then N is a

commutative ring.

Corollary 4.2. Let N be a 2-torsion free prime near-ring and U a nonzero semigroup

ideal of N. If N admits a derivation d, then the following assertions are equivalent:

(i) [x, y] = [d(x), y] − [x, d(y)] for all x, y ∈ U ;
(ii) [d(x), y] = [x, d(y)] for all x, y ∈ U ;
(iii) N is a commutative ring.

When d = 0, we have the following result.

Corollary 4.3. Let N be a 2-torsion free prime near-ring and U a nonzero semigroup

ideal of N. If N admits a left multiplier G, then the following assertions are equivalent:

(i) G([x, y]) = 0 for all x, y ∈ U ;
(ii) N is a commutative ring.
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TRIANGULAR SYSTEM OF HIGHER ORDER SINGULAR

FRACTIONAL DIFFERENTIAL EQUATIONS

AMELE TAIEB1 AND ZOUBIR DAHMANI2

Abstract. In this paper, we introduce a high dimensional system of singular
fractional differential equations. Using Schauder fixed point theorem, we prove
an existence result. We also investigate the uniqueness of solution using the Ba-
nach contraction principle. Moreover, we study the Ulam-Hyers stability and the
generalized-Ulam-Hyers stability of solutions. Some illustrative examples are also
presented.

1. Introduction and Preliminaries

Recently, the fractional calculus has attracted the attention of researchers in various
fields of applied sciences. For details, see [12,16,19,20] and the references therein. It is
important to note that some research studies deal with the existence and uniqueness
of solutions for some fractional differential equations are obtained in [1, 6–9]. Other
studies in [2,3,5,17,23] have been done for the singular fractional differential equations.
On the other hand, the Ulam stability of fractional differential equations is quite
significant in more realistic problems, numerical analysis, biology and economics.
Considerable work has been done in this area, for instance, see [10,11,13–15,18,22,24].

Let us now present some important research papers that inspired our work: We
begin by [4], where C. Bai and J. Fang established the existence of solutions for the
following singular fractional coupled system:

{

Dδu (t) = f (t, v (t)) , 0 < t < 1,

Dρv (t) = g (t, u (t)) , 0 < t < 1,

Key words and phrases. Caputo derivative, fixed point, singular fractional differential equation,
existence, uniqueness, Ulam-Hyers stability.
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where 0 < δ, ρ < 1, Dδ, Dρ are two standard Riemann-Liouville fractional derivatives,
f, g : [0, 1) × [0, ∞) → [0, ∞) are two given continuous functions, lim

t→0+
f (t) = ∞ and

limt→0+ g (t) = ∞.

In [25], A. Yang and W. Ge considered the following fractional coupled system






















Dα1u1 (t) + f1 (t, u2 (t) , Dµ1u2 (t)) = 0,
...
Dαn−1un−1 (t) + fn−1 (t, un (t) , Dµn−1un (t)) = 0,

Dαnun (t) + fn (t, u1 (t) , Dµnu1 (t)) = 0,

associated with the boundary conditions
{

u1 (0) = u2 (0) = · · · = un (0) = 0,

u1 (1) = u2 (1) = · · · = un (1) = 0,

for 1 < αj < 2, µj > 0, αj− µj−1 > 1, j = 1, 2, . . . , n, µ0 = µn and fj : [0, 1] ×
[0, ∞) × R → [0, ∞) is continuous function. Some existence and multiplicity results
of solutions are obtained.

In [21], A. Taïeb and Z. Dahmani established new existence and uniqueness results
for the following problem:



















































Dαu(t) +
m
∑

i=1

fi (t, u(t), v(t), Dγu(t), Dρv(t)) = 0, t ∈ J,

Dβv(t) +
m
∑

i=1

gi (t, u(t), v(t), Dγu(t), Dρv(t)) = 0, t ∈ J,

u (0) = u∗
0, v (0) = v∗

0,

u′(0) = u′′(0) = v′(0) = v′′(0) = 0,

u′′′(0) = Jru(τ), v′′′(0) = Jϕv(ς), r > 0, ϕ > 0,

where α, β ∈ (3, 4) , γ, ρ ∈ (0, 3) , τ, ς ∈ (0, 1), Dα, Dρ, Dβ and Dγ denote the Caputo
fractional derivatives and Jr, Jϕ denote the Riemann-Liouville fractional integrals,
J := [0, 1], u∗

0, v∗
0 ∈ R. For each i = 1, . . . , m, fi and gi : J × R

4 → R are specific
functions.

In this paper, we discuss the existence, uniqueness and Ulam stability of solutions
for the following singular fractional coupled system:

(1.1)































































Dα1x1 (t) = f1 (t, x1 (t)) ,

Dα2x2 (t) = f2 (t, x1 (t) , x2 (t)) ,
...
Dαnxn (t) = fn (t, x1 (t) , x2 (t) . . . , xn (t)) ,

0 < t ≤ 1, k − 1 < αk < k, k = 1, 2, . . . , n,

x1 (0) = a1
0, k = 1,

x
(j)
k (0) = ak

j , j = 0, 1, . . . , k − 2, k = 2, 3, . . . , n,

Dδk−1xk (1) = 0, k − 2 < δk−1 < k − 1, k = 2, 3, . . . , n,
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where n ∈ N − {0, 1} . For all k = 1, 2, . . . , n, the functions fk : (0, 1] × R
k → R

are continuous, singular at t = 0, limt→0+ fk (t) = ∞ and there exist βk ∈ (0, 1) ,

k = 1, 2, . . . , n, such that tβkfk, k = 1, 2, . . . , n, are continuous on [0, 1] .

To the best of our knowledge, there are no papers that have considered this kind
of singular fractional coupled system.

We present some basic definitions and lemmas that we need to prove our main
results. It can be found in [16].

Definition 1.1. The Riemann-Liouville fractional integral operator of order α ≥ 0
for a continuous function f on [0, ∞) is defined as:

Jαf(t) =











1

Γ (α)

∫ t
0 (t − s)α−1

f (s) ds, α > 0,

f(t), α = 0,

where t ≥ 0 and Γ (α) :=
∫+∞

0 e−uuα−1du.

Definition 1.2. The Caputo derivative of order α for a function x : [0, +∞) → R,

which is at least k-times differentiable can be defined as the following:

Dαx(t) =
1

Γ (k − α)

∫ t

0
(t − s)k−α−1

x(k) (s) ds = Jk−αx(k)(t),

for k − 1 < α < k, k ∈ N − {0} .

Lemma 1.1. Let α, β > 0, and k − 1 < α < k, k ∈ N − {0} , and let j be a positive

integer. Then

Dαtβ−1 =
Γ (β)

Γ (β − α)
tβ−α−1, β > k,

and

Dαtj = 0, j = 0, 1, . . . , k − 1.

Lemma 1.2. Let q > p > 0 and f ∈ L1 ([a, b]) . Then for all t ∈ [a, b] , we have

DpJqf(t) = Jq−pf(t), t ∈ [a, b] .

Lemma 1.3. Let k − 1 < α < k, k ∈ N − {0}, and let j be a positive integer. Then,

the general solution of the fractional differential equation Dαx(t) = 0, is given by:

x(t) =
k−1
∑

j=0

cj tj, (cj)j=0,1,...,k−1 ∈ R.

Lemma 1.4. Let k ∈ N − {0} , k − 1 < α < k, and let j be a positive integer. Then,

JαDαx(t) = x(t) +
k−1
∑

j=0

cj tj, (cj)j=0,1,...,k−1 ∈ R.

Lemma 1.5 (Shauder fixed point theorem). Let (E, d) be a complete metric space,

let U be a closed convex subset of E, and let T : E → E be a mapping such that the

set V := {Tx : x ∈ U} is relatively compact in E. Then T has at least one fixed point.
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We also prove the following auxiliary result to give the integral representation of (1.1).

Lemma 1.6. Assume that k − 1 < αk < k, k = 1, 2, . . . , n, n ∈ N − {0, 1} and

Fk ∈ C ([0, 1] ,R) . Then, the following system






















Dα1x1(t) = F1(t),
Dα2x2(t) = F2(t),
...

Dαnxn(t) = Fn(t),

associated with the conditions:

(1.2)











x1 (0) = a1
0,

x
(j)
k (0) = ak

j , k = 2, 3, . . . , n, j = 0, 1, . . . , k − 2,

Dδk−1xk (1) = 0, k − 2 < δk−1 < k − 1,

has a unique solution (x1, x2, . . . , xn) , where

(1.3) xk(t) =























































∫ t

0

(t − s)α1−1

Γ (α1)
F1 (s) ds + a1

0, k = 1,

∫ t

0

(t − s)αk−1

Γ (αk)
Fk (s) ds +

k−2
∑

j=0

ak
j

j!
tj

−Γ (k − δk−1)

(k − 1)!
tk−1

∫ 1

0

(1 − s)αk−δk−1−1

Γ (αk − δk−1)
Fk (s) ds, k = 2, 3, . . . , n.

Proof. Using Lemma 1.4, we obtain the following integral equation:

(1.4) xk(t) =

t
∫

0

(t − s)αk−1

Γ (αk)
Fk (s) ds −

k−1
∑

j=0

ck
j tj, k = 1, 2, . . . , n,

where






















c1
0 0 . . . . . . . . . 0

c2
0 c2

1 0 . . . . . . 0
c3

0 c3
1 c3

2 0 . . . 0
...

...
...

. . . 0 0
cn−1

0 cn−1
1 cn−1

2 . . . cn−1
n−2 0

cn
0 cn

1 cn
2 . . . cn

n−2 cn
n−1























∈ Mn (R) .

Applying the conditions given in (1.2), we observe that

x1 (0) = −c1
0 = a1

0,

and for all k = 2, 3, . . . , n, we get






















x
(j)
k (0) = −j!ck

j = ak
j , j = 0, 1, . . . , k − 2,

Dδk−1xk (1) =
∫ 1

0

(1 − s)αk−δk−1−1

Γ (αk − δk−1)
Fk (s) ds − Γ (k)

Γ (k − δk−1)
ck

k−1 = 0,

k − 2 < δk−1 < k − 1,
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which implies that

(1.5) c1
0 = −a1

0,

and

(1.6) ck
j =































−ak
j

j!
, j = 0, 1, . . . , k − 2,

Γ (k − δk−1)

Γ (k)

∫ 1

0

(1 − s)αk−δk−1−1

Γ (αk − δk−1)
Fk (s) ds, j = k − 1,

where k = 2, 3, . . . , n.

Substituting (1.5) and (1.6) in (1.4), we find (1.3). The proof of Lemma 1.6 is thus
achieved. �

Now, we introduce the Banach space

S := {(x1, x2, . . . , xn) : xk ∈ C ([0, 1] ,R) , k = 1, 2, . . . , n} ,

endowed with the norm:

‖(x1, x2, . . . , xn)‖S = max
1≤k≤n

‖xk‖
∞

, ‖xk‖
∞

= max
t∈[0,1]

|xk(t)| .

2. Existence and Uniqueness

In this section, we try to establish sufficient conditions for the existence and unique-
ness of solutions to the problem (1.1).

Define the nonlinear operator A : S → S by

A (x1, x2, . . . , xn) (t) := (A1 (x1) (t) , A2 (x1, x2) (t) , . . . , An (x1, x2, . . . , xn) (t)) ,

such that, for all t ∈ [0, 1] ,

Ak (x1, . . . , xk) (t) :=















































∫ t

0

(t − s)α1−1

Γ (α1)
f1 (s) ds + a1

0, k = 1,

∫ t

0

(t − s)αk−1

Γ (αk)
fk (s, . . .) ds +

k−2
∑

j=0

ak
j

j!
tj − Γ (k − δk−1)

(k − 1)!
tk−1

×
∫ 1

0

(1 − s)αk−δk−1−1

Γ (αk − δk−1)
fk (s, . . .) ds, k = 2, 3, . . . , n.

Lemma 2.1. Let k − 1 < αk < k, k = 1, 2, . . . , n, n ∈ N − {0, 1} , 0 < βk < 1,

Tk : (0, 1] → R be continuous function and limt→0+ Tk (t) = ∞. Assume that tβkTk (t)
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is continuous on [0, 1] . Then

xk(t) =















































∫ t

0

(t − s)α1−1

Γ (α1)
T1 (s) ds + a1

0, k = 1,

∫ t

0

(t − s)αk−1

Γ (αk)
Tk (s) ds +

k−2
∑

j=0

ak
j

j!
tj − Γ (k − δk−1)

(k − 1)!
tk−1

×
∫ 1

0

(1 − s)αk−δk−1−1

Γ (αk − δk−1)
Tk (s) ds, k = 2, 3, . . . , n,

is continuous on [0, 1] .

Proof. By the continuity of tβkTk and

xk(t) =















































∫ t

0

(t − s)α1−1

Γ (α1)
s−β1sβ1T1 (s) ds + a1

0, k = 1,

∫ t

0

(t − s)αk−1

Γ (αk)
s−βksβkTk (s) ds +

k−2
∑

j=0

ak
j

j!
tj − Γ (k − δk−1)

(k − 1)!
tk−1

×
∫ 1

0

(1 − s)αk−δk−1−1

Γ (αk − δk−1)
s−βksβkTk (s) ds, k = 2, 3, . . . , n,

we get xk(0) = ak
0, k = 1, 2, . . . , n. Then, we will divide the proof into three cases.

Case 1. For t0 = 0 and for all t ∈ (0, 1] , by the continuity of tβkTk, there exist

M1, . . . , Mn > 0, such that for all t ∈ [0, 1],
∣

∣

∣tβkTk (t)
∣

∣

∣ ≤ Mk. Therefore, we get

|xk (t) − xk (0)|

=















































∣

∣

∣

∣

∣

∫ t

0

(t − s)α1−1

Γ (α1)
s−β1sβ1T1 (s) ds

∣

∣

∣

∣

∣

, k = 1,
∣

∣

∣

∣

∣

∣

∫ t

0

(t − s)αk−1

Γ (αk)
s−βksβkTk (s) ds +

k−2
∑

j=1

ak
j

j!
tj

−Γ (k − δk−1)

(k − 1)!
tk−1

∫ 1

0

(1 − s)αk−δk−1−1

Γ (αk − δk−1)
s−βksβkTk (s) ds

∣

∣

∣

∣

∣

, k = 2, 3, . . . , n,

≤











































M1

Γ (α1)

∫ t

0
(t − s)α1−1

s−β1ds, k = 1,

Mk

Γ (αk)

∫ t

0
(t − s)αk−1

s−βkds +
k−2
∑

j=1

∣

∣

∣ak
j

∣

∣

∣

j!
tj +

Γ (k − δk−1) Mk

(k − 1)!Γ (αk − δk−1)
tk−1

×
∫ 1

0
(1 − s)αk−δk−1−1

s−βkds, k = 2, 3, . . . , n.
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Using Beta Euler function denoted by B, we obtain

|xk (t) − xk (0)|

≤











































M1t
α1−β1

Γ (α1)

∫ 1

0
(1 − u)α1−1

u−β1du, k = 1,

Mktαk−βk

Γ (αk)

∫ 1

0
(1 − u)αk−1

u−βkdu +
k−2
∑

j=1

∣

∣

∣ak
j

∣

∣

∣

j!
tj

+
Γ (k − δk−1) MkB (αk − δk−1, 1 − βk)

(k − 1)!Γ (αk − δk−1)
tk−1, k = 2, 3, . . . , n,

≤











































M1B (α1, 1 − β1) tα1−β1

Γ (α1)
, k = 1,

MkB (αk, 1 − βk) tαk−βk

Γ (αk)
+

k−2
∑

j=1

∣

∣

∣ak
j

∣

∣

∣

j!
tj

+
Γ (k − δk−1) MkB (αk − δk−1, 1 − βk)

(k − 1)!Γ (αk − δk−1)
tk−1, k = 2, 3, . . . , n,

→0 as t → 0, k = 1, 2, . . . , n.

Case 2. For t0 ∈ (0, 1) and for all t ∈ (t0, 1] , we have

|xk (t) − xk (t0)|

≤



































































∣

∣

∣

∣

∣

∫ t

0

(t − s)α1−1

Γ (α1)
s−β1sβ1T1 (s) ds −

∫ t0

0

(t0 − s)α1−1

Γ (α1)
s−β1sβ1T1 (s) ds

∣

∣

∣

∣

∣

, k = 1,
∣

∣

∣

∣

∣

∫ t

0

(t − s)αk−1

Γ (αk)
s−βksβkTk (s) ds −

∫ t0

0

(t0 − s)αk−1

Γ (αk)
s−βksβkTk (s) ds

∣

∣

∣

∣

∣

+
k−2
∑

j=0

∣

∣

∣ak
j

∣

∣

∣

j!

(

tj − t
j
0

)

+
Γ (k − δk−1)

(k − 1)!

(

tk−1 − tk−1
0

)

×
∣

∣

∣

∣

∣

∫ 1

0

(1 − s)αk−δk−1−1

Γ (αk − δk−1)
s−βksβkTk (s) ds

∣

∣

∣

∣

∣

, k = 2, 3, . . . , n,

≤



























































M1

Γ (α1)

(∫ t

0
(t − s)α1−1

s−β1ds −
∫ t0

0
(t0 − s)α1−1

s−β1ds

)

, k = 1,

Mk

Γ (αk)

(∫ t

0
(t − s)αk−1

s−βkds −
∫ t0

0
(t0 − s)αk−1

s−βkds

)

+
k−2
∑

j=1

∣

∣

∣ak
j

∣

∣

∣

j!

(

tj − t
j
0

)

+
Γ (k − δk−1) Mk

(k − 1)!Γ (αk − δk−1)

(

tk−1 − tk−1
0

)

×
∫ 1

0
(1 − s)αk−δk−1−1

s−βkds, k = 2, 3, . . . , n.
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Therefore,

|xk (t) − xk (t0)|

≤















































M1

(

tα1−β1 − t
α1−β1

0

)

B (α1, 1 − β1)

Γ (α1)
, k = 1,

Mk

(

tαk−βk − t
αk−βk

0

)

B (αk, 1 − βk)

Γ (αk)
+

k−2
∑

j=1

∣

∣

∣ak
j

∣

∣

∣

j!

(

tj − t
j
0

)

+
Γ (k − δk−1) MkB (αk − δk−1, 1 − βk)

(k − 1)!Γ (αk − δk−1)

(

tk−1 − tk−1
0

)

, k = 2, 3, . . . , n,

→0, as t → t0, k = 1, 2, . . . , n.

Case 3. For t0 (0, 1] and for all t ∈ [0, t0) . Similarly, as in Case 2, it can be shown
that

|xk (t) − xk (t0)|

≤















































M1

(

t
α1−β1

0 − tα1−β1

)

B (α1, 1 − β1)

Γ (α1)
, k = 1,

Mk

(

t
αk−βk

0 − tαk−βk

)

B (αk, 1 − βk)

Γ (αk)
+

k−2
∑

j=1

∣

∣

∣ak
j

∣

∣

∣

j!

(

t
j
0 − tj

)

+
Γ (k − δk−1) MkB (αk − δk−1, 1 − βk)

(k − 1)!Γ (αk − δk−1)

(

tk−1
0 − tk−1

)

, k = 2, 3, . . . , n,

→0, as t → t0, k = 1, 2, . . . , n.

This ends the proof. �

Lemma 2.2. Let k − 1 < αk < k, k = 1, 2, . . . , n, n ∈ N − {0, 1} , 0 < βk < 1, fk :
(0, 1] × R

k → R be continuous, and limt→0+ fk (t, . . .) = ∞. Assume that tβkfk (t, . . .)
is continuous on [0, 1] × R

k. Then, the operator A : S → S is completely continuous.

Proof. For all (x1, . . . , xn) ∈ S, let

A (x1, x2 . . . , xn) (t) = (A1 (x1) , A2 (x1, x2) , . . . , An (x1, . . . , xn)) (t) ,

where

Ak (x1, . . . , xk) (t)

:=















































∫ t

0

(t − s)α1−1

Γ (α1)
f1 (s, x1 (s)) ds + a1

0, k = 1,

∫ t

0

(t − s)αk−1

Γ (αk)
fk (s, x1 (s) , . . . , xk (s)) ds +

k−2
∑

j=0

ak
j

j!
tj − Γ (k − δk−1)

(k − 1)!
tk−1

×
∫ 1

0

(1 − s)αk−δk−1−1

Γ (αk − δk−1)
fk (s, x1 (s) , . . . , xk (s)) ds, k = 2, 3, . . . , n.
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By Lemma 2.1, we have A : S → S. Let
(

x0
1, x0

2, . . . , x0
n

)

∈ S :
∥

∥

∥

(

x0
1, x0

2, . . . , x0
n

)∥

∥

∥

S
= λ0

and

(x1, x2, . . . , xn) ∈ S :
∥

∥

∥(x1, x2, . . . , xn) −
(

x0
1, x0

2, . . . , x0
n

)∥

∥

∥

S
< 1,

then

‖(x1, x2, . . . , xn)‖S < 1 + λ0 = λ.

By the continuity of tβkfk (t, x1, . . . , xk) , we know that tβkfk (t, x1, . . . , xk) is uniformly

continuous on [0, 1] × [−λ, λ]k .

Hence, for all t ∈ [0, 1] and for each ǫ > 0, there exists ρ > 0 (ρ < 1) , with

(2.1)
∣

∣

∣tβkfk (t, x1 (t) , . . . , xk (t)) − tβkfk

(

t, x0
1 (t) , . . . , x0

k (t)
)∣

∣

∣ < ǫ,

where (x1, x2, . . . , xn) ∈ S, and ‖(x1, x2, . . . , xn) − (x0
1, x0

2, . . . , x0
n)‖S < ρ. Then

∥

∥

∥A (x1, x2 . . . , xn) − A
(

x0
1, x0

2, . . . , x0
n

)∥

∥

∥

S

= max
1≤k≤n

∥

∥

∥Ak (x1, . . . , xk) (t) − Ak

(

x0
1, . . . , x0

k

)

(t)
∥

∥

∥

∞
.(2.2)

We have
∥

∥

∥Ak (x1, . . . , xk) (t) − Ak

(

x0
1, . . . , x0

k

)

(t)
∥

∥

∥

∞

≤











































































max
t∈[0,1]

∫ t

0

(t − s)α1−1
s−β1

Γ (α1)

∣

∣

∣sβ1f1 (s, x1 (s)) − sβ1f1

(

s, x0
1 (s)

)∣

∣

∣ ds, k = 1,

max
t∈[0,1]

∫ t

0

(t − s)αk−1
s−βk

Γ (αk)

∣

∣

∣sβkfk (s, x1 (s) , . . . , xk (s))

−sβkfk (s, x0
1 (s) , . . . , x0

k (s))
∣

∣

∣ ds + max
t∈[0,1]

Γ (k − δk−1)

(k − 1)!
tk−1

×
∫ 1

0

(1 − s)αk−δk−1−1
s−βk

Γ (αk − δk−1)

∣

∣

∣sβkfk (s, x1 (s) , . . . , xk (s))

−sβkfk (s, x0
1 (s) , . . . , x0

k (s))
∣

∣

∣ ds, k = 2, 3, . . . , n.

