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A NOTE ON PROBABILITY CONVERGENCE DEFINED BY
UNBOUNDED MODULUS FUNCTION AND αβ-STATISTICAL

CONVERGENCE

SUMIT SOM

Abstract. In this paper we define f − αβ-statistical convergence of order γ in
probability and f − αβ-strong p-Cesàro summability of order γ in probability for a
sequence of random variables under unbounded modulus function and examine the
relation between these two concepts. We show by an example that this notion of
f−αβ-statistical convergence of order γ in probability is stronger than αβ-statistical
convergence of order γ in probability [9].

1. Introduction

The idea of convergence of a real sequence has been extended to statistical con-
vergence by Fast [10] and Steinhaus [19] and later on reintroduced by Schoenberg
[17] independently and is based on the notion of asymptotic density of the subset of
natural numbers. However, the first idea of statistical convergence (by different name)
was given by Zygmund [20] in the first edition of his monograph published in Warsaw
in 1935. Later on it was further investigated from the sequence space point of view
and linked with summability theorem by Fridy [11], Connor [5], Šalát [16], Das et. al.
[6], Fridy and Orhan [12].

In [3,4] a different direction was given to the study of statistical convergence where
the notion of statistical convergence of order γ (0 < γ < 1) was introduced by using
the notion of natural density of order γ (where n is replaced by nγ in the denominator
in the definition of natural density). It was observed in [3], that the behavior of this
new convergence was not exactly parallel to that of statistical convergence and some
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basic properties were obtained. More results on this convergence can be seen from
[18].

Recently the idea of statistical convergence of order γ was further extended to
αβ-statistical convergence of order γ in [2] as follows: Let α = {αn}n∈N, β = {βn}n∈N
be two non-decreasing sequences of positive real numbers satisfying the conditions,
αn ≤ βn for all n ∈ N, and (βn − αn) → ∞ as n → ∞. This pair of sequence
we denoted by (α, β). Then a sequence {xn}n∈N of real numbers is said to be αβ-
statistically convergent of order γ (where 0 < γ ≤ 1) to a real number x if for each
ε > 0, the set K = {n ∈ N : |xn − x| ≥ ε} has αβ-natural density zero, i.e.,

lim
n→∞

1
(βn − αn + 1)γ |{k ∈ [αn, βn] : |xk − x| ≥ ε}| = 0

and we write Sγαβ − lim xn = x or xn
Sγ
αβ−−→ x. αβ-statistical convergence of order γ is

more general than statistical convergence of order γ, lacunary statistical convergence
of order γ and λ statistical convergence of order γ if we take

(i) αn = 1 and βn = n, for all n ∈ N;
(ii) αr = (kr−1 + 1) and βr = kr, for all r ∈ N, where {kr}r∈N∪{0} is a lacunary

sequence;
(iii) αn = (n− λn + 1) and βn = n, for all n ∈ N, respectively.
On the other hand, in probability theory, a new type of convergence called statistical

convergence in probability was introduced in [13], as follows: Let {Xn}n∈N be a
sequence of random variables where each Xn is defined on the same sample space S
(for each n) with respect to a given class of events 4 and a given probability function
P : 4 → R. Then the sequence {Xn}n∈N is said to be statistically convergent in
probability to a random variable X (where X : S → R) if for any ε, δ > 0

lim
n→∞

1
n
|{k ≤ n : P (|Xk −X| ≥ ε) ≥ δ}| = 0.

In this case we write Xn
PS−−→ X. The class of all sequences of random variables which

are statistically convergent in probability is denoted by PS. One can also see [7,8,14]
for related works.

In the year 2014, the concept of f -statistical convergence was introduced by Aizpuru
et al. [1] just by replacing |{k ≤ n : |xk− c| ≥ ε}| and 1

n
by f(|{k ≤ n : |xk− c| ≥ ε}|)

and 1
f(n) , respectively, where f is an unbounded modulus function. The notion of a

modulus function was introduced by Nakano [15]. We recall that a modulus function
f is a function from [0,∞) to [0,∞) such that

(i) f(x) = 0 if and only if x = 0;
(ii) f(x+ y) ≤ f(x) + f(y) for all x, y ≥ 0;
(iii) f is increasing and f is continuous from the right at 0.
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The f -density of K ⊂ N is denoted by df (K) = limn→∞
f(|K(n)|)
f(n) . In case of f -density,

the relation df(N \K) = 1 − df(K) holds only when df(K) = 0. In other all cases
the relation can’t hold.