Using (2.1), we obtain
∥

∥

∥Ak (x1, . . . , xk) (t) − Ak

(

x0
1, . . . , x0

k

)

(t)
∥

∥

∥

∞
(2.3)

≤























































ǫ

Γ (α1)
max
t∈[0,1]

∫ t

0
(t − s)α1−1

s−β1ds, k = 1,

ǫ

Γ (αk)
max
t∈[0,1]

∫ t

0
(t − s)αk−1

s−βkds

+
ǫΓ (k − δk−1)

(k − 1)!Γ (αk − δk−1)
max
t∈[0,1]

tk−1
∫ 1

0
(1 − s)αk−δk−1−1

s−βkds,

k = 2, 3, . . . , n,
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≤































ǫ
B (α1, 1 − β1)

Γ (α1)
max
t∈[0,1]

tα1−β1 , k = 1,

ǫ

(

B (αk, 1 − βk)

Γ (αk)
max
t∈[0,1]

tαk−βk +
Γ (k − δk−1) B (αk − δk−1, 1 − βk)

(k − 1)!Γ (αk − δk−1)

)

,

k = 2, 3, . . . , n,

=































ǫ
Γ (1 − β1)

Γ (α1 + 1 − β1)
, k = 1,

ǫ

(

Γ (1 − βk)

Γ (αk + 1 − βk)
+

Γ (k − δk−1) Γ (1 − βk)

(k − 1)!Γ (αk − δk−1 + 1 − βk)

)

, k = 2, 3, . . . , n.

We pose:

Λ1 :=
Γ (1 − β1)

Γ (α1 + 1 − β1)
,(2.4)

Λk :=
Γ (1 − βk)

Γ (αk + 1 − βk)
+

Γ (k − δk−1) Γ (1 − βk)

(k − 1)!Γ (αk − δk−1 + 1 − βk)
.

By (2.3) and (2.4), we have

(2.5)
∥

∥

∥Ak (x1, . . . , xk) (t) − Ak

(

x0
1, . . . , x0

k

)

(t)
∥

∥

∥

∞
≤
{

ǫΛ1, k = 1,

ǫΛk, k = 2, 3, . . . , n.

Thanks to (2.2) and (2.5), we get
∥

∥

∥A (x1, x2 . . . , xn) − A
(

x0
1, x0

2, . . . , x0
n

)∥

∥

∥

S
≤ ǫ max

1≤k≤n
Λk.

Therefore,
∥

∥

∥A (x1, x2 . . . , xn) − A
(

x0
1, x0

2, . . . , x0
n

)∥

∥

∥

S
→ 0,

as
∥

∥

∥(x1, x2 . . . , xn) −
(

x0
1, x0

2, . . . , x0
n

)∥

∥

∥

S
→ 0.

Hence, A : S → S is continuous.
Let θ ⊂ S be bounded. Then, there exists a positive constant ς such that

‖(x1, x2 . . . , xn)‖S ≤ ς, for all (x1, x2 . . . , xn) ∈ θ. Since tβkfk (t, x1, . . . , xk) , k =

1, 2, . . . , n, are continuous on [0, 1] × [−ς, ς]k , there exist positive constants Lk, k =
1, 2, . . . , n, such that
(2.6)

∣

∣

∣tβkfk (t, x1 (t) , . . . , xk (t))
∣

∣

∣ ≤ Lk, for all t ∈ [0, 1] , for all (x1, x2 . . . , xn) ∈ θ.

Then

(2.7) ‖A (x1, x2 . . . , xn)‖S = max
1≤k≤n

‖Ak (x1, . . . , xk)‖
∞

.
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We have

‖Ak (x1, . . . , xk)‖
∞

≤











































































max
t∈[0,1]

∫ t

0

(t − s)α1−1
s−β1

Γ (α1)

∣

∣

∣sβ1f1 (s, x1)
∣

∣

∣ ds +
∣

∣

∣a1
0

∣

∣

∣ , k = 1,

max
t∈[0,1]

∫ t

0

(t − s)αk−1
s−βk

Γ (αk)

∣

∣

∣sβkfk (s, x1, . . . , xk)
∣

∣

∣ ds

+
k−2
∑

j=0

∣

∣

∣ak
j

∣

∣

∣

j!
max
t∈[0,1]

tj +
Γ (k − δk−1)

(k − 1)!
max
t∈[0,1]

tk−1

×
∫ 1

0

(1 − s)αk−δk−1−1
s−βk

Γ (αk − δk−1)

∣

∣

∣sβkfk (s, x1, . . . , xk)
∣

∣

∣ ds,

k = 2, 3, . . . , n.

Using (2.6), we get

‖Ak (x1, . . . , xk)‖
∞

(2.8)

≤











































L1

Γ (α1)
max
t∈[0,1]

∫ t

0
(t − s)α1−1

s−β1ds +
∣

∣

∣a1
0

∣

∣

∣ , k = 1,

Lk

Γ (αk)
max
t∈[0,1]

∫ t

0
(t − s)αk−1

s−βkds +
k−2
∑

j=0

∣

∣

∣ak
j

∣

∣

∣

j!

+
Γ (k − δk−1) Lk

(k − 1)!Γ (αk − δk−1)

∫ 1
0 (1 − s)αk−δk−1−1

s−βkds, k = 2, 3, . . . , n,

≤















































L1Γ (1 − β1)

Γ (α1 + 1 − β1)
max
t∈[0,1]

tα1−β1 + |a1
0| , k = 1,

Lk

(

Γ (1 − βk)

Γ (αk + 1 − βk)
max
t∈[0,1]

tαk−βk +
Γ (k − δk−1) Γ (1 − βk)

(k − 1)!Γ (αk − δk−1 + 1 − βk)

)

+
k−2
∑

j=0

∣

∣

∣ak
j

∣

∣

∣

j!
, k = 2, 3, . . . , n,

≤















L1Λ1 + |a1
0| , k = 1,

LkΛk +
k−2
∑

j=0

∣

∣

∣ak
j

∣

∣

∣

j!
, k = 2, 3, . . . , n.

Then by (2.7) and (2.8), we get

‖A (x1, x2 . . . , xn)‖S ≤ max
2≤k≤n







L1Λ1 +
∣

∣

∣a1
0

∣

∣

∣ , LkΛk +
k−2
∑

j=0

∣

∣

∣ak
j

∣

∣

∣

j!







.

Thus, A (θ) is bounded.
For all (x1, x2 . . . , xn) ∈ θ, and for all t1, t2 ∈ [0, 1], t1 < t2, we have:

‖A (x1, x2 . . . , xn) (t2) − A (x1, x2 . . . , xn) (t1)‖S
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(2.9) = max
1≤k≤n

‖Ak (x1, . . . , xk) (t2) − Ak (x1, . . . , xk) (t1)‖∞
.

Then

‖Ak (x1, . . . , xk) (t2) − Ak (x1, . . . , xk) (t1)‖∞

≤











































































































max
t∈[0,1]

∣

∣

∣

∣

∣

∫ t2

0

(t2 − s)α1−1
s−β1

Γ (α1)
sβ1f1 (s, x1) ds

−
∫ t1

0

(t1 − s)α1−1
s−β1

Γ (α1)
sβ1f1 (s, x1) ds

∣

∣

∣

∣

∣

, k = 1,

max
t∈[0,1]

∣

∣

∣

∣

∣

∫ t2

0

(t2 − s)αk−1
s−βk

Γ (αk)
sβkfk (s, x1, . . . , xk) ds

−
∫ t1

0

(t1 − s)αk−1
s−βk

Γ (αk)
sβkfk (s, x1, . . . , xk) ds

∣

∣

∣

∣

∣

+
k−2
∑

j=0

∣

∣

∣ak
j

∣

∣

∣

j!

(

t
j
2 − t

j
1

)

+
Γ (k − δk−1)

(k − 1)!

(

tk−1
2 − tk−1

1

)

×
∫ 1

0

(1 − s)αk−δk−1−1
s−βk

Γ (αk − δk−1)

∣

∣

∣sβkfk (s, x1, . . . , xk)
∣

∣

∣ ds, k = 2, 3, . . . , n.

Hence,

‖Ak (x1, . . . , xk) (t2) − Ak (x1, . . . , xk) (t1)‖∞
(2.10)

≤



































































L1Γ (1 − β1)

Γ (α1 + 1 − β1)

(

t
α1−β1

2 − t
α1−β1

1

)

, k = 1,

LkΓ (1 − βk)
(

t
αk−βk

2 − t
αk−βk

1

)

Γ (αk + 1 − βk)
+

k−2
∑

j=0

∣

∣

∣ak
j

∣

∣

∣

(

t
j
2 − t

j
1

)

j!

+
Γ (k − δk−1) LkΓ (1 − βk)

(

tk−1
2 − tk−1

1

)

(k − 1)!Γ (αk − δk−1 + 1 − βk)
, k = 2, 3, . . . , n.

Then, by (2.9) and (2.10), we obtain

‖A (x1, x2 . . . , xn) (t2) − A (x1, x2 . . . , xn) (t1)‖S(2.11)

≤ max







L1Γ (1 − β1)

Γ (α1 + 1 − β1)

(

t
α1−β1

2 − t
α1−β1

1

)

,
LkΓ (1 − βk)

(

t
αk−βk

2 − t
αk−βk

1

)

Γ (αk + 1 − βk)

+
k−2
∑

j=0

∣

∣

∣ak
j

∣

∣

∣

(

t
j
2 − t

j
1

)

j!
+

Γ (k − δk−1) LkΓ (1 − βk)
(

tk−1
2 − tk−1

1

)

(k − 1)!Γ (αk − δk−1 + 1 − βk)







.

The right-hand side of (2.11) is independent of (x1, x2 . . . , xn) and tends to zero as
t1 → t2. Thus A (θ) is equicontinuous. By Arzela-Ascoli theorem, A is completely
continuous. �
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Theorem 2.1. Assume that there exist nonnegative constants
(

ωk
j

)k=1,...,n

j=1,...,k
, satisfying

(2.12) tβk |fk (t, x1, . . . , xk) − fk (t, y1, . . . , yk)| ≤
k
∑

j=1

ωk
j |xj − yj| ,

for all t ∈ [0, 1] and all (x1, . . . , xk) , (y1, . . . , yk) ∈ R
k.

If

(2.13) Σ := max
2≤k≤n



ω1
1Λ1,

k
∑

j=1

ωk
j Λk



 < 1,

then the system (1.1) has a unique solution on [0, 1] .

Proof. We will prove that A is a contractive operator on S.
Let (x1, x2 . . . , xn) , (y1, y2 . . . , yn) ∈ S and t ∈ [0, 1] , we have

‖A (x1, x2 . . . , xn) − A (y1, y2 . . . , yn)‖S

= max
1≤k≤n

‖Ak (x1, . . . , xk) (t) − Ak (y1, . . . , yk) (t)‖
∞

.(2.14)

Then

‖Ak (x1, . . . , xk) (t) − Ak (y1, . . . , yk) (t)‖
∞

≤







































































max
t∈[0,1]

∫ t

0

(t − s)α1−1
s−β1

Γ (α1)
sβ1 |f1 (s, x1 (s)) − f1 (s, y1 (s))| ds, k = 1,

max
t∈[0,1]

∫ t

0

(t − s)αk−1
s−βk

Γ (αk)
sβk |fk (s, x1 (s) , . . . , xk (s))

−fk (s, y1 (s) , . . . , yk (s))| ds + max
t∈[0,1]

Γ (k − δk−1)

(k − 1)!
tk−1

×
∫ 1

0

(1 − s)αk−δk−1−1
s−βk

Γ (αk − δk−1)
sβk |fk (s, x1 (s) , . . . , xk (s))

−fk (s, y1 (s) , . . . , yk (s))| ds, k = 2, 3, . . . , n.

Thanks to (2.12), we can write

‖Ak (x1, . . . , xk) (t) − Ak (y1, . . . , yk) (t)‖
∞

(2.15)

≤























































ω1
1

Γ (α1)
‖x1 − y1‖∞

max
t∈[0,1]

∫ t

0
(t − s)α1−1

s−β1ds, k = 1,
(

ωk
1 ‖x1 − y1‖∞

+ · · · + ωk
k ‖xk − yk‖

∞

)

×
(

max
t∈[0,1]

∫ t

0

(t − s)αk−1
s−βk

Γ (αk)
ds

+
Γ (k − δk−1)

(k − 1)!Γ (αk − δk−1)

∫ 1

0
(1 − s)αk−δk−1−1

s−βkds

)

, k = 2, 3, . . . , n,



94 A. TAIEB AND Z. DAHMANI

≤











































ω1
1B (α1, 1 − β1) ‖x1 − y1‖∞

Γ (α1)
max
t∈[0,1]

tα1−β1 , k = 1,

k
∑

j=1

ωk
j max

1≤k≤n
‖xk − yk‖

∞

(

B (αk, 1 − βk)

Γ (αk)
max
t∈[0,1]

tαk−βk

+
Γ (k − δk−1) B (αk − δk−1, 1 − βk)

(k − 1)!Γ (αk − δk−1)

)

, k = 2, 3, . . . , n,

≤































ω1
1Γ (1 − β1)

Γ (α1 + 1 − β1)
‖x1 − y1‖∞

, k = 1,

k
∑

j=1

ωk
j

(

Γ (1 − βk)

Γ (αk + 1 − βk)
+

Γ (k − δk−1) Γ (1 − βk)

(k − 1)!Γ (αk − δk−1 + 1 − βk)

)

× ‖(x1 − y1, . . . , xk − yk)‖S , k = 2, 3, . . . , n.

By (2.14) and (2.15), we obtain

‖A (x1, x2, . . . , xn) − A (y1, y2, . . . , yn)‖S

≤ max
2≤k≤n



ω1
1Λ1,

k
∑

j=1

ωk
j Λk



 ‖(x1 − y1, . . . , xk − yk)‖S .

By (2.13), we have Σ := max2≤k≤n

(

ω1
1Λ1,

∑k
j=1 ωk

j Λk

)

< 1. Hence, A is a contractive

operator. Consequently, by Banach fixed point theorem, A has a fixed point which is
the unique solution of system (1.1). This completes the proof. �

Example 2.1. Consider the following singular fractional system:

(2.16)



















































































































D
3

4 x1 (t) =
sin x1 (t)

12π
√

t
, 0 < t ≤ 1,

D
3

2 x2 (t) =
cos x1 (t) − cos x2 (t)

16π3t
5

7

, 0 < t ≤ 1,

D
7

3 x3 (t) =
(sin x1 (t) + sin x2 (t) + cos x3 (t))

24πt
3

8

, 0 < t ≤ 1,

D
7

2 x4 (t) =
|x1 (t) + x2 (t) + x3 (t) + x4 (t)|

32πt
1

3 (1 + |x1 (t) + x2 (t) + x3 (t) + x4 (t)|)
, 0 < t ≤ 1,

x1 (0) = 1,

x2 (0) =
√

2, D
1

2 x2 (1) = 0,

x3 (0) =
3

5
, x′

3 (0) = 2
√

3, D
4

3 x3 (1) = 0,

x4 (0) =
1

2
, x′

4 (0) =
√

5, x′′
4 (0) = 1, D

5

2 x4 (1) = 0.

We have:

n = 4, α1 =
3

4
, α2 =

3

2
, α3 =

7

3
, α4 =

7

2
, δ1 =

1

2
, δ2 =

4

3
, δ3 =

5

2
,

a1
0 = 1, a2

0 =
√

2, a3
0 =

3

5
, a3

1 = 2
√

3, a4
0 =

1

2
, a4

1 =
√

5, a4
2 = 1.
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Then, for each t ∈ [0, 1] and (x1, x2, x3, x4) , (y1, y2, y3, y4) ∈ R
4, we have:

t
2

3 |f1 (t, x1) − f1 (t, y1)| ≤ t
1

6

12π
|x1 − y1| ,

t
6

7 |f2 (t, x1, x2) − f2 (t, y1, y2)| ≤ t
1

7

16π3
|x1 − y1| +

t
1

7

16π3
|x2 − y2| ,

t
7

8 |f3 (t, x1, x2, x3) − f3 (t, y1, y2, y3)|

≤
( √

t

24π
|x1 − y1| +

√
t

24π
|x2 − y2| +

√
t

24π
|x3 − y3|

)

,

t
1

2 |f4 (t, x1, x2, x3, x4 ) − f4 (t, y1, y2, y3, y4)|

≤




t
1

6

32π
|x1 − y1| +

t
1

6

32π
|x2 − y2| +

t
1

6

32π
|x3 − y3| +

t
1

6

32π
|x4 − y4|



 ,

where β1 = 2
3
, β2 = 6

7
, β3 = 7

8
, β4 = 1

2
.

Moreover, we can take:

ω1
1 =

1

12π
,

ω2
1 =ω2

2 =
1

16π3
,

2
∑

j=1

ω2
j =

1

8π3
,

ω3
1 =ω3

2 = ω3
3 =

1

24π
,

3
∑

j=1

ω3
j =

1

8π
,

ω4
1 =ω4

2 = ω4
3 = ω4

4 =
1

32π
,

4
∑

j=1

ω4
j =

1

8π
.

On the other hand, we get

Λ1 = 2.7958, Λ2 = 13.4869, Λ3 = 9.4443, Λ4 = 0.5908.

Thus,

ω1
1Λ1 = 0.0742,

2
∑

j=1

ω2
j Λ2 = 0.0544,

3
∑

j=1

ω3
j Λ3 = 0.3759,

4
∑

j=1

ω4
j Λ4 = 0.0235.

Then the singular fractional system (2.16) has a unique solution on [0, 1].

Theorem 2.2. Let k − 1 < αk < k, k = 1, 2, . . . , n, n ∈ N − {0, 1} , 0 < βk < 1.

Assume that fk : (0, 1] × R
k → R is continuous with limt→0+ fk (t, . . .) = ∞ and

tβkfk (t, . . .) is continuous on [0, 1] × R
k. Then, the system (1.1) has at least one

solution on [0, 1] .

Proof. Let Pk = max
t∈[0,1]

tβk |fk (t, x1(t), . . . , xk(t))| , and define the set ∆ ⊂ S by

∆ := {(x1, x2, . . . , xn) ∈ S : ‖(x1, x2, . . . , xn)‖S ≤ r} ,
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where

r = max
2≤k≤n



P1Λ1 +
∣

∣

∣a1
0

∣

∣

∣ , PkΛk +
k−2
∑

j=0

∣

∣

∣ak
j

∣

∣

∣

j!



 .

We will prove that A : ∆ → ∆. For (x1, x2, . . . , xn) ∈ ∆ and t ∈ [0, 1] , we have

(2.17) ‖A (x1, x2, . . . , xn)‖S = max
1≤k≤n

‖Ak (x1, . . . , xk) (t)‖
∞

.

Then

‖Ak (x1, . . . , xk) (t)‖
∞

≤























































max
t∈[0,1]

∫ t

0

(t − s)α1−1
s−β1

Γ (α1)
sβ1 |f1 (s, x1)| ds +

∣

∣

∣a1
0

∣

∣

∣ , k = 1,

max
t∈[0,1]

∫ t

0

(t − s)αk−1
s−βk

Γ (αk)
sβk |fk (s, x1, . . . , xk)| ds +

k−2
∑

j=0

∣

∣

∣ak
j

∣

∣

∣

j!
max
t∈[0,1]

tj

+
Γ (k − δk−1)

(k − 1)!
max
t∈[0,1]

tk−1
∫ 1

0

(1 − s)αk−δk−1−1
s−βk

Γ (αk − δk−1)
sβk |fk (s, x1, . . . , xk)| ds,

k = 2, 3, . . . , n,

≤











































P1

Γ (α1)
max
t∈[0,1]

∫ t

0
(t − s)α1−1

s−β1ds +
∣

∣

∣a1
0

∣

∣

∣ , k = 1,

Pk

Γ (αk)
max
t∈[0,1]

∫ t

0
(t − s)αk−1

s−βkds +
k−2
∑

j=0

∣

∣

∣ak
j

∣

∣

∣

j!

+
Γ (k − δk−1) Pk

(k − 1)!Γ (αk − δk−1)

∫ 1

0
(1 − s)αk−δk−1−1

s−βkds, k = 2, 3, . . . , n.

Thus,

‖Ak (x1, . . . , xk) (t)‖
∞

(2.18)

≤















































P1Γ (1 − β1)

Γ (α1 + 1 − β1)
max
t∈[0,1]

tα1−β1 + |a1
0| , k = 1,

Pk

(

Γ (1 − βk)

Γ (αk + 1 − βk)
max
t∈[0,1]

tαk−βk +
Γ (k − δk−1) Γ (1 − βk)

(k − 1)!Γ (αk − δk−1 + 1 − βk)

)

,

+
k−2
∑

j=0

∣

∣

∣ak
j

∣

∣

∣

j!
, k = 2, 3, . . . , n,

≤















P1Λ1 + |a1
0| , k = 1,

PkΛk +
k−2
∑

j=0

∣

∣

∣ak
j

∣

∣

∣

j!
, k = 2, 3, . . . , n.

Using (2.17) and (2.18), we can write

(2.19) ‖A (x1, x2, . . . , xn)‖S ≤ max
2≤k≤n



P1Λ1 +
∣

∣

∣a1
0

∣

∣

∣ , PkΛk +
k−2
∑

j=0

∣

∣

∣ak
j

∣

∣

∣

j!



 .
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Hence, ‖A (x1, x2, . . . , xn)‖S ≤ r. By Lemma 2.1, we have A (x1, x2, . . . , xn) (t) ∈
C ([0, 1]). Moreover, for (x1, x2, . . . , xn) ∈ ∆, we have A (x1, x2, . . . , xn) ∈ ∆. So,
A (∆) ⊂ ∆, and A : ∆ → ∆. Then from Lemma 2.2, we get A is completely continuous.

By Lemma 1.5, the system (1.1) has at least one solution on [0, 1] . Theorem 2.2 is
thus proved. �

Example 2.2. Consider the following system:

(2.20)



















































































































































D
1

2 x1 (t) = t− 1

3 e−t sin x1 (t) , 0 < t ≤ 1,

D
4

3 x2 (t) =
cos x1 (t)√

t (π + sin x2 (t))
, 0 < t ≤ 1,

D
9

4 x3 (t) =
et cos x3

t
1

5 (4π + sin (x1 + x2))
, 0 < t ≤ 1,

D
7

2 x4 (t) = t− 2

9

e−2t sin (x1 + x2)

16 + cos (x3 + x4)
, 0 < t ≤ 1,

D
14

3 x5 (t) =
cos (u1 + u2 + u3 + u4)

t
1

4 et
, 0 < t ≤ 1,

x1 (0) =
√

3,

x2 (0) =
2

3
, D

1

4 x2 (1) = 0,

x3 (0) = −1, x′
3 (0) =

1

2
, D

3

2 x3 (1) = 0,

x4 (0) =

√
7

2
, x′

4 (0) =
1

4
, x′′

4 (0) =

√
5

3
, D

11

5 x4 (1) = 0,

x5 (0) = 1, x′
5 (0) =

4

3
, x′′

5 (0) =
3

7
, x′′′

5 (0) =
2
√

3

5
, D

10

3 x5 (1) = 0.

We have:

n = 5, α1 =
1

2
, α2 =

4

3
, α3 =

9

4
, α4 =

7

2
, α5 =

14

3
, δ1 =

1

4
, δ2 =

3

2
,

δ3 =
11

5
, δ4 =

10

3
, a1

0 =
√

3, a2
0 =

2

3
, a3

0 = −1, a3
1 =

1

2
, a4

0 =

√
7

2
,

a4
1 =

1

4
, a4

2 =

√
5

3
, a5

0 = 1, a5
1 =

4

3
, a5

2 =
3

7
, a5

3 =
2
√

3

5
.

For β1 = 2
3
, β2 = 3

4
, β3 = 2

5
, β4 = 4

9
, β5 = 1

2
, the system (2.20) has at least one

solution on [0, 1].

3. Ulam Stability

In this section, we study the Ulam-Hyers stability and the generalized Ulam-Hyers
stability of solutions for system (1.1).

Definition 3.1. The singular fractional system (1.1) is Ulam-Hyers stable if there
exists a real number µ > 0, such that for all (ǫ1, ǫ2, . . . , ǫn) > 0, and for all solution
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(x1, x2, . . . , xn) ∈ S of

(3.1)























|Dα1x1 (t) − f1 (t, x1 (t))| ≤ ǫ1,

|Dα2x2 (t) − f2 (t, x1 (t) , x2 (t))| ≤ ǫ2,
...
|Dαnxn (t) − fn (t, x1 (t) , x2 (t) , . . . , xn (t))| ≤ ǫn, 0 < t ≤ 1,

there exists a solution (y1, y2, . . . , yn) ∈ S satisfying

(3.2)































































Dα1y1 (t) = f1 (t, y1 (t)) ,

Dα2x2 (t) = f2 (t, y1 (t) , y2 (t)) ,
...
Dαnxn (t) = fn (t, y1 (t) , y2 (t) , . . . , yn (t)) , 0 < t ≤ 1, k = 1,

y1 (0) = a1
0,

y
(j)
k (0) = ak

j , k = 2, 3, . . . , n, j = 0, 1, . . . , k − 2,

Dδk−1yk (1) = 0, k = 2, 3, . . . , n, k − 2 < δk−1 < k − 1,

k − 1 < αk < k, k = 1, 2, . . . , n,

with

‖(x1 − y1, . . . , xn − yn)‖S ≤ µǫ, ǫ > 0.

Definition 3.2. The singular fractional system (1.1) is generalized Ulam-Hyers stable
if there exists φ ∈ C (R+,R+) , φ (0) = 0, such that for all ǫ > 0, and for each solution
(x1, x2, . . . , xn) ∈ S of (3.1), there exists a solution (y1, y2, . . . , yn) ∈ S of (3.2) with

‖(x1 − y1, . . . , xn − yn)‖S ≤ φ (ǫ) , ǫ > 0.

Theorem 3.1. Let k − 1 < αk < k, k = 1, 2, . . . , n, n ∈ N − {0, 1} and 0 < βk < 1.

Assume that:

(H1) fk : (0, 1]×R
k → R is continuous with limt→0+ fk (t, . . .) = ∞ and tβkfk (t, . . .)

is continuous on [0, 1] × R
k;

(H2)
∥

∥

∥tβkDαkxk

∥

∥

∥

∞
≥











P1Λ1 + |a1
0| , k = 1,

PkΛk +
k−2
∑

j=0

|ak
j |

j!
, k = 2, 3, . . . , n,

(H3) all the assumptions of Theorem 2.1 are satisfied;

(H4)
k
∑

j=1
ωk

j < 1, k = 1, 2, . . . , n.

Then, the singular fractional system (1.1) is generalized Ulam-Hyers stable.

Proof. Using (H1) we receive (2.19). Thus, for all solution (x1, x2, . . . , xn) ∈ S of
(3.1), we can write

(3.3) ‖(xk)‖
∞

≤















P1Λ1 + |a1
0| , k = 1,

PkΛk +
k−2
∑

j=0

∣

∣

∣ak
j

∣

∣

∣

j!
, k = 2, 3, . . . , n.
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Then, by combining (H2) with (3.3), we get

(3.4) ‖xk‖
∞

≤
∥

∥

∥tβkDαkxk

∥

∥

∥

∞
.

On the other hand, using (H3) , there exists a solution (y1, y2, . . . , yn) ∈ S satisfying
(3.2). Therefore, by (3.4) we can write:

‖xk − yk‖
∞

≤
∥

∥

∥tβkDαk (xk − yk)
∥

∥

∥

∞

≤
∥

∥

∥tβk (Dαkxk − fk (t, x1, . . . , xk)) − tβk (Dαkyk − fk (t, y1, . . . , yk))

+tβk (fk (t, x1, . . . , xk) − fk (t, y1, . . . , yk))
∥

∥

∥

∞

≤
∥

∥

∥tβk (Dαkxk − fk (t, x1, . . . , xk))
∥

∥

∥

∞
+
∥

∥

∥tβk (Dαkyk − fk (t, y1, . . . , yk))
∥

∥

∥

∞

+
∥

∥

∥tβk (fk (t, x1, . . . , xk) − fk (t, y1, . . . , yk))
∥

∥

∥

∞

≤
∥

∥

∥tβk

∥

∥

∥

∞
‖(Dαkxk − fk (t, x1, . . . , xk))‖

∞

+
∥

∥

∥tβk

∥

∥

∥

∞
‖(Dαkyk − fk (t, y1, . . . , yk))‖

∞

+
∥

∥

∥tβk (fk (t, x1, . . . , xk) − fk (t, y1, . . . , yk))
∥

∥

∥

∞

From (2.12), (3.1) and (3.2), we obtain

‖(xk − yk)‖
∞

≤ ǫk +
k
∑

j=1

ωk
j max

1≤k≤n
‖(xk − yk)‖

∞
.

Then

max
1≤k≤n

‖(xk − yk)‖
∞

≤ ǫ

1 −∑k
j=1 ωk

j

:= µǫ, ǫ = max
1≤k≤n

ǫk, µ =
1

1 −∑k
j=1 ωk

j

.

Hence,

‖(x1 − y1, . . . , xn − yn)‖S ≤ µǫ.

Using (H4) , we get µ > 0. Thus, system (1.1) is Ulam-Hyers stable. Taking φ (ǫ) = µǫ,

we get system (1.1) is generalized Ulam-Hyers stable. This ends the proof. �
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ON λ-PSEUDO BI-STARLIKE FUNCTIONS WITH RESPECT TO

SYMMETRIC POINTS ASSOCIATED TO SHELL-LIKE CURVES

G. MURUGUSUNDARAMOORTHY1, K. VIJAYA1, AND H. ÖZLEM GÜNEY2∗

Abstract. In this paper we define a new subclass λ−pseudo bi-starlike functions
with respect to symmetric points of Σ related to shell-like curves connected with
Fibonacci numbers and determine the initial Taylor-Maclaurin coefficients |a2| and
|a3| for f ∈ PSL

λ
s,Σ(α, p̃(z)). Further we determine the Fekete-Szegö result for the

function class PSL
λ
s,Σ(α, p̃(z)) and for special cases, corollaries are stated which

some of them are new and have not been studied so far.

1. Introduction

Let A denote the class of functions f which are analytic in the open unit disk
U = {z : z ∈ C and |z| < 1} . Also, let S denote the class of functions in A which are
univalent in U and normalized by the conditions f(0) = f ′(0) − 1 = 0 and are of the
form

(1.1) f (z) = z +
∞
∑

n=2

anzn.

The Koebe one quarter theorem [4] ensures that the image of U under every univalent
function f ∈ A contains a disk of radius 1

4
. Thus every univalent function f has an

inverse f−1 satisfying

f−1(f(z)) = z, (z ∈ U) and f(f−1(w)) = w
(

|w| < r0(f), r0(f) ≥ 1

4

)

.

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent in
U. Let Σ denote the class of bi-univalent functions defined in the unit disk U. Since

Key words and phrases. Analytic functions, bi-univalent, shell-like curve, Fibonacci numbers,
starlike functions.
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f ∈ Σ has the Maclaurian series given by (1.1), a computation shows that its inverse
g = f−1 has the expansion

(1.2) g(w) = f−1(w) = w − a2w
2 + (2a2

2 − a3)w
3 + · · · .

One can see a short history and examples of functions in the class Σ in [17]. Several
authors have introduced and investigated subclasses of bi-univalent functions and
obtained bounds for the initial coefficients (see [2, 3, 11,17–19]).

An analytic function f is subordinate to an analytic function F in U, written as
f ≺ F (z ∈ U), provided there is an analytic function ω defined on U with ω(0) = 0
and |ω(z)| < 1 satisfying f(z) = F (ω(z)). It follows from Schwarz Lemma that

f(z) ≺ F (z) ⇒ f(0) = F (0) and f(U) ⊂ F (U), z ∈ U

(for details see [4], [10]). We recall important subclasses of S in geometric function

theory such that if f ∈ A and zf ′(z)
f(z)

≺ p(z) and 1 + zf ′′(z)
f ′(z)

≺ p(z), where p(z) = 1+z
1−z

,

then we say that f is starlike and convex, respectively. These functions form known
classes denoted by S

∗ and C, respectively. An interesting case when the function p is
convex but is not univalent was considered in [6]. Ma and Minda [9] unified various

subclasses of starlike and convex functions for which either of the quantity zf ′(z)
f(z)

or

1+ zf ′′(z)
f ′(z)

is subordinate to a more general superordinate function. Here superordinate

functions is an analytic function ϕ with positive real part in the unit disc U with
ϕ(0) = 1, ϕ′(0) > 0 and it maps U onto a region starlike with respect to 1 and is
symmetric with respect to the real axis. The class S∗(ϕ) and K(ϕ) denote Ma-Minda
starlike and Ma-Minda convex functions, respectively. If we restrict considerations
to the absorbing geometric shape of p(U), is parabolic domain or an elliptic domain
or in an interior of hyperbola, further the cases, when p(U) is an interior of the right
loop of the Lemniscate of Bernoulli or in leaf-like domain in recent past (see [6,15,16]
and also references cited therein) for the case of functions in A. The behavior of the
coefficients are unpredictable when the bi-univalency condition is imposed on the
function f ∈ A in our present work we attempted to find initial coefficients for f ∈ Σ
by considering the geometric shape of p(U) related to a shell-like curve connected
with Fibonacci numbers.

Recently, in [14], Sokół introduced the class SL of shell-like functions as the set of
functions f ∈ A which is described in the following definition.

Definition 1.1. The function f ∈ A belongs to the class SL if it satisfies the condition
that

zf ′(z)

f(z)
≺ p̃(z),

with p̃(z) = 1+τ2z2

1−τz−τ2z2 , where τ = (1 −
√

5)/2 ≈ −0.618.

It should be observed SL is a subclass of the starlike functions S
∗.

The function p̃ is not univalent in U, but it is univalent in the disc |z| < (3−
√

5)/2 ≈
0.38. For example, p̃(0) = p̃(−1/2τ) = 1 and p̃(e∓i arccos(1/4)) =

√
5/5, and it may also
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be noticed that
1

|τ | =
|τ |

1 − |τ | ,

which shows that the number |τ | divides [0, 1] such that it fulfils the golden section.
The image of the unit circle |z| = 1 under p̃ is a curve described by the equation given
by

(10x −
√

5)y2 = (
√

5 − 2x)(
√

5x − 1)2,

which is translated and revolved trisectrix of Maclaurin. The curve p̃(reit) is a closed
curve without any loops for 0 < r ≤ r0 = (3 −

√
5)/2 ≈ 0.38. For r0 < r < 1, it

has a loop, and for r = 1, it has a vertical asymptote. Since τ satisfies the equation
τ 2 = 1 + τ, this expression can be used to obtain higher powers τn as a linear
function of lower powers, which in turn can be decomposed all the way down to a
linear combination of τ and 1. The resulting recurrence relationships yield Fibonacci
numbers un:

τn = unτ + un−1.

In [13] Raina and Sokół showed that

p̃(z) =
1 + τ 2z2

1 − τz − τ 2z2
=
(

t +
1

t

)

t

1 − t − t2

=
1√
5

(

t +
1

t

)

(

1

1 − (1 − τ)t
− 1

1 − τt

)

=
(

t +
1

t

) ∞
∑

n=1

untn = 1 +
∞
∑

n=1

(un−1 + un+1)τ
nzn,

where

un =
(1 − τ)n − τn

√
5

, τ =
1 −

√
5

2
, n = 1, 2, . . . .

This shows that the relevant connection of p̃ with the sequence of Fibonacci numbers
un, such that u0 = 0, u1 = 1, un+2 = un + un+1 for n = 0, 1, 2, . . . . And they got

p̃(z) =1 +
∞
∑

n=1

p̃nzn

=1 + (u0 + u2)τz + (u1 + u3)τ
2z2 +

∞
∑

n=3

(un−3 + un−2 + un−1 + un)τnzn

=1 + τz + 3τ 2z2 + 4τ 3z3 + 7τ 4z4 + 11τ 5z5 + · · · .

Let P(β), 0 ≤ β < 1, denote the class of analytic functions p in U with p(0) = 1
and Re{p(z)} > β. Especially, we will use P instead of P(0).

Theorem 1.1 ([7]). The function p̃(z) = 1+τ2z2

1−τz−τ2z2 belongs to the class P(β) with

β =
√

5/10 ≈ 0.2236.

Now we give the following lemma which will use in proving.
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Lemma 1.1 ([12]). Let p ∈ P with p(z) = 1 + c1z + c2z
2 + · · · , then |cn| ≤ 2, for

n ≥ 1.

2. Bi-Univalent Function Class PSL
λ
s,Σ(α, p̃(z))

In this section, we introduce a new subclass of Σ associated with λ−pseudo bi-
starlike functions with respect to symmetric points related to shell-like curves con-
nected with Fibonacci numbers and obtain the initial Taylor coefficients |a2| and |a3|
for the function class by subordination.

The class Lλ(γ) of λ-pseudo-starlike functions of order γ (0 ≤ γ < 1) were intro-
duced and investigated by Babalola [1] whose geometric conditions satisfy

Re

(

z(f ′(z))λ

f(z)

)

> γ.

He showed that all pseudo-starlike functions are Bazilevič of type
(

1 − 1
λ

)

order γ
1

λ

and univalent in open unit disk U. If λ = 1, we have the class of starlike functions of
order γ, which in this context, are 1−pseudo-starlike functions of order γ. Babalola
[1] remarked that though for λ > 1, these classes of λ−pseudo starlike functions clone
the analytic representation of starlike functions, it is not yet known the possibility of
any inclusion relations between them.

Motivated by the works of Dziok et al. in [7] on the class of convex and α−convex
functions related to a shell-like curve connected with Fibonacci numbers, Eker et al.
and [5] on bi-pseudo-starlike functions class and obtained the initial coefficients |a2|
and |a3| with respect to other points in this paper we define the new class named as
λ−pseudo bi-starlike functions with respect to symmetric points related to shell-like
curves connected with Fibonacci numbers as follows.

Definition 2.1. Let 0 ≤ α ≤ 1 and λ ≥ 1 is real. A function f ∈ Σ of the form (1.1)
is said to be in the class PSL

λ
s,Σ(α, p̃(z)) if the following subordination hold:

(2.1) (1 − α)
2z(f ′(z))λ

f(z) − f(−z)
+ α

2[(z(f ′(z)))′]λ

[f(z) − f(−z)]′
≺ p̃(z)

and

(2.2) (1 − α)
2w(g′(w))λ

g(w) − g(−w)
+ α

2[(w(g′(w)))′]λ

[g(w) − g(−w)]′
≺ p̃(w)

where τ = (1 −
√

5)/2 ≈ −0.618 where z, w ∈ U and g is given by (1.2).

Specializing the parameter λ = 1 we have the following definitions, respectively.

Definition 2.2. A function f ∈ Σ of the form (1.1) is said to be in the class
PSL

1
s,Σ(α, p̃(z)) ≡ MSLs,Σ(α, p̃(z)) if the following subordination hold:

(1 − α)
2zf ′(z)

f(z) − f(−z)
+ α

2(z(f ′(z)))′

[f(z) − f(−z)]′
≺ p̃(z)
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and

(1 − α)
2wg′(w)

g(w) − g(−w)
+ α

2(w(g′(w)))′

[g(w) − g(−w)]′
≺ p̃(w),

where τ = (1 −
√

5)/2 ≈ −0.618 where z, w ∈ U and g is given by (1.2).

Definition 2.3. A function f ∈ Σ of the form (1.1) is said to be in the class
PSL

1
s,Σ(0, p̃(z)) ≡ SL

∗

s,Σ(p̃(z)) if the following subordination hold:

2zf ′(z)

f(z) − f(−z)
≺ p̃(z)

and
2wg′(w)

g(w) − g(−w)
≺ p̃(w),

where τ = (1 −
√

5)/2 ≈ −0.618 where z, w ∈ U and g is given by (1.2).

Definition 2.4. A function f ∈ Σ of the form (1.1) is said to be in the class
PSL

1
s,Σ(1, p̃(z)) ≡ KLs,Σ(p̃(z)) if the following subordination hold:

2(z(f ′(z)))′

[f(z) − f(−z)]′
≺ p̃(z)

and
2(w(g′(w)))′

[g(w) − g(−w)]′
≺ p̃(w),

where τ = (1 −
√

5)/2 ≈ −0.618, where z, w ∈ U and g is given by (1.2).

In the following theorem we determine the initial Taylor coefficients |a2| and |a3| for
the function class PSL

λ
s,Σ(α, p̃(z)). Later we will reduce these bounds to other classes

for special cases as corollaries which are new and have not been studied sofar.

Theorem 2.1. Let f given by (1.1) be in the class PSL
λ
s,Σ(α, p̃(z)). Then

(2.3) |a2| ≤ |τ |
√

4λ2(1 + α)2 − {2λ2(6α2 + 9α + 5) − λ + 2α + 1}τ

and

|a3| ≤ 2λ|τ | [2λ(1 + α)2 − {(λ − 1)(1 + 3α) − 6λ(1 + α)2}τ ]

(3λ − 1)(1 + 2α) [4λ2(1 + α)2 − {2λ2(6α2 + 9α + 5) − λ + 2α + 1}τ ]
.

Proof. Firstly, let p(z) = 1+p1z +p2z
2 + · · · , and p ≺ p̃. Then there exists an analytic

function u such that u(0) = 0; |u(z)| < 1 in U and p(z) = p̃(u(z)). Therefore, the
function

h(z) =
1 + u(z)

1 − u(z)
= 1 + c1z + c2z

2 + · · ·

is in the class P. It follows that

u(z) =
c1z

2
+

(

c2 − c2
1

2

)

z2

2
+

(

c3 − c1c2 +
c3

1

4

)

z3

2
+ · · ·



108 G. MURUGUSUNDARAMOORTHY, K. VIJAYA, AND H. ÖZLEM GÜNEY

and

p̃(u(z)) =1 +
p̃1c1z

2
+

{

1

2

(

c2 − c2
1

2

)

p̃1 +
c2

1

4
p̃2

}

z2

+

{

1

2

(

c3 − c1c2 +
c3

1

4

)

p̃1 +
1

2
c1

(

c2 − c2
1

2

)

p̃2 +
c3

1

8
p̃3

}

z3 + · · · .

And similarly, there exists an analytic function v such that v(0) = 0; |v(w)| < 1 in U

and p(w) = p̃(v(w)). Therefore, the function

k(w) =
1 + v(w)

1 − v(w)
= 1 + d1w + d2w

2 + · · ·

is in the class P. It follows that

v(w) =
d1w

2
+

(

d2 − d2
1

2

)

w2

2
+

(

d3 − d1d2 +
d3

1

4

)

w3

2
+ · · ·

and

p̃(v(w)) =1 +
p̃1d1w

2
+

{

1

2

(

d2 − d2
1

2

)

p̃1 +
d2

1

4
p̃2

}

w2

+

{

1

2

(

d3 − d1d2 +
d3

1

4

)

p̃1 +
1

2
d1

(

d2 − d2
1

2

)

p̃2 +
d3

1

8
p̃3

}

w3 + · · · .

Let f ∈ PSL
λ
s,Σ(α, p̃(z)) and g = f−1. Considering (2.1) and (2.2), we have

(1 − α)
2z(f ′(z))λ

f(z) − f(−z)
+ α

2[(z(f ′(z)))′]λ

[f(z) − f(−z)]′
= p̃(u(z))

and

(1 − α)
2w(g′(w))λ

g(w) − g(−w)
+ α

2[(w(g′(w)))′]λ

[g(w) − g(−w)]′
= p̃(v(w)),

where τ = (1 −
√

5)/2 ≈ −0.618, z, w ∈ U and g is given by (1.2). Since

(1 − α)
2z(f ′(z))λ

f(z) − f(−z)
+ α

2[(z(f ′(z)))′]λ

[f(z) − f(−z)]′

=1 + 2λ(1 + α)a2z + [2λ(λ − 1)(1 + 3α)a2
2 + (3λ − 1)(1 + 2α)a3]z

2 + · · ·

and

(1 − α)
2w(g′(w))λ

g(w) − g(−w)
+ α

2[(w(g′(w)))′]λ

[g(w) − g(−w)]′

=1 − 2λ(1 + α)a2w + {[2(λ2 + 2λ − 1) + 2α(3λ2 + 3λ − 2)]a2
2

− (3λ − 1)(1 + 2α)a3]}w2 + · · · .
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Thus, we have

1 + 2λ(1 + α)a2z + [2λ(λ − 1)(1 + 3α)a2
2 + (3λ − 1)(1 + 2α)a3]z

2 + · · ·

=1 +
p̃1c1z

2
+

[

1

2

(

c2 − c2
1

2

)

p̃1 +
c2

1

4
p̃2

]

z2

+

[

1

2

(

c3 − c1c2 +
c3

1

4

)

p̃1 +
1

2
c1

(

c2 − c2
1

2

)

p̃2 +
c3

1

8
p̃3

]

z3 + · · ·(2.4)

and

1 − 2λ(1 + α)a2w(2.5)

+ {[2(λ2 + 2λ − 1) + 2α(3λ2 + 3λ − 2)]a2
2 − (3λ − 1)(1 + 2α)a3]}w2 + . . .

=1 +
p̃1d1w

2
+

[

1

2

(

d2 − d2
1

2

)

p̃1 +
d2

1

4
p̃2

]

w2

+

[

1

2

(

d3 − d1d2 +
d3

1

4

)

p̃1 +
1

2
d1

(

d2 − d2
1

2

)

p̃2 +
d3

1

8
p̃3

]

w3 + · · · .