In a natural way in this paper we combine the approches of the above mentioned
papers and introduce new and more general methods, namely, f − αβ-statistical
convergence of order γ in probability, f − αβ-strong p-Cesàro summability of order
γ in probability for a sequence of random variables. We mainly investigate their
relationship and also make some observations about these classes. In the way we show
that the notion of f − αβ-statistical convergence of order γ in probability is stronger
than αβ-statistical convergence of order γ in probability (see [9]). It is important to
note that the method of proofs and in particular examples are not analogous to the
real case.Throughout the paper f will denote unbounded modulus function.

2. f − αβ-Statistical Convergence of Order γ in Probability

We first introduce the definition of f − αβ-statistical convergence of order γ for a
sequence of real numbers as follows.

Definition 2.1. Let {xn}n∈N be a sequence of real numbers and f be an unbounded
modulus function. The sequence {xn}n∈N is said to be f −αβ-statistically convergent
of order γ to a real number x if for any ε > 0

lim
n→∞

1
f((βn − αn + 1)γ)f(|{k ∈ [αn, βn] : |xk − x| ≥ ε}|) = 0.

The class of all real sequences which are f − αβ-statistically convergent of order γ is
denoted by Sγ,fαβ .

Now we like to introduce the definition of f − αβ-statistical convergence of order γ
in probability for a sequence of random variables as follows.

Definition 2.2. Let (S,4, P ) be a probability space and {Xn}n∈N be a sequence of
random variables where each Xn is defined on the same sample space S (for each n)
with respect to a given class of events 4 and a given probability function P : 4→ R.
Then the sequence {Xn}n∈N is said to be f − αβ-statistically convergent of order γ
(where 0 < γ ≤ 1) in probability to a random variable X (where X : S → R) if for
any ε, δ > 0

lim
n→∞

1
f((βn − αn + 1)γ)f(|{k ∈ [αn, βn] : P (|Xk −X| ≥ ε) ≥ δ}|) = 0

or equivalently

lim
n→∞

1
f((βn − αn + 1)γ)f(|{k ∈ [αn, βn] : 1− P (|Xk −X| < ε) ≥ δ}|) = 0.
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In this case we write Sγ,fαβ − limP (|Xn−X| ≥ ε) = 0 or Sγ,fαβ − limP (|Xn−X| < ε) = 1

or just Xn

PSγ,f
αβ−−−→ X. The class of all sequences of random variables which are f −αβ-

statistically convergent of order γ in probability is denoted simply by PSγ,fαβ .

In Definition 2.2, if we take f(x) = x then {Xn}n∈N is said to be αβ-statistically
convergent of order γ in probability to a random variable X. So, f − αβ-statistical
convergence of order γ in probability is a generalization of αβ-statistical convergence
of order γ in probability for a sequence of random variables.

To show that this is indeed more stronger notion than αβ-statistical convergence
of order γ in probability, we will now give an example of a sequence of random
variables which is αβ-statistically convergent of order γ in probability but is not
f − αβ-statistically convergent of order γ in probability.

Example 2.1. Let a sequence of random variables {Xn}n∈N be defined by

Xn ∈


{−1, 1} with probability 1

2 , if n = m2 for some m ∈ N,
{0, 1} with probability P (Xn = 0) =

(
1− 1

n2

)
and P (Xn = 1) = 1

n2 , if n 6= m2

for any m ∈ N.

Let 0 < ε, δ < 1. Then, we have,

P (|Xn − 0| ≥ ε) = 1, if n = m2 for some m ∈ N,

and
P (|Xn − 0| ≥ ε) = 1

n2 , if n 6= m2 for any m ∈ N.

Let 1
2 < γ ≤ 1, αn = 1, βn = n2, for all n ∈ N and f(x) = x

1+x for all x ≥ 0. Then
we have the inequality

1
n2γ |{k ∈ [1, n2] : P (|Xn − 0| ≥ ε) ≥ δ}| =

(
n

n2γ + d

n2γ

)
→ 0 as n→∞,

where d is a finite positive integer. So, Xn

PSγ
αβ−−−→ 0, where 1

2 < γ ≤ 1. But

lim
n→∞

1
f((βn − αn + 1)γ)f(|{k ∈ [αn, βn] : P (|Xk − 0| ≥ ε) ≥ δ}|) = 1.