It follows from (2.4) and (2.5) that

(2.6) 2λ(1 + α)a2 =
c1τ

2
,

(2.7) 2λ(λ − 1)(1 + 3α)a2
2 + (3λ − 1)(1 + 2α)a3 =

1

2

(

c2 − c2
1

2

)

τ +
c2

1

4
3τ 2

and

− 2λ(1 + α)a2 =
d1τ

2
,(2.8)

[2(λ2 + 2λ − 1) + 2α(3λ2 + 3λ − 2)]a2
2 − (3λ − 1)(1 + 2α)a3(2.9)

=
1

2

(

d2 − d2
1

2

)

τ +
d2

1

4
3τ 2.

From (2.6) and (2.8), we have

c1 = −d1

and

(2.10) a2
2 =

(c2
1 + d2

1)

32λ2(1 + α)2
τ 2.

Hence,

|a2| ≤ |τ |
2λ(1 + α)

.

Now, by summing (2.7) and (2.9), we obtain

(2.11)
[

2(2λ2 + λ − 1) + 4α(3λ2 − 1)
]

a2
2 =

1

2
(c2 +d2)τ − 1

4
(c2

1 +d2
1)τ +

3

4
(c2

1 +d2
1)τ

2.
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Substituting (2.10) in (2.11), we have

(2.12) 4
[

4λ2(1 + α)2 − {2λ2(6α2 + 9α + 5) − λ + 2α + 1}τ
]

a2
2 = (c2 + d2)τ

2.

Therefore, by Lemma (1.1) we obtain

(2.13) |a2| ≤ |τ |
√

4λ2(1 + α)2 − {2λ2(6α2 + 9α + 5) − λ + 2α + 1}τ
.

It is clear that

min







|τ |
2λ(1 + α)

,
|τ |

√

4λ2(1 + α)2 − {2λ2(6α2 + 9α + 5) − λ + 2α + 1}τ







=
|τ |

√

4λ2(1 + α)2 − {2λ2(6α2 + 9α + 5) − λ + 2α + 1}τ
.

So, we obtain the inequality (2.3).
Now, so as to find the bound on |a3|, let’s subtract from (2.7) and (2.9). So, we

find

(2.14) 2(3λ − 1)(1 + 2α)a3 − 2(3λ − 1)(1 + 2α)a2
2 =

1

2
(c2 − d2) τ.

Hence, we get

2(3λ − 1)(1 + 2α)|a3| ≤ 2|τ | + 2(3λ − 1)(1 + 2α)|a2|2.
Then, in view of (2.13), we obtain

|a3| ≤ 2λ|τ | [2λ(1 + α)2 − {(λ − 1)(1 + 3α) − 6λ(1 + α)2}τ ]

(3λ − 1)(1 + 2α) [4λ2(1 + α)2 − {2λ2(6α2 + 9α + 5) − λ + 2α + 1}τ ]
. �

Taking λ = 1, in the above theorem, we have the following the initial Taylor
coefficients |a2| and |a3| for the function classes MSLs,Σ(α, p̃(z)).

Corollary 2.1. Let f given by (1.1) be in the class MSLs,Σ(α, p̃(z)). Then

|a2| ≤ |τ |
√

4(1 + α)2 − 2(6α2 + 10α + 5)τ

and

|a3| ≤ 2(1 + α)2|τ | (1 − 3τ)

(1 + 2α) [4(1 + α)2 − 2(6α2 + 10α + 5)τ ]
.

Further by taking α = 0 and α = 1 in Corollary 2.1, we have the following the
initial Taylor coefficients |a2| and |a3| for the function classes SL

∗

s,Σ(α, p̃(z)) and
KLs,Σ(α, p̃(z)), respectively.

Corollary 2.2. Let f given by (1.1) be in the class SL
∗

s,Σ(α, p̃(z)). Then

|a2| ≤ |τ |√
4 − 10τ
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and

|a3| ≤ |τ |(1 − 3τ)

2 − 5τ
.

Corollary 2.3. Let f given by (1.1) be in the class KLs,Σ(α, p̃(z)). Then

|a2| ≤ |τ |√
16 − 42τ

and

|a3| ≤ 4|τ |(1 − 3τ)

3(8 − 21τ)
.

3. Fekete-Szegö inequality for the Function Class PSL
λ
s,Σ(α, p̃(z))

Fekete and Szegö [8] introduced the generalized functional |a3 − µa2
2|, where µ is

some real number. Due to Zaprawa [20], in the following theorem we determine the
Fekete-Szegö functional for f ∈ PSL

λ
s,Σ(α, p̃(z)).

Theorem 3.1. Let f given by (1.1) be in the class PSL
λ
s,Σ(α, p̃(z)) and µ ∈ R. Then

we have

|a3 − µa2
2| ≤



















|τ |
(3λ − 1)(1 + 2α)

, 0 ≤ |h(µ)| ≤ |τ |
4(3λ − 1)(1 + 2α)

,

4|h(µ)|, |h(µ)| ≥ |τ |
4(3λ − 1)(1 + 2α)

,

where

h(µ) =
(1 − µ)τ 2

4 [4λ2(1 + α)2 − {2λ2(6α2 + 9α + 5) − λ + 2α + 1}τ ]
.

Proof. From (2.12) and (2.14) we obtain

a3 − µa2
2

+
(1 − µ)(c2 + d2)τ

2

4 [4λ2(1 + α)2 − {2λ2(6α2 + 9α + 5) − λ + 2α + 1}τ ]
+

τ(c2 − d2)

4(3λ − 1)(1 + 2α)

=

(

(1 − µ)τ 2

4 [4λ2(1 + α)2 − {2λ2(6α2 + 9α + 5) − λ + 2α + 1}τ ]

τ

4(3λ − 1)(1 + 2α)

)

c2

+

(

(1 − µ)τ 2

4 [4λ2(1 + α)2 − {2λ2(6α2 + 9α + 5) − λ + 2α + 1}τ ]

τ

4(3λ − 1)(1 + 2α)

)

d2.

So, we have

(3.1) a3 − µa2
2 =

(

h(µ) +
|τ |

4(3λ − 1)(1 + 2α)

)

c2 +

(

h(µ) − |τ |
4(3λ − 1)(1 + 2α)

)

d2,

where

h(µ) =
(1 − µ)τ 2

4 [4λ2(1 + α)2 − {2λ2(6α2 + 9α + 5) − λ + 2α + 1}τ ]
.
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Then, by taking modulus of (3.1), we conclude that

|a3 − µa2
2| ≤



















|τ |
(3λ − 1)(1 + 2α)

, 0 ≤ |h(µ)| ≤ |τ |
4(3λ − 1)(1 + 2α)

,

4|h(µ)|, |h(µ)| ≥ |τ |
4(3λ − 1)(1 + 2α)

.

�

Taking µ = 1, we have the following corollary.

Corollary 3.1. If f ∈ PSL
λ
s,Σ(α, p̃(z)), then

|a3 − a2
2| ≤ |τ |

(3λ − 1)(1 + 2α)
.

If we can take the parameter λ = 1 in Theorem 3.1, we can state the following.

Corollary 3.2. Let f given by (1.1) be in the class MSLs,Σ(α, p̃(z)) and µ ∈ R. Then

we have

|a3 − µa2
2| ≤



















|τ |
2(1 + 2α)

, 0 ≤ |h(µ)| ≤ |τ |
8(1 + 2α)

,

4|h(µ)|, |h(µ)| ≥ |τ |
8(1 + 2α)

,

where

h(µ) =
(1 − µ)τ 2

4 [4(1 + α)2 − 2{6α2 + 10α + 5}τ ]
.

Further by taking α = 0 and α = 1 in the above corollary, we have the following the
Fekete-Szegö inequalities for the function classes SL

∗

s,Σ(α, p̃(z)) and KLs,Σ(α, p̃(z)),
respectively.

Corollary 3.3. Let f given by (1.1) be in the class SL
∗

s,Σ(α, p̃(z)) and µ ∈ R. Then

we have

|a3 − µa2
2| ≤















|τ |
2

, 0 ≤ |h(µ)| ≤ |τ |
8

,

4|h(µ)|, |h(µ)| ≥ |τ |
8

,

where

h(µ) =
(1 − µ)τ 2

8 [2 − 5τ ]
.

Corollary 3.4. Let f given by (1.1) be in the class KLs,Σ(α, p̃(z)) and µ ∈ R. Then

we have

|a3 − µa2
2| ≤















|τ |
6

, 0 ≤ |h(µ)| ≤ |τ |
24

,

4|h(µ)|, |h(µ)| ≥ |τ |
24

,

where

h(µ) =
(1 − µ)τ 2

8 [8 − 21τ ]
.
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HERMITE-HADAMARD TYPE INEQUALITIES FOR OPERATOR

GEOMETRICALLY CONVEX FUNCTIONS II

A. TAGHAVI, V. DARVISH, AND T. AZIMI ROUSHAN

Abstract. In this paper, we prove some Hermite-Hadamard type inequalities for
operator geometrically convex functions for non-commutative operators.

1. Introduction and Preliminaries

Let B(H) stand for C∗-algebra of all bounded linear operators on a complex Hilbert
space H with inner product 〈·, ·〉. An operator A ∈ B(H) is strictly positive and
write A > 0 if 〈Ax, x〉 > 0 for all x ∈ H. Let B(H)++ stand for all strictly positive
operators on B(H).

Let A be a self-adjoint operator in B(H). The Gelfand map establishes a ∗-
isometrically isomorphism Φ between the set C(Sp(A)) of all continuous functions
defined on the spectrum of A, denoted Sp(A), and the C∗-algebra C∗(A) generated
by A and the identity operator 1H on H as follows.

For any f, g ∈ C(Sp(A))) and any α, β ∈ C we have:

• Φ(αf + βg) = αΦ(f) + βΦ(g);
• Φ(fg) = Φ(f)Φ(g) and Φ(f̄) = Φ(f)∗;
• ‖Φ(f)‖ = ‖f‖ := supt∈Sp(A) |f(t)|;
• Φ(f0) = 1H and Φ(f1) = A, where f0(t) = 1 and f1(t) = t, for t ∈ Sp(A).

With this notation we define f(A) = Φ(f) for all f ∈ C(Sp(A)), and we call it the
continuous functional calculus for a self-adjoint operator A. If A is a self-adjoint
operator and both f and g are real valued functions on Sp(A) then the following
important property holds: f(t) ≥ g(t) for any t ∈ Sp(A) implies that f(A) ≥ g(A),
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in the operator order of B(H), see [12]. A real valued continuous function f : R → R

is said to be convex (concave) if

f(λa + (1 − λ)b) ≤ (≥)λf(a) + (1 − λ)f(b),

for a, b ∈ R and λ ∈ [0, 1]. The following Hermite-Hadamard inequality holds for any
convex function f defined on R

(b − a)f

(

a + b

2

)

≤
∫

b

a

f(x)dx

≤ (b − a)
f(a) + f(b)

2
, for a, b ∈ R.

The author of [8, Remark 1.9.3] gave the following refinement of Hermite-Hadamard
inequalities for convex functions

f

(

a + b

2

)

≤ 1

2

(

f

(

3a + b

4

)

+ f

(

a + 3b

4

))

≤ 1

b − a

∫

b

a

f(x)dx

≤ 1

2

(

f

(

a + b

2

)

+
f(a) + f(b)

2

)

≤ f(a) + f(b)

2
.

A real valued continuous function is operator convex if

f(λA + (1 − λ)B) ≤ λf(A) + (1 − λ)f(B),

for self-adjoint operator A, B ∈ B(H) and λ ∈ [0, 1]. In [2] Dragomir investigated the
operator version of the Hermite-Hadamard inequality for operator convex functions.
Let f : R → R be an operator convex function on the interval I then, for any
self-adjoint operators A and B with spectra in I, the following inequalities hold

f

(

A + B

2

)

≤ 2
∫ 3

4

1

4

f(tA + (1 − t)B)dt

≤ 1

2

[

f

(

3A + B

4

)

+ f

(

A + 3B

4

)]

≤
∫ 1

0
f ((1 − t)A + tB) dt

≤ 1

2

[

f

(

A + B

2

)

+
f(A) + f(B)

2

]

≤ f(A) + f(B)

2
.

For the first inequality in above, see [10].
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A continuous function f : I ⊆ R
+ → R

+ (R+ denoted positive real numbers) is
said to be geometrically convex function (or multiplicatively convex function) if

f(aλb1−λ) ≤ f(a)λf(b)1−λ,

for a, b ∈ I and λ ∈ [0, 1].
The author of [7, p. 158] showed that every polynomial P (x) with non-negative

coefficients is a geometrically convex function on [0, ∞). More generally, every real
analytic function f(x) =

∑

∞

n=0 cnxn with non-negative coefficients is geometrically
convex function on (0, R) where R denotes the radius of convergence. Also, see [9,11].
In [10], the following inequalities were obtained for a geometrically convex function

f(
√

ab) ≤
√

(

f(a
3

4 b
1

4 )f(a
1

4 b
3

4 )
)

≤ exp

(

1

log b − log a

∫

b

a

log f(t)

t
dt

)

≤
√

f(
√

ab). 4

√

f(a). 4

√

f(b)

≤
√

f(a)f(b).

In this paper, we prove some Hermite-Hadamard inequalities for operator geometri-
cally convex functions. Moreover, in the final section, we present some examples and
remarks.

2. Hermite-Hadamard Inequalities for Geometrically Convex
Functions

In this section, we introduce the concept of operator geometrically convex function
for positive operators and prove the Hermite-Hadamard type inequalities for this
function.

Proposition 2.1. Let A, B ∈ B(H)++ such that Sp(A), Sp(B) ⊆ I, and t ∈ [0, 1].

Then Sp(A♯tB) ⊆ I, where A♯tB = A
1

2 (A−
1

2 BA−
1

2 )
t

A
1

2 is t-geometric mean.

Proof. Let I = [m, M ] for some positive real numbers m, M with m < M . Since
Sp(A), Sp(B) ⊆ I it is equivalent to m1H ≤ A ≤ M1H and m1H ≤ B ≤ M1H . So,
by virtue of the fact that if a, b be self-adjoint operators in C∗-algebra A which a ≤ b

and c ∈ A, then c∗ac ≤ c∗bc, and also by using the operator monotonicity property
of the function f(x) = xt on (0, ∞) for t ∈ [0, 1], we get the result. �

Now, by applying Proposition 2.1, we present the following definition.

Definition 2.1. A continuous function f : I ⊆ R
+ → R

+ is said to be operator
geometrically convex if

f(A♯tB) ≤ f(A)♯tf(B),

for A, B ∈ B(H)++ such that Sp(A), Sp(B) ⊆ I and t ∈ [0, 1].
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We need the following lemmas for proving our theorems.

Lemma 2.1 ([4, 5]). Let A, B ∈ B(H)++ and let t, s, u ∈ R. Then

(A♯tB)♯s(A♯uB) = A♯(1−s)t+suB.

Lemma 2.2 ([4]). Let A, B, C and D be operators in B(H)++ and let t ∈ R. Then,

we have

A♯tB ≤ C♯tD,

for A ≤ C and B ≤ D.

Lemma 2.3. Let A, B ∈ B(H)++. If f : I ⊆ R
+ → R

+ is a continuous function,

then
∫ 1

0
f (A♯tB) ♯f (A♯1−tB) dt ≤

(∫ 1

0
f (A♯tB) dt

)

♯

(∫ 1

0
f (A♯1−tB, ) dt

)

such that Sp(A), Sp(B) ⊆ I.

Proof. Since the function t
1

2 is operator concave, we can write




(∫ 1

0
f(A♯1−uB)du

)

−1

2
(∫ 1

0
f(A♯uB)du

)(∫ 1

0
f(A♯1−uB)du

)

−1

2





1

2

(by change of variable v = 1 − u)

=





(∫ 1

0
f(A♯vB)dv

)

−1

2
(∫ 1

0
f(A♯uB)du

)(∫ 1

0
f(A♯vB)dv

)

−1

2





1

2

=





∫ 1

0

(∫ 1

0
f(A♯vB)dv

)

1

2

f(A♯uB)

(∫ 1

0
f(A♯vB)dv

)

1

2

du





1

2

=





∫ 1

0

(∫ 1

0
f(A♯vB)dv

)

−1

2

(f(A♯1−uB))
1

2

(

(f(A♯1−uB))
−1

2 f(A♯uB)(f(A♯1−uB))
−1

2

)

× (f(A♯1−uB))
1

2

(∫ 1

0
f(A♯vB)dv

)

−1

2

du





1

2

(by the operator Jensen inequality)

≥
∫ 1

0

(∫ 1

0
f(A♯vB)dv

)

−1

2

(f(A♯1−uB))
1

2

(

(

f(A♯1−uB))
−1

2 f(A♯uB)(f(A♯1−uB)
)

−1

2

)

1

2

× (f(A♯1−uB))
1

2

(∫ 1

0
f(A♯vB)dv

)

−1

2

du

=

(∫ 1

0
f(A♯vB)dv

)

−1

2
∫ 1

0
(f(A♯1−uB))

1

2

(

(

f(A♯1−uB))
−1

2 f(A♯uB)(f(A♯1−uB)
)

−1

2

)

1

2

× (f(A♯1−uB))
1

2 du

(∫ 1

0
f(A♯vB)dv

)

−1

2
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(by change of variable u = 1 − v)

=

(∫ 1

0
f(A♯1−uB)du

)

−1

2
∫ 1

0
(f(A♯1−uB))

1

2

(

(

f(A♯1−uB))
−1

2 f(A♯uB)(f(A♯1−uB)
)

−1

2

)

1

2

× (f(A♯1−uB))
1

2 du

(∫ 1

0
f(A♯1−uB)du

)

−1

2

.

So, we obtain





(∫ 1

0
f(A♯1−uB)du

)

−1

2
(∫ 1

0
f(A♯uB)du

)(∫ 1

0
f(A♯1−uB)du

)

−1

2





1

2

≥
(∫ 1

0
f(A♯1−uB)du

)

−1

2
∫ 1

0
(f(A♯1−uB))

−1

2

(

(

f(A♯1−uB))
−1

2 f(A♯uB)(f(A♯1−uB)
)

−1

2

)

1

2

× (f(A♯1−uB))
1

2 du

(∫ 1

0
f(A♯1−uB)du

)

−1

2

.

Multiplying both side of the above inequality by
(

∫ 1
0 f(A♯1−uB)du

)
1

2 we obtain

(∫ 1

0
f (A♯uB) du

)

♯

(∫ 1

0
f (A♯1−uB) du

)

≥
∫ 1

0
f (A♯uB) ♯f (A♯1−uB) du. �

Before giving our theorems in this section, we mention the following remark.

Remark 2.1. Let p (x) = xt and q (x) = xs on [1, ∞), where 0 ≤ t ≤ s. If f (A) ≤ f (B)

then Sp
(

f (A)
−1

2 (f(B)) f (A)
−1

2

)

⊆ [1, ∞). By functional calculus, we have

p

(

f (A)
−1

2 f (B) f (A)
−1

2

)

≤ q

(

f (A)
−1

2 f (B) f (A)
−1

2

)

.

So,
(

f (A)
−1

2 f (B) f (A)
−1

2

)t

≤
(

f (A)
−1

2 f (B) f (A)
−1

2

)s

.

Now, we are ready to prove Hermite-Hadamard type inequality for operator geo-
metrically convex functions.

Theorem 2.1. Let f be an operator geometrically convex function. Then, we have

(2.1) f (A♯B) ≤
∫ 1

0
f (A♯tB) dt ≤

∫ 1

0
f(A)♯tf(B)dt.

Moreover, if f(A) ≤ f(B), then we have

(2.2)
∫ 1

0
f(A♯tB)dt ≤

∫ 1

0
f(A)♯tf(B)dt ≤ 1

2
((f(A)♯f(B)) + f(B)),

for A, B ∈ B(H)++.
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Proof. Let f be a geometrically convex function. Then we have

f (A♯B) = f ((A♯tB) ♯ (A♯1−tB)) (by Lemma 2.1)

≤ f (A♯tB) ♯f (A♯1−tB) (f is operator geometrically convex).

Taking integral of the both sides of the above inequalities on [0, 1], we obtain

f (A♯B) ≤
∫ 1

0
f (A♯tB) ♯f (A♯1−tB) dt

≤
(∫ 1

0
f (A♯tB) dt

)

♯

(∫ 1

0
f (A♯1−tB) dt

)

(by Lemma 2.3)

=
∫ 1

0
f (A♯tB) dt

≤
∫ 1

0
f (A) ♯tf (B) dt.

For the case f(A) ≤ f(B), by applying Remark 2.1 for s = 1
2
, we have

(

f(A)−
1

2 f(B)f(A)−
1

2

)t

≤
(

f(A)−
1

2 f(B)f(A)−
1

2

)

1

2

.

By integrating the above inequality over t ∈ [0, 1
2
], we obtain

∫ 1

2

0

(

f(A)−
1

2 f(B)f(A)−
1

2

)t

dt ≤ 1

2

(

f(A)−
1

2 f(B)f(A)−
1

2

)

1

2

.

Multiplying both sides of the above inequality by f(A)
1

2 , we have
∫ 1

2

0
f(A)

1

2

(

f(A)−
1

2 f(B)f(A)−
1

2

)t

f(A)
1

2 dt

≤1

2

(

f(A)
1

2

(

f(A)−
1

2 f(B)f(A)−
1

2

)

1

2

f(A)
1

2

)

.

It follows that

(2.3)
∫ 1

2

0
f(A)♯tf(B) ≤ f(A)♯f(B)

2
.

On the other hand, by considering Remark 2.1 for s = 1, we have
(

f(A)−
1

2 f(B)f(A)−
1

2

)t

≤ f(A)−
1

2 f(B)f(A)−
1

2 .

Integrating the above inequality over t ∈ [1
2
, 1], we get

∫ 1

1

2

(

f(A)−
1

2 f(B)f(A)−
1

2

)t

dt ≤ 1

2

(

f(A)−
1

2 f(B)f(A)−
1

2

)

.

By multiplying both side of the above inequality by f(A)
1

2 , we have
∫ 1

1

2

f(A)
1

2

(

f(A)−
1

2 f(B)f(A)−
1

2

)t

f(A)
1

2 dt ≤ f(B)

2
.
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It follows that

(2.4)
∫ 1

1

2

f(A)♯tf(B) ≤ f(B)

2
.

From inequalities (2.3) and (2.4) we obtain
∫ 1

2

0
f(A♯tB)dt +

∫ 1

1

2

f(A♯tB)dt ≤
∫ 1

2

0
f(A)♯tf(B)dt +

∫ 1

1

2

f(A)♯tf(B)dt

≤ f(A)♯f(B)

2
+

f(B)

2
.

It follows that
∫ 1

0
f(A♯tB)dt ≤

∫ 1

0
f(A)♯tf(B)dt ≤ 1

2
((f(A)♯f(B)) + f(B)). �

By making use of inequalities (2.1) and (2.2), we have the following result.