This shows that {Xn}n∈N is not f − αβ-statistically convergent of order γ in prob-
ability to 0.

Theorem 2.1. If a sequence of constants xn
Sγ,f
αβ−−→ x, then regarding a constant as

a random variable having one point distribution at that point, we may also write

xn
PSγ,f

αβ−−−→ x.

Proof. Proof is straight forward, so omitted. �
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The following example shows that in general the converse of Theorem 2.1 is not
true and also shows that there is a sequence {Xn}n∈N of random variables which is
f − αβ-statistically convergent in probability to a random variable X but it is not
f − αβ-statistically convergent of order γ in probability for 0 < γ < 1.

Example 2.2. Let c be a rational number between γ1 and γ2. Let the probability
density function of Xn be given by

fn(x) =

1, where 0 < x < 1,
0, otherwise, if n = [m 1

c ] for some m ∈ N,

fn(x) =


nxn−1

2n , where 0 < x < 2,
0, otherwise, if n 6= [m 1

c ] for any m ∈ N.
Now let 0 < ε, δ < 1. Then

P (|Xn − 2| ≥ε) = 1, if n = [m 1
c ] for some m ∈ N,

P (|Xn − 2| ≥ε) =
(

1− ε

2

)n
, if n 6= [m 1

c ] for any m ∈ N.

Now let αn = 1, βn = n2, f(x) =
√
x for all x ≥ 0. Consequently, we have the

inequality

lim
n→∞

√
n2c − 1
n2γ1

≤ lim
n→∞

1
f(n2γ1)f(|{k ∈ [1, n2] : P (|Xk − 2| ≥ ε) ≥ δ}|)

and

lim
n→∞

1
f(n2γ2)f(|{k ∈ [1, n2] : P (|Xk − 2| ≥ ε) ≥ δ}|) ≤ lim

n→∞

√
n2c + 1
n2γ2

+ d

n2γ2
,

where d is a fixed finite positive integer. This shows that {Xn}n∈N is f−αβ-statistically
convergent of order γ2 in probability to 2 but is not f − αβ-statistically convergent
of order γ1 in probability to 2 whenever γ1 < γ2 and this is not the usual f − αβ-
statistical convergence of order γ of real numbers. So, the converse of Theorem 2.1

is not true. Also by taking γ2 = 1, we see that Xn

PS1,f
αβ−−−→ 2 but {Xn}n∈N is not

f − αβ-statistically convergent of order γ in probability to 2 for 0 < γ < 1.

Theorem 2.2 (Elementary properties). (i) If Xn

PSγ,f
αβ−−−→ X and Xn

PSγ,g
αβ−−−→ Y ,

then P{X = Y } = 1, where f and g are unbounded modulus functions and
0 < γ ≤ 1.

(ii) If Xn

PS
γ1,f
αβ−−−−→ X and Xn

PS
γ2,f
αβ−−−−→ Y , then P{X = Y } = 1 for any γ1, γ2 where

0 < γ1, γ2 ≤ 1.
(iii) Let 0 < γ1 ≤ γ2 ≤ 1. Then PSγ1,f

αβ ⊆ PSγ2,f
αβ and this inclusion is strict

whenever γ1 < γ2.
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Proof. (i) If possible let P{X = Y } 6= 1. Then, there exists two positive real numbers
ε and δ such that P (|X − Y | ≥ ε) = δ > 0. Then we have

lim
n→∞

f(βn − αn + 1)
f((βn − αn + 1)γ)

− lim
n→∞

1
f((βn − αn + 1)γ)f

(∣∣∣∣∣
{
k ∈ [αn, βn] : P

(
|Xk − Y | ≥

ε

2

)
≥ δ

2

}∣∣∣∣∣
)

≤ lim
n→∞

1
f((βn − αn + 1)γ)f

(∣∣∣∣∣
{
k ∈ [αn, βn] : P

(
|Xk −X| ≥

ε

2

)
≥ δ

2

}∣∣∣∣∣
)
,

which is impossible because the left hand limit is not 0 whereas the right hand limit
is 0. So, P{X = Y } = 1.

(ii) Proof is straightforward and so is omitted.
(iii) The first part is obvious. The inclusion is proper as can be seen from Exam-

ple 2.2. �

Remark 2.1. In Theorem 2 [3] it was observed that mγ1
0 ⊂ mγ2

0 and this inclusion
was shown to be strict for at least those γ1, γ2 for which there is a k ∈ N such that
γ1 <

1
k
< γ2. But Example 2.2 shows that the inequality is strict whenever γ1 < γ2.

Corollary 2.1. Let f and g be two unbounded modulus functions and 0 < γ ≤ 1.
Then PSγ,fαβ = PSγ,gαβ .

Theorem 2.3. If Xn

PSγ,f
αβ−−−→ X (where f is an unbounded modulus function), then

Xn

PSγ
αβ−−−→ X.

Proof. As Xn

PSγ,f
αβ−−−→ X so for any ε, δ > 0,

lim
n→∞

1
f((βn − αn + 1)γ)f(|{k ∈ [αn, βn] : P (|Xk −X| ≥ ε) ≥ δ}|) = 0.

Let 1
p1
> 0. Then there exists p ∈ N such that for all n ≥ p,

f(|{k ∈ [αn, βn] : P (|Xk −X| ≥ ε) ≥ δ}|) < 1
p1
f((βn − αn + 1)γ)

⇒f(|{k ∈ [αn, βn] : P (|Xk −X| ≥ ε) ≥ δ}|)

<
1
p1
f

(
(βn − αn + 1)γ

p1
+ · · ·+ (βn − αn + 1)γ

p1

)

⇒f(|{k ∈ [αn, βn] : P (|Xk −X| ≥ ε) ≥ δ}|) ≤ f

(
(βn − αn + 1)γ

p1

)

⇒|{k ∈ [αn, βn] : P (|Xk −X| ≥ ε) ≥ δ}| ≤ (βn − αn + 1)γ
p1

⇒ lim
n→∞

1
(βn − αn + 1)γ |{k ∈ [αn, βn] : P (|Xk −X| ≥ ε) ≥ δ}| = 0.
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This shows that Xn

PSγ
αβ−−−→ X. �

From Theorem 2.3 and Example 2.1 we see that this notion of f − αβ-statistical
convergence of order γ in probability is stronger than αβ-statistical convergence of
order γ in probability (see [9]).

Theorem 2.4. Let f be an unbounded modulus function and 0 < γ ≤ 1. Let (α, β) and
(α′, β′) are two pairs of sequences of positive real numbers such that [α′n, β′n] ⊆ [αn, βn]
for all n ∈ N and f((βn − αn + 1)γ) ≤ εf((β′n − α′n + 1)γ) for some ε > 0. Then we
have PSγ,fαβ ⊆ PSγ,fα′β′.

Proof. Proof is straightforward and so is omitted. �

But if the condition of the Theorem 2.4 is violated, then limit may not be unique
for two different (α, β)’s. We now give an example to show this.

Example 2.3. Let α = {(2n)!}, β = {(2n+1)!} and α′ = {(2n+1)!}, β′ = {(2n+2)!}
and f(x) =

√
x for all x ≥ 0.

Let us define a sequence of random variables {Xn}n∈N by,

Xk ∈



{−1, 1} with probability P (Xk = −1) = 1
k
, P (Xk = 1) = (1− 1

k
),

if (2n)! < k < (2n+ 1)!,
{−2, 2} with probability P (Xk = −2) = 1

k
, P (Xn = 2) = (1− 1

k
),

if (2n+ 1)! < k < (2n+ 2)!,
{−3, 3} with probability P (Xk = −3) = P (Xk = 3),
if k = (2n)! and k = (2n+ 1)!.

Let 0 < ε, δ < 1 and 0 < γ < 1. Then for the sequence (α, β)

P (|Xk − 1| ≥ ε) = 1
k
, if (2n)! < k < (2n+ 1)!

and
P (|Xk − 1| ≥ ε) = 1, if (2n+ 1)! < k < (2n+ 2)!

and
P (|Xk − 1| ≥ ε) = 1, if k = (2n)! and k = (2n+ 1)!

implies

lim
n→∞

1
f(((2n+ 1)!− (2n)! + 1)γ)f(|{k ∈ [(2n)!, (2n+1)!] : P (|Xk−1| ≥ ε) ≥ δ}|) = 0.

So, Xn

PSγ,f
αβ−−−→ 1.