Corollary 2.1. Let f be an operator geometrically convex function. Then, if f(A) ≤
f(B) we have

f(A♯B) ≤
∫ 1

0
f (A♯tB) dt ≤ 1

2
((f(A)♯f(B)) + f(B)) ,

for A, B ∈ B(H)++.

Theorem 2.2. Let f be an operator geometrically convex function. Then, we have

f (A♯B) ≤
∫ 1

0
f (A♯tB) ♯f (A♯1−tB) dt ≤ f(A)♯f(B),

for A, B ∈ B(H)++.

Proof. We can write

f(A♯B) = f ((A♯tB)♯(A♯1−tB)) (by Lemma 2.1)

≤ f(A♯tB)♯f(A♯1−tB) (f is operator geometrically convex)

≤ (f(A)♯tf(B)) ♯ (f(A)♯1−tf(B)) (by Lemma 2.2)

= f(A)♯f(B).

So, we obtain

f(A♯B) ≤ f(A♯tB)♯f(A♯1−tB) ≤ f(A)♯f(B).

Integrating the above inequality over t ∈ [0, 1] we obtain the desired result. �

We divide the interval [0, 1] to the interval [ν, 1 − ν] when ν ∈ [0, 1
2
) and to the

interval [1 − ν, ν] when ν ∈ (1
2
, 1]. The we have the following inequalities.

Theorem 2.3. Let A, B ∈ B(H)++ such that f(A) ≤ f(B). Then, we have

(a) for ν ∈ [0, 1
2
)

(2.5) f(A)♯νf(B) ≤ 1

1 − 2ν

∫ 1−ν

ν

f(A)♯tf(B)dt ≤ f(A)♯1−νf(B);
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(b) for ν ∈ (1
2
, 1]

(2.6) f(A)♯1−νf(B) ≤ 1

2ν − 1

∫

ν

1−ν

f(A)♯tf(B)dt ≤ f(A)♯νf(B).

Proof. Let ν ∈ [0, 1
2
), then by Remark 2.1 we have

(

f(A)
−1

2 f(B)f(A)
−1

2

)ν

≤
(

f(A)
−1

2 f(B)f(A)
−1

2

)t

≤
(

f(A)
−1

2 f(B)f(A)
−1

2

)1−ν

,

for ν ≤ t ≤ 1 − ν and A, B ∈ B(H)++ such that Sp (A) , Sp (B) ⊆ I.
By integrating the above inequality over t ∈ [ν, 1 − ν] we obtain

∫ 1−ν

ν

(

f(A)
−1

2 f(B)f(A)
−1

2

)ν

dt ≤
∫ 1−ν

ν

(

f(A)
−1

2 f(B)f(A)
−1

2

)t

dt

≤
∫ 1−ν

ν

(

f(A)
−1

2 f(B)f(A)
−1

2

)1−ν

dt.

It follows that
(

f(A)
−1

2 f(B)f(A)
−1

2

)ν

≤ 1

1 − 2ν

∫ 1−ν

ν

(

f(A)
−1

2 f(B)f(A)
−1

2

)t

dt

≤
(

f(A)
−1

2 f(B)f(A)
−1

2

)1−ν

.

Multiplying the both sides of the above inequality by f(A)
1

2 gives us

f(A)♯νf(B) ≤ 1

1 − 2ν

∫ 1−ν

ν

f(A)♯tf(B)dt ≤ f(A)♯1−νf(B).

Also, we know that

lim
ν→

1

2

f(A)♯νf(B) = lim
ν→

1

2

1

1 − 2ν

∫ 1−ν

ν

f(A)♯tf(B)dt

= lim
ν→

1

2

f(A)♯1−νf(B)

= f(A)♯f(B).

Similarily, for ν ∈ (1
2
, 1], by the same proof as above, we get

f(A)♯1−νf(B) ≤ 1

2ν − 1

∫

ν

1−ν

f(A)♯tf(B)dt ≤ f(A)♯νf(B). �

By definition of geometrically convex function and (2.5) we have

f (A♯νB) ≤ 1

1 − 2ν

∫ 1−ν

ν

f (A♯tB) dt

≤ 1

1 − 2ν

∫ 1−ν

ν

f(A)♯tf(B)dt

≤ f(A)♯1−νf(B),
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for ν ∈ [0, 1
2
). We should mention here that

lim
ν→

1

2

1

1 − 2ν

∫ 1−ν

ν

f (A♯tB) dt = lim
ν→

1

2

f(A♯νB) = f(A♯B).

On the other hand, by the definition of geometrically convex function and (2.6) we
have

f (A♯1−νB) ≤ 1

2ν − 1

∫

ν

1−ν

f (A♯tB) dt

≤ 1

2ν − 1

∫

ν

1−ν

f(A)♯tf(B)dt

≤ f(A)♯νf(B),

for ν ∈ (1
2
, 1].

3. Examples and Remarks

In this section we give some examples of the results that obtained in the previous
section.

Remark 3.1. For positive A, B ∈ B(H), Ando proved in [1] that if Ψ is a positive
linear map, then we have

Ψ(A♯B) ≤ Ψ(A)♯Ψ(B).

The above inequality shows that we can find some examples for Definition 2.1 when
f is linear.

Example 3.1. It is easy to check that the function f(t) = t−1 is operator geometrically
convex for operators in B(H)++.

Definition 3.1. Let φ be a map on C∗-algebra B(H). We say that φ is 2-positive if

the 2 × 2 operator matrix

[

A B

B∗ C

]

≥ 0, then we have

[

φ(A) φ(B)
φ(B∗) φ(C)

]

≥ 0.

In [6], M. Lin gave an example of a 2-positive map over contraction operators (i.e.,
‖A‖ < 1). He proved that

(3.1) φ(t) = (1 − t)−1

is 2-positive.

Example 3.2. Let A and B be two contraction operators in B(H)++. Then it is easy
to check A♯B is also a contraction and positive. Also, we know the 2 × 2 operator
matrix

[

A A♯B

A♯B B

]

is semidefinite positive. Hence, by (3.1) we obtain
[

(I − A)−1 (I − (A♯B))−1

(I − (A♯B))−1 (I − B)−1

]
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is semidefinite positive.
On the other hand, by Ando’s characterization of the geometric mean if X is a

Hermitian matrix and
[

A X

X B

]

≥ 0,

then X ≤ A♯B. So we conclude that (I − (A♯B))−1 ≤ (I −A)−1♯(I −B)−1. Therefore,
the function φ(t) = (1 − t)−1 is operator geometrically convex.

Also, Lin proved that the function

φ(t) =
1 + t

1 − t

is 2-positive over contractions. By the same argument as Example 3.2 we can say the
above function is operator geometrically convex too.

Example 3.3. In the proof of [3, Theorem 4.12], by applying Hölder-McCarthy inequal-
ity the authors showed the following inequalities

〈A♯αBx, x〉 =
〈(

A
−1

2 BA
−1

2

)α

A
1

2 x, A
1

2 x
〉

≤
〈(

A
−1

2 BA
−1

2

)

A
1

2 x, A
1

2 x
〉α 〈

A
1

2 x, A
1

2 x
〉1−α

= 〈Ax, x〉1−α〈Bx, x〉α

= 〈Ax, x〉♯α〈Bx, x〉,
for x ∈ H and α ∈ [0, 1]. By taking the supremum over unit vector x, we obtain that
f(x) = ‖x‖ is geometrically convex function for usual operator norms.

By the above example and Corollary 2.1, when ‖A‖ ≤ ‖B‖ we have

‖A♯B‖ ≤
∫ 1

0
‖A♯tB‖dt ≤ 1

2
(
√

‖A‖‖B‖ + ‖B‖),

for A, B ∈ B(H)++.
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A NOTE ON PROBABILITY CONVERGENCE DEFINED BY

UNBOUNDED MODULUS FUNCTION AND αβ-STATISTICAL

CONVERGENCE

SUMIT SOM

Abstract. In this paper we define f − αβ-statistical convergence of order γ in
probability and f − αβ-strong p-Cesàro summability of order γ in probability for a
sequence of random variables under unbounded modulus function and examine the
relation between these two concepts. We show by an example that this notion of
f −αβ-statistical convergence of order γ in probability is stronger than αβ-statistical
convergence of order γ in probability [9].

1. Introduction

The idea of convergence of a real sequence has been extended to statistical con-
vergence by Fast [10] and Steinhaus [19] and later on reintroduced by Schoenberg
[17] independently and is based on the notion of asymptotic density of the subset of
natural numbers. However, the first idea of statistical convergence (by different name)
was given by Zygmund [20] in the first edition of his monograph published in Warsaw
in 1935. Later on it was further investigated from the sequence space point of view
and linked with summability theorem by Fridy [11], Connor [5], Šalát [16], Das et. al.
[6], Fridy and Orhan [12].

In [3,4] a different direction was given to the study of statistical convergence where
the notion of statistical convergence of order γ (0 < γ < 1) was introduced by using
the notion of natural density of order γ (where n is replaced by nγ in the denominator
in the definition of natural density). It was observed in [3], that the behavior of this
new convergence was not exactly parallel to that of statistical convergence and some

Key words and phrases. αβ-statistical convergence, f -statistical convergence, f − αβ-statistical
convergence of order γ in probability, f − αβ-strong p-Cesàro summability of order γ in probability.
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basic properties were obtained. More results on this convergence can be seen from
[18].

Recently the idea of statistical convergence of order γ was further extended to
αβ-statistical convergence of order γ in [2] as follows: Let α = {αn}n∈N, β = {βn}n∈N

be two non-decreasing sequences of positive real numbers satisfying the conditions,
αn ≤ βn for all n ∈ N, and (βn − αn) → ∞ as n → ∞. This pair of sequence
we denoted by (α, β). Then a sequence {xn}n∈N of real numbers is said to be αβ-
statistically convergent of order γ (where 0 < γ ≤ 1) to a real number x if for each
ε > 0, the set K = {n ∈ N : |xn − x| ≥ ε} has αβ-natural density zero, i.e.,

lim
n→∞

1
(βn − αn + 1)γ

|{k ∈ [αn, βn] : |xk − x| ≥ ε}| = 0

and we write S
γ
αβ − lim xn = x or xn

Sγ

αβ−−→ x. αβ-statistical convergence of order γ is
more general than statistical convergence of order γ, lacunary statistical convergence
of order γ and λ statistical convergence of order γ if we take

(i) αn = 1 and βn = n, for all n ∈ N;
(ii) αr = (kr−1 + 1) and βr = kr, for all r ∈ N, where {kr}r∈N∪{0} is a lacunary

sequence;
(iii) αn = (n − λn + 1) and βn = n, for all n ∈ N, respectively.

On the other hand, in probability theory, a new type of convergence called statistical
convergence in probability was introduced in [13], as follows: Let {Xn}n∈N be a
sequence of random variables where each Xn is defined on the same sample space S

(for each n) with respect to a given class of events △ and a given probability function
P : △ → R. Then the sequence {Xn}n∈N is said to be statistically convergent in
probability to a random variable X (where X : S → R) if for any ε, δ > 0

lim
n→∞

1
n

|{k ≤ n : P (|Xk − X| ≥ ε) ≥ δ}| = 0.

In this case we write Xn
P S−−→ X. The class of all sequences of random variables which

are statistically convergent in probability is denoted by PS. One can also see [7,8,14]
for related works.

In the year 2014, the concept of f -statistical convergence was introduced by Aizpuru
et al. [1] just by replacing |{k ≤ n : |xk − c| ≥ ε}| and 1

n
by f(|{k ≤ n : |xk − c| ≥ ε}|)

and 1
f(n)

, respectively, where f is an unbounded modulus function. The notion of a
modulus function was introduced by Nakano [15]. We recall that a modulus function
f is a function from [0, ∞) to [0, ∞) such that

(i) f(x) = 0 if and only if x = 0;
(ii) f(x + y) ≤ f(x) + f(y) for all x, y ≥ 0;
(iii) f is increasing and f is continuous from the right at 0.
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The f -density of K ⊂ N is denoted by df (K) = limn→∞
f(|K(n)|)

f(n)
. In case of f -density,

the relation df(N \ K) = 1 − df (K) holds only when df (K) = 0. In other all cases
the relation can’t hold.

In a natural way in this paper we combine the approches of the above mentioned
papers and introduce new and more general methods, namely, f − αβ-statistical
convergence of order γ in probability, f − αβ-strong p-Cesàro summability of order
γ in probability for a sequence of random variables. We mainly investigate their
relationship and also make some observations about these classes. In the way we show
that the notion of f − αβ-statistical convergence of order γ in probability is stronger
than αβ-statistical convergence of order γ in probability (see [9]). It is important to
note that the method of proofs and in particular examples are not analogous to the
real case.Throughout the paper f will denote unbounded modulus function.

2. f − αβ-Statistical Convergence of Order γ in Probability

We first introduce the definition of f − αβ-statistical convergence of order γ for a
sequence of real numbers as follows.

Definition 2.1. Let {xn}n∈N be a sequence of real numbers and f be an unbounded
modulus function. The sequence {xn}n∈N is said to be f − αβ-statistically convergent
of order γ to a real number x if for any ε > 0

lim
n→∞

1
f((βn − αn + 1)γ)

f(|{k ∈ [αn, βn] : |xk − x| ≥ ε}|) = 0.

The class of all real sequences which are f − αβ-statistically convergent of order γ is
denoted by S

γ,f
αβ .

Now we like to introduce the definition of f − αβ-statistical convergence of order γ

in probability for a sequence of random variables as follows.

Definition 2.2. Let (S, △, P ) be a probability space and {Xn}n∈N be a sequence of
random variables where each Xn is defined on the same sample space S (for each n)
with respect to a given class of events △ and a given probability function P : △ → R.
Then the sequence {Xn}n∈N is said to be f − αβ-statistically convergent of order γ

(where 0 < γ ≤ 1) in probability to a random variable X (where X : S → R) if for
any ε, δ > 0

lim
n→∞

1
f((βn − αn + 1)γ)

f(|{k ∈ [αn, βn] : P (|Xk − X| ≥ ε) ≥ δ}|) = 0

or equivalently

lim
n→∞

1
f((βn − αn + 1)γ)

f(|{k ∈ [αn, βn] : 1 − P (|Xk − X| < ε) ≥ δ}|) = 0.
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In this case we write S
γ,f
αβ − lim P (|Xn −X| ≥ ε) = 0 or S

γ,f
αβ − lim P (|Xn −X| < ε) = 1

or just Xn

P Sγ,f

αβ−−−→ X. The class of all sequences of random variables which are f − αβ-
statistically convergent of order γ in probability is denoted simply by PS

γ,f
αβ .

In Definition 2.2, if we take f(x) = x then {Xn}n∈N is said to be αβ-statistically
convergent of order γ in probability to a random variable X. So, f − αβ-statistical
convergence of order γ in probability is a generalization of αβ-statistical convergence
of order γ in probability for a sequence of random variables.

To show that this is indeed more stronger notion than αβ-statistical convergence
of order γ in probability, we will now give an example of a sequence of random
variables which is αβ-statistically convergent of order γ in probability but is not
f − αβ-statistically convergent of order γ in probability.

Example 2.1. Let a sequence of random variables {Xn}n∈N be defined by

Xn ∈















{−1, 1} with probability 1
2
, if n = m2 for some m ∈ N,

{0, 1} with probability P (Xn = 0) =
(

1 − 1
n2

)

and P (Xn = 1) = 1
n2 , if n 6= m2

for any m ∈ N.

Let 0 < ε, δ < 1. Then, we have,

P (|Xn − 0| ≥ ε) = 1, if n = m2 for some m ∈ N,

and

P (|Xn − 0| ≥ ε) =
1
n2

, if n 6= m2 for any m ∈ N.

Let 1
2

< γ ≤ 1, αn = 1, βn = n2, for all n ∈ N and f(x) = x
1+x

for all x ≥ 0. Then
we have the inequality

1
n2γ

|{k ∈ [1, n2] : P (|Xn − 0| ≥ ε) ≥ δ}| =

(

n

n2γ
+

d

n2γ

)

→ 0 as n → ∞,

where d is a finite positive integer. So, Xn

P Sγ

αβ−−−→ 0, where 1
2

< γ ≤ 1. But

lim
n→∞

1
f((βn − αn + 1)γ)

f(|{k ∈ [αn, βn] : P (|Xk − 0| ≥ ε) ≥ δ}|) = 1.

This shows that {Xn}n∈N is not f − αβ-statistically convergent of order γ in prob-
ability to 0.

Theorem 2.1. If a sequence of constants xn

Sγ,f

αβ−−→ x, then regarding a constant as

a random variable having one point distribution at that point, we may also write

xn

P Sγ,f

αβ−−−→ x.

Proof. Proof is straight forward, so omitted. �
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The following example shows that in general the converse of Theorem 2.1 is not
true and also shows that there is a sequence {Xn}n∈N of random variables which is
f − αβ-statistically convergent in probability to a random variable X but it is not
f − αβ-statistically convergent of order γ in probability for 0 < γ < 1.

Example 2.2. Let c be a rational number between γ1 and γ2. Let the probability
density function of Xn be given by

fn(x) =







1, where 0 < x < 1,

0, otherwise, if n = [m
1

c ] for some m ∈ N,

fn(x) =











nxn−1

2n
, where 0 < x < 2,

0, otherwise, if n 6= [m
1

c ] for any m ∈ N.

Now let 0 < ε, δ < 1. Then

P (|Xn − 2| ≥ε) = 1, if n = [m
1

c ] for some m ∈ N,

P (|Xn − 2| ≥ε) =
(

1 − ε

2

)n

, if n 6= [m
1

c ] for any m ∈ N.

Now let αn = 1, βn = n2, f(x) =
√

x for all x ≥ 0. Consequently, we have the
inequality

lim
n→∞

√

n2c − 1
n2γ1

≤ lim
n→∞

1
f(n2γ1)

f(|{k ∈ [1, n2] : P (|Xk − 2| ≥ ε) ≥ δ}|)

and

lim
n→∞

1
f(n2γ2)

f(|{k ∈ [1, n2] : P (|Xk − 2| ≥ ε) ≥ δ}|) ≤ lim
n→∞

√

n2c + 1
n2γ2

+
d

n2γ2

,

where d is a fixed finite positive integer. This shows that {Xn}n∈N is f−αβ-statistically
convergent of order γ2 in probability to 2 but is not f − αβ-statistically convergent
of order γ1 in probability to 2 whenever γ1 < γ2 and this is not the usual f − αβ-
statistical convergence of order γ of real numbers. So, the converse of Theorem 2.1

is not true. Also by taking γ2 = 1, we see that Xn

P S1,f

αβ−−−→ 2 but {Xn}n∈N is not
f − αβ-statistically convergent of order γ in probability to 2 for 0 < γ < 1.

Theorem 2.2 (Elementary properties). (i) If Xn

P Sγ,f

αβ−−−→ X and Xn

P Sγ,g

αβ−−−→ Y ,

then P{X = Y } = 1, where f and g are unbounded modulus functions and

0 < γ ≤ 1.

(ii) If Xn

P S
γ1,f

αβ−−−−→ X and Xn

P S
γ2,f

αβ−−−−→ Y , then P{X = Y } = 1 for any γ1, γ2 where

0 < γ1, γ2 ≤ 1.

(iii) Let 0 < γ1 ≤ γ2 ≤ 1. Then PS
γ1,f
αβ ⊆ PS

γ2,f
αβ and this inclusion is strict

whenever γ1 < γ2.
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Proof. (i) If possible let P{X = Y } 6= 1. Then, there exists two positive real numbers
ε and δ such that P (|X − Y | ≥ ε) = δ > 0. Then we have

lim
n→∞

f(βn − αn + 1)
f((βn − αn + 1)γ)

− lim
n→∞

1
f((βn − αn + 1)γ)

f

(∣

∣

∣

∣

∣

{

k ∈ [αn, βn] : P

(

|Xk − Y | ≥ ε

2

)

≥ δ

2

}∣

∣

∣

∣

∣

)

≤ lim
n→∞

1
f((βn − αn + 1)γ)

f

(
∣

∣

∣

∣

∣

{

k ∈ [αn, βn] : P

(

|Xk − X| ≥ ε

2

)

≥ δ

2

}
∣

∣

∣

∣

∣

)

,

which is impossible because the left hand limit is not 0 whereas the right hand limit
is 0. So, P{X = Y } = 1.

(ii) Proof is straightforward and so is omitted.
(iii) The first part is obvious. The inclusion is proper as can be seen from Exam-

ple 2.2. �

Remark 2.1. In Theorem 2 [3] it was observed that m
γ1

0 ⊂ m
γ2

0 and this inclusion
was shown to be strict for at least those γ1, γ2 for which there is a k ∈ N such that
γ1 < 1

k
< γ2. But Example 2.2 shows that the inequality is strict whenever γ1 < γ2.

Corollary 2.1. Let f and g be two unbounded modulus functions and 0 < γ ≤ 1.

Then PS
γ,f
αβ = PS

γ,g
αβ .

Theorem 2.3. If Xn

P Sγ,f

αβ−−−→ X (where f is an unbounded modulus function), then

Xn

P Sγ

αβ−−−→ X.

Proof. As Xn

P Sγ,f

αβ−−−→ X so for any ε, δ > 0,

lim
n→∞

1
f((βn − αn + 1)γ)

f(|{k ∈ [αn, βn] : P (|Xk − X| ≥ ε) ≥ δ}|) = 0.

Let 1
p1

> 0. Then there exists p ∈ N such that for all n ≥ p,

f(|{k ∈ [αn, βn] : P (|Xk − X| ≥ ε) ≥ δ}|) <
1
p1

f((βn − αn + 1)γ)

⇒f(|{k ∈ [αn, βn] : P (|Xk − X| ≥ ε) ≥ δ}|)

<
1
p1

f

(

(βn − αn + 1)γ

p1

+ · · · +
(βn − αn + 1)γ

p1

)

⇒f(|{k ∈ [αn, βn] : P (|Xk − X| ≥ ε) ≥ δ}|) ≤ f

(

(βn − αn + 1)γ

p1

)

⇒|{k ∈ [αn, βn] : P (|Xk − X| ≥ ε) ≥ δ}| ≤ (βn − αn + 1)γ

p1

⇒ lim
n→∞

1
(βn − αn + 1)γ

|{k ∈ [αn, βn] : P (|Xk − X| ≥ ε) ≥ δ}| = 0.
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This shows that Xn

P Sγ

αβ−−−→ X. �

From Theorem 2.3 and Example 2.1 we see that this notion of f − αβ-statistical
convergence of order γ in probability is stronger than αβ-statistical convergence of
order γ in probability (see [9]).

Theorem 2.4. Let f be an unbounded modulus function and 0 < γ ≤ 1. Let (α, β) and

(α′, β′) are two pairs of sequences of positive real numbers such that [α′
n, β′

n] ⊆ [αn, βn]
for all n ∈ N and f((βn − αn + 1)γ) ≤ εf((β′

n − α′
n + 1)γ) for some ε > 0. Then we

have PS
γ,f
αβ ⊆ PS

γ,f
α′β′.