Similarly, it can be shown that for the sequence α′ = {(2n + 1)!},

β′ = {(2n+ 2)!}, Xn

PSγ,f
α′β′

−−−−→ 2.
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Definition 2.3. Let (S,4, P ) be a probability space and {Xn}n∈N be a sequence
of random variables where each Xn is defined on the same sample space S (for
each n) with respect to a given class of events 4 and a given probability function
P : 4 → R. A sequence of random variables {Xn}n∈N is said to be f − αβ-strong
p-Cesàro summable of order γ (where 0 < γ ≤ 1 and p > 0 is any fixed positive real
number) in probability to a random variable X if for any ε > 0,

lim
n→∞

1
f((βn − αn + 1)γ)

∑
k∈[αn,βn]

f({P (|Xk −X| ≥ ε)}p) = 0.

In this case we write Xn

PW γ,p,f
αβ−−−−−→ X. The class of all sequences of random variables

which are f−αβ-strong p-Cesàro summable of order γ in probability is denoted simply
by PW γ,p,f

αβ .

Theorem 2.5. Let f be an unbounded modulus function such that f(x) ≤ x and

f(ax) = af(x), for all x ≥ 0 and a ∈ R. If Xn

PW
γ1,p,f
αβ−−−−−→ X and Xn

PW
γ2,p,f
αβ−−−−−→ Y (where

p ≥ 1), then P{X = Y } = 1 for any γ1, γ2 where 0 < γ1, γ2 ≤ 1.

Proof. Proof is straight forward, so omitted. �

Theorem 2.6. Let f and g be unbounded modulus functions satisfying the conditions

stated in Theorem 2.5. If Xn

PW γ,p,f
αβ−−−−−→ X and Xn

PW γ,p,g
αβ−−−−−→ Y (where p ≥ 1), then

P{X = Y } = 1.

Proof. If possible let P{X = Y } 6= 1. Then there exists two positive real numbers ε
and δ such that P (|X − Y | ≥ ε) = δ > 0. Then we have

{P (|X − Y | ≥ ε)}p ≤
{
P
(
|Xk −X| ≥

ε

2

)
+ P

(
|Xk − Y | ≥

ε

2

)}p
⇒

∑
k∈[αn,βn]

f((P (|X − Y | ≥ ε))p) ≤ 2p
∑

k∈[αn,βn]
f
((
P
(
|Xk −X| ≥

ε

2

))p)

+ 2p
∑

k∈[αn,βn]
f
((
P
(
|Xk − Y | ≥

ε

2

))p)

⇒f(δp)(βn − αn + 1)γ
f((βn − αn + 1)γ) − 2p 1

f((βn − αn + 1)γ)
∑

k∈[αn,βn]
f
((
P
(
|Xk − Y | ≥

ε

2

))p)

≤ 2p 1
f((βn − αn + 1)γ)

∑
k∈[αn,βn]

f
((
P
(
|Xk −X| ≥

ε

2

))p)
,

which is impossible because the left hand limit is not 0 whereas the right hand limit
is 0. So, P{X = Y } = 1. �

Corollary 2.2. Let f and g be two unbounded modulus functions satisfying the con-
ditions stated in Theorem 2.5 and 0 < γ ≤ 1, p ≥ 1. Then PW γ,p,f

αβ = PW γ,p,g
αβ .
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Theorem 2.7. (i) Let 0 < γ1 ≤ γ2 ≤ 1. Then PW γ1,p,f
αβ ⊆ PW γ2,p,f

αβ . This
inclusion is strict whenever γ1 < γ2.

(ii) Let 0 < γ ≤ 1 and 0 < p < q <∞. Then PW γ,q,f
αβ ⊂ PW γ,p,f

αβ .

Proof. (i) The first part of this theorem is straightforward and so is omitted. For
the second part we will give an example to show that there is a sequence of random
variables {Xn}n∈N which is f−αβ-strong p-Cesàro summable of order γ2 in probability
to a random variable X but is not f − αβ-strong p-Cesàro summable of order γ1 in
probability whenever γ1 < γ2.

Let 2c be a rational number between γ1 and γ2. We consider a sequence of random
variables :

Xn ∈


{−1, 1} with probability 1

2 , if n = [m 1
c ] for some m ∈ N,

{0, 1} with probability P (Xn = 0) = 1− 1
p√
n4 and P (Xn = 1) = 1

p√
n4 ,

if n 6= [m 1
c ] for any m ∈ N.

Then we have, for 0 < ε < 1

P (|Xn − 0| ≥ ε) = 1, if n = [m 1
c ] for some m ∈ N

and
P (|Xn − 0| ≥ ε) = 1

p
√
n4
, if n 6= [m 1

c ] for any m ∈ N.

Let αn = 1 and βn = n2 and f(x) =
√
x for all x ≥ 0. So, we have the inequality

lim
n→∞

n2c − 1
nγ1

≤ lim
n→∞

1
nγ1

∑
k∈[1,n2]

f({P (|Xk − 0| ≥ ε)}p)

and

lim
n→∞

1
nγ2

∑
k∈[1,n2]

f({P (|Xk − 0| ≥ ε)}p) ≤ lim
n→∞

[
n2c + 1
nγ2

+ 1
nγ2

( 1
12 + 1

22 + · · ·+ 1
n4

)]
.

This shows that Xn

PW
γ2,p,f
αβ−−−−−→ 0 but {Xn}n∈N is not f −αβ-strong p-Cesàro summable

of order γ1 in probability to 0.
(ii) Proof is straightforward and so is omitted. �

Theorem 2.8. Let f be an unbounded modulus function such that f(x) ≤ x for all
x ≥ 0 and 0 < γ1 ≤ γ2 ≤ 1. Then PW γ1,p,f

αβ ⊂ PSγ2,f
αβ .

Proof. Let Xn

PW
γ1,p,f
αβ−−−−−→ X. Then for every ε > 0,

lim
n→∞

1
f((βn − αn + 1)γ1)

∑
k∈[αn,βn]

f({P (|Xk −X| ≥ ε)}p) = 0.
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Then∑
k∈[αn,βn]

f((P (|Xk −X| ≥ ε))p) ≥
∑

k∈[αn,βn]
P (|Xk−X|≥ε)≥δ

f((P (|Xk −X| ≥ ε))p)

⇒
∑

k∈[αn,βn]
f((P (|Xk −X| ≥ ε))p) ≥ f(δp) f(|{k ∈ [αn, βn] : P (|Xk −X| ≥ ε) ≥ δ}|)

⇒ 1
f((βn − αn + 1)γ1)

∑
k∈[αn,βn]

f((P (|Xk −X| ≥ ε))p)

≥ f(δp) 1
f((βn − αn + 1)γ2)f(|{k ∈ [αn, βn] : P (|Xk −X| ≥ ε) ≥ δ}|).

This shows that

lim
n→∞

1
f((βn − αn + 1)γ2)f(|{k ∈ [αn, βn] : P (|Xk −X| ≥ ε) ≥ δ}|) = 0.

This completes the proof. �

But the converse of Theorem 2.8 is not generally true as can be seen from the
following example.

Example 2.4. Let a sequence of random variables {Xn}n∈N be defined by,

Xn ∈


{−1, 1} with probability 1

2 , if n = mm for some m ∈ N,
{0, 1} with probability P (Xn = 0) = 1− 1

p√n , P (Xn = 1) = 1
p√n ,

if n 6= mm for any m ∈ N.
Let 0 < ε < 1 and f(x) =

√
x for all x ≥ 0. Then

P (|Xn − 0| ≥ ε) = 1, if n = mm for some m ∈ N,
and

P (|Xn − 0| ≥ ε) = 1
p
√
n
, if n 6= mm for any m ∈ N.

Let αn = 1 and βn = n2. It can be easily seen that Xn

PSγ,f
αβ−−−→ 0 for each 0 < γ ≤ 1.

Let H = {n ∈ N : n 6= mm for any m ∈ N}. Then
1
nγ

∑
k∈[1,n2]

f({P (|Xk − 0| ≥ ε)}p) = 1
nγ

∑
k∈[1,n2]
k∈H

f({P (|Xk − 0| ≥ ε)}p)

+ 1
nγ

∑
k∈[1,n2]
k/∈H

f({P (|Xk − 0| ≥ ε)}p)

= 1
nγ

∑
k∈[1,n2]
k∈H

1√
k

+ 1
nγ

∑
k∈[1,n2]
k/∈H

1 > 1
nγ

n2∑
k=1

1√
k
>

1
nγ−1 ,
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(since ∑n

k=1

1√
k
>
√
n for n ≥ 2). So, Xn is not f − αβ-strong p-Cesàro summable of

order γ in probability to 0 for 0 < γ ≤ 1.
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