Proof. Proof is straightforward and so is omitted. �

But if the condition of the Theorem 2.4 is violated, then limit may not be unique
for two different (α, β)’s. We now give an example to show this.

Example 2.3. Let α = {(2n)!}, β = {(2n+1)!} and α′ = {(2n+1)!}, β′ = {(2n+2)!}
and f(x) =

√
x for all x ≥ 0.

Let us define a sequence of random variables {Xn}n∈N by,

Xk ∈















































{−1, 1} with probability P (Xk = −1) = 1
k
, P (Xk = 1) = (1 − 1

k
),

if (2n)! < k < (2n + 1)!,

{−2, 2} with probability P (Xk = −2) = 1
k
, P (Xn = 2) = (1 − 1

k
),

if (2n + 1)! < k < (2n + 2)!,

{−3, 3} with probability P (Xk = −3) = P (Xk = 3),

if k = (2n)! and k = (2n + 1)!.

Let 0 < ε, δ < 1 and 0 < γ < 1. Then for the sequence (α, β)

P (|Xk − 1| ≥ ε) =
1
k

, if (2n)! < k < (2n + 1)!

and

P (|Xk − 1| ≥ ε) = 1, if (2n + 1)! < k < (2n + 2)!

and

P (|Xk − 1| ≥ ε) = 1, if k = (2n)! and k = (2n + 1)!

implies

lim
n→∞

1
f(((2n + 1)! − (2n)! + 1)γ)

f(|{k ∈ [(2n)!, (2n+1)!] : P (|Xk −1| ≥ ε) ≥ δ}|) = 0.

So, Xn

P Sγ,f

αβ−−−→ 1.
Similarly, it can be shown that for the sequence α′ = {(2n + 1)!},

β′ = {(2n + 2)!}, Xn

P Sγ,f

α′β′−−−−→ 2.
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Definition 2.3. Let (S, △, P ) be a probability space and {Xn}n∈N be a sequence
of random variables where each Xn is defined on the same sample space S (for
each n) with respect to a given class of events △ and a given probability function
P : △ → R. A sequence of random variables {Xn}n∈N

is said to be f − αβ-strong
p-Cesàro summable of order γ (where 0 < γ ≤ 1 and p > 0 is any fixed positive real
number) in probability to a random variable X if for any ε > 0,

lim
n→∞

1
f((βn − αn + 1)γ)

∑

k∈[αn,βn]

f({P (|Xk − X| ≥ ε)}p) = 0.

In this case we write Xn

P W γ,p,f

αβ−−−−−→ X. The class of all sequences of random variables
which are f −αβ-strong p-Cesàro summable of order γ in probability is denoted simply
by PW

γ,p,f
αβ .

Theorem 2.5. Let f be an unbounded modulus function such that f(x) ≤ x and

f(ax) = af(x), for all x ≥ 0 and a ∈ R. If Xn

P W
γ1,p,f

αβ−−−−−→ X and Xn

P W
γ2,p,f

αβ−−−−−→ Y (where

p ≥ 1), then P{X = Y } = 1 for any γ1, γ2 where 0 < γ1, γ2 ≤ 1.

Proof. Proof is straight forward, so omitted. �

Theorem 2.6. Let f and g be unbounded modulus functions satisfying the conditions

stated in Theorem 2.5. If Xn

P W γ,p,f

αβ−−−−−→ X and Xn

P W γ,p,g

αβ−−−−−→ Y (where p ≥ 1), then

P{X = Y } = 1.

Proof. If possible let P{X = Y } 6= 1. Then there exists two positive real numbers ε

and δ such that P (|X − Y | ≥ ε) = δ > 0. Then we have

{P (|X − Y | ≥ ε)}p ≤
{

P

(

|Xk − X| ≥ ε

2

)

+ P

(

|Xk − Y | ≥ ε

2

)}p

⇒
∑

k∈[αn,βn]

f((P (|X − Y | ≥ ε))p) ≤ 2p
∑

k∈[αn,βn]

f

((

P

(

|Xk − X| ≥ ε

2

))p)

+ 2p
∑

k∈[αn,βn]

f

((

P

(

|Xk − Y | ≥ ε

2

))p)

⇒f(δp)(βn − αn + 1)γ

f((βn − αn + 1)γ)
− 2p 1

f((βn − αn + 1)γ)

∑

k∈[αn,βn]

f

((

P

(

|Xk − Y | ≥ ε

2

))p)

≤ 2p 1
f((βn − αn + 1)γ)

∑

k∈[αn,βn]

f

((

P

(

|Xk − X| ≥ ε

2

))p)

,

which is impossible because the left hand limit is not 0 whereas the right hand limit
is 0. So, P{X = Y } = 1. �

Corollary 2.2. Let f and g be two unbounded modulus functions satisfying the con-

ditions stated in Theorem 2.5 and 0 < γ ≤ 1, p ≥ 1. Then PW
γ,p,f
αβ = PW

γ,p,g
αβ .
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Theorem 2.7. (i) Let 0 < γ1 ≤ γ2 ≤ 1. Then PW
γ1,p,f
αβ ⊆ PW

γ2,p,f
αβ . This

inclusion is strict whenever γ1 < γ2.

(ii) Let 0 < γ ≤ 1 and 0 < p < q < ∞. Then PW
γ,q,f
αβ ⊂ PW

γ,p,f
αβ .

Proof. (i) The first part of this theorem is straightforward and so is omitted. For
the second part we will give an example to show that there is a sequence of random
variables {Xn}n∈N

which is f −αβ-strong p-Cesàro summable of order γ2 in probability
to a random variable X but is not f − αβ-strong p-Cesàro summable of order γ1 in
probability whenever γ1 < γ2.

Let 2c be a rational number between γ1 and γ2. We consider a sequence of random
variables :

Xn ∈















{−1, 1} with probability 1
2
, if n = [m

1

c ] for some m ∈ N,

{0, 1} with probability P (Xn = 0) = 1 − 1
p√

n4
and P (Xn = 1) = 1

p√
n4

,

if n 6= [m
1

c ] for any m ∈ N.

Then we have, for 0 < ε < 1

P (|Xn − 0| ≥ ε) = 1, if n = [m
1

c ] for some m ∈ N

and

P (|Xn − 0| ≥ ε) =
1

p
√

n4
, if n 6= [m

1

c ] for any m ∈ N.

Let αn = 1 and βn = n2 and f(x) =
√

x for all x ≥ 0. So, we have the inequality

lim
n→∞

n2c − 1
nγ1

≤ lim
n→∞

1
nγ1

∑

k∈[1,n2]

f({P (|Xk − 0| ≥ ε)}p)

and

lim
n→∞

1
nγ2

∑

k∈[1,n2]

f({P (|Xk − 0| ≥ ε)}p) ≤ lim
n→∞

[

n2c + 1
nγ2

+
1

nγ2

( 1
12

+
1
22

+ · · · +
1
n4

)

]

.

This shows that Xn

P W
γ2,p,f

αβ−−−−−→ 0 but {Xn}n∈N is not f − αβ-strong p-Cesàro summable
of order γ1 in probability to 0.

(ii) Proof is straightforward and so is omitted. �

Theorem 2.8. Let f be an unbounded modulus function such that f(x) ≤ x for all

x ≥ 0 and 0 < γ1 ≤ γ2 ≤ 1. Then PW
γ1,p,f
αβ ⊂ PS

γ2,f
αβ .

Proof. Let Xn

P W
γ1,p,f

αβ−−−−−→ X. Then for every ε > 0,

lim
n→∞

1
f((βn − αn + 1)γ1)

∑

k∈[αn,βn]

f({P (|Xk − X| ≥ ε)}p) = 0.
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Then
∑

k∈[αn,βn]

f((P (|Xk − X| ≥ ε))p) ≥
∑

k∈[αn,βn]

P (|Xk−X|≥ε)≥δ

f((P (|Xk − X| ≥ ε))p)

⇒
∑

k∈[αn,βn]

f((P (|Xk − X| ≥ ε))p) ≥ f(δp) f(|{k ∈ [αn, βn] : P (|Xk − X| ≥ ε) ≥ δ}|)

⇒ 1
f((βn − αn + 1)γ1)

∑

k∈[αn,βn]

f((P (|Xk − X| ≥ ε))p)

≥ f(δp)
1

f((βn − αn + 1)γ2)
f(|{k ∈ [αn, βn] : P (|Xk − X| ≥ ε) ≥ δ}|).

This shows that

lim
n→∞

1
f((βn − αn + 1)γ2)

f(|{k ∈ [αn, βn] : P (|Xk − X| ≥ ε) ≥ δ}|) = 0.

This completes the proof. �

But the converse of Theorem 2.8 is not generally true as can be seen from the
following example.

Example 2.4. Let a sequence of random variables {Xn}n∈N be defined by,

Xn ∈















{−1, 1} with probability 1
2
, if n = mm for some m ∈ N,

{0, 1} with probability P (Xn = 0) = 1 − 1
p
√

n
, P (Xn = 1) = 1

p
√

n
,

if n 6= mm for any m ∈ N.

Let 0 < ε < 1 and f(x) =
√

x for all x ≥ 0. Then

P (|Xn − 0| ≥ ε) = 1, if n = mm for some m ∈ N,

and

P (|Xn − 0| ≥ ε) =
1

p
√

n
, if n 6= mm for any m ∈ N.

Let αn = 1 and βn = n2. It can be easily seen that Xn

P Sγ,f

αβ−−−→ 0 for each 0 < γ ≤ 1.
Let H = {n ∈ N : n 6= mm for any m ∈ N}. Then

1
nγ

∑

k∈[1,n2]

f({P (|Xk − 0| ≥ ε)}p) =
1
nγ

∑

k∈[1,n2]

k∈H

f({P (|Xk − 0| ≥ ε)}p)

+
1
nγ

∑

k∈[1,n2]

k /∈H

f({P (|Xk − 0| ≥ ε)}p)

=
1
nγ

∑

k∈[1,n2]

k∈H

1√
k

+
1
nγ

∑

k∈[1,n2]

k /∈H

1 >
1
nγ

n2

∑

k=1

1√
k

>
1

nγ−1
,
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(since
∑n

k=1

1√
k

>
√

n for n ≥ 2). So, Xn is not f − αβ-strong p-Cesàro summable of

order γ in probability to 0 for 0 < γ ≤ 1.
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THE RECIPROCAL COMPLEMENTARY WIENER NUMBER OF

GRAPH OPERATIONS

R. NASIRI, A. NAKHAEI, AND A. R. SHOJAEIFARD

Abstract. The reciprocal complementary Wiener number of a connected graph G

is defined as
∑

{x,y}⊆V (G)
1

D+1−dG(x,y) , where D is the diameter of G and dG(x, y)

is the distance between vertices x and y. In this work, we study the reciprocal
complementary Wiener number of various graph operations such as join, Cartesian
product, composition, strong product, disjunction, symmetric difference, corona
product, splice and link of graphs.

1. Introduction

Throughout this work, all graphs considered are simple, connected and finite. Let
G = (V (G), E(G)) be a connected graph. For x, y ∈ V (G), the distance dG(x, y)
between the vertices x and y is equal to the length of a shortest path that connects
x and y. For a vertex x in a connected nontrivial graph G, the eccentricity εG(x) of
x is the greatest geodesic distance between x and any other vertex of G. Also, the
diameter D = D(G) of the graph G is defined as the maximum eccentricity of any
vertex in G. In other words,

εG(x) = max {dG(x, y)|y ∈ V (G)} , D = D(G) = max {εG(x)|x ∈ V (G)} .

In mathematical chemistry, a molecular graph (or chemical graph) is a labeled graph
whose vertices correspond to the atoms of the compound and edges correspond to
chemical bonds. It is natural to study mathematical properties of these graph models
to find chemico-physical properties of the molecule under consideration.

Let G be a n-vertex graph with the vertex-set V (G) = {v1, v2, . . . , vn} and diameter
D. The reciprocal complementary distance matrix RCD = [rcij] of G is an n × n

Key words and phrases. Reciprocal complementary Wiener number, distance, graph operations.
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DOI 10.46793/KgJMat2101.139N
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matrix such that rcij = 1
D+1−dG(vi,vj)

if i 6= j, and 0 otherwise (see [7]). Ivanciuc et al.

[5, 6] introduced the reciprocal complementary Wiener number of the graph G as:

(1.1) RCW (G) =
n−1∑

i=1

n∑

j=i+1

rcij =
∑

{vi,vj}⊆V (G)

1

D + 1 − dG(vi, vj)
.

This invariant has been successfully applied in the structure-property modeling of the
molar hear capacity, standard Gibbs energy of formation and vaporization enthalpy
of 134 alkanes C6-C10 (see [5]).

Zhou et al. [14] gave various bounds for this quantity and Nordhaus-Gaddum-
type result. Moreover, the trees with the smallest, the second smallest and the third
smallest RCW , and the unicyclic and bicyclic graphs with the smallest and the second
smallest RCW are characterized (see [2]). Zhu et al. [15] obtained the unique tree
with 4 ≤ D ≤ n − 3 and minimum reciprocal complementary Wiener number. They
also specified the non-caterpillars with the smallest, the second smallest and the third
smallest RCW -value. In [10], some bounds for the reciprocal complementary Wiener
index of line graphs are presented.

Up to now, various topological indices have been introduced and used in the
QSAR/QSPR studies. The Wiener index (or Wiener number) is the oldest and
is one of the most studied topological quantities, both from a theoretical point of view
and applications. This concept is defined as the sum of distances over all unordered
vertex pairs in a graph G (see [12]). This invariant obtained wide attention and
numerous results have been worked out, see the survey [13]. In special classes of
graphs, such as trees, unicyclic and bicyclic graphs, this index has been studied in
[3, 9, 11]. After it, a large number of other distance-based topological indices have
been proposed and considered in the chemical and mathematico-chemical literature.

Brückler et al. [1] introduced a general distance-based topological index, called
Q-index. The Q-index is defined as

(1.2) Q(G) =
∑

k≥0

f(k)D(G, k) ,

where f is a function such that f(0) = 0, and D(G, k) is the number of vertex
pairs at distance k. Q is an additive function of increments associated with pairs
of vertices of G. The Wiener, hyper-Wiener, Harary, and reciprocal complementary
Wiener indices are all special cases of the Q-index. More precisely, by choosing
f(k) = k, k2

2
+ k

2
, 1

k
and k3

6
+ k2

2
+ k

3
, the Q-index is equal to the Wiener, hyper-

Wiener, Harary, and Tratch-Stankevich-Zefirov indices, respectively. In other special
case, if consider f(k) = 1

D+1−k
, then the Q-index will be equal to the reciprocal

complementary Wiener number. In other words, it holds

(1.3) RCW (G) =
D∑

k=1

D(G, k)

D + 1 − k
.
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In this research, we study the reciprocal complementary Wiener number of various
graph operations like join, Cartesian product, composition, strong product, disjunc-
tion, symmetric difference, corona product, splice and link of graphs.

2. Main Results

Throughout this paper, we consider graphs Gi with ni vertices, mi edges and the
diameter Di, i = 1, 2. Also, note that whenever we say xy /∈ E, it is assumed that
x 6= y. Moreover, we use standard notations of graph theory. The path, cycle, star,
wheel and complete graphs with n vertices are denoted by Pn, Cn, Sn, Wn and Kn,
respectively.

By applying relation (1.3), we compute RCW of some special graphs in the following
example.

Example 2.1. Let Pn, Kn, Sn and Wn denote a path graph, complete graph, star graph
and wheel graph with n vertices, respectively. Then

RCW (Pn) = n − 1,

RCW (Kn) =
1

2
n(n − 1),

RCW (Sn) =
1

2
(n − 1)2,

RCW (Wn) =







6, n = 4,
1
2
(n − 1)(n − 2), n ≥ 5.

We begin by computing the reciprocal complementary Wiener number of join of
graphs.

2.1. Join. The join G1 + G2 of graphs G1 and G2 with disjoint vertex sets V1 and
V2 is the graph union G1 ∪ G2 together with all the edges joining V1 and V2. In the
following lemma, we determine the reciprocal complementary Wiener number of join
of graphs with respect to their numbers of vertices and edges.

Theorem 2.1. Let G1 and G2 be two n1- and n2-vertex graphs, respectively.

(i) If G1 and G2 are complete graphs, then

RCW (G1 + G2) =
1

2
(n1 + n2)(n1 + n2 − 1).

(ii) If {G1, G2} 6= {Kn1
, Kn2

}, then

RCW (G1 + G2) =
1

2

(

n1(n1 + n2 − 1) + n2(n2 − 1) − m1 − m2

)

.
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Proof. Suppose x and y are two vertices of G1 + G2. By definition of the join of two
graphs, one can easily see that

dG1+G2
(x, y) =







0, x = y,

1, xy ∈ E1 or xy ∈ E2 or (x ∈ V1 and y ∈ V2),

2, otherwise.

Assume that G1 and G2 are complete graphs, then G1 + G2 = Kn1+n2
. Therefore,

RCW (G1 + G2) = RCW (Kn1+n2
) =

(
n1+n2

2

)

(see Example 2.1). This completes the

proof of part (i). To prove the second part, suppose that at least one of graphs G1 or
G2 is not complete. So, we have D = D(G1 + G2) = 2, and

RCW (G1 + G2) =
∑

{x,y}⊆V (G1+G2)

1

3 − dG1+G2
(x, y)

=
∑

{x,y}⊆V1

1

3 − dG1+G2
(x, y)

+
∑

{x,y}⊆V2

1

3 − dG1+G2
(x, y)

+
∑

x∈V1

y∈V2

1

3 − dG1+G2
(x, y)

=
∑

xy∈E1

1

3 − dG1+G2
(x, y)

+
∑

xy /∈E1

1

3 − dG1+G2
(x, y)

+
∑

xy∈E2

1

3 − dG1+G2
(x, y)

+
∑

xy /∈E2

1

3 − dG1+G2
(x, y)

+
∑

x∈V1

y∈V2

1

3 − dG1+G2
(x, y)

=
1

2

(

n1(n1 + n2 − 1) + n2(n2 − 1) − m1 − m2

)

. �

Example 2.2. We know that Kr + Ks = Kr,s (in particular, K1 + Kn−1 = K1,n−1 = Sn)
is the complete bipartite graph. From Theorem 2.1 we obtain explicit formulas for
the reciprocal complementary Wiener number of the these graphs

RCW (Kr,s) =
1

2

(

r(r + s − 1) + s(s − 1)
)

, RCW (Sn) =
1

2
(n − 1)2.

2.2. Cartesian product. The Cartesian product G1�G2 of graphs G1 and G2 has
the vertex set V1 × V2 and (x, y)(u, v) is an edge of G1�G2 if (x = u and yv ∈ E2),
or (xu ∈ E1 and y = v). For example, the ladder graph L2,n can be obtained as the
Cartesian product of two path graphs P2 and Pn.

Now, we study the reciprocal complementary Wiener number of the Cartesian
product of graphs. To do this, we need the following well-known relation related to
distance properties of the Cartesian product of two graphs (see [4])

(2.1) dG1�G2

(

(x, y), (u, v)
)

= dG1
(x, u) + dG2

(y, v).
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Theorem 2.2. Let G1 and G2 be two non-complete graphs. Then

RCW (G1�G2) <
n1m2 + n2m1

D1 + D2

+
2m1m2

D1 + D2 − 1
+ (n1 + 2m1)

(

RCW (G2) −
m2

D2

)

+ (n2 + 4m2)
(

RCW (G1) −
m1

D1

)

.

Proof. Applying (2.1), we have D = D(G1�G2) = D1 + D2. Therefore,

RCW (G1�G2) =
∑

{(x,y),(u,v)}⊆V (G1�G2)

1

D + 1 − dG1�G2

(

(x, y), (u, v)
)

=
∑

{(x,y),(x,v)}⊆V (G1�G2)
yv∈E2

1

D1 + D2

+
∑

{(x,y),(x,v)}⊆V (G1�G2)
yv /∈E2

1

D1 + D2 + 1 − dG2
(y, v)

+
∑

{(x,y),(u,y)}⊆V (G1�G2)
xu∈E1

1

D1 + D2

+
∑

{(x,y),(u,y)}⊆V (G1�G2)
xu/∈E1

1

D1 + D2 + 1 − dG1
(x, u)

+
∑

{(x,y),(u,v)}⊆V (G1�G2)
xu∈E1,yv∈E2

1

D1 + D2 − 1

+
∑

{(x,y),(u,v)}⊆V (G1�G2)
xu∈E1,yv /∈E2

1

D1 + D2 − dG2
(y, v)

+
∑

{(x,y),(u,v)}⊆V (G1�G2)
xu/∈E1,yv∈E2

1

D1 + D2 − dG1
(x, u)

+
∑

{(x,y),(u,v)}⊆V (G1�G2)
xu/∈E1,yv /∈E2

1

D1 + D2 + 1 − dG1
(x, u) − dG2

(y, v)

<
n1m2

D1 + D2

+ n1

(

RCW (G2) −
m2

D2

)

+
n2m1

D1 + D2

+ n2

(

RCW (G1) −
m1

D1

)

+
2m1m2

D1 + D2 − 1

+ 2m1

(

RCW (G2) −
m2

D2

)

+ 2m2

(

RCW (G1) −
m1

D1

)

+ 2m2

(

RCW (G1) −
m1

D1

)
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=
n1m2 + n2m1

D1 + D2

+
2m1m2

D1 + D2 − 1
+ (n1 + 2m1)

(

RCW (G2) −
m2

D2

)

+ (n2 + 4m2)
(

RCW (G1) −
m1

D1

)

. �

Corollary 2.1. Let G1
∼= Kn1

and G2 ≇ Kn2
be two graphs. Then

RCW (G1�G2) =
n1m2 + n2

(
n1

2

)

1 + D2

+
2
(

n1

2

)

m2

D2

+ 2

(

n1

2

)(

RCW (G2) −
m2

D2

)

+
∑

yv /∈E2

n1

D2 + 2 − dG2
(y, v)

<
n1m2 + n2

(
n1

2

)

1 + D2

+
2
(

n1

2

)

m2

D2

+

(

n1 + 2

(

n1

2

))(

RCW (G2) −
m2

D2

)

.

Example 2.3. Consider the graph whose vertices are the n-tuples b1, b2, . . . , bn with bi ∈
{0, 1}, let two vertices be adjacent if the corresponding tuples differ in precisely one
place. Such a graph is called a hypercube of dimension n and denoted by Qn. It is well-
known fact that the hypercube Qn can be written in the form Qn = K2�K2� · · ·�K2

︸ ︷︷ ︸

n times

.

For n = 3, by Corollary 2.1 we have

RCW (Q3) = K2�K2�K2 = K2�C4 = 14.

Corollary 2.2. Let L2,n be the ladder graph, then

RCW (L2,n) = 4n − 1 − 2
n∑

k=1

1

k
.

Proof.

RCW (L2,n) =RCW (P2�Pn)

=
2(n − 1) + n

n
+

2(n − 1)

n − 1
+ 2

(

n − 2) + 2
∑

yv /∈E(Pn)

1

n + 1 − dPn
(y, v)

= −
2

n
+ 2n + 1 + 2

n−1∑

k=2

D(Pn, k)

n + 1 − k
.

On the other hand, it is clear that D(Pn, k) = n − k, for k = 1, . . . , n − 1. Therefore,

RCW (L2,n) = −
2

n
+ 2n + 1 + 2

n−1∑

k=2

n − k

n + 1 − k

= 4n − 1 − 2
n∑

k=1

1

k
. �

Corollary 2.3. Let G1
∼= Kn1

and G2
∼= Kn2

be two complete graphs. Then

RCW (G1�G2) =
n1n2

4
(2n1n2 − n1 − n2).
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2.3. Composition. The composition G1[G2] (also known as the graph lexicographic

product) of simple undirected graphs G1 and G2 is the graph with the vertex set
V (G1[G2]) = V1 × V2 and any two vertices (x, y) and (u, v) are adjacent if and only if
xu ∈ E1 or (x = u and yv ∈ E2).

Let G1 and G2 be graphs on n1 > 1 and n2 vertices, respectively. It follows from the
definition that the distance between two distinct vertices (x, y) and (u, v) of G1[G2]
is given by

dG1[G2]

(

(x, y), (u, v)
)

=







0, x = u and y = v,

1, x = u and yv ∈ E2,

2, x = u and yv /∈ E2,

dG1
(x, u), x 6= u.

Note that if G1
∼= K1 then G1[G2] ∼= G2. So, in the following lemma we study the

reciprocal complementary Wiener number of composition G1[G2] for case n1 > 1.

Theorem 2.3. Let G1 and G2 be two graphs on n1 > 1 and n2 vertices, respectively.

(i) If G1 is a non-complete graph, then

RCW (G1[G2]) =
n1m2

D1

+
n1

((
n2

2

)

− m2

)

D1 − 1
+ n2

2RCW (G1).

(ii) If G1
∼= Kn1

and G2 is a non-complete graph, then

RCW (G1[G2]) =
n1m2

2
+ n1

((

n2

2

)

− m2

)

+
n2

2

2

(

n1

2

)

.

(iii) If G1 and G2 are complete graphs, then

RCW (G1[G2]) = (n1 + n2
2)

(

n1

2

)

.

Proof. By the definition of the composition of two graphs one can see that,

D = D(G1[G2]) =







1, G1
∼= Kn1

and G2
∼= Kn2

,

2, G1
∼= Kn1

and G2 ≇ Kn2
,

D1 = D(G1), G1 ≇ Kn1
.

Suppose G1 and G2 are non-complete graphs, then

RCW (G1[G2]) =
∑

{(x,y),(u,v)}⊆V (G1[G2])

1

D + 1 − dG1[G2]

(

(x, y), (u, v)
)

=
∑

{(x,y),(x,v)}⊆V (G1[G2])
yv∈E2

1

D1

+
∑

{(x,y),(x,v)}⊆V (G1[G2])
yv /∈E2

1

D1 − 1

+
∑

{(x,y),(u,v)}⊆V (G1[G2])
x 6=u

1

D1 + 1 − dG1
(x, u)
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=
n1m2

D1

+
n1

((
n2

2

)

− m2

)

D1 − 1
+ n2

2RCW (G1),

which completes part (i).
The proof is completed by a similar argument as proof of the first part. �

2.4. Disjunction. The disjunction G1 ∧ G2 of graphs G1 and G2 is the graph with
vertex set V1 × V2 and (x, y) is adjacent with (u, v) whenever xu ∈ E1 or yv ∈ E2.

Let G1 and G2 be graphs on n1 > 1 and n2 > 1 vertices, respectively. Clearly, the
distance between two vertices (x, y) and (u, v) of G1 ∧ G2 is given by

dG1∧G2

(

(x, y), (u, v)
)

=







0, x = u and y = v,

1, xu ∈ E1 or yv ∈ E2,

2, otherwise.

Note that if ni = 1 for some i ∈ {1, 2}, then G1 ∧ G2
∼= Gn′

i
, where n′

i = 3 − i. So, we
determine the reciprocal complementary Wiener number of disjunction G1 ∧ G2 for
cases n1 > 1 and n2 > 1.

Theorem 2.4. Let G1 and G2 be graphs on n1 > 1 and n2 > 1 vertices, respectively.

(i) If G1 and G2 are complete graphs, then

RCW (G1 ∧ G2) =
1

2

[

n1

(

n2

2

)

+ n2

(

n1

2

)

+

(

n1

2

)(

n2

2

)]

.

(ii) If {G1, G2} 6= {Kn1
, Kn2

}, then

RCW (G1 ∧ G2) =
1

2

(

n2
1n

2
2 + 2m1m2 − m2n

2
1 − m1n

2
2 − n1n2

)

.

Proof. From definition of disjunction it is clear that if at least one of graphs G1 and
G2 is not complete, then D = D(G1 ∧ G2) = 2, otherwise D = 1. To prove part (ii),
assume that {G1, G2} 6= {Kn1

, Kn2
}. Hence, we can write

RCW (G1 ∧ G2) =
∑

{(x,y),(u,v)}⊆V (G1∧G2)

1

D + 1 − dG1∧G2

(

(x, y), (u, v)
)

=
∑

{(x,y),(u,v)}⊆V (G1∧G2)
xu∈E1

1

2
+

∑

{(x,y),(u,v)}⊆V (G1∧G2)
yv∈E2

1

2

−
∑

{(x,y),(u,v)}⊆V (G1∧G2)
xu∈E1,yv∈E2

1

2
+

∑

{(x,y),(x,v)}⊆V (G1∧G2)
yv /∈E2

1

+
∑

{(x,y),(u,y)}⊆V (G1∧G2)
xu/∈E1

1 +
∑

{(x,y),(u,v)}⊆V (G1∧G2)
xu/∈E1,yv /∈E2

1

=
1

2

(

n2
1n

2
2 + 2m1m2 − m2n

2
1 − m1n

2
2 − n1n2

)

.
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A similar argument as part (ii), shows that

RCW (Kn1
∧ Kn2

) =
1

2

[

n1

(

n2

2

)

+ n2

(

n1

2

)

+

(

n1

2

)(

n2

2

)]

.

This completes the proof. �

2.5. Strong product. The strong product of graphs G1 and G2, denoted by G14G2,
is the graph with vertex set V1 × V2 and (x, y)(u, v) is an edge whenever (x = u and
yv ∈ E2), or (y = v and xu ∈ E1), or (xu ∈ E1 and yv ∈ E2).

In the following result, we give a basic property about the strong product of graphs.

Lemma 2.1 ([4]). Let G1 and G2 be two connected graphs, x, u ∈ V (G1) and y, v ∈

V (G2). Then dG14G2

(

(x, y), (u, v)
)

= max {dG1
(x, u), dG2

(y, v)} .

Corollary 2.4. Let G14G2 be the strong product of connected graphs G1 and G2.

Then D = max {D1, D2}, where D, D1 and D2 are the diameter of G14G2, G1 and

G2, respectively.

Theorem 2.5. Let G14G2 be the strong product of connected graphs G1 and G2.

Then

RCW (G14G2) ≤
1

D
(2m1m2 + n1m2 + n2m1) + (n1 + 2m1)

(

RCW (G2) −
m2

D2

)

+ (n2 + 2m2)
(

RCW (G1) −
m1

D1

)

+ 2

[(

n1

2

)

− m1

] [(

n2

2

)

− m2

]

.

The equality is satisfied if and only if G1 or G2 is a complete graph.

Proof.

RCW (G14G2) =
∑

{(x,y),(u,v)}⊆V (G14G2)

1

D + 1 − dG14G2

(

(x, y), (u, v)
)

=
∑

{(x,y),(x,v)}⊆V (G14G2)
yv∈E2

1

D
+

∑

{(x,y),(x,v)}⊆V (G14G2)
yv /∈E2

1

D + 1 − dG2
(y, v)

+
∑

{(x,y),(u,y)}⊆V (G14G2)
xu∈E1

1

D
+

∑

{(x,y),(u,y)}⊆V (G14G2)
xu/∈E1

1

D + 1 − dG1
(x, u)

+
∑

{(x,y),(u,v)}⊆V (G14G2)
xu∈E1,yv∈E2

1

D
+

∑

{(x,y),(u,v)}⊆V (G14G2)
xu∈E1,yv /∈E2

1

D + 1 − dG2
(y, v)

+
∑

{(x,y),(u,v)}⊆V (G14G2)
xu/∈E1,yv∈E2

1

D + 1 − dG1
(x, u)

+
∑

{(x,y),(u,v)}⊆V (G14G2)
xu/∈E1,yv /∈E2

1

D + 1 − max {dG1
(x, u), dG2

(y, v)}
.
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By (1.1), we have

n1RCW (G2) =
∑

{(x,y),(x,v)}⊆V (G14G2)
yv /∈E2

1

D2 + 1 − dG2
(y, v)

+
∑

{(x,y),(x,v)}⊆V (G14G2)
yv∈E2

1

D2 + 1 − dG2
(y, v)

︸ ︷︷ ︸

1

=
∑

{(x,y),(x,v)}⊆V (G14G2)
yv /∈E2

1

D2 + 1 − dG2
(y, v)

+
n1m2

D2

,

hence,
∑

{(x,y),(x,v)}⊆V (G14G2)
yv /∈E2

1

D + 1 − dG2
(y, v)

≤
∑

{(x,y),(x,v)}⊆V (G14G2)
yv /∈E2

1

D2 + 1 − dG2
(y, v)

= n1

(

RCW (G2) −
m2

D2

)

.

Similarly, we can check that
∑

{(x,y),(u,y)}⊆V (G14G2)
xu/∈E1

1

D + 1 − dG1
(x, u)

≤ n2

(

RCW (G1) −
m1

D1

)

,

∑

{(x,y),(u,v)}⊆V (G14G2)
xu∈E1,yv /∈E2

1

D + 1 − dG2
(y, v)

≤ 2m1

(

RCW (G2) −
m2

D2

)

,

∑

{(x,y),(u,v)}⊆V (G14G2)
xu/∈E1,yv∈E2

1

D + 1 − dG1
(x, u)

≤ 2m2

(

RCW (G1) −
m1

D1

)

.

Also, we have
∑

{(x,y),(u,v)}⊆V (G14G2)
xu/∈E1,yv /∈E2

1

D + 1 − max {dG1
(x, u), dG2

(y, v)}
︸ ︷︷ ︸

≤D

≤
∑

{(x,y),(u,v)}⊆V (G14G2)
xu/∈E1,yv /∈E2

1

=2

[(

n1

2

)

− m1

] [(

n2

2

)

− m2

]

.

On the other hand, it is easy to see that
∑

{(x,y),(x,v)}⊆V (G14G2)
yv∈E2

1

D
=

n1m2

D
,

∑

{(x,y),(u,y)}⊆V (G14G2)
xu∈E1

1

D
=

n2m1

D
,

∑

{(x,y),(u,v)}⊆V (G14G2)
xu∈E1,yv∈E2

1

D
=

2m1m2

D
.
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Therefore,

RCW (G14G2) ≤
1

D
(2m1m2 + n1m2 + n2m1) + (n1 + 2m1)

(

RCW (G2) −
m2

D2

)

+ (n2 + 2m2)
(

RCW (G1) −
m1

D1

)

+ 2

[(

n1

2

)

− m1

] [(

n2

2

)

− m2

]

.

�

Using similar arguments as in the proof of Theorem 2.5, one can prove the following
result.

Lemma 2.2. Let Kr be a complete graph on r vertices and G be a graph with n
vertices, m edges and diameter d. Then

RCW (G4Kr) =
1

d

[

rm + dr2
(

RCW (G) −
m

d

)

+ (n + 2m)

(

r

2

)]

.

Example 2.4. By the definition of the composition and strong product of two graphs
one can see that, G[Kn] = G4Kn. The open fence graph is the composition (or strong
product) of path Pn and K2. So, from Theorem 2.3 (i) (or Lemma 2.2), we have

RCW (Pn[K2]) = RCW (Pn4K2) =
n

n − 1
+ 4n − 4, n ≥ 3.

As an application, in the following result, we obtain the reciprocal complementary
Wiener number of the closed fence graph Cn4K2.

Lemma 2.3. Let Cn be a cycle graph on n vertices. Then

RCW (Cn4K2) =







4n

n
2∑

k=1

1

k
− 2n + 8, 2 | n,

4n

n−1

2∑

k=1

1

k
+

2n

n − 1
, 2 ∤ n.

Proof. We first obtain the reciprocal complementary Wiener number of a cycle graph
Cn on n vertices. Regarding the structure of the cycle Cn, it can easily be concluded
that if n is even then D(Cn, k) = n, k = 1, 2, . . . , n

2
− 1 and D(Cn, n

2
) = n

2
. On the

other hand, if n is odd then D(Cn, k) = n, k = 1, 2, . . . , n−1
2

. Hence, by applying
relation (1.3), we have

RCW (Cn) =







−
n

2
+ n

n
2∑

k=1

1

k
, 2 | n,

n

n−1

2∑

k=1

1

k
, 2 ∤ n.

Finally, the proof is completed using Lemma 2.2. �
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2.6. Symmetric difference. The symmetric difference G1 ⊕ G2 of graphs G1 and
G2 is the graph with vertex set V1 × V2 and (x, y) is adjacent with (u, v) whenever
xu ∈ E1 or yv ∈ E2 but not both. Note that if ni = 1 for some i ∈ {1, 2}, then
G1 ⊕ G2

∼= Gn′

i
, where n′

i = 3 − i.
In the following lemma, we compute the symmetric difference of two graphs with

respect to their numbers of vertices and edges.

Theorem 2.6. Let G1 and G2 be two graphs on n1 > 1 and n2 > 1 vertices, respec-

tively. Then

RCW (G1 ⊕ G2) =
1

2

(

4m1m2 + n2
1n

2
2 − m1n

2
2 − m2n

2
1 − n1n2

)

.

Proof. By [8, Lemma 4], we have

dG1⊕G2

(

(x, y), (u, v)
)

=







0, x = u and y = v,

1, xu ∈ E1 or yv ∈ E2, but not both,

2, otherwise.

Hence, by applying these relations, we get D = D(G1 ⊕ G2) = 2. So,

RCW (G1 ⊕ G2) =
∑

{(x,y),(u,v)}⊆V (G1⊕G2)

1

D + 1 − dG1⊕G2

(

(x, y), (u, v)
)

=
∑

{(x,y),(x,v)}⊆V (G1⊕G2)
yv∈E2

1

2
+

∑

{(x,y),(x,v)}⊆V (G1⊕G2)
yv /∈E2

1

+
∑

{(x,y),(u,y)}⊆V (G1⊕G2)
xu∈E1

1

2
+

∑

{(x,y),(u,y)}⊆V (G1⊕G2)
xu/∈E1

1

+
∑

{(x,y),(u,v)}⊆V (G1⊕G2)
xu∈E1,yv /∈E2

1

2
+

∑

{(x,y),(u,v)}⊆V (G1⊕G2)
xu∈E1,yv∈E2

1

+
∑

{(x,y),(u,v)}⊆V (G1⊕G2)
xu/∈E1,yv∈E2

1

2
+

∑

{(x,y),(u,v)}⊆V (G1⊕G2)
xu/∈E1,yv /∈E2

1

=
1

2

(

4m1m2 + n2
1n

2
2 − m1n

2
2 − m2n

2
1 − n1n2

)

. �

2.7. Corona product. Let V1 = {u1, u2, . . . , un1
} and V2 = {v1, v2, . . . , vn2

} be the
vertex sets of given graphs G1 and G2, respectively. The corona product of G1 and G2

is denoted by G1 ◦ G2 and defined as the graph obtained by taking n1 copies of G2

and joining each vertex of the ith copy with vertex ui of V1, i = 1, 2, . . . , n1. Denote
by Gi

2 the ith copy of G2 joined to the vertex ui of G1, and let V i
2 = {vi1, vi2, . . . , vin2

},
i = 1, 2, . . . , n1.
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Theorem 2.7. Let G1 and G2 be two graphs on n1 > 1 and n2 ≥ 1 vertices, respec-

tively. Then

RCW (G1 ◦ G2) < (n2 + 1)2RCW (G1) +
n1n2

D1 + 2
+

n1

[(
n2

2

)

− m2

]

D1 + 1
.

Proof. From definition of the corona product of graphs, it is easy to check that

dG1◦G2
(ui, up) = dG1

(ui, up),

dG1◦G2
(ui, vpq) = dG1

(ui, up) + 1,

dG1◦G2
(vij, vpq) =







0, i = p and j = q,

1, i = p and vjvq ∈ E2,

2, i = p and vjvq /∈ E2,

dG1
(ui, up) + 2, i 6= p.

So, we can see that D = D(G1 ◦ G2) = D1 + 2. Hence,

RCW (G1 ◦ G2) =
∑

{x,y}⊆V (G1◦G2)

1

D + 1 − dG1◦G2
(x, y)

=
∑

{x,y}⊆V1

1

D + 1 − dG1◦G2
(x, y)

+
n1∑

i=1

∑

{vij ,viq}⊆V i
2

1

D + 1 − dG1◦G2
(vij, viq)

+
n1∑

i=1

n1∑

p=1

n2∑

q=1

1

D + 1 − dG1◦G2
(ui, vpq)

+
n1−1∑

i=1

n1∑

p=i+1

n2∑

j=1

n2∑

q=1

1

D + 1 − dG1◦G2
(vij, vpq)

.

Consider now for convenience:

S1 =
∑

{x,y}⊆V1

1

D + 1 − dG1◦G2
(x, y)

,

S2 =
n1∑

i=1

∑

{vij ,viq}⊆V i
2

1

D + 1 − dG1◦G2
(vij, viq)

,

S3 =
n1∑

i=1

n1∑

p=1

n2∑

q=1

1

D + 1 − dG1◦G2
(ui, vpq)

,

S4 =
n1−1∑

i=1

n1∑

p=i+1

n2∑

j=1

n2∑

q=1

1

D + 1 − dG1◦G2
(vij, vpq)

.
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So, we have

S1 =
∑

{x,y}⊆V1

1

D + 1 − dG1◦G2
(x, y)

=
∑

{x,y}⊆V1

1

D1 + 3 − dG1
(x, y)

< RCW (G1),

S2 =
n1∑

i=1

∑

{vij ,viq}⊆V i
2

1

D + 1 − dG1◦G2
(vij, viq)

=
n1∑

i=1

∑

{vij ,viq}⊆V i
2

vjvq∈E2

1

D1 + 2
+

n1∑

i=1

∑

{vij ,viq}⊆V i
2

vjvq /∈E2

1

D1 + 1

=
n1m2

D1 + 2
+

n1

[(
n2

2

)

− m2

]

D1 + 1
,

S3 =
n1∑

i=1

n1∑

p=1

n2∑

q=1

1

D + 1 − dG1◦G2
(ui, vpq)

=
n1∑

i=1

n2∑

q=1

1

D1 + 2
+

n1∑

i=1

n1∑

p=1
p6=i

n2∑

q=1

1

D1 + 2 − dG1
(ui, up)

<
n1n2

D1 + 2
+ 2n2RCW (G1),

S4=
n1−1∑

i=1

n1∑

p=i+1

n2∑

j=1

n2∑

q=1

1

D + 1 − dG1◦G2
(vij, vpq)

=
n1−1∑

i=1

n1∑

p=i+1

n2∑

j=1

n2∑

q=1

1

D1 + 1 − dG1
(ui, up)

= n2
2RCW (G1).

Therefore,

RCW (G1 ◦ G2) < (n2 + 1)2RCW (G1) +
n1n2

D1 + 2
+

n1

[(
n2

2

)

− m2

]

D1 + 1
. �

2.8. Splice and link. Let G1 and G2 be two connected graphs with disjoint vertex
sets V1 and V2, respectively. For given vertices u ∈ V1 and v ∈ V2, a splice of G1 and
G2 by vertices u and v is denoted by (G1.G2)(u, v) and defined by identifying the
vertices u and v in the union of G1 and G2. Also, a link of G1 and G2 by vertices u
and v is denoted by (G1 ∼ G2)(u, v) and obtained by joining u and v by an edge in
the union of these graphs.

Theorem 2.8. Let G1 and G2 be two graphs on n1 and n2 vertices, respectively. Then
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(i) RCW
(

(G1.G2)(u, v)
)

≤ (n1 − 1)(n2 − 1) + RCW (G1) + RCW (G2);

(ii) RCW
(

(G1 ∼ G2)(u, v)
)

≤ n1n2 + RCW (G1) + RCW (G2).

Equality in (i) holds if and only if one of the following cases occurs:

(i1) ni = 1, for some i ∈ {1, 2};

(i2) G1 and G2 are non-complete graphs and εG1
(u) = εG2

(v) = 1.

Moreover, equality in (ii) holds if and only if n1 = n2 = 1.

Proof. Suppose Ḋ and D̃ are the diameter of the splice and link of graphs G1 and G2

by vertices u and v, respectively. By above definitions of the splice and link of graphs,
one can easily see that

d(G1.G2)(u,v)(x, y) =







dG1
(x, y), x, y ∈ V1,

dG2
(x, y), x, y ∈ V2,

dG1
(x, u) + dG2

(y, v), x ∈ V1 and y ∈ V2,

and also,

d(G1∼G2)(u,v)(x, y) =







dG1
(x, y), x, y ∈ V1,

dG2
(x, y), x, y ∈ V2,

dG1
(x, u) + dG2

(y, v) + 1, x ∈ V1 and y ∈ V2.

Hence, in graph (G1.G2)(u, v), if the endpoints of a diametral path (i.e. a shortest
path between two vertices whose distance is equal to the diameter of the graph) are
in the graph G1 (or G2) then Ḋ=D1 (or D2), otherwise if one of these endpoints
belongs to V1 and the other endpoint belongs to V2, then Ḋ=εG1

(u) + εG2
(v). Thus,

Ḋ=max {D1, D2, εG1
(u) + εG2

(v)}. Similarly, D̃=max {D1, D2, εG1
(u) + εG2

(v) + 1} .
By applying the above obtained relationships and also definitions of the splice and
link of graphs, it is obvious that if n1 = 1 or n2 = 1, then the equality in (i) holds.
Assume that n1, n2 ≥ 2, then

RCW
(

(G1.G2)(u, v)
)

=
∑

{x,y}⊆V

(

(G1.G2)(u,v)

)

1

Ḋ + 1 − d(G1.G2)(u,v)(x, y)

=
∑

{x,y}⊆V1

1

Ḋ + 1 − dG1
(x, y)

+
∑

{x,y}⊆V2

1

Ḋ + 1 − dG2
(x, y)

+
∑

x∈V1\{u}
y∈V2\{v}

1

Ḋ + 1 − dG1
(x, u) − dG2

(y, v)

≤ (n1 − 1)(n2 − 1) + RCW (G1) + RCW (G2),

and equality holds when Ḋ = D1 = D2 = dG1
(x, u)+dG2

(y, v), for all x ∈ V1 \{u} and
y ∈ V2 \ {v}. On the other hand, since G1 and G2 are connected graphs, we conclude
that equality holds if and only if dG1

(x, u) = dG2
(y, v) = 1 and D1 = D2 = 2, for all

x ∈ V1 \ {u} and y ∈ V2 \ {v}. This means that G1 and G2 are non-complete graphs
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and εG1
(u) = εG2

(v) = 1, which completes the proof of part (i). The proof of part (ii)
can be completed by using the similar arguments as in the proof of part (i). �
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EXTENDED CONVERGENCE OF A TWO-STEP-SECANT-TYPE

METHOD UNDER A RESTRICTED CONVERGENCE DOMAIN

IOANNIS K. ARGYROS1 AND SANTHOSH GEORGE2

Abstract. We present a local as well as a semi-local convergence analysis of a
two-step secant-type method for solving nonlinear equations involving Banach space
valued operators. By using weakened Lipschitz and center Lipschitz conditions in
combination with a more precise domain containing the iterates, we obtain tighter
Lipschitz constants than in earlier studies. This technique lead to an extended
convergence domain, more precise information on the location of the solution and
tighter error bounds on the distances involved. These advantages are obtained under
the same computational effort, since the new constants are special cases of the old
ones used in earlier studies. The new technique can be used on other iterative
methods. The numerical examples further illustrate the theoretical results.

1. Introduction

Let F : D ⊆ B1 → B2 be a Fréchet-differentiable operator, B1 and B2 be Banach
spaces and D be a nonempty convex subset of B1. One of the most important problems
in mathematics and computational sciences is finding a locally unique solution x∗ of
the equation

(1.1) F (x) = 0.

Many problems in the aforementioned disciplines can be written in a form like (1.1)
using mathematical modeling. The solution x∗ is sought in closed form but this can
be achieved only in special cases. This is the reason why most solution methods for
equation (1.1) are iterative. The most popular methods for generating a sequence

Key words and phrases. Two step secant-type method, local convergence, Banach space, restricted
convergence domain, divided difference.
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approximating x∗ are one-step Newton or Secant-type or two step Newton or Secant-
type methods [1–18].

The study of convergence of iterative algorithms is usually centered into two cate-
gories: semi-local and local convergence analysis. The semi-local convergence is based
on the information around an initial point, to obtain conditions ensuring the conver-
gence of these algorithms, while the local convergence is based on the information
around a solution to find estimates of the computed radii of the convergence balls.
Local results are important since they provide the degree of difficulty in choosing
initial points.

In the present paper we study the local as well as the semi-local convergence of
two-step secant-type method defined for each n = 0, 1, 2, . . ., An = [xn, yn; F ] by

xn+1 =xn − A−1
n F (xn),(1.2)

yn+1 =xn+1 − A−1
n F (xn+1),

where x0, y0 ∈ D are initial points and [·, ·; F ] : D2 → L(B1,B2) is a divided difference
of order one for F on D satisfying

[x, y; F ](x − y) = F (x) − F (y), for each x, y ∈ D with x 6= y,

and

[x, x; F ] = F ′(x), for each x ∈ D

(if F is Fréchet differentiable on D). Notice that in the case of the secant method

xn+1 = xn − [xn−1, xn; F ]−1F (xn)

or

xn+1 = xn − [xn, xn−1; F ]−1F (xn),

we presented in [13] a convergence analysis under center Lipschitz and weak Lipschitz
conditions (see (a4) and (a5)) leading to the following advantages (A) over other
approaches (using only Lipschitz conditions), (see (a4) and (c4)).

(a) Extended convergence domain.
(b) Tighter error bounds on the distances ‖xn+1 − xn‖, ‖xn − x∗‖, ‖yn − x∗‖.
(c) At least as precise information on the location of the solution.

Our semi-local convergence analysis also improves the corresponding one in [11],
since in our article we use the center-Lipschitz condition to locate a subset D0 of
D containing the iterates. This way the Lipschitz constants are tighter than in [11],
resulting to the advantages (a)-(c). It is worth noticing that these advantages are
obtained under the same computational effort, since the new constants are tighter and
special cases of the constants in [11]. Hence, we have extended the applicability of
method (1.2). Moreover, we have provided the local convergence analysis of method
(1.2) not given in [11].

Notice that extending the semi-local convergence domain is important, especially
since the convergence domain of such methods is small in general. Tighter error
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bounds implies that fewer iterates must be computed to obtain prespecified error
tolerance.

The local, semi-local convergence analysis for method (1.2) is given in Section 2,
Section 3, respectively, whereas Section 4 contains the numerical examples.

2. Local Convergence

We shall define some scalar functions and parameters to be used in the local conver-
gence analysis of method (1.2). Let ℓ0, ℓ, ℓ1, ℓ2, ℓ3 and ℓ4 be nonnegative parameters.
Let r0 = 1

ℓ0+ℓ
and r1 = 1

ℓ0+ℓ+ℓ1+ℓ2

. Define functions g1, g2, h1 and h2 on the interval

[0, r0) by

g1(t) =
(ℓ1 + ℓ2)t

1 − (ℓ0 + ℓ)t
,

g2(t) =
ℓ3(g1(t)t + t) + ℓ4t

1 − (ℓ0 + ℓ)t
,

h1(t) =g1(t) − 1

and

h2(t) = g2(t) − 1.

We have h1(r1) = 0 and for each t ∈ [0, r1), 0 ≤ g1(t) < 1. Moreover, h1(0) = −1 and
h2(t) → +∞ as t → r−

0 . Hence, function h2 has zeros in the interval (0, r0). Denote
by r2 the smallest such zero. Define functions g0 and h0 on the interval [0, r0) by

g0(t) = ℓ0g1(t) + ℓg2(t)

and

h0(t) = g0(t) − 1.

We get that h0(t) = −1 and h0(t) → +∞ as t → r−

0 . Denote by ρ the smallest zero
of function h0 on the interval (0, r0). Then, define functions g3 and h3 on the interval
[0, ρ) by

g3(t) =
ℓ1g1(t) + ℓ2g2(t)

1 − (ℓ0g1(t) + ℓg2(t))

and

h3(t) = g3(t) − 1.

We obtain that h3(0) = −1 and h3(t) → +∞ as t → ρ−. Denote by r3 the smallest
zero of function h3. Define the radius of convergence r by

(2.1) r = min{ri : i = 1, 2, 3}.

Then, we have that for each t ∈ [0, r)

(2.2) 0 ≤ gi(t) < 1.

Let B(x, λ) = {y ∈ X : ‖x − y‖ < λ} and B̄(x, λ) be the closure of B(x, λ).
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Definition 2.1. Set D0 = D ∩ B(x∗, 1
ℓ
). The set T ∗ = (F, x0, y0, x∗) belongs to the

class K∗ = K∗(ℓ0, ℓ, ℓ1, ℓ2, ℓ3, ℓ4), if

(a1) F : D ⊂ B1 → B2 is a Fréchet differentiable operator and [., .; F ] : D2 →
L(B1,B2) is a divided difference for F of order one on D2;

(a2) there exists x∗ ∈ D such that F (x∗) = 0 and F ′(x∗)−1 ∈ L(B2,B1);
(a3) there exist ℓ0 ≥ 0, ℓ ≥ 0 with ℓ0, ℓ not both zero such that for each x, y ∈ D

‖F ′(x∗)−1([x, y; F ] − F ′(x∗))‖ ≤ ℓ0‖x − x∗‖ + ℓ‖y − x∗‖;

(a4) there exist ℓi ≥ 0, i = 1, 2, 3, 4, such that for each x, y, z ∈ D0

‖F ′(x∗)−1([x, y; F ] − [x, x∗; F ])‖ ≤ℓ1‖x − x∗‖ + ℓ2‖y − x∗‖,

‖F ′(x∗)−1([x, y; F ] − [z, x∗; F ])‖ ≤ℓ3‖x − x∗‖ + ℓ4‖y − x∗‖;

(a5) B̄(x∗, r) ⊆ D, where r is defined in (2.1).

The local convergence analysis of method (1.2) follows in the class K∗.

Theorem 2.1. Suppose that T ∗ ⊆ K∗ holds. Then, sequence {xn} generated for

x0, y0 ∈ B(x∗, r) − {x∗} is well defined in B(x∗, r), remains in B(x∗, r) for each

n = 0, 1, 2, . . . and converges to x∗. Moreover, the following estimates hold

‖xn+1 − x∗‖ ≤g1(r)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r,(2.3)

‖yn+1 − x∗‖ ≤g2(r)‖xn+1 − x∗‖ ≤ ‖xn+1 − x∗‖ < r(2.4)

and

(2.5) ‖xn+2 − x∗‖ ≤ g3(r)‖xn+1 − x∗‖ ≤ ‖xn+1 − x∗‖,

where the functions gi, i = 1, 2, 3, are defined previously. Furthermore, the solution

x∗ of equation F (x) = 0 is unique in D1 = D ∩ B̄(x∗, R) for R ∈ [r, 1
ℓ0+ℓ

).

Proof. We shall use mathematical induction to show estimates (2.3)-(2.5). By hypoth-
esis x0, y0 ∈ B(x∗, r) − {x∗}, (2.1), (a2) and (a3), we have in turn that

(2.6) ‖F ′(x∗)−1(A0 − F ′(x∗))‖ ≤ ℓ0‖x0 − x∗‖ + ℓ‖y0 − x∗‖ ≤ (ℓ0 + ℓ)r < 1.

By (2.6) and the Banach lemma on invertible operators [1,4,5,10,15], we deduce that
A−1

0 ∈ L(B2,B1) and

‖A−1
0 F ′(x∗)‖ ≤ 1

1 − (ℓ0‖x0 − x∗‖ + ℓ‖y0 − x∗‖)
.
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Hence, x1, y1 are well defined by method (1.2) for n = 0. Then, using (a2), (2.1), (2.2)
and (a4) we get in turn that

‖x1 − x∗‖ =‖x0 − x∗ − A−1
0 F (x0)‖

≤‖A−1
0 F ′(x∗)‖‖F ′(x∗)−1(A0 − [x0, x∗; F ])‖‖x0 − x∗‖

≤ ℓ1‖x0 − x∗‖ + ℓ2‖y0 − x∗‖
1 − (ℓ0‖x0 − x∗‖ + ℓ1‖y0 − x∗‖)

‖x0 − x∗‖

≤g1(r)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r,(2.7)

‖y1 − x∗‖ ≤‖A−1
0 F ′(x∗)‖‖F ′(x∗)−1(A0 − [x1, x∗; F ])‖‖x1 − x∗‖

≤ ℓ3‖x1 − x0‖ + ℓ4‖y0 − x∗‖
1 − (ℓ0‖x0 − x∗‖ + ℓ1‖y0 − x∗‖)

‖x0 − x∗‖

≤ℓ3(‖x1 − x∗‖ + ‖x0 − x∗‖) + ℓ4‖y0 − x∗‖
1 − (ℓ0‖x0 − x∗‖ + ℓ1‖y0 − x∗‖)

‖x0 − x∗‖

≤g2(r)‖x1 − x∗‖ ≤ ‖x1 − x∗‖ < r,(2.8)

and similarly to (2.7)

‖x2 − x∗‖ ≤ ℓ1‖x1 − x∗‖ + ℓ2‖y0 − x∗‖
1 − (ℓ0‖x1 − x∗‖ + ℓ‖y1 − x∗‖)

‖x1 − x∗‖(2.9)

≤g3(r)‖x1 − x∗‖ ≤ ‖x1 − x∗‖.

That is estimates (2.7)–(2.9) show (2.3)–(2.5), respectively for k = 0. By simply
replacing x0, y0, x1, y1, x2, y2 by xk, yk, xk+1, yk+1, xk+2, yk+2 in the preceding estimates,
we complete the induction for (2.3)–(2.5). Then, it follows from the estimate

‖xk+2 − x∗‖ ≤ c‖xk+1 − x∗‖ < r,

where c = g3(r) ∈ [0, 1) that limk→∞ xk = x∗. Finally, to show the uniqueness part,
let y∗ ∈ D0 with F (y∗) = 0. Set E = [x∗, y∗; F ]. Then, by (a3), we get

‖F ′(x∗)−1(E − F ′(x∗))‖ ≤ ℓ‖y∗ − x∗‖ ≤ ℓR < 1,

so E−1 ∈ L(B2,B1). Using the identity

0 = F (x∗) − F (y∗) = [x∗, y∗; F ](x∗ − y∗),

we conclude that x∗ = y∗. �

Let ρ = min
{

1
ℓ0+ℓ+ℓ1+ℓ2

, 1
ℓ0+ℓ+2ℓ3+ℓ4

}

. Define parameters a1 = ℓ1

1−(ℓ0+ℓ)ρ
,

a2 = ℓ2

1−(ℓ0+ℓ)ρ
, a3 = a4 = ℓ3

1−(ℓ0+ℓ)ρ
and a5 = ℓ4

1−(ℓ0+ℓ)ρ
. Then, for x0, y0 ∈ B(x∗, ρ), we

have by the proof of Theorem 2.1, that

‖xn+1 − x∗‖ ≤ (a1‖xn − x∗‖ + a2‖yn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < ρ,
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‖yn+1 − x∗‖ ≤(a3‖xn+1 − x∗‖ + a4‖xn − x∗‖ + a5‖yn − x∗‖)‖xn+1 − x∗‖
≤‖xn+1 − x∗‖ < ρ,

‖xn+2 − x∗‖ ≤(a1‖xn+1 − x∗‖ + a2‖yn+1 − x∗‖)‖xn+1 − x∗‖
≤‖xn+1 − x∗‖,

‖yn+2 − x∗‖ ≤(a3‖xn+1 − x∗‖ + a4‖xn+1 − x∗‖ + a5‖yn+1 − x∗‖)‖xn+2 − x∗‖
≤‖xn+2 − x∗‖

and

‖xn+3 − x∗‖ ≤(a1‖xn+2 − x∗‖ + a2‖yn+2 − x∗‖)‖xn+2 − x∗‖
≤(a1 + a2)‖xn+2 − x∗‖2.

Hence, we arrive at following proposition.

Proposition 2.1. Let T ∗ ⊂ K∗ with r replaced by ρ. Then, sequence {xn} converges

quadratically to x∗ provided that x0, y0 ∈ B(x∗, ρ) − {x∗}. Moreover, the solution x∗

of equation F (x) = 0 is unique in D1 for R ∈
[

ρ, 1
ℓ0+ℓ

)

.

3. Semi-Local Convergence Analysis

Let L0, L, L1, L2 > 0, η ≥ 0 and η0 ≥ 0 be given parameters. As in Section 2, we
define a set.

Definition 3.1. Set D0 = D ∩ B(x∗, 1
L0+L

). The set T = T (F, x0, y0) belongs to class

K = K(L0, L, L1, L2, η0, η), if

(c1) F : D ⊂ B1 → B2 is a Fréchet differentiable operator and [·, ·; F ] : D2 →
L(B1,B2) is a divided difference for F of order one on D2;

(c2) there exists x0, y0 ∈ D and η ≥ 0, η ≥ 0 such that A−1
0 ∈ L(B2, B1), ‖x0−y0‖ ≤

η0 and ‖A−1
0 F (x0)‖ ≤ η;

(c3) there exist L0 ≥ 0, L ≥ 0 such that for each x, y ∈ D

‖A−1
0 ([x, y; F ] − A0)‖ ≤ L0‖x − x0‖ + L‖y − y0‖;

(c4) there exist Li ≥ 0, i = 1, 2, such that for each x, y, z ∈ D0

‖A−1
0 ([x, y; F ] − [y, z; F ])‖ ≤ L1‖x − y‖ + L2‖y − z‖;

(c5) B̄(x∗, t∗) ⊆ D, where t∗ is given in Lemma 3.1 that follows.

We need to define majorizing sequence {tn}, {un} by

t0 =0, u0 = η0, t1 = η, u1 = L1(1 + L0t1 + Lu0),

t2 =t1

(

1 +
L0t1 + Lu0

1 − (L0t1 + L(u1 + u0))

)

,

un+1 =tn+1 +
L1(tn+1 − tn) + L2(un − tn)

1 − (L0tn + L(un + u0))
(tn+1 − tn)
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and

tn+2 = tn+1 +
L1(tn+1 − tn) + L2(un − tn)

1 − (L0tn+1 + L(un+1 + u0))
(tn+1 − tn).

We also need the convergence result for the aforementioned majorizing sequences.

Lemma 3.1. ([12, Lemma 1, Page 734]). Let α ∈ (0, 1) be the unique solution of

equation q(t) = 0, where

q(t) = Lt3 + L0t
2 + (L1 + L2)t − (L1 + L2).

Suppose that

0 <
L0(t1 − t0) + Lu0

1 − (L0(t1 − t0) + L(u1 + u0))
≤ α < 1 − (L0 + L)t1

1 − Lu0

.

Then, sequences {tn}, {un} are non-decreasing, bounded from above by t∗∗ = t1

1−α
and

converge to their unique least upper bound t∗ such that t∗ ∈ [t1, t∗∗]. Moreover, for

each n = 1, 2, . . . the following estimates hold:

0 ≤un+1 − tn+1 ≤ α(tn+1 − tn),

0 ≤tn+2 − tn+1 ≤ α(tn+1 − tn)

and

tn ≤ un.

Based on Definition 3.1 and Lemma 3.1, we obtain the following semi-local conver-
gence result for method (1.2).

Theorem 3.1. Suppose T ⊆ K and conditions of Lemma 3.1 hold. Then, sequences

{xn} and {yn} generated by method (1.2), starting at x0, y0 ∈ D are well defined in

B(x0, t∗), remain in B(x0, t∗) for each n = 0, 1, 2, . . . and converges to the unique

solution x∗ of equation F (x) = 0 in D1 = D ∩ B̄
(

t∗, 1
L0+L

)

.

Proof. It follows from the corresponding proof in [12, Theorem 1, Page 735] but see
also the remark that follows. �

Remark 3.1. The semi-local convergence of method (1.2) was also established in [12]
but there is a major difference effecting the convergence domain, error bounds on the
distances ‖xn+1 − xn‖, ‖yn − xn‖ and the uniqueness domain. Indeed, the condition
used in [12] instead of (c4) is

(c′

4) ‖A−1
0 ([x, y; F ] − [u, v; F ])‖ ≤ M1‖x − u‖ + M2‖y − v‖ for each x, y, u, v ∈ D

and some M1 ≥ 0 and M2 ≥ 0.

But (c4) is weaker than (c̄4) even, if D0 = D. Therefore, L1 ≤ M1 and L2 ≤ M2, hold
in general (see [1, 4, 5]). The iterates remain in D0 which is a more accurate location
than D, since D0 ⊆ D leading to tighter Lipschitz constants and the advantages (A).
Define sequences {t̄n}, {ūn} as {tn}, {un}, respectively but with M1 replacing L1 and
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M2 replacing L2. Then, assuming that the rest of the hypotheses of Theorem 3.1 hold
with these changes, a simple inductive argument shows that

0 ≤un+1 − tn+1 ≤ ūn+1 − t̄n+1 ≤ ᾱ(t̄n+1 − t̄n),

0 ≤tn+2 − tn+1 ≤ t̄n+2 − t̄n+1 ≤ ᾱ(t̄n+1 − t̄n),

tn ≤t̄n,

un ≤ūn

and
t∗ ≤ t̄∗ = lim

n→∞

t̄n,

where ᾱ ∈ (0, 1) is the unique solution of equation q̄(t) = 0, with

q̄(t) = Lt3 + L0t
2 + (M1 + M2)t − (M1 + M2).

Notice that

q̄(α) =Lα3 + L0α
2 + (M1 + M2)α − (M1 + M2)

=q(α) + [(M1 − L1) + (M2 − L2)](α − 1) < 0,

since q(α) = 0, α ∈ (0, 1), L1 ≤ M1 and L2 ≤ M2. Therefore, we have α ≤ ᾱ. Hence,
we justified the claim made in the introduction (see also the numerical examples).

4. Numerical Examples

We present the following examples to test the convergence criteria. Define the
divided difference by

[x, y; F ] =
∫ 1

0
F ′(τx + (1 − τ)y)dτ.

Example 4.1. Let B1 = B2 = C[0, 1] be the space of continuous functions defined in
[0, 1] equipped with the max norm. Let D = {z ∈ C[0, 1] : ‖z‖ ≤ 1}. Define F on D

by [1,13]:

F (x)(s) = x(s) − f(s) − 1

8

∫ 1

0
G(s, t)x(t)3 dt, x ∈ C[0, 1], s ∈ [0, 1],

where f ∈ C[0, 1] is a given function and the kernel G is the Green’s function

G(s, t) =

{

(1 − s)t, t ≤ s,

s(1 − t), s ≤ t.

Notice that nonlinear integral equation F (x)(s) = 0 is of Chandrasekhar type [1, 4, 5,
10]. Then F ′(x) is a linear operator given for each x ∈ D, by

[F ′(x)(v)](s) = v(s) − 3

8

∫ 1

0
G(s, t)x(t)2v(t) dt, v ∈ C[0, 1], s ∈ [0, 1].

If we choose x0(s) = f(s) = s, then we obtain ‖F ′(x0)‖ ≤ 1
64

.

Choose x−1 = 2s, we see [13] that L1 = 0.08125 . . . , L2 = 0.040625 . . . , L =
0.0359375 . . . , L0 = 0.071875 . . . , t1 = η = 0.0298507 and u1 = η1 = 1. Notice
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that hypothesis 0 <
L0(t1−t0)+Lu0

1−(L0(t1−t0)+L(u1+u0))
≤ α < 1 − (L0+L)t1

1−Lu0

is satisfied. So, we can

guarantee the convergence of the Secant method (1.2) from Theorem 2.1.

Example 4.2. Let B1 = B2 = R
3, D = B(0, 1), x∗ = (0, 0, 0)T and define F on D by

F (x) = F (x1, x2, x3) =
(

ex1 − 1,
e − 1

2
x2

2 + x2, x3

)T

.

For the points u = (u1, u2, u3)
T , the Fréchet derivative is given by

F ′(u) =







eu1 0 0
0 (e − 1)u2 + 1 0
0 0 1





 .

Using the norm of the maximum of the rows and (a3)-(a4) and since F ′(x∗) =
diag(1, 1, 1), we can define parameters for method (1.2) by ℓ1 = 0, ℓ0 = ℓ = ℓ2 = e−1

2
,

ℓ3 = e
1

e−1

2
, ℓ4 = e−1

2
. Then, the radius of convergence using (2.1) is given by r = 0.2607.

Local results were not given in [12] but if they were, ℓ̄0 = ℓ̄ = e−1
2

, ℓ̄1 = 0, ℓ̄2 = e
2
,

then ℓ̄3 = ℓ̄4 = e
2
. Therefore, by (2.1) with ℓ4 replacing ℓ̄4, we get r̄ = 0.2340.
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